CA1062896A - Powder pushing device for filling cable - Google Patents

Powder pushing device for filling cable

Info

Publication number
CA1062896A
CA1062896A CA296,624A CA296624A CA1062896A CA 1062896 A CA1062896 A CA 1062896A CA 296624 A CA296624 A CA 296624A CA 1062896 A CA1062896 A CA 1062896A
Authority
CA
Canada
Prior art keywords
housing
tube
powder
chamber
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA296,624A
Other languages
French (fr)
Inventor
Jorg-Hein Walling
Jean Bouffard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Telecom Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Telecom Ltd filed Critical Northern Telecom Ltd
Priority to CA296,624A priority Critical patent/CA1062896A/en
Priority to EP79300185A priority patent/EP0003673A1/en
Priority to JP1236179A priority patent/JPS54113884A/en
Priority to ES477560A priority patent/ES477560A1/en
Application granted granted Critical
Publication of CA1062896A publication Critical patent/CA1062896A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material
    • H01B13/321Filling or coating with impervious material the material being a powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

POWDER PUSHING DEVICE FOR FILLING CABLE
ABSTRACT OF THE DISCLOSURE
A device for filling the interstices of multi-stranded cable with powder, comprising an outer cylindrical housing and a concentric inner tube with a closed annular chamber between them. A hopper opens into the chamber and the chamber opens into the tube. A feeder in the chamber pushes the powder from the opening of the hopper to the opening into the tube.

Description

This invention relates to the production of multi-stranded electrical cables and more par-ticularly to filling the interstices of such cables with powder.
Multi-stranded electrical cables are filled with powder for water blockage. A powder filling for this purpose is des-cribed in United States Patent No. 4,002,819 issued January 11, 1977 to NorthernTelecom Limited assignee of Leo V. Woytiuk.
One methlod of filling the interstices of the cable is by passing the cable core through an electros-tatic powder chamber as des-cribed in United States Patent No. 4,100,002 issued July 11, 1978 in the name of Leo V. Woytiuk assignor to Northern Telecom Limited. Such a method is relatively difficult to operate to obtain fine adjustments in the amount of powder filling placed within the interstices of the cable, i.e. the percentage of voids filled by the powder.
It is an object of the present invention to provide an improved method and apparatus for powder filling a multi-stranded cable.
Essentially the invention consists of a device for filling the interstices of multi-stranded cable with powder, comprising:
a cylindrical housing;
a tube within the housing for receiving the multi-~t~anded cable, the tube being concentric with the housing and spaced inwardly therefrom to form an annular chamber between said housing and tube, the tube further being flaired outwardly on the inlet end thereof and having openings annularly disposed therein adjacent said inlet end, the chamber being closed at each end thereof and opening annularly into the tube via said openings;
powder feeding means opening into the housing; and means intermediate the housing and tube to move powder from the powder feeding means from the chamber and into the tube through said openings to the interstices of the multi-stranded 4~ -1- ~

cable.
Example embodiments of the invention are shown in the accompanying drawings in which:

-la-Figure 1 is a side view i.n cross-section of a device for powder filling a cable;
Figure 2 is a view similar to Figure 1 showing one alternate embodiment of the device;
Figure 3 is a view similar to Figure 1, with the cable omitted, showing another alternate embodiment of the device; and Figure 4 is a cross-sectional view taken along line 4-4 of Figure 3.
The example embodiment shown in Figure 1 of the drawings consists of a cable filling device 10 having a cylindrical housing 12 and a coaxial tube 14 spaced inwardly from the housing to provide an annular chamber 16. Tube 14 flares outwardly adjacent its inlet end 18 to meet the end of housing 12 and to close one end of chamber 16. A circumferential row of parallel, spaced slots 20 is located in tube 14 adjacent inlet end 18.
A helical screw member 22 is located in chamber 16 with one end terminating adjacent slots 20. The end of screw 22 remote from slots 20 is fixed to an annular hub 24 of a gear 26 which is coaxial with housing 12 and tube 14. Gear 26 meshes with a drive gear 28. Hub 24 closes chamber 16 at the outlet end 30 of tube 14 and the hub is freely rotatable axially on the tube. Powder feeding means in the form of a hopper 32 is mounted on housing 12 and opens laterally into chamber 16 adjacent hub 24 through an aperture 34 in the housing.
In the operation of the example embodiment shown in Figure 1 a core 40 is continuously fed axially through tube 14 from inlet end 18 to outlet end 30 of the tube. At the same time a number of conductors 42 are fed into inlet end 18 of tube 14, for example from a multi-cage strander, and spirally J wound on core 40. A powder mixture 43 of predetermined blend is passed in a continuous flow, or as needed, into hopper 32 from an inlet conduit 44. The powder Erom hopper 32 passes through aperture 34 in housing 12 into chamber 16 and is carried forward in the cham~er by the axial rotation of helical screw 22 which is driven by gear 28 through gear 26. As the powder mixture reaches the end portion of chamber 16 adjacent inlet end 18 of tube 14 it passes through slots 20 in the tube and onto core 40. The lateral m.ovement of conductors 42 as they are wound about core 40 assists in the movement of the powder 10 against the core.
The amount of powder applied to core 40 is governed by the speed of travel of the core, the size of slots 20, the speed of axial rotation of helical screw 22 and the pitch of the screw. The application of the powder to core 40 is aided by sloping slots ~ with respect to the axial plane of tube 14 and in the direction of the slope of conductors 42 as seen in Figure 1.
In the alternate example embodiment of the device shown in Figure 2 of the drawings slots 20 in tube 14 of the 20 previous example embodiment are replaced by an annular opening 50 which allows greater access of powder from chamber 16 onto core 40 (tube 14 would be suitably supported by bars not shown). Also, hopper 32 of the previous embodiment is mod-ified to provide a fluidized bed of powder. In the embodiment of Figure 2 a hopper 60, opening onto housing 12 through an aperture 61, has a porous side wall 62 circumscribed by an annular housing 64 forming a plenum chamber 66 with an air inlet 68. Side wall 62 is connected with a vibrator lndicated schematically by numeral 70.
~0 In the operation of the embodiment of Figure 2 ~0~2896 powder flows into hopper 60 from a conduit 72, either contin-uously or intermittently,as required to keep the hopper filled.
Air is introduced under pressure through inlet 68 and passes from plenum chamber 66 through porous wall 62 into hopper 60.
At the same time hopper 60 is oscillated by vibrator 70 and powder within the hopper forms a fluidized bed 74. This activated state of the powder mixture facilitates its movement through chamber 16 and onto core 40.
In Figures 3 and 4 the further alternate embodiment consists of a tube 80 flaring outwardly at its inlet end 82 with a circumferential row of parallel, spaced slots 84 located in the wall of the tube adjacent its inlet end. A circulax housing 86 circumscribing tube 80 adjacent inlet end 82 defines a chamber 88 which contains a spiral feeder 90 fixed on an end plate 92 having a collar 94 projecting outside the housing and carrying an annular gear 96 engagable with a drive gear 98. A hopper 100 opens through an aperture 102 in housing 86 into ~hamber 88. As in the previous embodiment, hopper 100 has,a porous side wall 104 circumscribed by an annular housing 106 forming a plenum chamber 108 with an inlet 110. Side wall 104 is connected with a vibratsr 112.
In the operation of the embodiment shown in Figures 3 and 4 powder is introduced into hopper 100 through a conduit 114 as required to keep the hopper filled. Vibrator 112 oscillates hopper 100 and air under pressure enters through porous wall 104 to form a fluidized bed 116 of powder in the hopper. As a core passes into tube 80 through inlet 82 together with a plurality of s~rands to wrap the core, spiral feeder 90 is rota~ed by drive gear 98. To clarify the structure of Figures 3 and 4 the core and strands have been omitted but they pass through tube 80 in the same manner as in the previously described embodiments. Powder from hopper 100 passing though aperture 102 of housing 86 into chamber 88 is picked up by feeder 90 and moved towards slots 84 as the spiral feeder rotates, finally being forced through slots 84 onto the core within tube 80.
It will be appreciated that the core and strands shown in Figures 1 and 2 of the drawings are only illustrative and other types of multi-stranded cable may be powder filled by the device of the invention.
It will also be appreciated that types of mechanisms for driving helical screw 22 may be employed other than meshing gears 26 and 28; for example a worm gear and screw, a belt and pulley, or a chain and sprocket may be used.

_ 5_ .

Claims (10)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A device for filling interstices of multi-stranded cable with powder, comprising:
a cylindrical housing;
a tube within the housing for receiving the multi-stranded cable, the tube being concentric with the housing and spaced in-wardly therefrom to form an annular chamber between said housing and tube, the tube further being flaired outwardly on the inlet end thereof and having openings annularly disposed therein adjacent said inlet end, the chamber being closed at each end thereof and opening annularly into the tube via said openings;
powder feeding means opening into the housing; and means intermediate the housing and tube to move powder from the powder feeding means through the chamber and into the tube through said openings to the interstices of the multi-stranded cable.
2. A device as claimed in claim 1 in which the powder feeding comprises a hopper.
3. A device as claimed in claim 1 in which the hopper includes vibrator means and air inflow means to form a fluidized bed of powder therein.
4. A device as claimed in claim 1 in which the means to move the powder comprises a helical screw member concentrically mounted within the chamber, and means to rotate the screw member axially.
5. A device as claimed in claim 4 in which the means to rotate the screw member comprises a hub having one end of the screw member fixed thereto, the hub projecting from the housing, and a gear fixed to the hub outside the housing.
6. A device as claimed in claim 5 in which the outwardly flaring tube meets the housing to close one end of the chamber and the hub closes the other end of the chamber.
7. A device as claimed in claim 1 in which the means to move the powder comprises a spiral feeder concentrically mounted in the housing, and means to rotate the spiral feeder axially.

#-6-the powder comprises a spiral feeder concentrically mounted in the housing, and means to rotate the spiral feeder axially.

-6a-
8. A device as claimed in claim 7 in which the means to rotate the sprial feeder comprises a hub having the spiral feeder fixed thereto, the hub projecting from the housing, and a gear fixed to the hub outside the housing.
9. A device as claimed in claim 1 in which the chamber opens into the tube through an annular ring of spaced slots.
10. A device as claimed in claim 9 in which the slots are straight and positioned at an angle to the axial plane of the tube.
CA296,624A 1978-02-08 1978-02-08 Powder pushing device for filling cable Expired CA1062896A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA296,624A CA1062896A (en) 1978-02-08 1978-02-08 Powder pushing device for filling cable
EP79300185A EP0003673A1 (en) 1978-02-08 1979-02-06 Powder pushing device for filling cable
JP1236179A JPS54113884A (en) 1978-02-08 1979-02-07 Powder feeder for filling cable
ES477560A ES477560A1 (en) 1978-02-08 1979-02-08 Powder pushing device for filling cable.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA296,624A CA1062896A (en) 1978-02-08 1978-02-08 Powder pushing device for filling cable

Publications (1)

Publication Number Publication Date
CA1062896A true CA1062896A (en) 1979-09-25

Family

ID=4110735

Family Applications (1)

Application Number Title Priority Date Filing Date
CA296,624A Expired CA1062896A (en) 1978-02-08 1978-02-08 Powder pushing device for filling cable

Country Status (4)

Country Link
EP (1) EP0003673A1 (en)
JP (1) JPS54113884A (en)
CA (1) CA1062896A (en)
ES (1) ES477560A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1083793A (en) * 1978-04-27 1980-08-19 Jorg-Hein Walling Powder ejection nozzle for strander
DE3723632A1 (en) * 1987-07-17 1989-02-02 Frisch Kabel Verseilmaschf METHOD AND DEVICE FOR FILLING A STRING CONSISTING OF INDIVIDUAL ELEMENTS
CN113963864B (en) * 2021-10-15 2024-01-19 富通集团(嘉善)通信技术有限公司 Talcum powder applying device for cable production
CN114334298B (en) * 2022-01-11 2024-01-12 温州网牌电线电缆有限公司 Manufacturing process of self-supporting power cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE822261C (en) * 1949-07-07 1951-11-26 Wilhelm Keune Injection machine for producing striped insulating material jackets on electrical conductors or for producing striped hoses or similar continuous hollow or solid structures
US2760229A (en) * 1952-09-20 1956-08-28 Lewis Eng Co Apparatus for applying plastic coating to wire
DE1016008B (en) * 1953-01-17 1957-09-19 Felten & Guilleaume Carlswerk Screw press
US3285224A (en) * 1963-07-09 1966-11-15 Western Electric Co Apparatus for applying a coating material to an elongated longitudinally advancing article
GB1426180A (en) * 1972-11-24 1976-02-25 Bicc Ltd Manufacture of insulated electric cables

Also Published As

Publication number Publication date
ES477560A1 (en) 1980-04-01
JPS54113884A (en) 1979-09-05
EP0003673A1 (en) 1979-08-22

Similar Documents

Publication Publication Date Title
CA1062896A (en) Powder pushing device for filling cable
US4419157A (en) Process and apparatus for manufacturing telecommunication cables filled with expansible powder
CA1044196A (en) Screw feeder for granular material
US4232606A (en) Explosive connecting cord
US4201250A (en) Powder distributor for filling a cable
US4135869A (en) Apparatus for producing a continuous flexible tubular conduit
US4164245A (en) Powder pushing device for filling cable
EP0003641A1 (en) Method and apparatus for producing a composite pipe
IL25793A (en) Flexible conveyor device
US3373550A (en) Methods of and apparatus for alternate-reverse twisting of indefinite lengths of strand material
CA1070933A (en) Powder distributor for filling a cable
US4206790A (en) Powder ejection nozzle for strander
CA1083793A (en) Powder ejection nozzle for strander
US3115742A (en) Stranding apparatus
GB1582904A (en) Method and apparatus for producing an explosive connecting cord
US3578150A (en) Conveying member for incoherent or powdery materials, especially food for poultry or like animals, and device for the manufacture thereof
DE2255957C2 (en) Flexible hose and device for manufacturing
CA1059473A (en) Multiple powder conveyor system
GB1566058A (en) Powder filling of cables
DE2632986A1 (en) METHOD FOR MANUFACTURING A CABLE WITH A CONDUCTIVE COAT LAYER AND DEVICE FOR CARRYING OUT THE METHOD
CN217655708U (en) Extrusion device is used in production of mineral substance fireproof cable
US4669676A (en) Device for depositing cables
CA1036802A (en) Powder filling of cables
CN219988165U (en) Filter device of cable extruding machine
WO2017148578A1 (en) Submarine communications cable, and method and device for the production thereof