CA1044148A - Rotary engine cooling system - Google Patents
Rotary engine cooling systemInfo
- Publication number
- CA1044148A CA1044148A CA213,653A CA213653A CA1044148A CA 1044148 A CA1044148 A CA 1044148A CA 213653 A CA213653 A CA 213653A CA 1044148 A CA1044148 A CA 1044148A
- Authority
- CA
- Canada
- Prior art keywords
- housing
- defining
- wall
- combustion engine
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B55/00—Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
- F02B55/08—Outer members for co-operation with rotary pistons; Casings
- F02B55/10—Cooling thereof
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Motor Or Generator Cooling System (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
ABSTRACT OF THE DISCLOSURE
Disclosed herein is a rotary internal combustion engine comprising a housing assembly including first and second substantially indentical housing members extending is spaced, parallel and aligned relation to each other and respectively including wall means partially defining first and second trochoid shaped rotor cavities and additional wall means parially defining first and second water jackets respectively extending partially circumferentially of the cavities and respectively including circumferentially spaced inlet and oulet ends, a first wall member located adjacent to the first housing member remotely form the second housing member and further defining the first rotor cavity and including coolant inlet means communicating with the inlet end of the first water jacket, a second wall member located adjacent to the second housing member romotely from the first housing member and further defining the second rotor cavity and including outlet means communicating with the outlet end of the second water jacket, and an intermediate member located between the housing members, partially defining the rotor cavities and including coolant conduit means communicating between the outlet end of the first water jacket and the inlet end of the second water jacket.
Disclosed herein is a rotary internal combustion engine comprising a housing assembly including first and second substantially indentical housing members extending is spaced, parallel and aligned relation to each other and respectively including wall means partially defining first and second trochoid shaped rotor cavities and additional wall means parially defining first and second water jackets respectively extending partially circumferentially of the cavities and respectively including circumferentially spaced inlet and oulet ends, a first wall member located adjacent to the first housing member remotely form the second housing member and further defining the first rotor cavity and including coolant inlet means communicating with the inlet end of the first water jacket, a second wall member located adjacent to the second housing member romotely from the first housing member and further defining the second rotor cavity and including outlet means communicating with the outlet end of the second water jacket, and an intermediate member located between the housing members, partially defining the rotor cavities and including coolant conduit means communicating between the outlet end of the first water jacket and the inlet end of the second water jacket.
Description
INVENTORS
Harry M. Ward III and Eugene R. Hackbarth ~ -TITLE
, .
"Rotary ~ngine Cooling System"
BACKGROUND OF THE INVENTION
The invention relates generally to rotary internal combustion engines and, more particularly, to multi-rotor rotary internal combustion engines. Still more particularly, the invention relates to liquid cooling arrangements for such multi-rotor engines.
SUMMARY OF THE INVENTION
The invention provides a rotary internal combustion engine comprising a housing assembLy including first and second housing members located in spaced, parallel and aligned relation to each other a~nd ;
respectively including wall means partially defining :.~. :-first and second trochoid shaped rotor cavities and additional wall means partially~defining first and ~., sscond oooling jackets rsspectively extending partially circumferentially of the first and second cavities and ; respectiveLy including inlet and outlet ends. In addi-tlon, the~rotary intsrnal combustion engine includes first wall means located adjacent to the first housing msmber remotely from the second housing member and `~
25 ; fur~ther partially defining the first rotor cavity and also lncluding a coolant inlet means communicating with , ~ '. : ::
~: : , . .
j : -i .
the inlet end of the first water jacket, together with a second wall member located adjacent to the second housing member remotely from the first housing member and further partially defining the second rotor cavity and also including outlet means communicating with the outlet end of the second water jacket, and an intermediate member located between the housing members, partially defining the first and second rotor cavities, and also including :~
', 10 coolant conduit means communicating between the out-!~ ~ let end of the first water jacket and the inlet end of the second water jacket. In addition, the engine includes means securing together, in series, the first wall member, the first housing member, the intermediate :~ 15 member, the second housing~member, and the second wall~means. ~ ~
In further accordance with one embodiment of the invention, the rotary internal~combustion engine is preferably constructed so that~the hollsing 20 ~ members are substantialLy identically constructed and , , ~ ~
arranged so that the rotor cavities and:;the~cooling jacket inlet and outlet ends are in respective align-ment with~each other.~
In still further accordance with one embodi-25~ mént~oe the lnvention, the coolant conduit means~ln~
the~intermediate member includes an arcuately extending ; :~
third cooling jacket located, at least in part, inwardly : ~
! i; :, ~
.,.,~, " . , . .. j , , .. , ~ ,. . .. . . . .. .
of the periphery of the rotor cavities and including an inlet end in arcuately adjacent relation to the outlet ends of the first and second cooling jackets and communicating with the outlet end of the first cooling jacket.
In addition, the intermediate or third cooling jacket also includes an outle~ end Loca-ted arcuately adjacent to the inlet ends of the first i and second cooling jackets and in communication with I 10 the inlet end of the second cooling jacket.
I Still further in accordance with one embodiment of the invention, the housing members :~;
l and the intermediate member are each provided with il exhaust passages which are aligned with and communi-cate with one another, and the first, second and ~
; third cooling jackets extend to adjacent to the ex- ~ -haust passages for cooling thereof.
In still further accordance with one em-~odiment of the invention, the rotary internal combustion engine is constructed so that the first wall member also includes walI means which also par- ~ ;
tia~lly defines the first cooling jacket, so that ~1:
the second wall member also includes wall means further ~ ;
defining the second cooling~jacket, and so that the 25 ~intermediate member also includes wall means further defining the first and second cooling jackets. -'-One of the prlncipal features of the in-vention is the provision of a multi-rotor rotary ~ : , . ~
~: ~ ,. ~ ;;,. :,, ~ ~ ~ ~' ~ ' :
: !
internal combustion engine including first and second rotor housing members, each including a ~
cooling jacket extending partially circumferentially -of the ro~or cavity and in which the coolant flows in series from the cooling jacket in the first rotor housing member to the cooling jacket in the second rotor housing member and in which the flow is circumferential in the same direction in each of the cooling jackets.
Another of the principal feaures of the invention is the provision of a multi-rotor rotary internal combustion engine including a cooling arrange-ment embodying substantially identically constructed rotor housing members.
Still another of the principal features of the invention is the provision of a multi-rotor I rotary in~ernal combustion engine ?~ncluding an inter-mediate member which is located between two rotor -housing members and includes a water jacket in which ; ~
the coolant flows circumferentially in the opposite ;
direction from circumerential flow in the cooling jackets provided in the rotary housing members.
Still another of the prlnclpal features of ~:~
the lnvention is the provision, in an intermediate member located between two rotor housing members, of a coo~ling jacket located inwardly of the periphery , : :
~ of the ro~or cavities.
~ , . .
_4_ ; i~,,",~
.... . .. ... ...... . .. . . .
Other features and aspects of the em-bodiments of the invention will become known by reference to the following drawings, general de-~ scription and claims.
~ , , .
.I Figure 1 is a fragmentary, partially ~ ~-schemati.c side elevational view, partially broken ' away and in section, of a multi-rotor rotary in-1 ternal combustion engine embodying various of the ji; 10 features of the invention.
~ Figure 2 is a view t~kan gerlerallyalong . ..
line 2--2 of Figure 1.
Figure 3 is a view taken generally along I line 3--3 of Figure 1.
1 .,.
l 15 Before explaining one embodiment of the ;
;l invention in detail, it is to be understood that -~ .:
:l~ the invention is not limited in its applica~ion `1 , ~ ~, to the details of the construction and arrangement :
of parts set forth in the following general de- :
scription or illustrated in the accompanying drawings, except as defined by the claims, since ,, : ~
1~ I ~ the invention is capable of other embodiments :
`~ and~of being~practiced or carried out in various ways.
Also, it~is to be understood that the phraseology 25 ~ or ~terminology employed herein is for the purpose , -of description and not of limitation.
~ -5- ;
3~
.~.
GENERAL DESCRIPTION
Shown in the drawings is a rotary internal combustion engine 11 comprising a housing assembly 13 -including first and second or lower and upper housing members 15 and 17 which are located in spaced, parallel, and aligned relation to each other and which respectively include wall means de~ining first and second or lower and upper trochoid shaped rotor cavitiei~ 19 and 21. As the housing members 15 and 17 are preferably substantially identical, only the housing member 15 is shown in.. Figure 3~.
The first and second or lower and upper housing : members 15 and 17 further respectively include other additional wall means deflning first and second or lower ~.
and upper exhaust passages 23 and 25 extending in thei' direction perpendicular to the parallel relation of the ;;
; ,. . .
housing members 15 and 17 (i.e., in parallel with the .
crankshaft still to be disclosedj and located in spaced ~1 relation to the rotor cavities 19 and 21 and in alignment 20 : ~r~elative to each other. The firs:t and second or lower ~
~ . ~
and:upper housing members 15 and 17 further include respective additional ~all means defining first and second - ~
or~lower and upper cooling jackets 27 and 29 which ; :~.
respectively extnnd circumferentially around the rotor .~
:25 cavitLes 19 and 21 and preferably also at least partially .:
around the exhaust passages 23 and 25. In this regard, .1 .
J~ .
:~ -6-the coolant flow in the cooling jackets 27 and 29 is in the clockwise direction from respective inlet ends 31 to respective outlet ends 33.
In additlon, the first and second or lower and upper housing members 15 and 17 respectiveLy include still other wall means which define first and second :~ :
: . - . .
or lower and upper exhaust ducts (not shown) which com~
municate respectively be~ween the first and second rotor .
cavities 19 and 21 and the first and second exhaust pas- : : :
: 10 sages:23 and 25. ;:
As the housing members 15 and 17 are preferably ~-die cast, the castings or members additionally respec~
tively include lower~aod upper bores 35 and 37 which are aligned with the exhaust ducts: (not shown) in order to~ facilitate casting~and which are closed by respective~
..
covers or plates 39:and 41.
The housing assemb:ly 13 further includes an :- , ~ -:: intermediate member 51 which is located between the .
first and second or lower~and upper housing members 15 20~ and~:~l7~and~which in~ludes lower and::upper surfaces 53 :.:
and~55~which res~pective1y~abut the lower and upper housing :-m~mbers~15:and 17. :The~upper and lower surfaces 53 :
and:55:each include wall means 57 (See Fig. 1) addi- .
tiona:lly de~ining the first and~second rotor cavities :.
25~ 19~and~21 and wall means 59 additionally defining the -.
first and second cooling jackets 2.7 and 2~. In addition, .
the intermediate member 51 also includes an exhaust .~
~ ~.................................................................... .. .
passage 61 in alignment with and communicating between the first and second or lower and upper exhaust passages 23 and 25 in the first and second or lower and upper housing members 15 and 17.
The intermediate member 51 further includes coolant conduit means communicating between the outlet l end 33 of the lower cooling jacket 27 and the inlet ;, end 31 of the upper cooling jacket 29~ In the preferred : .
~, construction such coolant conduit means comprises a ~; 10 third coolîng jacket 71 which is shown in Figure 2 l~ and which extends interiorly of the intermediate J ~ member 51 and arcuately in the area generally inwardly ~1 of the periphery of the rotor cavities 19 and 21 and prefer~
1 ably at least partially around the exhaust gas passage 61. The third cooling jacket 71 includes an inlet end . ~ , "
~ : : 73 and an outlet:end 75 which is arcuately spaced from : ~ the inlet end 73. Within the:third cooling jacket 71, ~ .coolant flows in the reverse direction from the direction ~: of:flow in the cooling jackets 27 and 29 in the:~housing ~ ~ -: members 15 and 17. More particularly, the inlet end 73 of~the~third cooling jacket 71 is:located in generally arcuate~;alignment with~t;he outlet ends 33~of the upper and lower cooling iackets 27 and 29 and communicates through a~duct or port 77~with the outlet end 33 o~ the ~ t 25~ lower cooling jacket 27. :In addition, the outlet end 75 of the third cooling jacket 71 is located in generally 1~`
3~
4~
arcuate alignment with the inlet ends 31 of the upper --and lower cooling jackets 27 and 29 and communicates through a duct or port 79 with the inlet end 31 of the upper cooling jacket Z9. Thus, it will be seen that the inlet ends 31 of the lower and upper cooling jackets 27 and 29 are arcuately adjacent to the outlet end 75 of the third or intermediate cooling jacket 71, and the outlet ends 33 of the lower and upper cooling jackets 27 and 29 are arcuately adjacent to the inlet end 73 of the third cooling jacket 71 in the inter-mediate member 51.
The housing as&embly 13 further includes an upper wall member 81 which is located adjacent to the upper or second housing member 17 remotely from the intermediate member 51 and ~which additionally defines the upper or second rotor cavity 21 and the upper or ~, second cooling jacket 29 and which closes the upper end of the exhaust passage 25 in;the :upper or second - -:- .
housing member L7. The~upper wa~ll member 61 also ``
: 20~ inc~ludes coolant outlet means in the form of a coolant :: :
dls;charge port or duct: 83 which communicates with the out~let~end 33 of the upper cooling jacket 29. The discharge duct 83 can be arranged to discharge into one~ of the exhaust passages 23, 25, or 61. ;~ :
25 ~ : The housing assembly 13 further includes a lower wall member 85 which is located adjacent to the lower .
or first housing member 15 remotely from the intermediate g_ 1.. , : ~ ~ ,' . : .
:
member 51 and which additionally defines the lower or :
first rotor cavity 19 and the lower or first cooling ~ .
jacket 27. The lower wall member 85 further includes .
~ .
an exhaust passage 87 aligned with and communicating::
5 with the exhaust passage 23 in the lower or first :
: housing member 15 and having an outlet adapted to be connected in any suitable manner to a discharge .... .
`j pipe or conduit extending from the housing assembly ~:
` 13. In addition, the lower wall member 85 includes ~ 10 coolant inlet means in the form of a port or duct 89 -:
`: ~ ~ . .
. which communicates with the inlet end 31 of the lower .
cooling jacket 27. The inlet duct or port 89 can ,:, .
communicate with any suitable source of coolant.
: The upper and lower wall members 81 and 85 also support upper and lower bearings 91 and 93 which serve to rotatably suppart a crankshaft 95 which includes first and second or lower and upper eccentric portions respectively located in the first and second or lower -~
and upper rotor cavities l9 and 21 and rotstably support~
j 20 : ;ing~ therein respective first and;second or lower and s '1~ .
upper: rotors 97 and~99 which, in response to rotation ::;
thereof, define rotating combustion chambers within the ifirst and second or lower and upper rotor cavities 19 and J~
~ 25 ~ ~ j : Mounted on the crankshaft 95 is a flywheel 101. ~:-. ~ ~ , . . .
Lower and upper gear means 103 and 105 are pro~
vided on the housing assembly 13 and on the rotors 97 and .
f~
--1 0-- ' f~
' :,.. ,. , , , - -: , - - . , . . . . . : , ~
; 99 to effect relative rotation between the rotors 97 and g9 and the housing assembly 13 and between the rotors 97 and 99 and the crankshaft 95 in response to the occurrence of combustion in the rotating chambers.
Suitable means are provided for securing to- :
; gether in a stack the beforementioned upper and lower :
. wall members 81 and 85, the lower and upper housing : mer~ers 15 and 17, and the lntermediate member 51 ..
with the rotor cavities 19 and 21 in alignment and :~
, . . .
with the exhaust passages 23, 25, 61 and 87 in align-ment. In the illustrated construction, such means .
comprises a plurality of bolts 109 extending through ~ ~ .
~~ each of the members 15, 17, 51, 8I and 85.
:~ In operation, water is supplied through the inlet duct or port 89 to the inlet end~31:of the lower ¦ cooling jacket 27 for circumferential flow in the clock~
, ~ ... .. .
wise direction, as shown in Figure 3, around the lower rotor cavity l9 to the outl~et end 33 of the lower cooling~j~acket~ 27. From the outlet end 33 of the lo~er 20~ c~ooling Jacket 27,: the~coolan~ flows through the duct 77 :~ .
Ln the~intermediate mer~er ;5l~to the inLet end 73 of the ;.
int~ermediate or third cooling jacket 71. Within the : : ~:
interme~dia~te:or third cooling jacket 71, the:coolant flow is in the counterclockwi~e direction, as seen in 25~ Figure 2, and inwardly of the periphery of the rotor .
cavities l9 and 21 from the ~inlet end 73 to the outlet :~
end 75.: From the outlet end 75 of the intermediate or .
., " ", . , ", " . . , `, ,,,,, , . , . ., ` 1., . ,, , , . , , . , ~ ., , . " , , , ~ , :
third cooling jacket 71, the coolant flows through the duct or port 79 to the inlet end 31 of the upper cooling jacket 29 and then circumferentially of the upper rotor cavity 21 in the clockwise direction to : 5the outlet end 33, and thence is discharged through :.
the port ~i, Accordingly, the disclosed construction advantageously permits utiLization of substantially :
or completely identical housing members 15 and 17 while providing adequate cooling for the housing members 15 and 17 and, in particular, for the inter-mediate member 51 located between the housing members 15 and 17. Thus both the rotor cavities and the : :
internal exhaust passages 23, 25 and 61 are cooled.
Various of the features of the invention are set forth in the following claims.
:: , ' ,. ;' - ,: ~. ' ', ~ , ::
- -.- . :
, .
:: . , : : : :: :
:~: : -12-~ ~ .
-
Harry M. Ward III and Eugene R. Hackbarth ~ -TITLE
, .
"Rotary ~ngine Cooling System"
BACKGROUND OF THE INVENTION
The invention relates generally to rotary internal combustion engines and, more particularly, to multi-rotor rotary internal combustion engines. Still more particularly, the invention relates to liquid cooling arrangements for such multi-rotor engines.
SUMMARY OF THE INVENTION
The invention provides a rotary internal combustion engine comprising a housing assembLy including first and second housing members located in spaced, parallel and aligned relation to each other a~nd ;
respectively including wall means partially defining :.~. :-first and second trochoid shaped rotor cavities and additional wall means partially~defining first and ~., sscond oooling jackets rsspectively extending partially circumferentially of the first and second cavities and ; respectiveLy including inlet and outlet ends. In addi-tlon, the~rotary intsrnal combustion engine includes first wall means located adjacent to the first housing msmber remotely from the second housing member and `~
25 ; fur~ther partially defining the first rotor cavity and also lncluding a coolant inlet means communicating with , ~ '. : ::
~: : , . .
j : -i .
the inlet end of the first water jacket, together with a second wall member located adjacent to the second housing member remotely from the first housing member and further partially defining the second rotor cavity and also including outlet means communicating with the outlet end of the second water jacket, and an intermediate member located between the housing members, partially defining the first and second rotor cavities, and also including :~
', 10 coolant conduit means communicating between the out-!~ ~ let end of the first water jacket and the inlet end of the second water jacket. In addition, the engine includes means securing together, in series, the first wall member, the first housing member, the intermediate :~ 15 member, the second housing~member, and the second wall~means. ~ ~
In further accordance with one embodiment of the invention, the rotary internal~combustion engine is preferably constructed so that~the hollsing 20 ~ members are substantialLy identically constructed and , , ~ ~
arranged so that the rotor cavities and:;the~cooling jacket inlet and outlet ends are in respective align-ment with~each other.~
In still further accordance with one embodi-25~ mént~oe the lnvention, the coolant conduit means~ln~
the~intermediate member includes an arcuately extending ; :~
third cooling jacket located, at least in part, inwardly : ~
! i; :, ~
.,.,~, " . , . .. j , , .. , ~ ,. . .. . . . .. .
of the periphery of the rotor cavities and including an inlet end in arcuately adjacent relation to the outlet ends of the first and second cooling jackets and communicating with the outlet end of the first cooling jacket.
In addition, the intermediate or third cooling jacket also includes an outle~ end Loca-ted arcuately adjacent to the inlet ends of the first i and second cooling jackets and in communication with I 10 the inlet end of the second cooling jacket.
I Still further in accordance with one embodiment of the invention, the housing members :~;
l and the intermediate member are each provided with il exhaust passages which are aligned with and communi-cate with one another, and the first, second and ~
; third cooling jackets extend to adjacent to the ex- ~ -haust passages for cooling thereof.
In still further accordance with one em-~odiment of the invention, the rotary internal combustion engine is constructed so that the first wall member also includes walI means which also par- ~ ;
tia~lly defines the first cooling jacket, so that ~1:
the second wall member also includes wall means further ~ ;
defining the second cooling~jacket, and so that the 25 ~intermediate member also includes wall means further defining the first and second cooling jackets. -'-One of the prlncipal features of the in-vention is the provision of a multi-rotor rotary ~ : , . ~
~: ~ ,. ~ ;;,. :,, ~ ~ ~ ~' ~ ' :
: !
internal combustion engine including first and second rotor housing members, each including a ~
cooling jacket extending partially circumferentially -of the ro~or cavity and in which the coolant flows in series from the cooling jacket in the first rotor housing member to the cooling jacket in the second rotor housing member and in which the flow is circumferential in the same direction in each of the cooling jackets.
Another of the principal feaures of the invention is the provision of a multi-rotor rotary internal combustion engine including a cooling arrange-ment embodying substantially identically constructed rotor housing members.
Still another of the principal features of the invention is the provision of a multi-rotor I rotary in~ernal combustion engine ?~ncluding an inter-mediate member which is located between two rotor -housing members and includes a water jacket in which ; ~
the coolant flows circumferentially in the opposite ;
direction from circumerential flow in the cooling jackets provided in the rotary housing members.
Still another of the prlnclpal features of ~:~
the lnvention is the provision, in an intermediate member located between two rotor housing members, of a coo~ling jacket located inwardly of the periphery , : :
~ of the ro~or cavities.
~ , . .
_4_ ; i~,,",~
.... . .. ... ...... . .. . . .
Other features and aspects of the em-bodiments of the invention will become known by reference to the following drawings, general de-~ scription and claims.
~ , , .
.I Figure 1 is a fragmentary, partially ~ ~-schemati.c side elevational view, partially broken ' away and in section, of a multi-rotor rotary in-1 ternal combustion engine embodying various of the ji; 10 features of the invention.
~ Figure 2 is a view t~kan gerlerallyalong . ..
line 2--2 of Figure 1.
Figure 3 is a view taken generally along I line 3--3 of Figure 1.
1 .,.
l 15 Before explaining one embodiment of the ;
;l invention in detail, it is to be understood that -~ .:
:l~ the invention is not limited in its applica~ion `1 , ~ ~, to the details of the construction and arrangement :
of parts set forth in the following general de- :
scription or illustrated in the accompanying drawings, except as defined by the claims, since ,, : ~
1~ I ~ the invention is capable of other embodiments :
`~ and~of being~practiced or carried out in various ways.
Also, it~is to be understood that the phraseology 25 ~ or ~terminology employed herein is for the purpose , -of description and not of limitation.
~ -5- ;
3~
.~.
GENERAL DESCRIPTION
Shown in the drawings is a rotary internal combustion engine 11 comprising a housing assembly 13 -including first and second or lower and upper housing members 15 and 17 which are located in spaced, parallel, and aligned relation to each other and which respectively include wall means de~ining first and second or lower and upper trochoid shaped rotor cavitiei~ 19 and 21. As the housing members 15 and 17 are preferably substantially identical, only the housing member 15 is shown in.. Figure 3~.
The first and second or lower and upper housing : members 15 and 17 further respectively include other additional wall means deflning first and second or lower ~.
and upper exhaust passages 23 and 25 extending in thei' direction perpendicular to the parallel relation of the ;;
; ,. . .
housing members 15 and 17 (i.e., in parallel with the .
crankshaft still to be disclosedj and located in spaced ~1 relation to the rotor cavities 19 and 21 and in alignment 20 : ~r~elative to each other. The firs:t and second or lower ~
~ . ~
and:upper housing members 15 and 17 further include respective additional ~all means defining first and second - ~
or~lower and upper cooling jackets 27 and 29 which ; :~.
respectively extnnd circumferentially around the rotor .~
:25 cavitLes 19 and 21 and preferably also at least partially .:
around the exhaust passages 23 and 25. In this regard, .1 .
J~ .
:~ -6-the coolant flow in the cooling jackets 27 and 29 is in the clockwise direction from respective inlet ends 31 to respective outlet ends 33.
In additlon, the first and second or lower and upper housing members 15 and 17 respectiveLy include still other wall means which define first and second :~ :
: . - . .
or lower and upper exhaust ducts (not shown) which com~
municate respectively be~ween the first and second rotor .
cavities 19 and 21 and the first and second exhaust pas- : : :
: 10 sages:23 and 25. ;:
As the housing members 15 and 17 are preferably ~-die cast, the castings or members additionally respec~
tively include lower~aod upper bores 35 and 37 which are aligned with the exhaust ducts: (not shown) in order to~ facilitate casting~and which are closed by respective~
..
covers or plates 39:and 41.
The housing assemb:ly 13 further includes an :- , ~ -:: intermediate member 51 which is located between the .
first and second or lower~and upper housing members 15 20~ and~:~l7~and~which in~ludes lower and::upper surfaces 53 :.:
and~55~which res~pective1y~abut the lower and upper housing :-m~mbers~15:and 17. :The~upper and lower surfaces 53 :
and:55:each include wall means 57 (See Fig. 1) addi- .
tiona:lly de~ining the first and~second rotor cavities :.
25~ 19~and~21 and wall means 59 additionally defining the -.
first and second cooling jackets 2.7 and 2~. In addition, .
the intermediate member 51 also includes an exhaust .~
~ ~.................................................................... .. .
passage 61 in alignment with and communicating between the first and second or lower and upper exhaust passages 23 and 25 in the first and second or lower and upper housing members 15 and 17.
The intermediate member 51 further includes coolant conduit means communicating between the outlet l end 33 of the lower cooling jacket 27 and the inlet ;, end 31 of the upper cooling jacket 29~ In the preferred : .
~, construction such coolant conduit means comprises a ~; 10 third coolîng jacket 71 which is shown in Figure 2 l~ and which extends interiorly of the intermediate J ~ member 51 and arcuately in the area generally inwardly ~1 of the periphery of the rotor cavities 19 and 21 and prefer~
1 ably at least partially around the exhaust gas passage 61. The third cooling jacket 71 includes an inlet end . ~ , "
~ : : 73 and an outlet:end 75 which is arcuately spaced from : ~ the inlet end 73. Within the:third cooling jacket 71, ~ .coolant flows in the reverse direction from the direction ~: of:flow in the cooling jackets 27 and 29 in the:~housing ~ ~ -: members 15 and 17. More particularly, the inlet end 73 of~the~third cooling jacket 71 is:located in generally arcuate~;alignment with~t;he outlet ends 33~of the upper and lower cooling iackets 27 and 29 and communicates through a~duct or port 77~with the outlet end 33 o~ the ~ t 25~ lower cooling jacket 27. :In addition, the outlet end 75 of the third cooling jacket 71 is located in generally 1~`
3~
4~
arcuate alignment with the inlet ends 31 of the upper --and lower cooling jackets 27 and 29 and communicates through a duct or port 79 with the inlet end 31 of the upper cooling jacket Z9. Thus, it will be seen that the inlet ends 31 of the lower and upper cooling jackets 27 and 29 are arcuately adjacent to the outlet end 75 of the third or intermediate cooling jacket 71, and the outlet ends 33 of the lower and upper cooling jackets 27 and 29 are arcuately adjacent to the inlet end 73 of the third cooling jacket 71 in the inter-mediate member 51.
The housing as&embly 13 further includes an upper wall member 81 which is located adjacent to the upper or second housing member 17 remotely from the intermediate member 51 and ~which additionally defines the upper or second rotor cavity 21 and the upper or ~, second cooling jacket 29 and which closes the upper end of the exhaust passage 25 in;the :upper or second - -:- .
housing member L7. The~upper wa~ll member 61 also ``
: 20~ inc~ludes coolant outlet means in the form of a coolant :: :
dls;charge port or duct: 83 which communicates with the out~let~end 33 of the upper cooling jacket 29. The discharge duct 83 can be arranged to discharge into one~ of the exhaust passages 23, 25, or 61. ;~ :
25 ~ : The housing assembly 13 further includes a lower wall member 85 which is located adjacent to the lower .
or first housing member 15 remotely from the intermediate g_ 1.. , : ~ ~ ,' . : .
:
member 51 and which additionally defines the lower or :
first rotor cavity 19 and the lower or first cooling ~ .
jacket 27. The lower wall member 85 further includes .
~ .
an exhaust passage 87 aligned with and communicating::
5 with the exhaust passage 23 in the lower or first :
: housing member 15 and having an outlet adapted to be connected in any suitable manner to a discharge .... .
`j pipe or conduit extending from the housing assembly ~:
` 13. In addition, the lower wall member 85 includes ~ 10 coolant inlet means in the form of a port or duct 89 -:
`: ~ ~ . .
. which communicates with the inlet end 31 of the lower .
cooling jacket 27. The inlet duct or port 89 can ,:, .
communicate with any suitable source of coolant.
: The upper and lower wall members 81 and 85 also support upper and lower bearings 91 and 93 which serve to rotatably suppart a crankshaft 95 which includes first and second or lower and upper eccentric portions respectively located in the first and second or lower -~
and upper rotor cavities l9 and 21 and rotstably support~
j 20 : ;ing~ therein respective first and;second or lower and s '1~ .
upper: rotors 97 and~99 which, in response to rotation ::;
thereof, define rotating combustion chambers within the ifirst and second or lower and upper rotor cavities 19 and J~
~ 25 ~ ~ j : Mounted on the crankshaft 95 is a flywheel 101. ~:-. ~ ~ , . . .
Lower and upper gear means 103 and 105 are pro~
vided on the housing assembly 13 and on the rotors 97 and .
f~
--1 0-- ' f~
' :,.. ,. , , , - -: , - - . , . . . . . : , ~
; 99 to effect relative rotation between the rotors 97 and g9 and the housing assembly 13 and between the rotors 97 and 99 and the crankshaft 95 in response to the occurrence of combustion in the rotating chambers.
Suitable means are provided for securing to- :
; gether in a stack the beforementioned upper and lower :
. wall members 81 and 85, the lower and upper housing : mer~ers 15 and 17, and the lntermediate member 51 ..
with the rotor cavities 19 and 21 in alignment and :~
, . . .
with the exhaust passages 23, 25, 61 and 87 in align-ment. In the illustrated construction, such means .
comprises a plurality of bolts 109 extending through ~ ~ .
~~ each of the members 15, 17, 51, 8I and 85.
:~ In operation, water is supplied through the inlet duct or port 89 to the inlet end~31:of the lower ¦ cooling jacket 27 for circumferential flow in the clock~
, ~ ... .. .
wise direction, as shown in Figure 3, around the lower rotor cavity l9 to the outl~et end 33 of the lower cooling~j~acket~ 27. From the outlet end 33 of the lo~er 20~ c~ooling Jacket 27,: the~coolan~ flows through the duct 77 :~ .
Ln the~intermediate mer~er ;5l~to the inLet end 73 of the ;.
int~ermediate or third cooling jacket 71. Within the : : ~:
interme~dia~te:or third cooling jacket 71, the:coolant flow is in the counterclockwi~e direction, as seen in 25~ Figure 2, and inwardly of the periphery of the rotor .
cavities l9 and 21 from the ~inlet end 73 to the outlet :~
end 75.: From the outlet end 75 of the intermediate or .
., " ", . , ", " . . , `, ,,,,, , . , . ., ` 1., . ,, , , . , , . , ~ ., , . " , , , ~ , :
third cooling jacket 71, the coolant flows through the duct or port 79 to the inlet end 31 of the upper cooling jacket 29 and then circumferentially of the upper rotor cavity 21 in the clockwise direction to : 5the outlet end 33, and thence is discharged through :.
the port ~i, Accordingly, the disclosed construction advantageously permits utiLization of substantially :
or completely identical housing members 15 and 17 while providing adequate cooling for the housing members 15 and 17 and, in particular, for the inter-mediate member 51 located between the housing members 15 and 17. Thus both the rotor cavities and the : :
internal exhaust passages 23, 25 and 61 are cooled.
Various of the features of the invention are set forth in the following claims.
:: , ' ,. ;' - ,: ~. ' ', ~ , ::
- -.- . :
, .
:: . , : : : :: :
:~: : -12-~ ~ .
-
Claims (22)
- Claim 1 Cont'd.
water jacket and said inlet end of said second water jacket. - 2. a rotary internal combustion engine in accord-ance with Claim 1 and further including means securing together, in series, said first wall member, said first housing member, said intermediate member, said second housing member and said second wall member.
- 3. A rotary internal combustion engine in accordance with Claim 1 wherein said rotor cavities and said water jacket inlet ends and outlet ends are respectively aligned with each other.
- 4. A rotary internal combustion engine in accordance with Claim 1 wherein said first and second housing members are substantially identically constructed.
- 5. A rotary internal combustion engine in accordance with Claim 1 wherein said first wall member also includes additional wall means further defining said first cooling jacket, wherein said second wall member also includes additional wall means further defining said second cooling jacket, and wherein said intermediate member includes additional wall means fur-ther defining said first and second cooling jackets.
- 6. A rotary internal combustion engine in accordance with Claim 1 wherein said first and second housing members include aligned exhaust passages and said first and second cooling jackets extend adjacent to said exhaust passages.
- 7. A rotary internal combustion engine in accordance with Claim 1 wherein said rotor cavities are aligned and said coolant conduit means comprises an arcuately extending third cooling jacket located at least partially inwardly of the periphery of said rotor cavities.
- 8. A rotary internal combustion engine in accordance with Claim 7 when said third cooling jacket includes an inlet end communicating with said outlet end of said first cooling jacket and an outlet end communicating with said inlet end of said second cooling jacket.
- 9. A rotary internal combustion engine in accordance with Claim 8 wherein said inlet end of said third cooling jacket is located adjacent to said outlet end of said first cooling jacket and said outlet end of said third cooling jacket is located adjacent to said inlet end of said second cooling jacket.
- 10. A rotary internal combustion engine in accordance with Claim 1 wherein said first and second housing members include aligned exhaust passages and said first and second cooling jackets extend adjacent to said exhaust passages, and wherein said intermediate member includes an exhaust passage in alignment with said exhaust passages in said first and second housing members, and wherein said coolant conduit means comprises an arcuately extending third cooling jacket extending adjacent to said exhaust passage in said intermediate member.
- 11. A rotary internal combustion engine in accordance with Claim 1 wherein said coolant conduit means includes an arcuately extending third cooling jacket having arcuately spaced inlet and outlet ends, and wherein said outlet end of said first cooling jacket is arcuately adjacent to said inlet end of said third cooling jacket and wherein said outlet end of said third cooling jacket is arcuately adjacent to said inlet end of said second cooling jacket.
12. A rotary internal combustion engine compris-ing a housing assembly including first and second substantially identical housing members extending in spaced, parallel and aligned relation to each other and respectively including wall means partially defining aligned first and second trochoid shaped rotor cavities, aligned exhaust passages and additional wall means partially defining aligned first and second cooling jackets respectively extending partially circum-ferentially of said first and second cavities and adjacent to said exhaust passages and respectively including aligned and circumferentially spaced inlet and outlet ends, a first wall member located adjacent to said first housing member remotely from said second housing member and including first wall means further defining said first rotor cavity and second wall means further defining said first cooling jacket and also including inlet means communicating with said inlet end of said first cooling jacket, a second wall member located adjacent to said second housing member remotely from said first housing member and including first wall means further defining said second rotor cavity and second wall means further defining said second cooling jacket and also including outlet means communicating with said outlet end of said second cooling jacket, an intermediate member located between said first and - Claim 12 Cont'd.
second housing members, and including first wall means further defining said first and second rotor cavities and second wall means further defining said first and second cooling jackets and also including an exhaust passage in alignment with said exhaust passages in said first and second housing members, and an arcuately extending third cooling jacket located at least partially inwardly of the periphery of said rotor cavities and extending adjacent to said exhaust passage in said intermediate member and including an inlet end arcuately adjacent to said outlet ends of said first and second cooling jackets and communicating with said outlet end of said first cooling jacket, and an outlet end arcuately adjacent to said inlet ends of said first and second cooling jackets and communicating with said inlet end of said second cooling jacket, and means securing together, in series, said first wall member, said first housing member, said intermediate member, said second housing member, and said second wall member. - 13. A rotary internal combustion engine comprising a housing assembly including first and second housing members extending in spaced, parallel and aligned relation to each other and respectively including wall means partially defining first and second trochoid shaped rotor cavities and additional walls means partially defining first and second water Jackets respectively extending partially circumfer-entially of said first and second cavities and respec-tively including circumferentially spaced inlet and outlet ends in fluid communication solely within said respective housing members, a first wall member located adjacent to said first housing member remotely from said second housing member and including wall means further partially defining said first rotor cavity and also including coolant inlet means communicating with said inlet end of said first water jacket, a second wall member located adjacent to said second housing member remotely from said first housing member and in-cluding wall means further defining said second rotor cavity and also including outlet means communicating with said outlet end of said second water jacket, and an intermediate member located between said first and second housing members and including wall means further defining said first and second rotor cavities and also including coolant conduit means communicating between said outlet end of said first water jacket and said inlet end of said second water jacket.
14. A rotary internal combustion engine comprising a housing assembly including first and second housing members located in parallel, spaced relation to each other and including respective wall means partially defining first and second tro-choid shaped rotor cavities, respective first addi-tional wall means respectively defining first and second exhaust passages extending perpendicularly to the parallel relation of said first and second housing members and in spaced relation to said first and second rotor cavities, respective second additional wall means respectively defining first and second exhaust ducts extending respectively from said first and second rotor cavities to said first and second exhaust passages, and respective third additional wall means respectively defining first and second water jackets respectively extending adjacent to said first and second exhaust passages, a first wall member located adjacent to said first housing member remotely from said second housing member and further defining said first rotor cavity and including a third exhaust passage communicating with said first exhaust passage, a second wall member located adjacent to said second housing member re-motely from said first housing member and further de-fining said second rotor cavity, and an intermediate member located between said first and second housing members, further defining said first and second - Claim 14 continued rotor cavities and including a fourth exhaust passage communicating with said first and second exhaust passages and a third water jacket extending adjacent to said fourth exhaust passage and being serially connected to and located between said first and second water jackets.
- 15. A rotary internal combustion engine in accordance with Claim 14 wherein said first, second and third water jackets each extend circumferentially.
- 16. A rotary internal combustion engine in accordance with Claim 14 wherein said intermediate member further defines said first and second water jackets and said first wall member further defines said first water jacket and said second wall member further defines said second water jacket.
- 17. A rotary internal combustion engine in accordance with Claim 1 wherein said first and second housing members respectively further include respective second additional wall means respectively defining first and second exhaust passages extending perpendicularly to the parallel relation of said first and second housing members and in spaced relation to said first and second rotor cavities, wherein said first and second housing members respectively further include third additional wall means respectively defining first and second exhaust ducts extending respectively from said first and second rotor cavities to said first and second exhaust passages, wherein said first wall member further includes a third exhaust passage aligned with said first exhaust passage, and wherein said intermediate member further includes a fourth exhaust passage aligned with said first and second exhaust passages and first additional water jacket means extending adjacent to said fourth exhaust passage.
- 18. A rotary internal combustion engine in accordance with Claim 17 wherein said first and second housing members are substantially identically constructed.
- 19. A rotary internal combustion engine in accordance with Claim 17 wherein said first and second housing members include respective fourth addi-tional wall means respectively defining second and third additional water jacket means extending adjacent to said first and second exhaust passages.
- 20. A rotary internal combustion engine in accordance with Claim 19 wherein said first additional water jacket means is serially connected to and located between said second and third addi-tional water jacket means.
- 21. A rotary internal combustion engine in accordance with Claim 17 wherein said first wall member further includes a fourth additional water jacket means extending adjacent to said third ex-haust passage.
- 22. A rotary internal combustion engine in accordance with Claim 1 wherein said first and second housing members respectively further include respective second additional wall means respectively defining first and second exhaust passages extending perpendicularly to the parallel relation of said first and second housing members and in spaced re-lation to said first and second rotor cavities, wherein said first and second housing members respectively further include third additional wall means respectively defining first and second exhaust ducts extending respectively from said first and second rotor cavities to said first and second exhaust passages, and wherein said first wall member further includes a third exhaust passage aligned with said first exhaust passage and another additional water jacket means extending adjacent to said third exhaust passage.
1. A rotary internal combustion engine comprising a housing assembly including first and second housing members extending in spaced, parallel and aligned relation to each other and respectively including wall means partially defining first and second trochoid shaped rotor cavities and additional wall means partially defining first and second water jackets respectively extending partially circumferentially of said first and second cavities and respectively including circum-ferentially spaced inlet and outlet ends, a first wall member located adjacent to said first housing member remotely from said second housing member and including wall means further partially defining said first rotor cavity and also including coolant inlet means communicating with said inlet end of said first water jacket, a second wall member located adjacent to said second housing member remotely from said first housing member and including wall means further defining said second rotor cavity and also including outlet means communicating with said outlet end of said second water jacket, and an intermediate member located between said first and second housing members and including wall means further defining said first and second rotor cavities and also including coolant conduit means communicating between said outlet end of said first
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44404874A | 1974-02-20 | 1974-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1044148A true CA1044148A (en) | 1978-12-12 |
Family
ID=23763274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA213,653A Expired CA1044148A (en) | 1974-02-20 | 1974-11-13 | Rotary engine cooling system |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS5831454B2 (en) |
CA (1) | CA1044148A (en) |
DE (1) | DE2506372C2 (en) |
IL (1) | IL46367A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3545821A1 (en) * | 1985-12-23 | 1987-07-02 | Wankel Gmbh | LIQUID-COOLED HOUSING OF A ROTARY PISTON INTERNAL COMBUSTION ENGINE |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1451808A1 (en) * | 1951-01-28 | 1969-07-10 | Nsu Motorenwerke Ag | Rotary piston internal combustion engine in trochoid design, in particular for driving motor vehicles |
DE1273897B (en) * | 1963-08-22 | 1968-07-25 | Nsu Motorenwerke Ag | Fluid-cooled housing for rotary piston internal combustion engines |
-
1974
- 1974-11-13 CA CA213,653A patent/CA1044148A/en not_active Expired
- 1974-12-30 IL IL46367A patent/IL46367A/en unknown
-
1975
- 1975-02-14 DE DE2506372A patent/DE2506372C2/en not_active Expired
- 1975-02-20 JP JP50021405A patent/JPS5831454B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
IL46367A0 (en) | 1975-03-13 |
IL46367A (en) | 1977-04-29 |
DE2506372A1 (en) | 1975-08-21 |
JPS5831454B2 (en) | 1983-07-06 |
DE2506372C2 (en) | 1986-09-18 |
JPS50118112A (en) | 1975-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107269384B (en) | Internal combustion engine | |
US3818878A (en) | Improved cylinder head cooling | |
IT8049411A1 (en) | TWO-STROKE V-STROKE ENGINE WITH SOLIDLY MELTED EXHAUST MANIFOLD | |
US2455493A (en) | Exhaust manifold | |
JPS5914605B2 (en) | Comprehensive assembly of auxiliary equipment for water-cooled internal combustion engines | |
US4035112A (en) | Rotary engine cooling and exhaust system | |
JP6382879B2 (en) | Cylinder head water jacket structure | |
US3286700A (en) | Fluid cooled housing for internal combustion engines | |
CA2000265A1 (en) | Tangent flow cylinder head | |
US3001517A (en) | Centrifugal pump | |
IL46366A (en) | Outboard motor with dual cooling system | |
CA1044148A (en) | Rotary engine cooling system | |
CA1067364A (en) | Engine framework | |
SE446114B (en) | DEVICE OF A COMBUSTION ENGINE | |
US3975122A (en) | Rotary internal combustion engine | |
CN108035817A (en) | The layering cooling cylinder head of V-type engine | |
CA1109802A (en) | Rotary internal combustion engine exhaust system | |
CA1337256C (en) | Intake and exhaust system with rotating port shaft for four-cycle internal combustion engines | |
JPH05141259A (en) | Water-cooled bearing housing structure for supercharger | |
CA1036944A (en) | Liquid cooling system for rotary internal combustion engine | |
CA1040104A (en) | Split bearing for wankel engine | |
US4915603A (en) | Rotary engine cooling system | |
US1338256A (en) | Rotary internal-combustion engine | |
US4503669A (en) | Gas turbine thrust system | |
US1270124A (en) | Internal-combustion engine. |