CA1045253A - Mass spectrometric system for rapid, automatic and specific identification and quantitation of compounds - Google Patents

Mass spectrometric system for rapid, automatic and specific identification and quantitation of compounds

Info

Publication number
CA1045253A
CA1045253A CA303,281A CA303281A CA1045253A CA 1045253 A CA1045253 A CA 1045253A CA 303281 A CA303281 A CA 303281A CA 1045253 A CA1045253 A CA 1045253A
Authority
CA
Canada
Prior art keywords
mass
peak
sample
target compound
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA303,281A
Other languages
French (fr)
Inventor
Robert D. Villwock
Fred W. Mclafferty
Robert H. Hertel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McDonnell Douglas Corp
Original Assignee
McDonnell Douglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA225,420A external-priority patent/CA1042118A/en
Application filed by McDonnell Douglas Corp filed Critical McDonnell Douglas Corp
Application granted granted Critical
Publication of CA1045253A publication Critical patent/CA1045253A/en
Expired legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

ABSTRACT

An automated mass spectrometric system which is cap-able of analyzing and identifying a wide variety of chemical compounds. A sample of an unknown compound, in liquid, solid or gaseous state, is introduced into the invented system. It may be a pure sample or a mixture of compounds. In either case, its mass spectrum is searched for selected peaks and an attempt is made to compare the intensity of each mass peak to previously stored, characteristic spectra of one or more compounds in a predetermined family of compounds. If one or more of the compounds in the family of compounds is identified as being present in the sample, its quantity is also deter-mined automatically by the invention. Moreover, a confidence is index is generated as a measure of the likelihood that the compound identified as being present is in fact present.
The present invention comprises a sample inlet device, preferably a flash evaporator and separator, a mass spectro-meter, electronic means for controlling the operation of the mass spectrometer and electronic means for analyzing the mass peaks for identification. Based upon the results of data analysis, i.e., comparing of spectra, the analysis means provides signals to the control means to alter the data acqui-sition, in closed loop fashion. System sensitivity and other operating parameters are automatically varied as required to obtain accurate mass peak measurements.

Description

~0~5Z53 ~ :
1. Field Of The Invention This invention relates generally to the field of com-pound identification and, more particularly, to a novel system ; having the capability to rapidly, automatically, and spècifi-~ 5 cally identify and ~uantitate any one of a set of pre-selected¦ compounds from unknown and impure samples. The present in-vention is described with respect to an embodiment incorporat-ing a mass spectrometer.
2. Prior art The use of mass spectrometry for the identification of compounds and determination of their molecular structure is well known in the art. In a mass spectrometer, a sample gas is partially ionized by electron impact or other means in an ion source. For each compound in the sample, a set of fragment ions are typically formed, each one having a par-ticular mass to charge ratio, m/e, where m is the mass of the ion in atomic mass units and e is the charge of the ion deter-! mined by the number of electrons removed therefrom by the ionization. The mass to charge ratio, m/e, is usually re-~¦ 20 ferred to as "mass".
The ions are separated by electric, magnetic or com-! bined fields (in a mass analyzer) into defferent species ¦ according to their respective masses. In the usual arrange-ment of the mass analyzer, ions of one mass at a time are ' 25 transmitted to a suitable detector, typically an electron multiplier, for measurement and/or recording. Usually, the mass analyzer controls are manipulated so that the m/e values are repeatedly and continuously swept over a selected mass range. A plot or tabulation of ion current or intensity vs , 30 m/e is referred to as a mass spectrum and is the basic data .. . .
.; ~

' output from a mass spectrometer. It should be understood that references to mass peaks made herein may apply to the amplitude of said ion intensity, the integral of ion intensity with respect to m/e, or any other quantitative measure of the S presence of ions. If the mass separative power or resolution of the mass analyzer is such that integral values of m/e can be separated but fractional values cannot, the technique is referred to as low resolution mass spectrometry.
Interpretation of the mass spectrum has two related but somewhat different objectives. Identification is the process of determining which (if any) compounds in a pre-determined list or library are present in the sample, by means of a comparison of the sample spectra with previously recorded spectra of known pure compounds. In structure determination, part or all of the molecular structure of an unknown compound are deduced from the mass spectrum. This invention relates to the identification function of mass spectrometry (and the quantitation of the compounds identified).
The mass spectrum analysis for identification purposes may be performed manually or with the assistance of electronic analysis means. For a manual analysis, a skilled mass spec-trometrist is normally required to study the data for features which suggest the possible identity of the compound sampled.
Tables, computations, and application of rules of the forma~
tion of mass spectra are typically used. The final identifi-cation is usually made by a comparison of the selected sample spectrum with a published or measured spectrum for the com-pound identified.
Mass spectrum identification by electronic analysis ~0 - means is typically accomplished by encoding or contracting .~ .

the mass spectrum according to any one of a number of rules.
Examples of some of the rules used include: (i) selection of "n" most intense peaks; (ii) selection of one or two of the most intense peaks in each mass range of 14 amu; and (iii) binary encoding (indicating presence or absence only~ of all peaks. The encoded spectrum is then compared with each of a number of similarly-encoded library spectra. Based on some criterion of similarity, the compound whose library spectrum most closely resembles that of the sample is identified as the compound which was sampled. Often more than one possible identification is provided, with the final identification -being left to the operator based on comparisons of complete or encoded spectra.
Use of mass spectrometry for identificat~on presently requires purification of the sample by physical or chemical means. One or more abundant ions from an impurity could conceivably misdirect the identification of the compound sought. The purification may be accomplished before intro-~` duction of the sample into the apparatus, or a separative device may be attached to the mass spectrometer. Externalmeans of sample purification include extraction (using con-trol of pH and suitable solvents to preferentially dissolve the compound(s) of interest), distillation, recrystallization and thin layer chromatography. The separative device most commonly used with a mass spectrometer is a directly inter-facing gas chromatograph (GC), providing the well known gas chromatograph/mass (GC~MS) instrument. Recently, a liquid chromatograph has been used in conjunction with a mass spectrometer for separation of the sample.
In a gas chromatograph, a sample comprised of one or . . . .
: , ' 1~45253 more compounds is injected by a syringe or valve into a heated chamber (the flash evaporator or injector~ or directly into a chromatographic column. The sample is vaporized (if it is not already a gas) and transported through the column by a suitable inert carrier gas. The column is a glass or metal tube, usually packed with a powdered support material.
The tube or the support material therein is coated with an organic liquid, called the stationary phase or liquid phase.
The liquid pahse has the property of absorbing and desorbing each of the constituent compounds in the sample at different rates, thereby causing a different rate of slowing of each compound as it passes through the column. As a result, the ~ifferent constituents comprising the sample pass through the column at different rates and emerge therefrom at different times. Under fixed operating conditions (column type and temperature, flow rate, etc.) each compound has a character-istic, reproducible retention time, or delay from injection to elution at the column outlet. In this manner, a mixture is separated into its constituent compounds. Each compound then flows into the mass spectrometer for identification.
An interfacing device or separator is usually re-quired between the outlet of the gas chromatograph and the inlet to the mass spectrometer, because the pressure at the column outlet is typically one atmosphere, while the mass spectrometer must operate in a vacuum of the order of lQ-8 atmospheres. The separator transmits a reasonable fraction of the compounds of interest while excluding most of the carrier gas. Usually, a suitable non-selective detector is used to indicate GC peaks, that is, the elution of each of the constituent compounds. At least one mass spectrum is 104~ 53 taken as each GC peak is detected.
The principal disadvantages of the instruments known in the prior art are as follows:
(a) Where the mass spectrometer is not equipped with a separative device such as a gas or liquid chroma-tograph, lengthy, complex and tedious sample puri- .
fication methods must be employed.
(b) Where a separative device is used, the device it-self imposes additional limitations. For example, only those constituent compounds of a sample which can be successfully separated by the separative device can be analyzed. Secondly, the operation of the separative device typically requires at least several minutes; thereby, it introduces a time delay. Moreover, the separative device in-creases the complexity of the instrumentation and the skill required to operate it.
(c) Manual interpretation of mass spectra requires a great deal of time and skill.
(d) Computing means for aiding the interpretation of mass spectrum used in the prior art, suffer from one or more of the following disadvantages:
(i) a significant amount of operator interven-tion is necessary and, therefore, the interpreta-tions are not fully automatic. In addition, a relatively high degree of operator skill is re-quired. (ii) The computing means are typically used to make comparisons between a measured spectrum and library spectra, or characteristic peaks thereof. Such comparisons are made on the . - .-~.~)452S3 basis of an assumption that the spectrum measured is that of a pure sample. Thus, in order for the computing means to be effective, it requires puri-fication of the sample (typically by means of a gas S chromatograph). (iii) In making comparisons, the quantitative criteria of similarity typicl]ly applied by systems of the prior art do not reflect d~rectly the probability that the identification is correct.
(iv) The complexity of the comparison method re-quires the use of a high capability computer and/or temporary storage so that analysis can be completed after the data measurement is completed. Thus, the analysis cannot ordinarily be done in "real time", that is, as the measurement is being made. (v~ Prior -~
art computing means for identification of a compound from the mass specturm typically fail to make use of some of the information available therein, in-cluding the absence or weakness of characteristic peaks and the differing significance of peaks as a function of their mass and intensity. (vi) The relatively long time required for the comparison process usually precludes an analysis of the plural-ity of spectra derived from mass measurement of the gas chromatograph effluent.
The present invention overcomes substantially all of the above-described limitations and shortcomings of the prior art instruments and methods. This invention enables the identification of any one of a number of a preselected "target"
compounds in unknown mixtures of compounds with little or no sample purification. Thus, for one thing, it enables the _7_ . . .

~J452S3 elimination of a gas chromatograph or, at the least, a sub-stantial reduction in its complexity. As a result, this in-vention provides a system which is less complex and less ex-pensive than the corresponding systems of the prior art. In addition to the elimination or simplification of the gas chromatograph, the present invention further reduces the cost and complexity of compound identification by eliminating bulk data storage means. This is the result of its incorporation of means capable of real time analysis.
The present invention also enables greater specificity in the identification of compounds than that possible using the systems and methods of the prior art. This is due to the novel analysis means incorporated into the invention, means which (i) apply probabilistic techniques to the comparisons màde; (ii) carry out exhaustive analysis of each spectrum measured; (iii) make use of negative information, e.g., the absence or weakness of characteristic peaks; and (iv) make use of calibration data ~learned" from the invention itself.
In addition, the analysis means of this invention can pro-vide a confidence index, consistent for all target compounds,which quantitatively indicates the probability that the identification is correct.
The present invention enables automatic identification of compounds. This has the advantage of reducing to a mini-mum the skill and attention required of the operator. Inaddition, the invention enables rapid operation. For example, in applications where direct mass analysis gives satisfactory results, i.e., where chromatographic separation is not neces-sary, analysis of a sample can require as little as one second and is typically completed in thirty (30~ seconds, including 104S'~3 data printout. Moreover, a greater variety of samples can be analyzed in situations where the chromatograph is eliminated than has h0retofore been possible. Even in situations where some chromatographic separation is necessary, less analysis time is required than in the prior art because the degree of separation necessary to achieve satisfactory results is substan-tially reduced by the invention.
One further advantage of the present invention lies in its making possible the quantitation of identified compounds even when the target com-pound mass spectrum is largely obscured by other compounds in the mixture.
While some instruments disclosed by the prior art overcome some of the disadvantages described above, there has heretofore been no system which combines in one structure all of the features and advantages found in the present invention.
According to a first aspect of the present invention, there is provided in a mass spectrometric system comprised of (i) means for measuring the mass spectra of sample compounds; (ii) means for introducing a sample of a pure compound or a mixture of compounds into said measuring means;
(iii) means for controlling the operation of said measuring means so as to measure the intensities of one or more mass peaks of said sample; and (iv) means for data input and output electrically coupled to said control means and to means for analyzing said mass peaks, said analysis means comprising:
(a) first means for storing the mass spectrum of at least one target com-pound or a contracted mass spectrum thereof; (b) second means for storing at least one spectral matching criterion; ~c) third means for storing a predetermined sensitivity factor with respect to each mass peak of said target compound's spectrum, said sensitivity factor relating the measured intensity of each mass peak to a quantity of said target compound; (d) means for determining a measure of quantity of said target compound in said sample based upon the intensities of said measured mass peaks and said corresponding sensitivity factors, the mass peak at which the least quantity of said target compound is determined being stored in said second storage means as a reference peak, said quantity determination means being electric-Qi~ ~ g . .. . : :
~, . ~ '' ''''- ~
. . .

1~45253 ally coupled to said second and third storage means and to said measuring means; ~e) means for predicting the intensity of a mass peak of said sample at at least one other mass position of said target compound's mass spectrum, said prediction being based upon the intensity of said reference peak and said mass spectral data for said target compound, said prediction means being electrically coupled to said first and second storage means; and ~f) means for comparing the intensity of each measured mass peak to the inten-sity predicted therefor with respect to a predetermined tolerance, said comparison means being electrically coupled to said prediction means and to said measuring means, whereby, a mass peak is considered con~aminated if its measured intensity exceeds said predicted intensity by more than said tolerance and said mass peak is considered uncontaminated if its measured intensity agrees with said predicted intensity within said toleranceJ
and said target compound is identified as being present in said sample or as not being present therein as a function of the number of uncontaminated mass peaks measured at mass positions of its spectrum and their uniqueness.
~.j According to a second aspect of the invention, there is provided in a mass spectrometric system comprised of (i) means for measuring the ., , mass spectra of sample compounds; (ii) means for introducing a sample of a pure compound or a mixture of compounds into said measuring means; and (iil) ~ means for controlling the operation of said measuring means so as to measure ~ the intensities of one or more mass peaks of said sample; and (iv) means ` for the data input and output electrically coupled to said control means . and to means for analyzing said mass peaks, said analysis means comprising:
~a) first means for storing the mass spectrum of at least one target com-pound or a contracted mass spectrum thereof; (b) second means for storing at ' least one spectral matching criterion; ~c) third means for storing a pre-. determined sensitivity factor with respect to each mass peak of said target compound's spectrum, said sensitivity factor relating the measured intensity ~ 30 of each mass peak to a quantity of said target compound; ~d) means for deter-; mining a measure of quantity of said target compound in said sample based upon the intensities of said measured mass peaks and said corresponding h ~ -9a-1~45Z53 sensitivity factors, the mass peak at which the least quantity of said target compound is determined being stored in said second storage means as a reference peak,said quantity determination means being electrically coupled to said second and third storage means and to said measuring means; (e) means for predictingthe intensity of a mass peak of said sample at at least one other mass position of said target compound's mass spectrum, said pre-diction being based upon the intensity of said reference peak and said mass spectral data for said target compound, said prediction means being electrically coupled to said first and second storage means; ~f) first means for comparing the intensity of each measured mass peak to the intensity predicted therefor with respect to a predetermined tolerance, said compari-son means being electrically coupled to said prediction means and to said measuring means, a mass peak being considered contaminated if its measured intensity exceeds said predicted intensity by more than said tolerance and uncontaminated if its measured intensity agrees with said predicted intensity within said tolerance; ~g) means for determining a probabilistic measure of the likelihood of the presence of said target compound based upon said un-contaminated mass peaks measured, said means for determining a probabilistic measure being electrically coupled to said first comparison means; and (h) second means for comparing said probabilistic measure to said spectral matching criteria; said second comparison means being electrically coupled to said means for determining a probabilistic measure and to said second storage means; whereby, said target compound is identified as being present in said sample or as not being present therein in accordance with said spectral matching criterion.
In a preferred embodiment of this invention, the mass spectrometer comprises an electron-impact ion source, quadrupole mass analyzer, electron multiplier detector and an ion pumped vacuum system. The sample inlet device is comprised of a flash evaporator and a membrane-type molecular separator. The control and analysis means may be implemented by a hard-A wired, digital logic and control system or a programmable digital computer.
In either case, appropriate input and -9b-. ~
' ' , . ~ :

iO45;~

output devices are required.
The invented system is arranged and operated so as to (i) measure and analyze the mass spectral data necessary to determine the presence or absence of one or more of a limited number of target compounds; (ii) measure the quan-tities of the compounds found; and (iii) display the results of the analysis rapidly and automatically. The system will operate properly with pure samples, mixtures, or partly separated mixtures. In addition, the invented system gen-erates a confidence index which indicates the probability that the identification, if made, is correct.
The invented system handles mixtures or pure sub-stances in the form of gases; liquids, or solids in solution in microgram quantities. A dual inlet arrangement allows gases to be introduced directly, or liquids to be injected into a flash vaporizer. In the case of liquid samples, the sample vapor is transported by a dry nitrogen stream. Trace amounts of material, even as low as 10 nRnograms or less, can be identified in the sample.
Gas samples or vaporized liquid samples flow to an enrichment device, which preferentially extracts a large fraction of the organic compound contained in the sample stream from the permanent air gases. The sample-to-carrier enrichment ratio is very high, permitting routine sampling from atmospheric pressure environments. The enriched sample passes directly to an evacuated ionization region of the mass spectrometer where it is examined to acquire the spectral data necessary for the analysis, and then exhausted from the spectrometer. Operation of the mass spectrometer is con-trolled by the electronic control means, while analysis of .~ .

.~ ~
..... . . . .
:, ., . :

10~5ZS3 the spectra taken is by the electronic analysis means, as more fully described below. Moreover, the control means is responsive to information generated by the analysis means, thereby providing closed loop control of the mass spectro-meter as a function of the results of the analysis performedon the data theretofore acquired.
The electronic analysis means provide the unique capability of searching for and identifying the presence of specific target compounds in a sample by analyzing the mass - 10 spectral data output by the spectrometer in real time, despite the presence of a great many confusing mass peaks attributable ~ to residual background and sample impurities.
; Identification reliability is improved by taking into ` account the occurrence probabilities of the masses found to be present, the accuracy of the fit of the relative intensity pattern as compared with a stored reference pattern for the '! pure compound, and the compound concentration in the sample.
`^ In addition to using positive information, the matching pro-cedure also makes use of negative information in the spectrum, basing the identification on the fact that particular peaks are absent, as well as that others are present, in the mass spectrum of the unknown sample.
The characteristic mass spectral "fingerprint" stored for each target compound is a contraGted spectrum. Just as an experienced mass spectrometrist looks for characteristic t $ peaks to determine if a particular compound is present, the present invention examines a predetermined set of masses most characteristic of the target compound, and compares the measured mass and their relative intensities with the stored reference spectrum. In the comparison, peaks which have 'i ., ` ~045253 excessive relative abundance are identified as contaminated and eliminated from the analysis.
Limiting the search to the most characteristic masses saves time which would otherwise be wasted measuring peaks which give no or less information as to the presehce or ab-sence of the target compound. To further reduce search time, ~ .
only enough masses to assure reliable identification are used.
A confidence index is generated by the analysis means as a measure of the likelihood that the target compound is present Even in non-random situations, as in discrimination among closely related compounds, the confidence index proves to be a useful indication of the confidence of mass spectral identification, which previously could be obtained only through the careful study of the mass spectral data by a trained mass spectroscopist. Presence of the target compound ;

is indicated by a relatively high confidence index, depending î on the quantity found and the degree of contamination. Other .,, . :~
compounds, even when of similar molecular structure and present in high concentration, give relatively low values of the confidence index by this analysis method. Typically, reliable identification can be obtained over a concentration ratio of one hundred to one.
The quantity estimate is computed from the intensities ~.~ of the uncontaminated peaks identified by the analysis means.
In this manner, quantitation of a specific compound is possible even in a mixture which contains other compounds having many of the same masses. The response of the mass spectrometer is nearly linear over several decades. Thus, after a target com-pound is identified, its quantity is determined in units of weight (e.g., micrograms) by use of a stored scale factor.

.~ , -12- ~

1~)45Z53 The scale factor is derived from the intensity measured for a known quantity of a pure sample of the target compound during an earlier calibration.
When the confidence index value indicates that the compound is problably absent, the quantity figure sets an independent upper bound on the target compound concentration.
This is often very useful, as an extremely low quantity con-firms the negative finding.
The present invention operates in at least four modes;
i.e., start-up, calibration, identification, and a data system mode, In the start up mode, the invented system is placed in a condition for operation; e.g., operating temperatures and pressures and various parameters are established. In the calibration mode, the system automatically measures and re-cords the reference mass spectral data for a given compoundwhen an authentic sample is introduced. In addition, the background peak intensities of the system are measured in the absence of any sample material.
The identification mode is used to assay samples for . !
the presence of one or more of the target compounds in either ~ `
of two sub-modes. In a first such sub-mode, a confirmation mode, the system repeatedly attempts to match the spectrum - of the injected sample with the characteristic spectrum of ` one pre-selected target compound. The sample is either con~
tinuously or sequentially injected into the sample inlet de-vice and spectral masses measured repeatedly by the mass spectrometer. The analysis means generates a confidence index by application of the matching criteria and rules. If ` the confidence index is above a preestablished threshold for any target compound, a display is activated to indicate its ~. .
. .- ~
:

: 1~145253 presence. In addition, further information, such as the quantity of the target compound found, the magnitude of the confidence index, and/or the mass peak intensity may also be output by the system by conventional input/output devices.
In the second identification sub-modes, a search mode, a probabilistic matching of the spectrum of the injected sample -is attempted with each of a subset of the total number of ; target compounds whose spectral "fingerprints n are stored in the system.
In the data system mode, the invented system measures and displays the entire mass spectrum of an authentic sample, and ranks the mass peaks as to their significance for identi-Z fication purposes by means of built-in probability tables.
The spectral data so acquired may then be stored in the sys-tem, thereby adding that compound to the set of target com-pounds used for identifying unknown samples.
The present invention finds utility in a wide variety of applications, including (i) the forensic sciences, where .
it enables fast and accurate analysis of abused drugs in street sample mixtures; (ii) pharmacology, where its high sensitivity enables the measurement of drugs and metabolites in body fluids for clinical therapeutic study as well as urine screening; (iii) clinical toxicology, where its fast response time enables rapid identification, in a hospital ` 25 environment, of drugs taken by comotose overdose patients, thereby facilitating their emergency treatment; (iv) indus-trial toxicology, where its automated capability enables 24-hour monitoring for multiple toxic compounds in a manufactur-ing plant. In addition, the invented system can also be utilized advantageously for the detection of air and water `

pollution, pesticides and explosives, even at relatively low concentrations.
Novel features, and advantages of the present in-vention will become apparent upon making reference to the following detailed description and the accompanying drawings.
The description and the drawings will further disclose the characteristics of this invention, both as to its structure and its mode of operation. Although a preferred embodiment of the inventon is described hereinbelow, and shown in the accompanying drawing, it is expressly understood that the descriptions and drawings thereof are for the purpose of illustration only and do not limit the scope of this inven-tion.
In the accompanying drawings, a preferred embodiment ~ 15 of the present invention is illustrated:
- FIGURE 1 is a general block diagram showing the five basic components of the invented system.
., .
FIGURE 2a is a cross-sectional view of a flash i evaporator used in the sample inlet device of this invention.
FIGURE 2b is a cross-sectional view of a separator .~, .
used in the sample inlet device of this invention.
.~, FlGURE 3 is a more detailed functional block diagram of the invented system.
~ FIGURE 4 is a schematic representation of the mass -~ 25 scan converter portion of the invented system.
FIGURE 5 is a schematic representation of the elec-trometer amplifier portion of the invented system.
i FIGURE 6 is a schematic representation of the peak stretcher portion of the invented system.
FIGURE 7 is a functional block diagram of the control ~ . . .

: : . . - . .

)4SZS3 means and analysis means of the invented system.
FIGVRE 8 shows the relationship between a complete mass spectrum of a particular compound and its contracted mass spectrum.
FIGURE 9 shows the voltage waveform at the output of the mass scan converter.
, FIGURE 10 shows the voltage waveform at the output of the electrometer amplifier.
, FIGURE 11 shows the voltage waveform at the output of the peak stretcher.
FIGURE 12 shows a time profile of the sample partial pressure after injection into the sample inlet device.
The present invention is comprised of the five basic components shown in FIGURE 1, namely (i) a sample inlet device 10; (ii) a mass spectrometer 12; (iii) means 14 for controlling the operation of the mass spectrometer 12;
(iv) means 16 for analyzing the mass spectra obtained from ;~ the samples; and (v) interfacing means 17 between the mass spectrometer 12 and the control and analysis means 14 and 16.
.l 20 The sample inlet device 10 is described with refer-ende to FIGURES 2a and 2b. It is comprised of a flash f evaporator 18 and a separator 20. The flash evaporator 20 is required for samples which are in either a liquid or solid 'J) state. It is comprised of a heated metal tube 22 having a glass insert 23, an injection port 24, an outlet port 26, and a carrier gas port 28. The injection port 24 is sealed with a septum 30, preferably made of a silicone rubber. The septum 30 is secured to the tube 22 by a septum nut 33.
Liquid or dissolved or suspended solid samples are injected through the septum 30 with a syringe. The carrier gas port ,', - ' ~-1~a~5253 28 is coupled by conventional means to a source of carrier gas under a slight pressure. A suitable carrier gas is nitrogen. A conventional heater (not shown) maintains the temperature of the flash evaporator 18 at a level suitable for evaporation of the sample.
In operation, volatile components of the sample are evaporated and swept by the gas carrier through the tube 22 ~j and through a glass wool filter 32 disposed within the tube, ,i wherein particulate matter in the sample is trapped. The outlet port 26 of the flash evaporator 18 is coupled to the separator 20.
. ~
If the sample is gaseous, the flash evaporator 18 is unnecessary. The flash evaporator 18 may be replaced with an inlet tube and the sample flowed directly into the separator 20. The separator 20 is comprised of a housing 36 having an inlet port 38, an outlet port 40, two thin polymer membranes 42a and 42b stretched across the interior of the housing 36 -between the inlet port 38 and the outlet port 40; i.e., across the path of flow of the sample. An exhaust port 44 located in the housing 36 on the inlet side of the first membrane 4Za enables the non-transmitted carrier gas and vaporized solvents - to be vented to the atmosphere. A small suction pump 51 may be coupled to the exhaust port 44, and used to establish the ~ flow of gaseous samples. Suction pump 51 is unnecessary for `~x 25 liquid or solid samples because the carrier gas provides the flow medium. A vacuum port 46 i8 provided in the housing be-tween the membranes 42a and 42b. By means of a mechanical pump 47, coupled to the vacuum port 46 through valve 49, a pressure of about 10-2 torr or less is maintained in the in-terior space between the two membranes. The pressure in the , `; ~ -17-~, .~

... . :: : .
': :: .. - ,. . . .
.: .: . , mass spectrometer 12 is typically maintainea at about 10-5 torr or less by an ion pump 48 (as shown in FIGVRE 3). Thus, a pressure differential is maintained across each membrane.
In starting up the system, mechanical pump 47 is used to evacuate the mass spectrometer 12 through valve 50 (as shown in FIGURE 3). The membrane temperatures are typically held between 150C and 220C, by a second conventional heater, the :
specific temperatures being a function of the target compound being sought.
Through preferential permeability, the higher mole-cular weight sample vapors are transmitted through the mem-branes 42a and 42b much more efficiently than the carrier gas and solvents. Most of the latter are vented to the atmosphere , or pumped from the region between the membranes, while an appreciable fraction of the sample vapor passes out of the `~ outlet port 40 and enters the mass spectrometer 12. Sample enrichment by a factor of 106 is possible and a large number of compounds are concentrated by a factor of 105 or more.
Pressures, temperatures, and the carrier-gas or sample flow rate are parameters which are monitored and controlled by conventional means.
A number of ~ther spparators, known in the art, are suitable for use in the present invention in lieu of the separator 20 described above. Such other separators include effusion separators, jet orifice separators, and a single membrane separator like that disclosed in the United States -Patent No. 3,751,880, granted to Michael Holm.
Solid samples are generally prepared by dissolving them in a suitable solvent. Aqueous or low-molecular weight solvents such as methanol, ethanol, acetone or ether are s .
..

~045Z53 preferable. In complex or dilute mixtures, it is advantageous to use a suitable extraction procedure. Silylation, methyla-tion or other standard derivatization methods may improve sensitivity or specificity.
Liquid samples may be introduced by continuous or discrete injection. If the concentration in the original matrix is too low, or if there is serious contamination of the sample, standard laboratory methods of extraction and concentration are used. For example, body fluids such as blood or urine are prepared for drug analysis by solvent ex-traction at an appropriate pH, or non-ionic resin column isolation.
1 The invented system, while not requiring purification `,~ fo the sample by means such as a gas chromatograph, is never-theless adapted to operate with a gas chromatograph; thereby, users of the present invention have a choice between a direct analysis mode and a gas chromatograph/mass spectrometer (GC/MS
` analysis mode. In the latter mode any suitable adapter known ~. :
in the art enables the continuous real time analysis of the effluent from the gas chromatograph. The time related separa-~; tion of the sample into its constituent compounds improves ~i the specificity of identification when mixtures are involved, and the retention time data generated by the gas chromato-graph is useful as an independent check on the identifications made.
MASS SPECTROMETER
A detailed description of the mass spectrometer 12 is now made with reference to the system block diagram shown in FIGURE 3. As is well known in the art, a mass spectrometer is basically comprised of an ion source, a mass analyzer, and . .

a detector. In a preferred embodiment of this inventon, the ion source is an electron impact ion source 52, wherein the sample gas is partially ionized by a beam of electrons. The ions so formed are electrostatically removed from the source S and formed into a beam which is projected through the mass analyzer to impinge on the detector.
A preferred mass analyzer is a quadrupole mass analyzer 54 comprised of two pairs of metal rods 56 which, when ex-cited by the proper combination of radio frequency (rf) and dc voltages, produce electric fields which cause the tra-jectories of all ions, except those in a narrow range of mass to charge (m/e) ratio (referred to herein as the "mass posi-tion") to be unstable. Thus, only ions at a selected mass position are allowed to reach the detector at a given in-~`
^~ 15 stant. All other ions are deflected into the mass analyzer -~
rods 56 or walls and, thereby, are undetected at that instant.
A continuous channel electron multiplier 58 is uti-lized as a detector of the mass spectrometer 12. The ion current which reaches this detector 58 and impinges upon its surface is amplified through the phenomenon of secondary electron multiplication. Typically, the output of the detec-tor is an electron current equal to as much as 106 times the detected ion current.
The mass spectrometer 12 is provided with adjustable power supplies 60 for energizing the ion source filament and electrodes, and the electron multiplier detector 58. The adjustable power supplies 60 may be adjusted by the control , means 14 or manually. The overall sensitivity of the invented system is established by adjusting the power supply voltage to electron multiplier detector 58. This adjustment is done .;

;., .
,. ~ .

-1(~4`~:
by looking at the intensity of a known mass peak of a known sample, typically the carrier gas. Moreover, changes in the gain of detector 58 may be compensated for by adjusting power - supplies 60. Mass spectrometer 12 is also provided with an rf/dc power supply 62 which produces rf and dc voltages to excite the quadrupole mass analyzer 54. The rf and dc voltages are determined by a mass control voltage which is an anlog of the mass position, (m/e); i.e., the mass position is related to the mass control voltage by a substantially constant scale factor. Thus, any mass position may be selected by providing ~ . .
the corresponding mass control voltage to the rf/dc power .~ . , .
supply 62.

A number of suitable mass spectrometers are available . . .
-~ in the trade. Moreover, it should be understood that the -present invention contemplates any type of low or high resolu-tion mass spectrometer. For example, chemical ionization may be used instead of the electron impact ionizer 52; likewise, -~ a magnetic sector analyzer instead of the quadrupole mass analyzer 54, and a discrete dynode electron multiplier or an ion collector instead of the continuous channel electron multiplier 58. In addition, any vacuum system design capable ` of maintaining the necessary vacuum and having adequate pump-ing speed may be used.
;`
`'~ INTERFACING MEANS
.~, .
The interfacing means 17 are comprised of (il a mass scan converter 64; ~ a gain-controllable electrometer ~,- amplifier 66; and (iii) a peak stretcher 68, interconnected as shown in FIGURE 3.

}
(a) MASS SCAN CONYERTER

~` 30 The mass scan converter 64, shown schematically in :, .

, .

`: :
~:: . .
....
., . , . - , 1~45ZS3 FIGURE 4, is disposed between the output of the control means 14 and the input control line of the rf/dc power supply ¦ 62. As indicated above these rf and dc voltages control the ¦ scanning operation of the mass spectrometer 12 by means of ~,' 5 its quadrupole mass analyzer 54. The control means 14 pro-vides to the mass scan converter 64 a mass control sig~al, preferably in digital form, which is an analog of a particular mass position at which a mass peak is to be sought. The con-; trol means also provides a start signal to the mass scan con-verter 64. In response to the start signal, the mass scan converter 64 generates, as an output to the r/dc power supply 62, the mass control voltage in the form of a ramp having an ,, initial voltage approximately equal to that indicated by the mass control signal.
A typical mass control voltage generated by the mass scan converter 64 is 25 millivolts per atomic mass unit tre- , ,,i ferred to herein as the "mas control scale factor"). Thus, if the mass position to be scanned is 100 amu, the mass con- ~ , , trol voltage will be 2.5 volts. Because of the inherent un-, 20 certainty in establishing the precise mass position by an analog mass control voltage, a scan is required beginning at a mass position just below the selected mass position and end-ing just above it. This is accomplished by the ramp voltage.
Such a scan ensures that the presence of a mass peak at a
3 25 selected mass position will nctgo undetected because small, but cumulative, errors in the system cause a mass measurement to be made at a position slightly shifted from the selected ~ mass position. Typically, the scan width is about 3/4 amu `~ centered on the selected mass position. Ths initial mass con-trol voltage in the foregoing example would be about 10 . .

1~45Z53 millivolts below 2.5 volts.
If should also be understood that the mass control transfer function in an actual system is not perfectly linear over the entire mass range. Moreover, there may be a slight 5 offset at zero volts and, in addition, this offset and the mass control scale factor may vary slightly with time and from unit to unit. In the preferred embodiment of the present `
invention the control means 14 generates scale factor and offset correction signals, preferably in digital form, on the basis of calibration data obtained by measuring the actual scan control voltage required to measure mass peaks at several precisely known mass positions. The scale factor and offset correction signals are stored in the mass scan converter 64 which correspondingly adjusts the initial mass control voltage.

.. . .
Remaining errors due to non-linearity of the mass control i transfer function are accommodated by the mass scan converter and peak stretcher designs described below.
,.
, With reference to FIGURE 4, the mass scan converter 64 is now described in greater detail. First, second and third digital to analog (D/A) converters 70, 72, and 74 store ~.
and convert the mass control, scale factor correction and offset correction signals respectively, received from the con-,3 trol means 14. D/A converter 70 produces an output, vl, which is proportional to the value of the mass control signal, D/A
converter 72 outputs an analog reference voltage, Vref, to D/A converter 70. Tnis reference voltage determines the ratio between voltage vl and the value of the mass control signal, which ratio is an analog of the mass control scale factor. Thus, control means 14 can compensate for the varia-tions of the mass control scale factor by providing the '., : appropriate value of the scale .factor correction signal to D/A converter 72. D/A converter 74 produces an output voltage, v2, which is proportional to the offset correction signal.
I Voltages vl and v2 are electrically coupled to a conventional 3 5 operational amplifier 76 through resistors Rl and R2 respective-ly. A feedback resistor R8 is electrically coupled between the input and output of operational amplifier 76, thereby making it an adder of its input voltages, as is well known in the electronics art.
A second conventional operational amplifier 78 pro- -duces an output voltage, v3, which is coupled to operational :l amplifier 76 through resistor R3. A feedback capacitor Cl ~-is coupled between the input and output of operational ampli-. fier 78, thereby making it an integrator of a constant dc voltage, VR. Thus, voltage V3 is a ramp voltage, equal to ~ :
VR t , where Ri is the input resistance of operational amp-~ lifl~er 78 and t is time. The value of Ri, and therefore the ;; slope of the ramp, or rate of the scan is a function of the I states of conventional binary switches SWl SW2, and SW3 which, : 20 when closed, short out input resistors R5, R6, and R7 re-, spectively. The states of switches SWl, SW2, and SW3 are :~ controlled by the states of corresponding flip-flops in a :~l storage register 79, wherein a digital "scan rate" signal, .? received from control means 14, is stored. Thus, Ri can be :~ 25 as low as R4, and as high as R4 + R5 + R6 + R7.
A conventional binary switch SW4 is connected across : --. feedback capacitor Cl. The state of switch SW4 is determined ~ by the start signal received from control means 14. When '~ switch SW4 is closed, capacitor Cl is shorted out and V3 ~ 30 equals zero. When switch SW4 is opened, the ramp voltage V3 . : ~

' . ~ . .

10~5~53 appears as the integration of voltage vR begins.
The output voltage, vm, of operational amplifier 76 is the mass control voltage which is electrically coupled to the rf/dc power supply 62. Since operational amplifier 76 .
functions as an adder, 'vl V2 V3 m = Rl+ R2 +R3 R8 Thus, voltages vl and v2 determine the dc level or pedestal of vml while V3 provides the ramp portion thereof.
Binary switches SWl, SW2, SW3, and SW4 may be relays or transistor switches. Many suitable electronic switches are available in the trade.
(b~ ELECTROMETER AMPLIFIER
The gain-controllable electrometer amplifier 66, shown schematically in FIGURE 5, is disposed between the detector 58 of the mass spectrometer 12 and the peak stretcher 68. It converts the output current from the detector 58, re-presenting an analog of the intensity of the ions at the mass position selected by control means 14, into a voltage analog thereof (referred to herein as the "ion intensity signal").
The electrometer amplifier 66 is adapted to having its voltage-~, to-current sensitivity or gain digitally set to one of a number of values, as required to amplify the ion current peaks j to appropriate levels for measurement. In this preferred embodiment, any one of six gain settings for the electrometer `~ 25 68 may be selected by means of a "gain select" signal from ~ the control means 14. However, manual control is also con-`~ templated by this invention.
~` With reference to FIGURE 5, the gain-controllable ` electrometer amplifier 66 is now described. It is comprised of a conventional operational amplifier 80 having resistors '1 ., .~, ~. . . . . .

Rg, Rlo~ Rll~ R12~ R13~ and R14 electrically coupled between its input and output. Corresponding conventional, binary switches SW5, SW6, SW7, SW8, and Swg are coupled across re-stors Rg ~ Rlo~ Rll, R12~ and R13 respectively. When any switch is in its closed state, the corresponding resistor isshorted out. The states of switches SW5, SW6, SW7 SW8, and ; SWg are controlled by the states of corresponding fip-flops : in a storage register 82, wherein a digital gain select signal, received from the control means 14, is stored. Thus, the feedback resistance across operational amplifier 80 can be any one of six values, depending upon the states of the switches SW5 - SWg. The voltage output of operational ampli-fier 80, vii, the ion intensity signal, equals the ion cur-rent ii multiplied by the magnitude of the feedback resistance.

(c) PEAK STRETCHER
~:
The peak stretcher 68, shown schematically in FIGURE
6, is disposed between the electrometer amplifier 66 and the analysis means 16. The peak stretcher processes the ion in-.~
; tensity signal which is output by the electrometer amplifier 66. The peak stretcher 68 has two principal operating modes, ; ~ descriptively referred to as "hold~' and "blank". In the hold -,l mode, hhe ion intensity signai is filtered and amplified, and ~ .~
the maximum amplitude of the signal; i.e., the peak intensity ~ during a mass scan, is held and presented to analysis means ¦ 25 16 by peak stretcher 68. In the blank mode, the input to the peak stretcher 68 is shorted, thereby preventing the ion in-tensity signal from reaching the analysis means 16. In addi- ~ -tion, the previously stored signal is removed in preparation for the next scan.
In the preferred embodiment described herein, the :

1045253 ~ -peak stretcher 68 has four values of selectible voltage gain ! and four values of selectible filter time constant. Selection of the appropriate gain and filter time constant is by the control means 14, although manual selection is also contem-plated by this invention.
With reference to FIGURE 6, the peak stretcher 68 is now described. The ion intensity signal, vii, is input to a conventional operational amplifier 84 through input series resistors R15, R16, and R17. Coupled between the input and output of operational amplifier 84 is a voltage resistor Rlg.
A capacitor C2 can be connected to a resistive divider Rlg, R20, and R21, via analog switches SW13, SW14, or SW15. Con-ventional binary switch SWlo is connected to one side of ` resistor R15. When SW10 is closed, vii is shunted to gro through resistor R15. This is the state of switch SW10 when peak stretcher 68 is in its blank mode. Another switch, SWll, . ~ .
~ is coupled across input resistor R17. In its closed state, . .
~, switch SWll shorts out resistor R17, thereby affecting the gain of operational amplifier 84.
When switches SW13, SW14 and SW15 are open and SW12 ~; is closed, resistor R23 merely shunts the input of amplifier 84 - there is no filtering and the filter capacitor C2 is dis-charged. With switch SW12 open and SW15 closed, the full filtering time constant R18C2 is effective. Closing only SW14 or SW13 causes a feedback voltage derived from the R21, R20, Rlg divider to be applied to C2, effectively multiplying C2 by the attenuation of the divider factor, and thereby re-ducing the effective filter time constant of amplifier stage 84 without changing its gain.
The voltage at the output of operational amplifier 84 :

`~

~1)4SZS3 is electrically coupled to the input of a second opera-tional amplifier 86 through series input resistors R24 and R25.
; Coupled between the input and output of operational amplifier 86, through filed effect (FET) transistor Tl, is a feedback resistor R26. The gate of transistor Tl iS electrically coupled to the output of operational amplifier 86 through low-leakage diode Dl or switch SW17, when closed. A capacitor C3 is connected between the output of operational amplifier 86 and circuit ground; thus, it charges to the output voltage thereof. The output of peak stretcher 68 is taken at the source of transistor Tl. When switch SW17 is closed, the output of the peak stretcher 68 is the filtered and amplified ion intensity signal vii. When SW17 is open, capacitor C3 cannot discharge through low leakage diode Dl or the gate of lS FET Tl; therefore, it will retain the most positive voltage applied to the gate of Tl. Through the feedback action of resistor R26, the corresponding most positive value of the vii will be retained at the output of peak stretcher 68.
Conventional binary switch SW16 is coupled across input resistor R25. In its closed state, switch SW16 shorts out resistor R25, thereby affecting the gain of operational amplifier 86.
The states of switches SW10 and SW17, the mode switches, are controlled by the state of corresponding flip-flops in a storage register 88, wherein a digital "mode select" signal, received from control means 14, is stored. The states of switches SWll and SW16, the gain control switches, are con-trolled by the states of corresponding flip-flops in a register 90, wherein a digital "gain select" signal from control means 14 is stored. Four values of gain are possible , 1~5Z53 based upon the four combinations of the states of sw~tches SWll and SW16. The states of switches SW12 - S~15, the time constant (and filtering) select switches, are controlled by the states of corresponding flip-flops in a storage register 92, wherein a digital "time constant select" signal from con-trol means 14 is sotred.
CONTROL MEANS
.~
The control means 14, described with reference to FIGURE 7 controls (i) the mass scanning of the sample in the ;i mass spectrometer 12; and (ii) certain operating parameters of the system. The control means 14 is comprised of a memory means 92, a sequence timer 94, and a parameter determination means 96, all of which can be implemented by a programmable . digital computer utilizing known techniques of computer pro-lS gramming or by a hard-wired, logic and control system utiliz-ing known techniques of logic design and available integrated circuit logic components.
Each target compound selected for identification by the invented system has a unique mass spectrum. Each such mass spectrum is comprised of mass peaks located at various mass positions. A particular subset of all the masses can be predetermined as being especially characteristic of each tar-get compound. This set of masses is called the "contracted -~, mass spectrum". The relationship between the complete mass spectrum of a hypothetical target compound and its contracted `~ mass spectrum is illustrated in FIGURE 8. In the background is shown a full mass spectrum of a particular compound. In the foreground is the selected subset of mass peaks comprising the contracted mass spectrum of the compound. The criteria for selecting the contracted mass spectrum is discussed "
., .
. . .
~` ` -29-., ., 1()~5ZS3 hereinbelow.
The masses for the contracted mass spectrum,of a given target compound spectrum, are selected and ranked ac-cording to how characteristic they are of that particular com-pound. This "characteristicness" is a function of (i~ howunusual, on a probabilistic basis, the vary existence of a I peak at that mass position is, and (ii) the magnitude of the ¦ intensity of the peak (referred to as "abundance"). The con-;l tracted mass spectrum for each target compound, i.e., the mass ¦ 10 position of each peak thereof, is stored in the control mem-¦ ory means 92. In any event, for each target compound being sought in a sample, the parameter determination means 96 initiates a mass scan sweep about each mass position for a predetermined scan period and width. The mass position re- ~;~
lating to the most characteristic mass peak for the target `~ compound sought is the first one selected by the parameter determination means 96. After the sample is analyzed for ` tbe first and most characteristic peak, the mass position ; relating to the next most characteristic peak is selected and a scan about it initiated. The parameter determination means 96 continues operating in this manner until all of the ; mass peaks in the pre-stored contracted spectrum of the particular traget compound have been scanned, unless the sequence is modified by the analysis means 16, as more fully described below.
` The waveform of the mass control uoltage output of the mass scan converter 64 is shown in FIGURE 9. The wave-form relates to scans about mass control voltages Vl and V2, corresponding to two mass positions at about 40Vl amu and 40V2 amu respectively (based upon a mass control scale factor .., . .

.
., : .
.. , . , ..
. . . .

l, lO~SZ53 ~, of 25 millivolts per atomic mass unit). The start time for the first scan is tl; the scan ends at t2. The scan period is a variable determined by the parameter determination means 96. At about time t2, a mass step occurs to a voltage cor-responding to a mass position just below the second selected ~! mass position, 40V2 amu. The second scan starts at t4 and ends at t5.
i, The inter-scan interval (t4 - t2) is comprised of two delays. The first delay, (t3 - t2~, allows the rf/dc power supply 62 to respond to the step in the mass control voltage. The second delay, ~t4 - t3), allows the electrometer amplifier 66 to recover from the spurious ion intensity sig-¦ nals which occur between t3 and t2 as a result of the mass `~l sweep of the mass spectormeter 12. (These spurious signals are shown in FIGURE 10, which shows the waveform at the out-¦ put of the electrometer amplifier 66 in the same time frame l as that of the mass scan converter output.) Even if the same ;:1 mass position is bieng rescanned, an interscan interval is still required although the first delay would be relatively '.3 20 small. The first delay is a function of the magnitude of the mass step. The second delay is a function of (i) the previous time constant setting of the filter in the peak stretcher 68, which filter must be discharged before the next scan; tii~ the re~overy time of the el~ectrometer 66 after responding to the spurious ion intensity signals; and (iii) any changes in the settings of the gain of electrometer amplifier 66 and/or the ., .
gain and filter time constant of peak stretcher 68, required for the next measurement. The delays are determined by the parameter determination means 96 and clocked out by the ~; 30 sequence timer 72.
i~
~ .

., :

With reference to FIGURE 10, the maximum values of the electrometer output voltage, Vel and ~e2, occur during the first and second mass scans respectively; i.e., during scan periods (t2 - tl) and (t4 - t3), representing the ion intensities at the selected mass positions. However, spuri-ous signals also occur at the massstep times t2 and t5. These spurious signals are suppressed by placing the peak stretcher 68 in its blank mode for periods covering the times t2 and t5.
This is accomplished by the parameter determination means 96 issuing a mode select signal to the peak stretcher 68 at these times.
The corresponding waveform at the output of the peak ~; stretcher 68 is shown in FIGURE 11. At scan start times tl and t4, the parameter determination means 96 places the peak stretcher in its hold mode. In this mode, the maximum values of the electrometer amplifier output during each scan, after ~.
filtering and amplificaiton, are held at the peak stretcher output for digitization and storage by the analysis means 16.
The peak stretcher voltages Vpl and VP2 shown in FIGURE 11 are proportional to the intensities of the two ion peaks at the two selected mass positions respectively. After the peak values are stored in the memory portion of the analysis means ~.
16, the peak stretcher 68 is reset, to prepare for the next ....
scan. This is accomplished by the parameter determination means 96 issuing an appropriate mode select signal to the peak stretcher 68 at times t6 and t7 to place it in its blank ~! mode.

; The sensitivity of the invented system is adjustable by selection of the gain of the electrometer amplifier 66 and/or the gain of the peak stretcher`68. The sensitivity . ;, .
~., .

,.. -, . . . - . , .

.,. . ~, .. .. . . .

must be adjusted so that the peak intensity measured is "on scale", i.e., neither clipped by saturation nor so low as to be obscured by noise. The scan rate and the filter time constant of the peak stretcher 68 are interrelated functions of the sensitivity setting of the system. When the sensitivity of the system is reduced, there is a need for greater filtering by the peak stretcher 68 in order to enhance the signal-to-noise ratio. Accordingly, for each sensitivity setting, the parameter determination means 96 provides a time constant select signal to the peak stretcher 68, so as to select the appropriate filtering required for that sensitivity setting.
The amount of filtering, in turn, determines the scan period inasmuch as the frequency response of the filter must be ;~ compatible with the reequency content of the ion intensity ., signal. Thus, as the filtering is increased to enhance the signal-to-noise ratio, the scan rate is correspondingly de-creased by the parameter determination means 74 so that the filter can pass the ion intensity signal. The interrelation-ships between spectrometer sensitivity, i.e, electrometer and peak stretcher gain, filter time constant and scan rate, may be derived analytically and/or empirically. These rela-tionships are stored in the control memory means 92 and utilized by the parameter determination means 96 to generate the appropriate parameter select signals. These signals are provided, at the appropriate times, to the mass scan con-verter 64, the electrometer amplifier 66 and the peak stretcher ` 68.
The parameter determination means 96 also receives the temperatures of flash evaporator 18 and of the separator 20. These temperatures are converted to voltages by . .

appropriate température transducers and converted to digital form for presentation to the parameter determination means 96. The parameter determination means 96 typically controls the on-of~ cycles of the heaters associated with flash evaporator 18 and separator 20, as required to maintain the desired temperatures.
CONTRACTED SPECTRUM
Before describing the analysis means 16 and its operation upon the ion intensity signals output by the peak stretcher 68, the criteria used to contract the mass spectrum of each target compound is described.
It is well knwon that the existence of mass peaks in mass spectra are much less common at certain mass positions, especially those of higher atomic mass units. Thus, if a target compound has large peaks at mass positions tm/e) 43 and 243, most mass spectrometrists, for identification, would look first in the unknown spectrum for the presence of the -. peak at mass position 243, knowing it to be a much more selec-tive criterion if the sample could be any one of a relatively random selection of compounds.
In order to define this "unigueness" as a more quanti-tative "V" value, it is necessary first to select a particular universe of all compounds of interest and to obtain their known mass spectra from available reference sources such as, for example, the 17,124 compounds found in the "~ight Peak Index of Mass Spectra" published by the Mass Spectrometry Data Centre, AWRE, Aldermaston, Berkshire, England, 1970, The target compounds, of course, are a subset of the compounds in the selected universe. The U values will only be applicable to spectra measured under conditions comparable to those , ~l -34-.
. -- .
., .

10~5'~53 employed to measure the spectra of the compounds in the i universe of interest.
Abundance is defined as the ratio of the intensity of a mass peak, at a given mass position, to a base intensity, the latter being the maximum normalized intensity in the entire spectrum. The U value is based on the probability that, at a particular mass position, a spectrum taken at ran-dom would have a mass peak with an abundance greater than 50%.
More specifically, U is defined, for each mass position, to be the logarithm to the base 2 of the number of randomly selected ¦ mass spectra (taken from the universe of interest) which ; would have to be examined to find one having a peak at thatj mass of greater than 50% abundance ! Uj = log2 Nj; (1~
Where Uj is the U value at the jth mass position and Nj is the number of randomly selected spectra which would have to be examined as described above. It, therefore, follows that:
¦ P~i) = N ; (2) ~! where p(j~ is the probability~that, at the jth mass position, a mass peak of 50% abundance exists; i.e., that any given spectrum in the universe of interest will satisfy the fore-going condition. Thus, since:
Nj = 2U; , (3~
p(j)= ~ (4~ `

For each mass position, the value of Nj can be deter-mined from examination of the library of spe~ral data for the universe of interest, and the Uj values derived from Nj. For `~ simplification, the Uj values are rounded to the nearest integer value.
It has been observed that the uniqueness of a .: - ,: - . ,, . . ................. :
. " ` , ~ . ~, 1045'~53 particular mass peak is a function of its abundance level.
For example, in the Aldermaston universe of compounds, the data shows that approximately one in 32 spectra (U=5) have a mass peak of greater than 50% abundance at mass position 45 amu. However, at that mass position, nearly half the spectra have a peak of greater than 1~ abundance. Thus, at any mass position, the number of randomly selected mass spectra which would have to be examined to find one having a mass peak of a particular abundance generally decreases as the abundance level decreases. Thus, the probability function can be ex-pressed as - `

P(j~ = 1 ;
(Uj - Aj~

where Aj is an abundance term reflecting the effect of the abundance level of the peak on the probability of occurrence.
At abundance levels between 50% and 100~, Aj = o. The values of Aj can be determined from examination of the library of spectral data for the universe of interest. A large sampling of spectral data shows that, for most masses, the following Table I gives a satisfactory approximation of the abundance factor A necessary to adjust the probability of occurrence as a function of the mass peak abundance. The abundance factor A is substantially independent of the mass position of the peak.
Table 1 Abundance Range A
50 - 100%
-19 - 50~ 1 7.1- 19% 2 2.7- 7.1% 3 1.0- 2.7% 4 0.38-1.0% S

. . ~

~14S2S3 The known spectral data for each target compound is examîned and the value of Uj - Aj (referred to as Vj for convenience) is determined for each mass peak thereof. For example, if the target compound is known to have a mass peak of 30~ abundance at mass position 45, U45 = 5 tin the Aldermaston universe of compounds). From the above table A4s = 1. Thus, V45 = 4.
The subset of all peaks in the mass spectrum of the target compound which have the highest values of V are the most unique and, therefore, are selected to comprise the contracted mass spectrum of that compound. Ordinarily, the subset of peaks is chosen in decreasing order of Vj. However, any available supplementary information, such as the fact that certain peaks may relate to key structural features of the molecule, may be used in the selection process. In addition, only those peaks which can be reliably measured when a threshold quantity of the target compound is introduced should be selected. The nu~ber of peaks selected is a function of the confidence level desired for an identification.
ANALYSIS MEANS
Analysis means 16 is comprised of analysis memory means 98, spectral matching means 100, and an analog to digital (A/D~ converter 102, all of which can be implemented by a programmable digital computer utilizing known techniques of ~` computer programming or by a hard-wired, logic and control system utilizing known techniques of logic design and availa~le integrated circuit logic components.
The primary function of analysis means 16 is to analyze the measured spectral data of a sample for the presence of one or more of the target compounds. The contracted mass spectrum for each target compound, i.e., the mass position . , ' , ~o45z53 and relative intensity of each peak thereof, is stored in the analysis memory means 98. The measured spectral data of a sample is o~tained at each mass position of each target com-pound sought as described hereinabove. The magnitude of the ion intensity signal output by peak stretcher 68 to analysis means 16 is, of course, the value of the mass peak at thet mass position. The ion intensity signal is first converted to digital form by A/D converter 102 and then fed to spectral matching means 100 and stored in analysis memory means 98.
The first mass peak in the sequence is measured at an arbitrary and predetermined system sensitivity (determined by the gain of the electrometer amplifier 66 and peak stretcher 68). The scan rate and filter time constant are set by para-meter determination means 96 to be appropriate for that sensi-~! 15 tivity. If, after the first sca~, the ion intensity of the first peak is too large or small for accurate measurement, ~- the spectral matching means 100 outputs a rescan signal to the parameter determination means 96 indicating that the scan should be repeated at a higher or lower sensitivity as the case may be. The parameter determination means 96 responds by adjusting the gain of the electrometer amplifier 66 and/or that of peak stretcher 68 upward or downward as appropriate and the same mass position is rescanned. When the intensity of the first mass has been established, the maximum quantity of the target compound present is estimated from the known response sensitivity of the system to quantities of that compound. Based on the estimated quantity of the target com-pound which appears to be in the sample, and the relative in-tensity pattern of the target compound's contracted mass spectrum stored in analysis memory means 98, the intensity .

.

lO~SZS3 of the next mass to be sought in the contracted mass spectrum of target compound is predicted. The predicted intensity of the next mass peak in the sequence is output from spectral matching means 100 to parameter determination means 96. The latter, in response thereto, adjusts the system sensitivity for the next mass peak and the mass position thereof is scanned.
The value of the second mass peak measured is com-pared with the predicted value. If it exceeds the predicted value by more than a predetermined tolerance, the mass peak is identified as contaminated, that is, consisting of ions produced by at least one compound other than the target com-pound, as ~ell as (possibly) the target compound. If, on the other hand, the measured intensity of the second mass peak is too small to measure accurately, the spectral matching means 100 outputs a rescan signal indicating that the scan should be repeated at a higher sensitivity. The sensitivity is in- -creased appropriately and the mass position is rescanned.
If the accurately measured intensity of the second mass peak is smaller than the predicted value by more than a predeter-mined tolerance, the estimated maximum amount of the target compound present is reduced based upon the known sensitivity response of the system to quantities of the target compound.
In such an event the intensity of the previous (first) mass peak is predicted on the basis of the known relative intensity pattern of the target compound's contracted mass spectrum.
The predicted intensity of the previous mass peak is then com-pared to the previously measured value thereof. If the pre-vious mass peak exceeds the predicted intensity by more than a predetermined tolerance, then the previous peak is identified ,:

lV45253 as "contaminated".
The above-described sequence is continued until the mass peaks at each of the mass positions in the contracted mass positions in the contracted mass spectrum have been measured. During and/or after the measurements described, a confidence index relating to the likelihood that the target ` compound is present, and an estimate of the quantity of the target compound which may be present, are determined from the mass peaks found to be uncontaminated. This is described more fully below.
For greater accuracy, the intensities of all mass peaks measured (including calibration intensities~ are cor-rected by subtracting from the measured intensities the pre-^~ viously measured background intensities at all mass positions to be scanned for identification purpose. The background in-tensities are measured under conditions which are identical to those under which the sample identificatian is to be made, . . .
except that the sample is absent. Such background data is stored in analysis memory means 98.
In the event that a mass peak intensity at a particular ` mass position is predicted by spectral matching means 100 to ^ be below the background intensity at that mass position, spectral matching means 100 issues a "skip to next mass"
signal to parameter determination means 96. The latter re-sponds by initiating a mass step at the appropriate time.
The reason for skipping a measurement in view of such a pre-dication is as follows. If the prediction is correct or too high the intensity can't be measured since it is in the "noise" of the system. If the prediction is too low, i.e., if the intensity of the peak were measured and it were higher . .

1()4S2S3 than predicted (and measurable), it would nevertheless be identified as "contaminated" (since it would be greater than the predicted value) and would, therefore, contribute nothing to the confidence of the identification.

CONFIDEN('E INDEX
;l The probability that the mass spectral data examined for a sample is due to the compound sought is determined in the form of a confidence index, X. The calculation of K in- -volves a number of assumptions and approximations. Within these limitations, ~he probability that the mass spectral data measured could arise from a compound selected at random from the universe of compounds of interest is 1/2K. Thus, K -~
is the logarithm to the base 2 of the probability of a random occurrence of the observed data.
In analyzing the unknown sample spectrum fro the pre-sence of a target compound, Kj values are determined sequen-tially by spectral matching means 100 for each of the selected peaks sought. It is assumed that the various statistical contributions to the probability are independent, so that the overall probability is the product of the probabilities for each contribution. Therefore, K is a linear combination of the corresponding logarithms for uncontaminated peaks. Thus, K = Kj = (Vj + Wj - Dj), where Vj is the logarithm of the probability that a mass peak of a particular abundance will occur, at the jth mass position, as discussed above; Wj is a window tolerance factor, reflecting the degree to which the matching of measured peaks to known peaks of the target compound occurs; and ~j is a dilution factor based upon the amount of the target compound found relative to the quantity of sample introduced.

.

10~5ZS3 -One requirement for the indentification of the target compound in the unknown mixture is that the relative abundances of the peaks in the unknown spectrum must be consistent with those of the corresponding peaks in the contracted spectrum of the target compound. The probability that the required abundance has occurred instead by chance will depend on the expected degree of matching of these abundances. This, in turn, is a function of the tolerance to which matching is sought; i.e., the "window tolerance".
The range of abundance values is a function of the dynamic range of the system. Whatever the range of abundance values, it may be arbitrarily divided into a number of windows as a function of the tolerance of matching. Thus, for example, if the abundance range of the system is from 0.5% to 100%, there are 8 windows reflecting a + 30% tolerance. These win-dows are (1) 0.5% - 1.0%; (2) 1.0% - 2.0~; (3) 2.0% - 4.0%;
(4) 4.0% - 8.0%; (5) 8.0% - 16%; (6) 16% - 32%; ~7~ 32% - 64%;
and (8) 64% - 100%. It should be noted that the window of highest abundance is truncated since no peak can have an abundance greater than 100%. It is seen that any abundance value within one of these windows is within + 30% of the center value thereof. A similar breakdown of the abundance range can be done with respect to other tolerances, such as, for example, + 10%, + 20% and + 50%.
It is assumed that it is equally probable that the abundance of a measured mass peak will fall within one of the arbitrarily defined tolerance windows. (A more sophisticated approach might consider that the probability of a measured abundance falling within a particular tolerance window is a variable, and a determination made of that probability .

.

10~5253 function by a study of the library of spectral data com-prising the universe of interest.) In any event, the prob-ability that an observed peak will fall within the correct or predicted abundance window by chance is 1 in n, where n is the number of windows in the abundance range (a function of the tolerance as described above). Thus the window tolerance, W, is defined as the logarithm to the base 2 of n. The values of W as a function of tolerance is shown in the following Table 2:
Table 2 Tolerance n W
+ 10% 32 5 + 20% 16 4 + 30% 8 3 15 + 50% 4 2 If, at the jth mass position, the measured mass peak ; abundance (intensity) falls within the tolerance window of the predicted mass peak abundance, the "closeness" of the . match is a function of the tolerance. The smaller the tolerance, the higher the probability that sample is the tar-get compound (since the relative intensity patterns appear to match). The W value reflects this probability function by being additive to the value of Vj (i.e., Uj - Aj).
The magnitudes chosen for Uj and Aj are based on the spectra of pure compounds. However, if the target compound represents only part of the sample, its actual abundance tand thus the uniqueness) of its peaks wi~ll be reduced. In such a case, the uniqueness contrubution to K of each peak should be less than Vj. Thus, if a mass peak measured for an un-` 30 known sample is due, in part, to a second compound, the , ~

`:`

lU~5253 abundance factor must be reduced ~y a dilution factor D, the latter being subtracted from the Vj values for each peak of the target compounds contracted spectrum. ~hus, the dilution factor D is based on the quantity of the target compound found Q relative to the quantity of the sample, Qs, introduced into the system, typically a standard quantity. The dilution factor D is defined as follows:
D = - log Q ; (7) If Q = Q5~ the sample is pure, and D = 0. For mixtures, Q is less than Qs; The definition of D is based on the observation that is there are 2D different compounds present in the sample in equal amounts, the observed quantity of any one compound would be reduced by the factor 2D and there would be about 2D
times as many peaks of any given intensity than if the sample were pure.
With reference to the genreation of the confidence index K, consider the first mass peak. For that peak, K1 equals Vl - Dl; (Wl equals zero since the first peak must serve as the reference for predicting the abundance of the next peak). The value of Yj at each mass position in the spectra of the target compounds is stored in analysis memory means 98. Thus, if a first mass peak is measured, spectral matching means 100 obtains the value of Vl from analysis memory means 98. The value of Dl is then determined from the maximum estimated quantity of the target compound Q and the known quantity of the sample Q5, in accordance with equa-tion ~7), and subtracted from the value of Vl.
Next, the intensity of the second mass peak is measured.
If its intensity is within the window tolerance of its pre-dicted value (based upon the intensity of the first peak), X2 equals V2 - Dl ~ W. Dl and D2 should be approximately equal Since the estimate of the quantity of the target compound from the intensity of the second peak should be about the same as that estimated from the intensity of the first peak.
The value of V2 is obtained from analysis memory means 98 and the value of K2 determined by subtracting therefrom the values of Dl and W, the latter in accordance with Table 2.
At this point the overall confidence index, Kl, equals Kl+ K2.
If the intensity of the second peak is greater than the value predicted by more than the window tolerance, the second mass peak is deemed to be contaminated and K2 is set equal to zero. If, on the other hand, the intensity of the second peak is below the predicted intensity value by more than the window tolerance, the intensity of the second peak becomes the new reference peak, and a value of the intensity of the first peak is then predicted agian on the basis of the intensity of the seoond peak and the stored spectral data of the target compound sought (which data reflects the relative intensities of the various peaks thereof). The measured value of the intensity of the first peak is next checked to determine whether it exceeds the predicted value by more than the window tolerance. If it does, the first peak is deemed contaminated and Kl is set to zero. X2 then becomes equal to V2 ~ Dl,W2 being set to zero since the second peak is now the reference peak. The measured intensities for all sub-sequent peaks are treated in the same manner by spectral matching means 100. Thus, if Ij, the intensity measured at the jth mass position is below the predicated intensity value, the intensities of all previous uncomtaminated peaks are re-checked against the new reference intensity Ij.

.

1~)45ZS3 Any previous peaks which are now above the allowed window tolerance are termed contaminated, and their K values are re-duced to zero. The x values of the other peaks must be re-calculated to reflect the new value of Dj, and then K is re-determined.
If measured intensity Ij is equal to or less than the background intensity at the jth mass position, Bj, Kj is set to zero. However, if Bj if lower than the intensity pre-dicted by the reference peak, the intensity of the jth peak is assumed to be Bj and the intensities of all previous peaks rechecked based upon the intensity value of Bj as the refer-ence peak. The final confidence index R equals the summation of the individual Xj values. Spectral matching means 100 does the summation of Kj values after the last measurement is made at the last mass position in the contracted mass spec-trum of the target compound.
The final value of confidence index K is output from spectral matching means 100 to a suitable display which is part of conventional input/output means 104. This confidence index informs the operator that, on average, 2K compounds in the universe of interest would have to be selected at random and examine in order to find data which would match the target compound's contracted spectrum to the same degree as does the unknown sample.

QUANTITATION
After contaminated peaks are eleminated, spectral matching means 100 estimates the quantity, Q of the target compound identified. One method for doing this is to average the values of the estimated quantity, Qj determined at each uncontaminated peak. Thus, 1~)45Z53 Q = m im=lQj Alternatively, the quantity Q could be determined from the intensity of the peak finally used as the reference peak. The quantity based upon the reference peak intensity must be considered a maximum value, since this peak could be contaminated. However, the probability of such contamination will be small if the confidence index K is relatively high.

MODES OF OPERATION
The preferred embodiment of this invention is capable of operating in four basic modes; (i) start-up; (ii) calibra-tion; (iii) identification; (iv) data system. Mode selection is done via conventional switches on input/output means 104.
In the start-up mode, proper operating temperatures of the sample inlet device 10 are established; the separator 20 and the mass spectrometer 12 are evacuated; the system sensitivity is established by the parameter determination means 96; and the mass scan converter scale factor and offset corrections are made so as to enable accurate mass peak measurements. Other necessary preliminary functions are also -20 carried out by control means 14 and/or by the operator.
In the calibration mode, the intensities of the con-tracted reference spectrum for each target compound are measured and stored in the analysis memory means 98. A known sample quantity of each target compound is first injected into the sample inlet device 10. The calibration is then performed as follows:
The first mass in the identification set is repeatedly measured, with appropriate adjustments in system sensitivity to keep the peak on scale. When the intensity of the first mass peak exceeds the stored background intensity at that mass 11~)4S253 position, by a specified factor, the intensity of the peak is monitored until it reaches a maximum and begins to decrease.
; At this point the remaining masses in the set are measured in sequence and stored, after subtracting the corresponding stored background intensities.
The relationship between the intensities of the mass peaks measured and the known quantity of the calibration sample is used by spectral matching means 100 to determine the systems response sensitivity at each mass position in the contracted mass spectrum of the target compound. Thus, if the intensity of the ith mass is Ij, and the calibration quan-tity is Qc' the sensitivity of the jth mass to the target compound is Sj = Ij/Qc~ The values of Sj are stored in analysis memory means 98 and used in the identification mode to determine estimated quantities of the target compound present, as described above.
The measurement of background intensities, as des-cribed above, can be considered to be done in the calibration mode. However, the system must, of course, be purged of any residual sample material.
The identification mode is used to assay samples for ; the presence of one or more of the target compounds. It is subdivided into a confirmation mode and a search mode.
In the confirmation mode, the invented system is used ` 25 to confirm the presence of a single target compound. Thus, the mass analysis to determine K and Q described above is run repeatedly for a period of time determined by the operator ~through input/output means 104), during which time the sample is introduced. The highest values of K and Q are re-tained as the final confidence index and quantity estimates.

- . .

1~)45253 This value of K is compared with a predetermined threshold value KT; if K exceeds KT, the identification is positive;
that is, the target compound is indicated to be present in the sample. The amount of the target compound estimated to be contained in the sample is the final Q value. The results of the analysis are then displayed on a display position of input/output means 104, preferably on a set of illuminated indicators labeled with the names of the target compounds.
If one of the target compounds is identified, the correspond-ing indicator is illuminated. The result may also be printedout, if desired, on a conventional teletype. In addition, the confidence index, mass peak intensities and quantity found may be displayed and/or printed out.
In the search mode, each target compound in the entire ~-set of target compounds, or a subset thereof, is searched for sequentially in the sample. For each compound sought, the spectral analysis of the sample is carried out as described above, with two exceptions; first, the spectral analysis is terminated by spectral matching means 100 with respect to any target compound sought if (a) the confidence index K, based upon the peaks analyzed to that point, exceeds a thres-hold index KT; or (b) the quantity estimate of the target compound at any time is less than a threshold quantity QT. In the former case, the identification is deemed to be sufficiently positive. In the latter case, the identification is deemed to be negative because the target compound is not present in a sufficient quantity. When the spectral analysis is terminated under either of the foregoing conditions, spectral matching means 100 issues a "skip to next compound" signal to the para-meter determination means 96, causing the latter to proceed .. ~. , to the next target compound; i.e., to analyze the sample at the mass positions of the next target compound's contracted spectrum. If an identification of a target compound is positive, the quantity estimate thereof is the maximum esti-mated at any peak satisfying the condition, K5 KT.
By proper selection of the mass peaks used in the identification, it is usually possible that only one, or at most a few, peaks need be examined to establish the absence of a target compound. As a result, the present invention can analyze a sample and search a plurality of target compounds for an identification match in a relatively short tmme. For example, 16 target compounds can be searched in much less time than that normally required to measure once the entire mass spectrum (e.g.400 amu) of the sample.
As in the confirmation mode, illuminated indicators and an optional printout may be used to convey the results of the analysis to the operator. When no positive identifica-tion occurs, the operator may then proceed to the next sample.
~ In the identification mode, the input/output means `I 20 104 permits the operator to select the target compound or compounds to be confirmed or sought, in the sample.
In the data system mcde, the present invention can be used to generate new or special compound identification programs, as well as for conventional mass spectrometry or mass fragmentography applications. In this mode, one can rapidly scan all or part of a mass spectrum in any sequence, print or plot results, and analyze the data to derive a con-tract mass spectrum.
First, the control memory means 92 is loaded with all or a portion of the known mass positions found in the spectrum -' : ; , . ~ .

of a particular compouna. A known quantity of a pure sample of the compound is then injected into the sample inlet device 10 and the mass peak intensities are measured at each of the mass positions stored. Measurements can be made repeatedly or at the operator's request. The measured mass intensities are corrected by subtraction of the background intensities present in the system.
For each mass peak measured, spectral matching means 100 looks up the uniqueness factor Uj, stored in analysis memory means 98. In addition, based upon the relative inten-sity of each mass peak measured, the abundance factor AJ is also determined for each peak from Table I, which is also stored in analysis memory means 98. Spectral matching means 100 reduces the value of each Uj factor by the corresponding abundance factor Aj to yield a-Vj value; as indicated above, Vj = Uj - Aj. The values of Vj, Ij and Sj at each mass peak measured are displayed through the input/output means 104.
The operator may then select the most unique mass peaks ti.e.
those having the highest values of Vj) to make up the con-tracted mass spectrum of the compound measured. The spectraldata of the contracted mass spectrum of that compound may then be stored in control memory means 92 and analysis mem-ory means 98 for subseguent use in identifying that compound in an unknown sample. This invention also contemplates the automatic selection of the most unique mass peaks based upon one or more pre-stored selection criterion, and the automatic storageof such selected mass peaks in memory means 92 and 98.
Thus, in the data system mode, any compound of interest may be analyzed and the necessary spectral data obtained to en-able that compound to be made a target compound in the invented 1~45ZS3 system. In this manner, the operator can develop his own set of target compound spectra.
Operation of the invented system in the calibration, identification and data system modes requires introduction of the sample into the sample inlet device 10. Samples are introduced in such a way that the partial pressure of the sample vapor in the mass spectrometer is maintained at a level sufficient for detection above the spectrometer back-ground for the 1 to 10 seconds required to perform an analysis.
The temperatures of the flash evaporator 18 and separator 20, the carrier gas flow rate and the vacuum system pumping speeds are chosen so that the partial pressure of the sample vapor in the mass spectrometer ion source has the general time be-havior shown in Figure 12. Gaseous samples may be valved into the carrier gas stream so as to produce a similar pressure ` pattern.
A number of variations on the structure and operation of the present invention are possible without departing from its essential scope and spirit. Some of the possible varia-; 20 tions are described as follows:
.~ .
(1) The analysis of data for identification purposes could be done "off-line" rather than in real time.
That is, the data could be measured and stored, and ` analyzed later.
(2) An alternate comparison or matching method could be used, such as, for example, the "Biemann - MIT"
system which utilizes the two largest peaks in each 14 mass unit interval (described by Hertz, Hites, and Biemann in Analytical Chemistry Vol. 43, page 681~1971).
(3) The entire spectrum, rather than a partial `

,. -~45253 spectrum, could be measured. For each eompound of ¦ interest the appropriate measurements could be ex-tracted and compared with the reference data.
(4) Identification data generation, as described with respect to the data system mode above, could be made entirely automatic. That is, an unknown sample (pure or mixture) could be introduced and, in lieu of the ; operator, the system could be designed to select the most appropriate (highest Vj) peaks for the con-tracted mass spectrum. The speetral data associated with sueh peaks would then be stored for use in the subsequent assay of unknown samples.
The inventive principles embodied in the present in-vention are also applieable to other physical measurement methods which produce a "spectrum" or a pattern of eharacter-istic relative intensities as a function of some parameter.
j Examples of sueh physieal measurements inelude emission a~dabsorbtion optical spectrometry (ultraviolet, visible, in-~
frared), nuclear magnetie resonance and X-ray spectrometry.
Although this invention has been disclosed and des-eribed with reference to a particular embodiment, the prineiples involved are susceptible of other applications whieh will be apparent to persons skilled in the art. This invention, therefore, is not intended to be limited to the particular embodiment herein disclosed.

., .

~ -53-

Claims (12)

The embodiments of the invention in which an exclusive property or priviledge is claimed are defined as follows:
1. In a mass spectrometric system comprised of (i) means for measuring the mass spectra of sample compounds;
(ii) means for introducing a sample of a pure compound or a mixture of compounds into said measuring means; (iii) means for controlling the operation of said measuring means so as to measure the intensities of one or more mass peaks of said sample; and (iv) means for data input and output elec-trically coupled to said control means and to means for analyzing said mass peaks, said analysis means comprising:
(a) first means for storing the mass spectrum of at least one target compound or a contracted mass spectrum thereof;
(b) second means for storing at least one spectral matching criterion;
(c) third means for storing a predetermined sensitivity factor with respect to each mass peak of said target compound's spectrum, said sensiti-vity factor relating the measured intensity of each mass peak to a quantity of said target compound;
(d) means for determining a measure of quantity of said target compound in said sample based upon the intensities of said measured mass peaks and said corresponding sensitivity factors, the mass peak at which the least quantity of said target compound is determined being stored in said second storage means as a reference peak, said quantity determination means being electrically coupled to said second and third storage means and to said measuring means;
(e) means for predicting the intensity of a mass peak of said sample at at least one other mass position of said target compound's mass spectrum, said prediction being based upon the intensity of said reference peak and said mass spectral data for said target compound, said prediction means being electrically coupled to said first and second storage means; and (f) means for comparing the intensity of each measured mass peak to the intensity predicted therefor with respect to a predetermined tolerance, said comparison means being electrically coupled to said prediction means and to said measuring means, whereby, a mass peak is considered contaminated if its measured intensity exceeds said predicted intensity by more than said tolerance and said mass peak is considered uncontaminated if its measured intensity agrees with said predicted intensity within said tolerance, and said target compound is identified as being present in said sample or as not being present there-in as a function of the number of uncontaminated mass peaks measured at mass positions of its spectrum and their unique-ness.
2. The invention of Claim 1 wherein said means for predicting intensities is electrically coupled to said means for controlling said measuring means and provides thereto said predicted intensities, said control means being arranged and configured to respond thereto by adjusting the sensitivity of said measuring means to a level appropriate for the accurate measurement of each mass peak at said predicted intensity.
3. The invention of Claim 1 wherein said quantity determination means estimates the quantity of said target compound in said sample by determining a measure of the quantity thereof based upon the intensity of at least one uncontaminated mass peak and the corresponding sensitivity factor at the mass position thereof.
4. The invention of Claim 3 wherein said quantity determination means estimates the quantity of said target compound in said sample by averaging the measures of quantity determined at said uncontaminated mass peaks.
5. The invention of Claim 3 wherein the mass spectra of a plurality of target compounds, or contracted spectra thereof, are stored in said first storage means, and wherein the presence or absence of all or a subset of said target compounds is determined, said quantity determina-tion means being electrically coupled to said means for controlling said measuring means and providing thereto a "skip to next target compound" signal whenever said estimate of the quantity of any target compound is less than a pre-determined value, said control means being responsive to said signal.
6. In a mass spectrometric system comprised of (i) means for measuring the mass spectra of sample compounds;
(ii) means for introducing a sample of a pure compound or a mixture of compounds into said measuring means; and (iii) means for controlling the operation of said measuring means so as to measure the intensities of one or more mass peaks of said sample; and (iv) means for the data input and output electric-ally coupled to said control means and to means for analyzing said mass peaks, said analysis means comprising:
(a) first means for storing the mass spectrum of at least one target compound or a contracted mass spectrum thereof;
(b) second means for storing at least one spectral matching criterion;
(c) third means for storing a predetermined sensiti-vity factor with respect to each mass peak of said target compound's spectrum, said sensitivity factor relating the measured intensity of each mass peak to a quantity of said target compound:
(d) means for determining a measure of quantity of said target compound in said sample based upon the intensities of said measured mass peaks and said corresponding sensitivity factors, the mass peak at which the least quantity of said target compound is determined being stored in said second storage means as a reference peak, said quantity determination means being electrically coupled to said second and third storage means and to said measuring means;
(e) means for predicting the intensity of a mass peak of said sample at at least one other mass position of said target compound's mass spectrum, said prediction being based upon the intensity of said reference peak and said mass spectral data for said target compound, said prediction means being electric-ally coupled to said first and second storage means;
(f) first means for comparing the intensity of each measured mass peak to the intensity predicted therefor with respect to a predetermined tolerance, said comparison means being electrically coupled to said prediction means and to said measuring means, a mass peak being considered contaminated if its measured intensity exceeds said predicted intensity by more than said tolerance and uncontaminated if its measured intensity agrees with said predicted intensity within said tolerance;
(g) means for determining a probabilistic measure of the likelihood of the presence of said target compound based upon said uncontaminated mass peaks measured, said means for determining a probabilistic measure being elec-trically coupled to said first comparison means; and (h) second means for comparing said probabilistic measure to said spectral matching criteria; said second comparison means being electrically coupled to said means for determining a probabilistic measure and to said second storage means.
whereby, said target compound is identified as being present in said sample or as not being present therein in accordance with said spectral matching criterion.
7. The invention of Claim 6 wherein said means for determining a probabilistic measure comprises:
(i) fourth means for storing a uniqueness factor for each mass peak in said mass spectrum of said target compound, said uniqueness factor reflecting the number of randomly selected mass spectra from a universe of compounds of interest which would have to be examined to find one having said mass peak; and (ii) means for calculating a confidence index electrically coupled to said fourth storage means and to said first comparison means, said calculating means determining, for each uncontaminated mass peak measured, the corresponding uniqueness factor thereof and operating upon said factors to determine said confidence index, whereby, said target compound is identified as being present in said sample if said confidence index is greater than a predetermined value thereof.
8. The invention of Claim 7 wherein said calculating means adds said uniqueness factors for said uncontaminated, measured mass peaks to determine said confidence index.
9. The invention of Claim 7 wherein said calculating means increases said uniqueness factor at each uncontam-inated mass peak measured by a tolerance factor which reflects the tolerance within which the relative intensity of said measured mass peak matches the relative intensity of the corresponding mass peak of said target compound's spectrum.
10. The invention of Claim 7 wherein said calculating means reduces said uniqueness factor at each uncontaminated mass peak measured by a dilution factor which reflects the quantity of said target compound in said sample, said cal-culating means being electrically coupled to said quantity determination means.
11. The invention of Claim 7 wherein the mass spectra of a plurality of target compounds, or contracted spectra thereof, are stored in said first storage means, and wherein the presence or absence of all or a subset of said target compounds is determined, said calculating means being electrically coupled to said means for controlling said measuring means and providing thereto a "skip to next target compound" signal whenever said confidence index is greater than said predetermined value thereof, said control means being responsive to said signal.
12. The invention of Claim 6 wherein the presence or absence of said target compound is confirmed by said matching means by a plurality of matching cycles.
CA303,281A 1974-05-16 1978-05-15 Mass spectrometric system for rapid, automatic and specific identification and quantitation of compounds Expired CA1045253A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47064274A 1974-05-16 1974-05-16
CA225,420A CA1042118A (en) 1974-05-16 1975-04-22 Mass spectrometric system for rapid automatic and specific identification and quantitation of compounds

Publications (1)

Publication Number Publication Date
CA1045253A true CA1045253A (en) 1978-12-26

Family

ID=25667925

Family Applications (1)

Application Number Title Priority Date Filing Date
CA303,281A Expired CA1045253A (en) 1974-05-16 1978-05-15 Mass spectrometric system for rapid, automatic and specific identification and quantitation of compounds

Country Status (1)

Country Link
CA (1) CA1045253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316106A (en) * 2017-09-05 2020-06-19 迪森德克斯公司 Automated sample workflow gating and data analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316106A (en) * 2017-09-05 2020-06-19 迪森德克斯公司 Automated sample workflow gating and data analysis

Similar Documents

Publication Publication Date Title
US4008388A (en) Mass spectrometric system for rapid, automatic and specific identification and quantitation of compounds
Carroll et al. Subpicogram detection system for gas phase analysis based upon atmospheric pressure ionization (API) mass spectrometry
Müller et al. A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution
Holzinger PTRwid: A new widget tool for processing PTR-TOF-MS data
US5668373A (en) Methods and apparatus for analysis of complex mixtures
JP4413778B2 (en) Method, system, and apparatus for performing quantitative analysis using FTMS
US4757198A (en) Mass analyzer system for the direct determination of organic compounds in PPB and high PPT concentrations in the gas phase
JP4401960B2 (en) Method, system and apparatus for optimizing FTMS variables
De Laeter Applications of inorganic mass spectrometry
US5015848A (en) Mass spectroscopic apparatus and method
Russ et al. Osmium isotopic ratio measurements by inductively coupled plasma source mass spectrometry
US3639757A (en) Apparatus and methods employing ion-molecule reactions in batch analysis of volatile materials
CA1042118A (en) Mass spectrometric system for rapid automatic and specific identification and quantitation of compounds
US3247375A (en) Gas analysis method and device for the qualitative and quantitative analysis of classes of organic vapors
Gkatzelis et al. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA
Reynolds et al. Computer-operated mass spectrometer system
US6444979B1 (en) Method of and apparatus for searching for unknown specimen, and recording medium with recorded program for searching for unknown specimen
CA1045253A (en) Mass spectrometric system for rapid, automatic and specific identification and quantitation of compounds
Middleditch et al. Comparison of selective ion monitoring and repetitive scanning during gas chromatography-mass spectrometry
Jungclas et al. Quantitative 252Cf plasma desorption mass spectrometry for pharmaceuticals: A new approach to coupling liquid chromatography with mass spectrometry
Katz et al. Design and construction of a high‐stability, low‐noise power supply for use with high‐resolution electron energy loss spectrometers
Franzen et al. Automatic ion current control of a direct inlet system
Ithakissios Plasmagram spectra of some barbiturates
Frew et al. Mass spectrometric isotope ratio measurements and peak area integration using the peak-switching feature of the AEI MS-902
Grayson The mass spectrometer as a detector for gas chromatography