CA1059310A - Dielectric optical waveguides - Google Patents

Dielectric optical waveguides

Info

Publication number
CA1059310A
CA1059310A CA312,789A CA312789A CA1059310A CA 1059310 A CA1059310 A CA 1059310A CA 312789 A CA312789 A CA 312789A CA 1059310 A CA1059310 A CA 1059310A
Authority
CA
Canada
Prior art keywords
glass
glasses
gas
bubbling
boro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA312,789A
Other languages
French (fr)
Inventor
George R. Newns
Keith J. Beales
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Post Office
Original Assignee
Post Office
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB3348474A external-priority patent/GB1507711A/en
Priority claimed from CA231,987A external-priority patent/CA1047245A/en
Application filed by Post Office filed Critical Post Office
Priority to CA312,789A priority Critical patent/CA1059310A/en
Application granted granted Critical
Publication of CA1059310A publication Critical patent/CA1059310A/en
Expired legal-status Critical Current

Links

Abstract

ABSTRACT
A particular range of glass compositions in the soda-boro-silicate glass system has been found to be particularly suitable for ultra-low loss dielectric optical waveguides. The composition range is indicated in Fig. 1 of the specification. By preparing such glasses in a reducing atmosphere (0-2% CO in CO2) and adding about 1% As2 O3 to the melt attenuation coefficients due to copper and iron can be minimized. The water content of the glass can be reduced by bubbling dry CO in CO2 through the molten glass. Glasses containing less than 30% Na2O by weight have the lowest losses. Using glasses of this type dielectric optical wave-guides having an insertion loss of less than 14 dBKm-1 have been made.

Description

)5~3~ i The present invention relates to dielectric optical waveguides, glasses for use in dielectric optical waveguides, and methods of making glasses for use in dielectric optical waveguides. ~-In order to produce dielectric optical waveguides suitable for use in telecommunications systems it is necessary to ensure that the loss in the dielectric optical waveguides is of the order of 20 dB/Km or less~ This requirement imposes `
severe conditions on the quality of the glasses from which the dielectric optical waveguides are made. For example it is important that such glasses should have a low concentration of transition metal ions and water, which give rise to absorption bands. It is also important that phase separation and devitrification should not occur in the glasses when the fibre is drawn, because even if present to only a slight extent, these effects will result in glasses with a high scatter loss.
Up to the present time greatest success has been encountered with pure and doped vitreous silicas. It is possible to produce vitreous silica in an extremely pure state, so that absorption losses due to impurities are as low as
2 dB/Km. In order to produce a second glass with a refractive index different from that of pure silica, small quantities -of dopants are added, e.g. titanium dioxide. In this way ;
dielectric optical waveguides can be made with a doped silica core and pure silica cladding. Such dielectric optical `
waveguides have an extremely low loss. However because of the higher softening point of vitreous silica, there are ^
difficulties in the preparation of dielectric optical wave-guides from these materials. For example the usual technique used in the fabrication of dielectric optical waveguides is to prepare a preform consisting of a clad rod and then draw this down to a suitable diameter to form the dielectric optical waveguide.

~ 3 ~

.

~o5~3~ ~

From the point of view of conVenience of manufacture the double crucible technique for drawing fibres is ideal.
This technique involves melting two glasses, one in ~
a first crucible and the other in a second crucible, the ;
first crucible located within the second cxucible. Both crucibles have drawing nozzles~ The fibre thus formed is a clad fibre which is capable of acting as a dielectric optical waveguide~
Ideally low melting point glasses are required for the double crucible technique. However, such glasses are complex, containing as a rule, at least three oxides, and this introduces problems in keeping the glass losses at a sufficiently low level to permit the production of satis-factory dielectric optical waveguides.
The present invention is concerned with a particular glass system, namely the alkali oxide-boro-silicate system, which is capable of yielding low melting point glasses (glass forming temperatures in the region of 800C to 1300C), methods of producing these glasses and dielectric optical waveguides formed from these glasses. (The alkali oxides are the oxides of lithium, sodium, potassium, rubidium, and caesium). In particular the present invention is con cerned with glasses in the soda-boro-silicate system, di-electric optical waveguides made therefrom, and methods of preparing such glasses. In order that such glasses be suit-able for use in dielectric optical waveguides they should have low absorption and scatter losses, the combined losses being less than 20 dB/Km in the bul~ glass. This necessarily means that the glasses should be free of phase separation and de-vitrification, and have a low concentration of transition metal ions exhibiting absorption bands in the visible or near infra-red region of the spectrum. As will become apparent hereinafter, the glasses of the present invention contains small quan-tities of arsenic trioxide ~05~3~LO
, (less than 5% by weight, more usually between .01% and 1~ by weight) as a result of the methods of preparakion~ It should be understood, therefore, that any reference to an alkali oxide-boro-silicate, or soda-boro-silicate glasses is also to be interpreted as referring to the glass when it con-tains arsenic oxides in addition to soda, silica, and boric `~
oxide.
The present invention provides a method of preparingan alkali oxide-boro-silicate glass having low absorption and scatter loss properties rendering the glass useful for forming fibres capable of acting as dielectric optical waveguides~
The method comprises providing batch material of components to form a glass having a certain composition as hereinafter defined and lying outside the region of the phase separation of soda-boro-silicate glasses, the composition containing between 0.01 and 5% by weight of redox buffering oxide selected from the group consisting of arsenic trioxide and antimony trioxide. The batch material is melted at a glass forming temperature between about 800C to 1400C, and carbon dioxide or a mixture of carbon monoxide and carbon dioxide is bubbled through the molten glass, the molten glass being fined after cessation of gas bubbling.
Embodiments of the invention will now be described by way of example with reference to the accompanying drawings in which:-Figure 1 shows the composition range of glasses inthe soda-boro-silicate system.
Figure 2 shows iso-refractive index plots for the soda-boro-silicate system.
Figure 3 shows iso-thermal expansion coefficient plots for thesoda-boro-silicate system.

Figure 4 shows a plot of refractive index versus soda content for soda-boro-silicate glasses having a constant B2 03/Si 2 ratio (1 :: ,.. }, , . . ~ . '' ::; ", .
. .

~3S~3~0 `
,~. ; .
Figure S shows a plot of attenuation coefficient of iron at l.l,um versus wavelength for various soda-boro-silicate glasses. `
Figure 6 shows a plot of attenuation coefficient due to iron at two wavelengths, as a function of soda content for glasses in the soda-boro-silicate syste]m.
Figure 7 shows a graph of total attenuation versus wavelength for a soda-boro-silicate dielectric optical wave-guide.
NB. Figures 2 and 3 are drawn from published information and are only approximate.
It has been found that glasses having compositions in the Region A of Figure 1 can be made in a form suitable for use in dielectric optical waveguides. These glasses have compositions lying outside the composition range of non-glass formation (Region B of Figure 1) and phase separation (Region C of Figure 1). Glasses having the composition set out in in Table 1 have been prepared in a form having a suitably low loss to permit their use in dielectric optical waveguides (with the exception of glasses 28, and 31). ~owever it is believed that all compositions falling within Region A of Figure 1 are suitable for use in dielec-tric optical waveguides. Glasses having compositions defined in this way should have a low scatter loss, because they lie outside the region oP phase separation, C and well within the glass forming region, so that de-vitrification and nucleation should not occur. All t the glasses in Table 1 contain between 0.1% and 1~ by weight of arsenic trioxide because of the way in which they are made.
:, .~

~ ~93~0 Glass No. SiO2 B2o3 Na2 1 50 22.5 27.5 2 35.3 41 23.7
3 60 13 27
4 25 50 25 7 38 44.5 17.5 47.2 31.1 21.7 12 53.5 24 22.5 13 55.5 24.5 20 14 57 25.5 17.5 46.5 20.5 33 16 23.5 46.5 30 17 24 48.5 27.5 ' 18 26 51.5 22.5 ,;~

27.5 55 17.5 29 28.5 56.5 15 29 58.5 12.5 _ 7 -` ~()S9310 Compositions in Table 1 are in parts by weight, and are indicated by X in Figure 1.
The principal problem in producing glasses in the soda-boro-silicate system, which are suitable for dielectric optical waveguides is to ensure that optical absorption due to impurities, mainly iron and copper, are kept to an accept-able level. In glasses produced by usual techniques, the attenuation coefficient (loss dB/Km) per ppm of impurity of copper in:
e.g. glass 2 is 500 to 1200 dB per Km per ppm and the attenuation coefficient of iron is about 2 dB per Km per ppm. Copper and iron are usually present in the ratio of ,~
ten parts iron to one part copper. The iron absorption loss is due to iron in the ferrous or reduced state, i.e. is due to FE~ ions, while the copper absorption loss is due to copper in the cupric or oxidized state,i.e. Cu~ ions. The oxidation reactions are set out below.
Fe + 1/4 2 = Fe ~ 1/2 O

Cu ~ 1/4 2 ~~~ Cu + 1/2 0 The requirements on the redox state of the glass to minimize the absorption losses of lron and copper are there fore opposite, and it would appear at first sight that nothing can be done to reduce the combined absorption coefficient.
However it has been found that for a particular redox state the total absorption coefficient is a minimum.
The optimum redox state, which may be indicated by the copper attenuation coef f icient, may be determined by trial and error.
Glasses made with this redox state in fact proved to have a sufficiently low absorption coefficient to permit their use in dielectric optical wa~eguides typically the total loss of dielectric optical wave~uides made from glasses in this optimum redox state, are less than 12 dB~Km, and a portion of this loss is due to ~ater scatter.

... . : ~

~ 5 In order to produce a glass with the desired redox state, a reducing gas i.e. a gas having a very low efective partial pressure of oxygen, in this case a mixture of carbon dioxide and carbon monoxide is bubbled through the glass, carbon monoxide forming 0 - 20~ of the gaseous mixture. If the glass is fined in air for approximately 20 hours the carbon dioxide - carbon monoxide mixture should contain 9-18%
carbon monoxide giving an effective partial oxygen pressure -of the order of 10 atmospheres at 1000C. The bubbling process also serves to homogenize and dry the glass. The ;
glass melt is at a temperature in the range 800C to 1400C
during the bubbling process. For batch weights of 200 grammes to lO00 grammes a flow rate of carbon monoxide carbon dioxide mixture of 100-200 cc per minute is used; and the treatment is maintained for a period of between one half-hour and two-hours. The bubbling process may be carried out as soon as the batch materials have melted, or it may be delayed for a period of time after the batch has melted. It has been observed that the copper absorption loss falls as the temperature at which the glass is melted is raised and the iron absorption loss increases as the temperature at which the glass is melted is raised. The melting temperature is thus an important parameter in producing glasses with minimal absorption loss.
It has been ound that optimum results are obtained with a melting temperature of 1100C with the compositions normally used. Higher temperatures may be required for other glass compositions. This dependence of absorption loss on temperature is almost certainly due to the effect of temperature on the redox state of the glass.
It has also been found that the absorption loss due to copper and iron is dependent on the boric oxide content of the glass, the absorption loss drops as the boric oxide content rises. The explanation of this effect is uncertain.
Typically glasses treated in this way have an attenuation g _ .
:, . .:

~05~3~
coefficient e.g. for glass 2 for copper of 100-200 dB per Km per ppm and for iron of 30-50 dB per Km per ppm.
Because of the difference in wavelengths between the cupric and ferrous absorption peaks, 810 nm and 1,060 ;
nm respectively, (the ferrous absorption is approximately 60%
of its peak value at 800 nm), the different concentrations of copper and iron in the glass the effects of arsenic trioxide in the melt (to be discussed later), it is impossible to give a definitive explanation of why the absorption loss due to copper and iron should be a minimum for a particular redox state.
It should be noted that the batch material used for the manufacture of glasses described in this specification are commercially available materials. Typically the batch materials contain between 0.05-0.2 ppm of iron, 0.01-0.04 ppm o~ copper, less than 0.05 ppm of chromium, and less than 0.01 ppm of other transition elements. Presumably by reducing the impurity content of the batch materials further reduction in absorption loss could be obtained.
If nothing is done to the melt apart from adjusting its redox state to the desired condition, the redox state would change rapidly when the gas flow through the glass ceased. Since the glass must be allowed to stand in the molten condition for several hours to permit gas bubbles to escape from the melt this means that the final glass would not have the optimum absorption coefficient because of the ;~
change in the redox state. Further changes in the redox state would occur when the glass was remelted in a double ~ ;
crucible prior to fibre drawing.
To prevent this occurring 0.1% to 1~ by weight of arsenic trioxide is added to the batch materials. The arsenic trioxide acts as a buffer against changes in the redox state, so that the melt can be held at high temperature for a considerable period (up to 40 hours) without major a:Lteration . .: : : . `. :, . .
~; , , . j . ...

~lOS93 IIL~) , of the redox state. The addition of arsenic trioxide thus permits the glass to be fined, drawn into rod, and remelted in ;
a double crucible and still retain the optimum loss induced by the carbon dioxide carbon monoxide treatment. The only require-ments on the ~uantity of arsenic trioxide added to the melt are firstly, that the concentration of arsenic in the melt should be much higher than the concentration of iron and copper com-bined, and secondly that the arsenic trioxide concentration should not be so high that the properties of the glass are greatly modified. It is believed that these conditions are `
satisfied when the quantity of arsenic trioxide added to the melt is between .01% and 5% by weight. The optimum amount of arsenic trioxide is about 0.1% to 1%. As reported in "Low-~oss Glass for Optical Transmission" by Newns et al Electronics Letters Vol. 10 No. 10 16th May 197~, the reduced glasses have bulk losses of 15-25 dB per Km compared with 80-120 d~ per Km for oxidized glass.
The arsenic trioxide also has a cooling reaction with iron which tends to reduce the attenuation coefficient -for iron in the glass.
Antimony trioxide can also be used as a redox buffering oxide, and it is believed that cerium oxide should also work.
In order that the total loss should be low, it is preferable that the OH content be less than 20 ppm. To achieve this the batch powders are individually baked in vacuo at 250C prior to mixing. The CO/CO2 mixtures are dried with molecular sieves to a dew point of -60C to -65C. The glass is then fined in dry CO2 (dew point -60C) or dry nitrogen (dew point -70C). In this way OH contents for glasses 2, 3, and 4 have been reduced to less than 10 ppm.

This is essential for ultra-low loss fibres i.e. total losses less than 10 dB per Km.
In selecting glass pairs from the soda-boro--s:ilicate l~S~3~0 . , system for the production of dielectric optical waveguides (i.e. two glasses, one for the core of the dielectric optical waveguide, the other for the cladding) it would appear to be necessary to ensure that the glasses have a suitable difference in refractive index, typically l~ and that the expansion co-efficients are similar so that the drawn dielectric optical waveguide is stree free. The selection of suitable com-positions can be made with the aid of Figures 2 and 3- Figure 2 shows approximate iso-refractive index lines plotted for variations in composition, and Figure 3 shows approximate iso-expansion coefficient lines plotted against composition, (lines of constant refractive index and expansion coefficient respectively). "
From Figure 3 it can be seen that glasses 1, 2, 3 and 4 of Table 1 have roughly the same expansion coefficient and so should enable stress free dielectric optical waveguides to be fabricated. As previously mentioned the absorption loss decreases with increasing boric oxide content, for the same impurity levels, thus glass 4 has the lowest loss followed by glass 1 and 2 and glass 3 has the highest loss. From ~igure 2 it can be seen that glass 3 has a lower refractive index than the glasses 1, 2 or 4. Thus dielectric optical waveguides can be made with cores of glasses l, 2 or 4 and claddings of glass 3. Glass 4 is preferred as the core com-position. When dielectric optical waveguides are drawn from a double crucible using glasses 2 and 3, a great deal of electrolytic bubble formation occurs which results in a dielectric optical waveguide with a high scatter loss, ~in this case scattering at core-cladding boundary). This effect ' ;
may be removed by keeping the oxygen partial pressure low during pulling.

Dielectric optical waveguides having particularly -desirable characteristics have also been fabricated using glass 2 as the core glass and glasses 6 or 7 as the cladding
5~310 '-glasses.
The lowest total losses have been obtained with dielectric optical waveguides made from glass 4 as core and glass 3 as cladding. These dielectric optical waveguides may have a total insertion loss lower than 12 dB per Km at a wavelength of 750 nm - 850 nm. ;
The insertion loss as a function of waveiength is ;
shown in Figure 7, for a typical dielectric optical waveguide having a core of glass 4 and a cladding of glass 3. The absorption peak is the 2nd overtone of the OH fundamental. ;
It has been found that the attenuation coefficients due to iron falls as the percentage of soda in the soda-boro-silicate glass is reduced. Decreasing the soda content how-ever does not effect the copper attenuation. This means that the total loss of the glass can be reduced by reducing the soda content. Decreasing the soda content also causes the attenuation coefficients due to cobalt and nickel to fall, has no effect on the attenuation coefficient of manganese and raises the attenuation coefficient of chromium. The experimental data establishing this is now discussed.
The following compositions were prepared by bubbling `
the melts for 1 hour with CO2 and fining in air:- ;
16, 17, 4, 18 and 19.
The following compositions were prepared by bubbling the melts for 2 hours with 13~ CO - 82% CO2, fining in the same atmosphere and doping them with 0.05 wt ~ Fe2O3 : = 16, 4, 19, 20, 29, 30 and 31. (These glasses can of course be prepared without added iron~. The attenuation coefficients and refractive indices of the glasses were measured.
The refractive index decreased rapidly as the Na2O
content decreased below 27.5~ (Figure 4). Composition 31 (containing 10% Na2O), phase-separated, but would be expected to be about 1.48, as the binary (67~ B2O3 .33~ SiO2) is known to be about 1.45 - 1.46 from literature.

:

~~(35~3~V

Attenuation coefficients due to Fe are plotted outin Figure 5. The ferrous ion coefficient decreases as the Na2O content decreases. The effect is shown more clearly in Figure 6, where the attenuation coefficient is plotted as a function of Na20 content, at 800 and 1060 nm. ;
In order to determine the copper attenuation co-efficient composition 29 was prepared, containing 0.1% by weight of Cu. The glass was colourless, showing that nearly all the copper had been reduced to Cu .
10 Had a redox effect been present in the glass, it would have been expected that the Cu coefficient would have increased (as the corresponding Fe coefficient had decreased~. -However, as the Cu coefficient was also low, it would indicate that the cause is a change in extinction co-efficient rather than a redox effect. This has been confirmed by analysis of the glasses for Fe2~. All the glasses have 85-95% of the total iron in the Fe state.
From the results of refractive index and attenuation `
coefficient measurements, it should be possible to select a core and cladding composition that have a lowerNa2O content, with the required refractive index difference, and lower absorption due to Fe. The unchanged copper attenuation co-efficient allows a more favourable optimization of Fe and Cu loss (at a higher state of reduction).
Possible disadvantages are that the tendency to phase separate increases as the Na2O content decreases, and glasses with low Na2O contents are more difficult to dry~
N.B. None of the iron doped glasses have arsenic added. The set of experiments are useful only for comparison.
The attenuation coefficients are not the same as pure melts, which have arsenic added to lower the Fe2+ content and thus the attenuation coefficient.
Fibres with total insertion loss of less than 18 dB/Km have been made with glasses 32 and 33. A suhstantial - 14 - ;

' :' : ' ' ' .. ' ~593~

proportion of the loss was due to water absorption. ~

.~': '.

, :

. . .

- 15 - ~ :

,

Claims (10)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method of preparing an alkali oxide-boro-silicate glass having low absorption and scatter loss properties rendering the glass useful for forming fibres capable of acting as dielectric optical waveguides which comprises:
providing batch material of components to form a glass having a composition lying within the range of composition defined by Region A in Fig. 1 and lying outside the region of phase separation of soda-boro-silicate glasses, said composition containing between 0.01 and 5% by weight of redox buffering oxide selected from the group consisting of arsenic trioxide and antimony trioxide, melting said batch material at a glass forming temper-ature between about 800°C to 1400°C, bubbling a gas selected from the group consisting of carbon dioxide and mixtures of carbon monoxide and carbon dioxide through the molten glass, and fining the molten glass after cessation of said gas bubbling.
2. The method of claim 1 wherein said gas contains up to 20% of carbon monoxide.
3. The method of claim 2 wherein said gas is a mixture of 9 to 18% carbon monoxide and 82 to 91% carbon dioxide.
4. The method of claim 3 wherein said gas mixture is bubbled through said molten glass at a rate of about 100 to 500 cc. per minute per kilogram of batch material.
5. The method of claim 1 wherein said bubbling of gas through the molten glass is conducted for about 0.5 to 2 hours.
6. The method of claim 5 wherein said time of bubbling is 30 to 60 minutes.
7. The method of claim 1 wherein said glass is fined for a period of up to 40 hours sufficient to permit all gas bubbles to escape from the molten glass.
8. The method of claim 7 wherein said molten glass is fined under an atmosphere of air, CO2 or nitrogen.
9. A method of preparing an alkali oxide-boro-silicate glass having low absorption and scatter loss properties rendering the glass useful for forming fibres capable of acting as dielectric optical waveguides which comprises:
providing a batch material to form an alkali oxide-boro-silicate glass system and lying outside the region (C) of Fig. 1 of phase separation of soda-boro-silicate glasses, said glass system containing between 0.01 and 5% by weight of redox buffering oxide selected from the group con-sisting of arsenic trioxide and antimony trioxide, melting said batch material at a glass forming temperature between 800°C to 1400°C, bubbling a mixture of carbon dioxide and carbon monoxide containing up to 20% carbon monoxide through the molten glass, and fining the molten glass after cessation of said gas bubbling.
10. The method of claim 9 wherein said bubbling gas mixture contains 9 to 18% carbon monoxide and said fining is conducted under an atmosphere of air, CO2 or nitrogen for 30 to 60 minutes.
CA312,789A 1974-07-29 1978-10-05 Dielectric optical waveguides Expired CA1059310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA312,789A CA1059310A (en) 1974-07-29 1978-10-05 Dielectric optical waveguides

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB3348474A GB1507711A (en) 1974-07-29 1974-07-29 Glass for use in dielectric optical waveguides
GB5309774 1974-12-09
GB330675 1975-01-24
CA231,987A CA1047245A (en) 1974-07-29 1975-07-22 Dielectric optical waveguides
CA312,789A CA1059310A (en) 1974-07-29 1978-10-05 Dielectric optical waveguides

Publications (1)

Publication Number Publication Date
CA1059310A true CA1059310A (en) 1979-07-31

Family

ID=27508044

Family Applications (1)

Application Number Title Priority Date Filing Date
CA312,789A Expired CA1059310A (en) 1974-07-29 1978-10-05 Dielectric optical waveguides

Country Status (1)

Country Link
CA (1) CA1059310A (en)

Similar Documents

Publication Publication Date Title
US3957342A (en) Sodium borosilicate glasses for dielectric optical waveguides
EP0068580B1 (en) Optical fibre of the graded index type and method of producing same
US4418985A (en) Multi-component glass optical fiber for optical communication
EP0739863B1 (en) Transparent glass-ceramics
US4768859A (en) Cladding glass for optical fiber
CA1109083A (en) Optical fibres and glasses
EP1064232A1 (en) Chemically toughenable boron-free float glass compositions
WO1998002389A1 (en) Ultralow-loss silica glass and optical fibers made using the same
IE53304B1 (en) Glass composition suitable for the manufacture of fibres
US4097258A (en) Optical fiber
KR890001125B1 (en) Optical fifer
JPH06219780A (en) Glass fiber of low dielectric constant
US4445754A (en) Glass optical fibres and glass compositions therefor
EP0170380B1 (en) Treating glass compositions
CA1201454A (en) Glasses, methods for making them, and optical fibres containing them
US4023952A (en) Making a dielectric optical waveguide glass
CA1059310A (en) Dielectric optical waveguides
US4973565A (en) Fluoroborosilicate glass and clad article
EP0098648B1 (en) Optical fibres having a large numerical aperture
US4628038A (en) Water resistant glass fibers
US4868141A (en) Fluoroborosilicate glass
US3711264A (en) Method for producing a faraday rotation glass having a high verdet constant
Jewell Alkaline earth gallogermanate glasses
Parker et al. Optical properties of halide glasses
Waesche et al. Tg, UV-transparency and mixed oxide effect of ultrapure ternary alkaline earth-metaphosphate glasses