CA1046915A - Laminated polymeric articles and process for the production thereof - Google Patents

Laminated polymeric articles and process for the production thereof

Info

Publication number
CA1046915A
CA1046915A CA238,533A CA238533A CA1046915A CA 1046915 A CA1046915 A CA 1046915A CA 238533 A CA238533 A CA 238533A CA 1046915 A CA1046915 A CA 1046915A
Authority
CA
Canada
Prior art keywords
resin
polymeric
coating
polymeric resin
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA238,533A
Other languages
French (fr)
Inventor
William C. Thiele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Manville Corp
Original Assignee
Johns Manville Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johns Manville Corp filed Critical Johns Manville Corp
Priority to CA238,533A priority Critical patent/CA1046915A/en
Application granted granted Critical
Publication of CA1046915A publication Critical patent/CA1046915A/en
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

Abstract of the Disclosure A process is provided for bonding otherwise incompatible resin systems to form laminated resinous articles. A first resin layer is coated with a solv-ated coating which forms a surface solution with the surface of the first layer. Thereafter, a second resin layer is bonded to the coating. The coating contains a butadiene resin, a portion of the resin used in the second layer, and curing agent for the resin. The pro-cess is particularly adapted to bonding polyvinyl chloride pipe cores to epoxy-impregnated glass fiber overwrap to form improved laminated plastic pipe.

Description

LAMINATED POLYMERIC ARTICLES AND PROCESS FOR

Background of the Invention Field of the Invention This invention relates to the bonding of two dissimilar polymeric resin composition surfaces. In a particular embodiment, the invention relates to a pro-cess for bonding an epoxy resin matrix reinforced with glass fibers to the surface of polyvinyl chloride pipe whereby the pipe is reinforced and withstands high pres-sures without rupture of the interface bond between the epox~ resin and the polyvinyl chloride surface.
For some time plastic pipe made of one or -more layers each of polyvinyl chloride and epoxy-impregnated glass fibers has been widely used in the cons~ruction and plumbing industries. Light weight ` and resistance to corrosion have been among the desir-able properties of this type of pipe. This pipe con- -;-ventionally consists of an inner hollow cylinder of polyvinyl chloride overlaid with a wrapping of epo~
~ - 20 impregnated glass fibers. In some cases only a single" layer of each material is used; in other cases, how-~, ever, the first layer of epoxy-impregnated glass fibers is overlaid with a second polyvinyl chloride layer/ --which is itself then overlaid with a second layer of epoxy-impregnated glass fiber. Any number of such multiple alternating layers may be thus built up.
Bonding between each pair of dissimilar sur-fa~es o the alternating layers of epoxy-impregnated :, ' ' . glass fiber and polyvinyl chloride has, however, been a serious probleml often reaching critical dimensions ~ ~-where the pipe consists solely of a relatively thin ~ polyvinyl chloride inner cylinder overlaid with only ., .
'`

~ , ~l~34 6~LS

1 one or two layers of an epoxy-impregnated glass fiber wrapping.
Since polyvinyl chloride and epoxy do not substantially chemically bond with each other, mechanical forces were depended upon to maintain the integrity between the layers of the pipe.
However, these mechanical forces were insufficient to withstand the counter-vailing forces produced by the fluid pressure within the pipe, and the layers of the pipe would become separated. This was particularly aggravated whenever it was -~
necessary to cut into the pipe, as with a conventional pipe joint9 thereby exposing the interface in the cut cross-section of the pipe to the full line pressure carried within the pipe.
` Description of the Prior Art -Pipe manufacturers have for some time attempted to overcome the above-mentioned problem by seeking various means for creating a strong bond between the alternating layers of polyvinyl chloride and epoxy-impregnated glass fiber. These ` attempts have been substantially hindered, however, by the '~ characteristic inertness and chemical resistance of polyvinyl chloride and related resins. The chemical reactions of these .; ~ 20 materials are generally substantially confined to those of degradation in heat or strong radioactive environments. -~
Conventional attempts to achieve chemical bonds of epoxy resins, directly or indirectly, to polyvinyl chloride or related resins have been substantially ineffective and have failed to overcome the problems noted.
Typical of the conventional and/or prior adhesives and surface treatments which have heretofore proven to be unsatisfactory are those described in U. S.

'
-2- ~ -:~.; ' - ' .:. ~, ~046~93L5 Patents 2,815,043; 3,002,534, and 3,447,57~; as well as British Patent 907,763. -Recently in U.S. Patent 3,628,991 a process was described in which an acrylonitrile-butadiene-styrene (ABS) copolymer dissolved in a mutual solvent for polyvinyl chloride and ABS was applied to the surface of the polyvinyl chloride pipe to form a surface solution. The epoxy-impregnated glass fiber layer was then overwrapped in contact with this A~S-containing surface solution and bonded to the ABS. This approach achieved a notable measure of success in creating a satisfactory bond between the polyvinyl chloride inner cylinder and the epoxy-impregnated glass fiber overwrap. -. . .
Brief Summary of the Invention . ~ ~
The invention herein is an improvement in a . : :
process for bonding together a first resinous layer containing -;~
as a major component a first polymeric resin and a second ~:
resinous layer containing as a major component a second ~
~` polymeric resin, the second polymeric resin being initially . ~ -l;quid, thermosett;ng, d;ssimilar to and substantially . ~ :~
. 20 chemically unbondable directly to the first polymeric resin;
. .
the process comprising forming a surface solution, on the surface of the first resinous layer, of the first polymer;c .
res;n and a coat;ng comprising a third polymeric resin and a ~, .
` mutual solvent for the f;rst and third polymeric resins, : :.
. where the third polymeric resin is substantially curable to .
.` the second polymeric resin and substantially chemically ~:
unbondable directly to and substantially incompatible with ~; the first polymeric resin other than in a solvated state; at --least partially fusing the surface solution; applying to the coating the second resionous layer containing ~ ` :'.'' ' ' ~`'' ~' ~ ~ -3~
~ ~ ''.'',`''', i:~
.~ , ., . . ,, , .. . ~ . ,. - .
~ . ~ .. . . ..

~L(~9~6~LS
1 the second polymeric resin in a substantially uncured form;
and curing the second polymeric resin and simultaneously bonding the second resinous layer to the coating. The improvement herein comprises increasing the strength of the bond formed in the curing step between the coating and the second resinous layer by incorporating into the coating the second polymeric resin in solid form and a curing agent therefor.
In a preferred embodiment, the invention comprises lo an impro~ement in a process for bonding together a polyvinyl chloride layer and an initially liquid epoxy-impregnated fiber glass layer, the process comprising forming a surface -solution, on the surface of the polyvinyl chloride layer, of polyvinyl chloride and a coating containing a butadiene ;
resin and a mutual solvent for the polyvinyl chloride and the butadiene resin, at least partially fusing the surface ; solution; applying to the coating the epoxy-impregnated fiber glass layer containing the epoxy resin in a substantially ; ~ uncured form; and curing the epoxy res;n and simultaneously bonding the epoxy-impregnated fiber glass layer to the coating. The improvement of this preferred embodiment comprises increasing the strength of the bond formed in the ;
curing step between the coating and the second resinous layer by incorporating a solid epoxy resin and a curing agent therefor into the coating.
The invention also contemplates an improved ~., laminated article~ particularly a multilayer pipe, ~; ` produced and bonded in the manner described herein.
~- Consequently the invention also encompasses a laminated ~- ;
article having improved bonding between the laminae ~.` . .
-4~
~: .

J' ~ ~ ' ~L0469~ ~
comprising a first resinous layer containing as a major component a first polymeric resin and a second resinous layer containing as a major component a second polymeric resin, the second polymeric resin being a thermosetting resin which is dissimilar to and substantially chemically unbondable directly to the first polymeric resin; the first and second polymeric resins being bonded into a laminate by a coating therebetween and in intimate contact therewith, the coating initially comprising 1) a third polymeric resin, lo which is thermoplastic, substantially curable to the second polymeric resin and substantially chemically unbondable ::~:
.~
directly to and substantially incompatible with the first ~ :
polymeric resin other than in a solvated state; 2) the second polymeric resin in solid form, 3) a mutual solvent for at least the first and third polymeric resins; and 4) a ~
curing agent ~or the solid second poly~leric resin, the - .
coating and the first polymeric resin torming a fused ~: -surface solution on the surface of the first resinous lĂ yer and the coating and the second resinous layer being chemically bonded~
In a preferred embodiment, the invention also ; :
encompasses a laminated article, having a superior bond : : .
between the laminae, which consists essentially of a pol~Y-vinyl chloride layer and an initially liquid epoxy resin ~ :
impregnated fiber glass layer, the layers being bonded into :
a laminate by a coating therebetween and in intimate contact therewith, the coating initially comprising: 1) an ~-~"
acrylonitrile-butadiene styrene resin; 2) solid epoxy resin;
3) a mutual solvent for at least the polyvinyl chloride and the acrylonitrile-butadiene-styrene resin; and 4) a curing agent ~or the solid epoxy resin, with the coating and the polyvinyl chloride forming a surface solution on .
-5- -:

~046g~5 ~:
1 the surface of the polyvinyl chloride layer and the coating and the epoxy-impregnated fiber glass layer being chemically bonded. In a particularly preferred embodiment, the laminated article having the improved bond between the laminae comprises a polyvinyl chloride hollow inner cylinder, an outer layer thereupon ~f an epoxy resin matrix reinforced with glass fibers, and a coating bonding the-inner cyl;nder and the outer layer which initially comprises acrylonitrile-butadiene-styrene resin, epoxy resin, methyl ethyl ketone, and an equimolar `
-complex of diacetoneacrylamide and diethylenetriamine. -~
Detailed Description and Preferred Embodiments -This invention is a novel method of bonding two dissimilar and otherwise unbondable resinous compositions.
While the process of this invention is widely applicable to bonding any two such materials in any field of application, the process finds a particularly important use in the bonding of alternate layers of polyvinyl chloride and related resins to layers of epoxy and related polymeric materials. An important spec;fic application of this process lies in a method for producing plastic pipe composed of alternating layers of polyvinyl chloride resin and epoxy-impregnated glass ~
fibers. ~ -The process of this invention enables strong ; ; bonds to be formed between layers of dissimilar and otherwise generally unbondable resinous compositions.
Pipe produced by the method described herein has good integrity and substantial resistance to separation at the interfaces within the pipe wall. Further, where it . I .
is necessary to cut into or through the pipe wall and expose one or more of the interfaces, the method of -"` -~
, . ,' ;
.',' . .:

:~4~9~S :
this invention can be used quite effect;vely to seal the cut surface and prevent exposure of the interface to the line pressure within the pipe, thereby preventing separation of the pipe wall at that interface.
The "first polymeric resin", as defined herein, may be any o-f a wide variety of substantially chemically inert polymeric resins which can form surface solutions with the coatings described herein. Typical of the ~irst polymeric ~i resins suitable for use in this invention are poly(vinyl lo acetate), poly (methyl methacrylate), polystyrene, polybutene, poly(vinyl butyral), and the polymeric olefinic chlorides, notably poly(vinylidine chloride), poly (vinyl chloride) and copolymers thereof. The polymeric olefinic chlorides (wh;ch are referred to herein collectively as "polyvinyl chloride") ;
,, : - ~ . .
are the preferred "first polymeric resin." -The "second polymeric resin" is an initially liquid thermosetting resin selected from the group con-sisting of epoxy polyester resins and phenol;c res;ns. Of these, the epoxy resins are preferred. These are reaction products of epox;de compounds with compounds having ava;lable hydrogen atoms linked to carbon atoms by oxygen atoms.
," .....
Examples of the latter are the polyhydr;c phenols and the -polyhydric alcohols. A typical epoxy resin useful in this invention is the react;on product of ep;chlorohydrin and a polyhydr;c phenol such as bisphenol-A. Other ;llustrative epoxy resins typ;cally ;nclude reaction products of ep;halohydr;ns and polyhydr;c alcohols such as ethylene glycol, propylene glycol, trimethylene glycol, and the like. ~-Also quite satisfactory in the process of this invention -~ 30 are the epoxy silanes; these are often used as the binding ~' :, s~ 7 s 1 matrix for glass fibers as described, for instance, in U. S. Patent 3,391,052.
Other suitable epoxy resins include the epoxy novalak resins such as the epoxy phenol novalak resins.
These are basically novalak resins whose phenolic hydroxyl groups have been converted to glycidyl ethers.
Other suitable epoxy resin types include p-amine phenol epoxies, as well as cycloaliphatics in which the epoxide group are directly attached to the cycloaliphatic ring and epoxy ethers.
The phenolic resins include those produced by reacting phenol with an aldehyde. The commercial phenols used are phenol, cresols, xylenols, p-tert.-butylphenol, ~-phenyl-phenol, bisphenols and resorcinol.
The most important aldehydes are formaldehyde and ~; furfural. Preferred among the phenolic resins are those formed by the reaction of phenol and formaldehyde. The phenolic resin may be formed by either addition or con-. ~
; ~ densation reactions in the presence of either acid or `~, 20 base.
, The polyester resins are formed by the reac ., tion of polyfunctional acids or anhydrides and alcohols.
.
A typical polyester resin is prepared by reacting phthalic anhydride, maleic anhydride, and propylene glycol.
The "third polymeric resin" used in the pro-cess of this invention must be a butadiene resin. This ,~ ...may include polybutadiene itself or any of a variety of copolymers or terpolymers such as butadiene-styrene ` 9~ resin, acrylonitrile-butadiene resin, acrylonitrile- ;
butadiene-styrene resin (ABS), mixtures thereof and the . :
like. In the process of this invention it is required . ~ . .. .
. . : .
~: ,. .: .
~ -8-~4~ 5 1 that the third polymeric resin be a butadiene resin;
other materials have found not to be equivalent.
Preparation methods for all the resins men-tioned in the preceding paragraphs are well known and amply described in the art. Any of the known prepara-tion methods are suitable to prepare the resins ~or use in this invention.
The particular solvent used in process of this invention will depend upon the nature of the three poly-meric resins which are being used. The particular sol-vent chosen must be one in which the first and the third polymeric resins are mutually soluble and preferably one in which all three resin components are soluble. Those `-solvents in which the second resin component is not readily soluble should still be such that the resinous material may be dispersed in the solvent in comminuted form. Typical solvents include tetrahydrofuran, methyl ~ ~ .. .
ethyl ketone, cyclohexanone, methylene chloride, acetone, ethyl acetate, isophorone, and the like. I~hen the ` 20 first polymeric resin is a polyvinyl chloride and the third is ABS, the preferred solvents are tetrahydrofuran and methyl ethyl ketone.
The curing agents for the epoxy resins are commonly the aliphatic and aromatic polyamines or anhydrides. Typical of these are diethylenetriamine !
triethylenetetramine, m-phenylenediamine, methylene dianiline or mixtures thereof; the principal anhydrides are phthalic, tetrahydrophthalic, hexahydrophthalic, " , ' , . . .
"Nadic Methyl," and trimellitic. Other curing agents ; `~ 30 such as amides te-g., diacetoneacrylamide) are also " .:
` ` known.

The exact composition and concentration of . .

gis the components in the first and the second resinous layers are not critical. Each component will be selected primarily because of the particular properties desired in the finished material. Thus, in a typical pipe composition the inner polyvinyl chloride cylinder will be composed essentially all (i.e., usually about ; ~ 9Q~ or greater) of polyvinyl chloride with a small amount of conventional additive material such as stabi-lizers, anti-oxidants, colorants, etc. Similarly, the layer of epoxy-impregnated glass fiber will consist of a range of concentrations of continuous filament glass fibers in an epoxy matrix and may also include ma-terials such as colorants, anti-oxidants, stabilizers, curing agents, etc. in small amounts. The various con-' ~ centrations of epoxy and glass will depend on the prop-erties desired in the finished pipe. In these cases as ~.
in all others involving the various materials which-may be in the first and/or second resinous layer, there is much prior art describing the various materials and ~` 20 their properties. Those skilled in the art will find no difficulty in selecting suitable compositions from ` ' -the prior art or use in the process of this invention.
For the purposes of this invention, therefore, ;~
~: ~ first and second resinous layers are considered suitable ; if they are not generally bondable to each other (for if they are, they may be bonded by means other than the process o this invention) and if they each contain the respective first and second polymeric resins as princi-pal components. "Principal component" as used herein is defined to mean a component which is present in suffi-` cient quantity so as to contribute substantially to the ~;~ bonding process of this invention. Generally this will ~,, -10- . ' ~-, ~` Z ' ,.:~

~L6g~

mean that the particular components will comprise 40 to 50%
or more, up to 100%, of the particular polymeric composition being considered. Such a component may, however, be present in a smaller concentration if the other components are relatively inert and/or the component in question provides a major part of the bonding function. Thus, for instance, in an epoxy-impregnated glass fiber layer, the epoxy resin may vary over a wide range of concentration and yet be considered -a principal component, for the other important component in lo the system, glass fiber, is inert and does not participate in the bonding process. It is, of course, important that a "principal component" be present in sufficient amount to materially participate in the bonding functioni small or trace amounts of a component which provide only a small amount of bonding are not considered to be within the scope of th;s invention.
~ . . .
The novel coating layer initially consists essentially of four components: the solid form of the same resinous component which is found in the second polymeric resin composition in liquid form, i.e., the second polymeric resin which is the epoxy, polyester or phenolic resin; the third (butadiene) polymeric resin; a curing agent for the solid second polymeric resin; and solvent which is a mutual solvent for both the first and third polymeric resins and preferably also a solvent for the solid second polymeric resin. All components are dissolved in or dispersed in this solvent in the coating layer. During the process herein the solvent -~
will evaporate. Consequently, the final lam;nae will be -~
bound by a three-component coating containing the two resins and the curing agent.
,;~ . .... : .. , The second and third polymeric resins should ` be present in the coating in a weight ratio of from ~L~4~

1 1:10 to 5.1, preferably 1:6 to 3:1. The overall con-centration of both resins will total from 5 to 60 weight percent of the total coating composition, pre-ferably 10-50 weight percent. The concentration of the solvent will range from 40 to 95 weight percent, preferably 60-85 weight percent. The curing agent will be present as from 5 to 35, preferably 11-25 phr (parts by weight per 100 parts by weight of epoxy resin).
While the theory by which the novel coating herein operates to produce the superior bonding prop-erties has not been experimentally proved, it is be-lieved that the curing agent present may be in effect less than the stoichiometric amount required to com-pletely cure the second resin component of the coating.
, There thus may be some uncured resin available to bond with the second resin in the second layer and be'co-` cured therewith in the final curing step. By "in effect less than stoichiometric" is meant that whatever amount -; , , .
;l of curing agent is added, there may still be incomplete -. :' reaction with the second resin; i.e~, the stoichiometric reaction may not have occurred. On the other hand, since the degree of cure of the resin cannot be readily mea-~ sured, the above theory is not intended to be limiting.
r, I ~ It is recognized that there may be a complete curing of ` the second resin in the coating and then subsequent bonding of the second resin components of the coating and the second layer by one or more other mechanisms.
.- ,..
The coating will be placed on the underlylng r ~ first resinous layer ~e.g., the polyvinyl chloride resin) in a quantity sufficient to dissolve the outer surface portion of th~ first resinous laver and to form a surface solution of that portion with the coating. Care should ~--12- ;~

1 be taken, however, that the quantity of coating used is not so great as to dissolve a major portion of the first resinous layer and thereby to weaken or materially change the properties of that composition. Those skilled in the art of adhesion and bonding will be well aware of the proper amount of coating to be used on a particular resin composition substrate to achieve a good bond with-out seriously diminishing the desirable properties of that substrate. The quantity of coating is such as to normally penetrate the surface of the first polymeric resin composition to a depth of about 0.5 to about 3 mils and to form a surface coating thickness of up to about 7 mils.
In the practice of the process of this inven-tion the underlying first resinous substrate is first cleaned of any foreign matter which might detrimentally afect the formation of a good bond. The coating com-position containing the second and third polymeric resins and curing agent (all dissolved and dispersed in the solvent) is wiped, painted, sprayed or otherwise placed on the cleaned surface of the first polymeric resin com-, ~ pO8 ition substrate, and generally then worked into the surface to form a relatively homogeneous surface solu-tion having the characteristics described above.
, The coated first layer is then heated to a `
, temperature of 100-200F, preferably 100-150F, and held for 1-10 hours. This heating serves to precondi-tion the first layer and the coating for the final cur-ing step. In addition, the surface solution is at least , 30 partially fused at this time. Some degree of curing of `~
~' the second resin in the coating is also believed to take ?~ place simultaneously. `-~:~-, .,, :

~o~ s 1 Thereaf~er a second layer which consists of a second polymeric resin composition is applied to and placed in contact with the surface of the coating. The second polymeric resin in the second polymeric resin composition will be in a substantially uncured state.
It is believed that this uncured ~esin subsequently co-cures with any uncured portion of second polymeric resin present in the first coating, or otherwise bonds with cured portions of the coating resin. The concentration of the second polymeric resin in the layer may, as noted above, vary over quite a wide range, particularly where the layer also contains inert materials such as glass fibers. The layer may be sprayed, painted, wiped or otherwise applied to the surface solution, prefer-ably in a wet form. In a preferred embodiment the `
layer is in the form of a tape or wrapping which is laid or wrapped on or around the substrate and surface solution. Thus, when pipe is to be formed by the pro- -cess of this invention, the inner cylinder (e.g., poly- ~

vinyl chloride) is first coated on its outer surface ; `
with the solvated coating, thus dissolving a small amount of that outer surface. Thereafter, following heating of the surface solution, coating and inner cylinder, an epoxy-impregnated fiberglass-containing tape is wrapped c~ntinuously and tightly around the cylinder bringing the tape into intimate contact with surface solution.
Following the application of the outer layer the second polymeric resin is cured by conventional cur~
ing means. ~enerally this involves heating the entire assemblage so as to thermally cure the second polymeric resin~ At the same time any uncured portion of the ,,- : . , ~ second polymeric resin in the surface solution is cured.

~ 69~5 The heat applied will, of course, be kept suff;ciently low such that the other polymeric resins in the entire assemblage as well as any fillers or additives or other materials which may be present will be not detrimentally affected. Such curing techniques are well known to those skilled in the art and need not be exemplified here. I have found that for the compositions exemplified below, cure temperatures of about 130-180F for 1-10 hours produce entirely satisfactory bonds.
Although the details above have been described in terms of a single layer of each of the two polymeric resin compositions, it is evident that the process of this invention is also fully applicable to multiple layer compositions in ~ which the first and second resinous layers alternate.
'; The following examples will illustrate the process ~-of this invention. In each case the first polymeric compo-~ sition was 4 in. O.D. poly(vinyl chloride) hollow cylindrical ~ `~
,~ pipe core. Each core was brush-coatecl with the particular i;~
1 .; , ~' ':
experimental coating solution~ heated about six hours at 145F, and then overwrapped with 1/2-inch fiberglass cloth tape saturated with an epichlorohydrin-bisphenol A type liquid epoxy resin. The glass tape was applied in a single layer. The final assemblage was then cured for about eight hours at 150F. Curing agents, solvents and the like are as described below. - -Coatings were prepared containing a mixture of ABS resin (commercially available from Marbon Chemical Company under the trademark "Marbon E-1000 ABS") and a solid epoxy resin (commercially available from Shell Chemical Company under the trademark "Epon Resin 1001") dissolved in methyl ethyl ketone. The curing ~l0469~5 agent was an equimolar complex of diacetoneacrylamide and diethylenetriamine (commercially available from the Lubri~ol Corporation under the trademark "Lubrizol CA-21"). The methyl ethyl ketone solvent was generally present as approxi-mately 50 to 80 weight percent of the coatingj the curing agent was present in a concentration of approximately 12-14 phr.
In the table below the results of various experiments performed to measure the adhesion of the different bonding lo systems are recorded. The degree of adhesion was measured by bonding the two surfaces in accordance with this invention ~ ~`
and then simply pulling them apart. The relative degree of difficulty of separation of the bonded mater;als was rated -(in part subjectively) on a scale of 0 to 4. A rating of 0 indicates that no significant bond was formed. A rating of
4 indicates that an excellent bond was formed, i.e., that the bonded materials were separated only with extreme difficulty and that it was the bonding coating itself which separated cohesively, its adhesive bond to either of the polyv;nyl -:
chlor;de or the epoxy-;mpregnated glass f;bers d;d not separate. Since the tensile strength of the bonding coating ;s on the order of 2000 ps;, a bond rated 4 will have an adhesive strength of at least that value. The bonds rated 1, 2, and 3 represent intermediate degrees of adhesion of ~ -the coating. A bond rated 1 was one which could be separated with fairly little difficultyi a bond rated 2 was one which ~; could be separated only with some difficulty; a bond rated 3 . was one which could be separated only with considerable~; ~ difficulty. Quantitative values were not assigned to these ~ -three ratings.
-ExampleEpoxy: ABSCuring Agent Adhesion No.Weight RatioConc., phr Rating 1 0 (no epoxy) 0 0 2 0.05 12 0 -3 0.10 12 4 0.175 12 2-3 0.25 12 2-4 6 0.25 13.g 3 7 0.33 12 3-4 8 0.35 13.8 3-4 3 0.43 12 3 0.45 13.8 3-4 11 0.55 13.8 3 12 0.65 12 3 , 13 0.65 13.8 2 1~ 0.70 12 3 0.75 13.8 1-2 16 4.0 12 . ~' , ''. . .
It will be seen from these data that the pro- ~-cess of this invention permits formation of strong bonds between otherwise incompatible resin systems. This in turn permits the production of laminated resinous ma-.
' terials, such as pipe, which have a heretofore unattain-ably high degree of integrity. It will also be seen that this invention produces a product with a bond significantly better than products with only the ABS
and solvent in the coating, as are disclosed in afore-said U. S. Patent 3,628,991.

.
.~:, ', ' , .. . .
~` 90 ~; , `, ': ,:~

?~ 17-. ~ . ~, .

Claims (22)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEVE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. In a process for bonding together a first resinous layer containing as a major component a first polymeric resin and a second resinous layer containing as a major component a second polymeric resin, said second polymeric resin being initially liquid, thermosetting, dissimilar to and substantially chemically unbondable directly to said first polymeric resin; which process comprises forming a surface solution, on the surface of said first resinous layer, of said first polymeric resin and a coating comprising a third polymeric resin and a mutual solvent for said first and third polymeric resin, where said third polymeric resin is substantially curable to said second polymeric resin and substantially chemically unbondable directly to and substantially incompatible with said first polymeric resin other than in a solvated state; at least partially fusing said surface solution; applying to said coating said second resinous layer containing said second polymeric resin in a substantially uncured form, and curing said second polymeric resin and simultaneously bonding said second resinous layer to said coating:
the improvement which comprises increasing the strength of the bond formed in said curing step between said coating and the second resinous layer by incorporating into said coating said second polymeric resin in solid form and a curing agent for said solid second polymeric resin.
2. The improved process of Claim 1 wherein said first polymeric resin is selected from the group consisting of poly(vinyl acetate), poly(methyl methacrylate), polystyrene, polybutene, poly (vinyl butyral) and the polymeric olefinic chlorides.
3. The improved process of Claim 2 wherein said first polymeric resin is a polymeric olefinic chloride selected from the group consisting of poly(vinylidine chloride), poly(vinyl chloride) and copolymers thereof.
4. The improved process of Claim 1 wherein said second polymeric resin is a thermosetting resin selected from the group consisting of epoxy resins, polyester resins and phenolic resins.
5. The improved process of Claim 4 wherein said second polymeric resin is an epoxy resin.
6. The improved process of Claim 1 wherein said third polymeric resin is a butadiene resin.
7. The improved process of Claim 6 wherein said third polymeric resin is a butadiene resin selected from the group consisting of polybutadiene, butadiene-styrene resin, acrylonitrile-butadiene resin, acrylonitrile-butadiene-styrene resin, and mixtures thereof.
8. The improved process of Claim 1 wherein said mutual solvent for said first and third polymeric resins is a solvent in which said second polymeric resin is also soluble.
9. In a process for bonding together a polyvinyl chloride layer and an initially liquid epoxy-impregnated fiber glass layer, said process comprising forming a surface solution, on the surface of the polyvinyl chloride layer, a polyvinyl chloride and a coating containing a butadiene resin and a mutual solvent for said polyvinyl chloride and said butadiene resin; at least partially fusing said surface solution; applying to said coating said epoxy-impregnated fiber glass layer containing said epoxy resin in a substantially uncured form; and curing said epoxy resin and simultaneously bonding said fiber glass layer to said coating:
the improvement which comprises increasing the strength of the bond formed during said curing between said coating and said fiber glass layer by incorporating said epoxy resin in solid form and a curing agent therefor into said coating.
10. The improved process of Claim 9 wherein said butadiene resin is a acrylonitrile-butadiene-styrene resin.
11. The improved process of Claim 10 wherein said mutual solvent is selected from the group consisting of tetrahydrofuran and methyl ethyl ketone.
12. An improved laminated article having improved bonding between the laminae comprising a first resinous layer containing as a major component a first polymeric resin and a second resinous layer containing as a major component an initially liquid second polymeric resin, said second polymeric resin being an initially liquid thermosetting resin which is dissimilar to and substantially chemically unbondable directly to said first polymeric resin; said first and second polymeric resins being bonded into a laminate by a coating therebetween and in intimate contact therewith, said coating initially comprising:
(a) a third polymeric resin, which is thermoplastic, substantially curable to said second polymeric resin and substantially chemically unbondable directly to and substantially incompatible with said first polymeric resin other than in a solvated state;
(b) said second polymeric resin in solid form;
(c) a mutual solvent for at least said first and third polymeric resins, and (d) a curing agent for said solid second polymeric resin, said coating and said first polymeric resin forming a fused surface solution on the surface of said first resinous layer and said coating and said second resinous layer being chemically bonded.
13. The laminated article of Claim 12 wherein said first polymeric resin is selected from the group consisting of poly (vinyl acetate), poly(methyl methacrylate), polystyrene, polybutene, poly(vinyl butyral), and the polymeric olefinic chlorides.
14. The laminated article of Claim 13 wherein said first polymeric resin is a polymeric olefinic chloride selected from the group consisting of poly(vinylidine chloride), poly(vinyl chloride) and copolymers thereof.
15. The laminted article of Claim 12 wherein said second polymeric resin is a thermosetting resin selected from the group consisting of epoxy resins, polyester resins and phenolic resins.
16. The laminated article of Claim 15 wherein said second polymeric resin is an epoxy resin.
17. The laminated article of Claim 16 wherein said second resinous layer comprises an epoxy resin matrix containing glass fiber reinforcement.
18. The laminated article of Claim 12 wherein said third polymeric resin is a butadiene resin.
19. The laminated article of Claim 18 wherein said butadiene resin is selected from the group consisting of polybutadiene, butadiene-styrene resin, acrylonitrile-butadiene resin, acrylonitrile-butadiene-styrene resin and mixtures thereof.
20. A laminated article having improved bonding between the laminae, which consists essentially of a poly(vinyl chloride) layer and an initially liquid epoxy resin impregnated fiber glass layer, said layers being bonded into a laminate by a coating therebetween and in intimate contact therewith, said coating initially comprising:
(a) an acrylonitrile-butadiene-styrene resin;
(b) epoxy resin in solid form;
(c) a mutual solvent for at least said polyvinyl chloride and said acrylonitrile-butadiene-styrene resins;
and (d) a curing agent for said solid epoxy resin; with said coating and said poly(vinyl chloride) forming a surface solution on the surface of said poly(vinyl chloride) layer and said coating and said epoxy resin impregnated fiber glass layer being chemically bonded.
21. The laminated article of Claim 20 wherein said mutual solvent is selected from the group consisting of tetrahydrofuran and methyl ethyl ketone.
22. The laminated article of Claim 20 wherein said laminae comprise a poly(vinyl chloride) hollow inner cylinder and an outer layer thereupon of epoxy resin matrix reinforced with glass fiber, and said coating bonding said inner cylinder and said outer layer comprises acrylonitrile-butadiene-styrene resin, epoxy resin, methyl ethyl ketone, and an equimolar complex of diacetoneacrylamide and diethylenetriamine.
CA238,533A 1975-10-29 1975-10-29 Laminated polymeric articles and process for the production thereof Expired CA1046915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA238,533A CA1046915A (en) 1975-10-29 1975-10-29 Laminated polymeric articles and process for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA238,533A CA1046915A (en) 1975-10-29 1975-10-29 Laminated polymeric articles and process for the production thereof

Publications (1)

Publication Number Publication Date
CA1046915A true CA1046915A (en) 1979-01-23

Family

ID=4104386

Family Applications (1)

Application Number Title Priority Date Filing Date
CA238,533A Expired CA1046915A (en) 1975-10-29 1975-10-29 Laminated polymeric articles and process for the production thereof

Country Status (1)

Country Link
CA (1) CA1046915A (en)

Similar Documents

Publication Publication Date Title
US4726986A (en) Decorative laminates having a thick chemical resistant outer layer
US3391053A (en) Flexible glass-plastic laminate
JP2005510422A5 (en)
US3931836A (en) Laminated polymeric articles and process for the production thereof
JPS63146308A (en) Resin rich electrically insulated tape and manufacture thereof
JPS61236832A (en) Fiber reinforced thermoplastic polymer composite material and its production
JP3046162B2 (en) Thermoplastic multilayer composite
US3481812A (en) Laminated products and methods for producing the same
US4011121A (en) Adhesive bonding of poly(arylene sulfide) surfaces
US2392574A (en) Adhesives
CA2010002A1 (en) Laminated lens structure
USRE29375E (en) Laminated polymeric articles and process for the production thereof
CA1046915A (en) Laminated polymeric articles and process for the production thereof
US4075388A (en) Adhesive bonding of poly(arylene sulfide) surfaces
US3628991A (en) Method of bonding epoxy resins to polyvinyl chloride
US3542902A (en) Hydrolyzed ethylene/vinyl ester copolymer-epoxy resin blends
US3023189A (en) Trifulorochloroethylene polymerepoxy resin mixture
KR800001658B1 (en) Process for laminated polymeric articles
WO1981000825A1 (en) Laminated polymeric articles and process for the production thereof
JP2694218B2 (en) Powder coating composition for electrical and electronic parts encapsulation
JPS6047689B2 (en) Prepreg for electrical insulation
JP3339240B2 (en) Manufacturing method of prepreg
JPS6026706B2 (en) Epoxy resin copper clad laminate
JPS62148260A (en) Heat-resistant composite film
US3616017A (en) Method of bonding a layer of inorganic material to a thermosetting silicone layer