CA1043148A - Flash photographic system with camera inhibit feature - Google Patents
Flash photographic system with camera inhibit featureInfo
- Publication number
- CA1043148A CA1043148A CA291,695A CA291695A CA1043148A CA 1043148 A CA1043148 A CA 1043148A CA 291695 A CA291695 A CA 291695A CA 1043148 A CA1043148 A CA 1043148A
- Authority
- CA
- Canada
- Prior art keywords
- line
- camera
- exposure
- cycle
- inhibit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Exposure Control For Cameras (AREA)
Abstract
ABSTRACT OF THE DISCLOSURE
A flash exposure system for use with a photographic camera of a variety which automatically carries out an involved photographic cycle upon the momentary depression of a start button. The system is particularly adapted to use with a linear flash array which is either replaced or re-versed in its mounting upon the camera upon the expenditure of all lamps within an operational face thereof. The exposure system detects the ex-penditure of all lamps within an operative face of an array and inhibits the performance of an automatic cycle. Simultaneously, a perceptible warn-ing signal apprises the operator of the expended status of the flash array.
A flash exposure system for use with a photographic camera of a variety which automatically carries out an involved photographic cycle upon the momentary depression of a start button. The system is particularly adapted to use with a linear flash array which is either replaced or re-versed in its mounting upon the camera upon the expenditure of all lamps within an operational face thereof. The exposure system detects the ex-penditure of all lamps within an operative face of an array and inhibits the performance of an automatic cycle. Simultaneously, a perceptible warn-ing signal apprises the operator of the expended status of the flash array.
Description
~43148 This is a divisional of Canadian Application Serial No. 219,279, filed February 3, 1975 in the name of Seymour Ellin.
A recent development in the field of flash photography has been the packaged linear flashlamp array. Developed for use with a highly automated camera, this flashlamp packaging arrangement is formed of two operational faces, each exhibiting an array of five flashlamps. Accordingly, when util-ized in conjunction with an automatic camera, a rapid succession of photo-graphic cycles may be carried out inasmuch as no mechanical indexing or aligning of flashlamps need be performed following each exposure.
Described in detail in United States Patent Nos. 3,598,984 and 3,598,985, the dual arrays of flashlamps are compactly packaged by internest-ing the oppositely disposed flashlamps of each face thereof. The igniting terminals of individual lamps within the packaged arrays are connected by printed circuit technique to a downwardly extending blade mount, each side of ; which is configured to expose five input contacts, a common bus or lead and a circuit completing conductive surface. By inserting the downwardly extending blade mount within an appropriate receptacle within the noted camera, electri-cal connection is made with the five input contacts of an operationally facing array and the noted conductive surface serves to provide circuit completing contact for switching the control system of the camera into an operational mode suited for flash illumination.
To ignite successive ones of those flashlamps within an appropriately oriented operational face of an array, flash firing circuits are incorporated within the camera. Typical of such circuits is that described in United States Patent ~o. 3,676,045. These circuits gen-erally incorporate discrete firing networks which operate in conjunction with an aligning circuit to sequentially ignite an individual flashlamp with each actuation of the camera. The aligning circuit operates in accordance with the terminal or output characteristics common to the design of the flashlamp.
The general structure of a flashlamp with which logic sequencing or firing circuits must operate includes a glass envelope within which is sealed a quantity of combustive filamentary strand material or the like and a combustion supporting gas. This combustable component of a lamp is positioned in intimate relationship with the filament of an igniting assembly electrically coupled across the input leads of the lamp. Upon application of current to the terminals of the flashlamp, the igniting filament rapidly heats to the combustion point of the strand material and flash ignition ensues. Following ignition, the igniting filament as well as the strand material is melted and/or reduced to an ash residue which remains within the glass envelope. As a result, the terminals leading to a glass envelope are open circuited and the switching circuit to which they are coupled witnesses an infinite resistance. Should the igniting filament or strand of material incompletely combust and short the otherwise open circuited terminals of a flashlamp, ' ' ~ , . . .
: :
.
a relatively high resistance will be witnessed across the terminals. The flash firing circuits react to a predetermined ohmic value across the fired or unfired bulb to derive the noted sequential selection of lamps for ignition during a given photographic cycle.
Following the expenditure of ignition of five flashlamps within one operational face of a packaged array, the operator removes the packaged array and reinserts it within the camera mounting structure in reverse to present the oppositely disposed operational face, thereby accommodating for a next five photographic flash cycles.
Often taken with the excitement of the "photo-graphic moment" of a scene, a photographer may fail to perceive that all flashlamps within the operating side of an array have been ignited.
Failure to reverse or replace the array will cause an ensuing photograph to be aborted for improper illumination.
SUMMARY
The present invention is addressed to a flash exposure system for photographic apparatus of a variety intended for use with an array of flashlamps each of which is forwardly oriented to illuminate a scene. With the expenditure of a final or last one of the thus oriented flashlamps, the system serves to prevent the carrying out of a next succeeding photographic cycle of the apparatus in the event there is no replenishment of the flashlamp array.
In one embodiment, the photographic apparatus is present as a highly automated camera which carries out an - 3 - ~-.~. .. .
involved sequence of successive operational events from first to last to define a photographic cycle. The system of the invention responds to the expenditure of all forwardly oriented flashlamps within the array to permit the carrying out of the first of these operational events and to inhibit -~
the further progression of such events. In one arrangement of this embodiment, the system provides a perceptible warning in conjunction with the noted inhibition of all operational events following the first.
Where the noted automated camera is of a single lens rePlex variety, the first and only operational event permitted to be carried out is that of blocking the taking optical path of the camera. Simultaneously with such activity, a warning light located on the camera housing near the entrance optics of its viewfinder is energized to apprise the operator that a photographic cycle cannot be completed without replenishment of the artificial light source. The warning light advantageously may be spaced away from the entrance optics of the viewfinder of the camera inasmuch as the camera operator will perceive only a dark background which correspondingly enhances his ability to immediately perceive a warning light even though that light is positioned remotely from the viewfinder.
As another object and feature, the flash exposure system of the invention is characterized in the use of a detector arrangement responsiue to an electronic state extant at the flashlamp coupled terminals of a flashlamp selecting and firing circuit. When this state corresponds with an ~-effective expenditure of all lamps within a forwardly oriented array of the flashlamps, the detector arrangement .- - . . : .
.. . . . .
", . ,,.. .... .: . ~
lQ43148 derives a unique signal condition representative thereof. The exposure system further includes an inhibit means or arrangement which responds to that unique signal condition to prevent the carrying out of or completion of an otherwise attempted photographic cycle. The noted response of the detector and inhibit arrangements are necessarily rapid being electronic in nature.
Accordingly, the inhibit arrangement of this system further responds to a condition representing the immediate ignition of a last flashlamp of the array thereof to permit the completion of the photographic cycle representing the expenditure of that last flashlamp. For instance, in one embodiment of the invention, the inhibit arrangement is responsive to a unique signal condition of a post-exposure interval operational event to permit the camera to complete the noted photographic cycle corresponding with the ignition of a last flashlamp within an array.
As another object and feature, where the automated camera is of a folding variety, erectible from a compact orientation for carrying, the perceptible warning may be provided in conjunction with such erection. Such warning is possible inasmuch as the automated camera necessarily includes interlock switching and the like to prevent battery drain during periods of non-use.
According to a broad aspect of the present invention, there is pro-vided a photographic camera comprising: means actuatable for automatically performing a sequence of operational events from first to last defining an operational cycle of said camera; selectively operative means for actuating said performing means; means actuatable responsive to operation of said per-forming means for continuously monitoring the operational condition of said camera and for inhibiting the performance of at least a select one of said events to interrupt said sequence when said camera condition is unsuited for performance of said camera cycle; and means responsive to the progression of said performing means through a portion of said cycle and at least through ~431~8 said select event for disabling said monitoring and inhibiting means to at least override the inhibiting function thereof during at least a subsequent portion of the remainder of said cycle.
The invention accordingly comprises the system and apparatus possess-ing the construction, combination of elements and arrangement of parts which are exemplified in the following detailed disclosure.
The present invention in conjunction with the invention of Canadian Application Serial No. 219,279 will now be described by way of example with reference to the accompanying drawings in which:-Figure 1 is a pictorial view of a fully automatic hand-held camera :
incorporating the flash exposure system of the instant invention, the view having portions broken away or removed to reveal internal structure;
Figure 2 is a schematic diagram of a control circuit used in con-junction with the control system of the camera of Figure l;
Figures 3 and 3A combine to form a block logic diagram showing the : sequence of events occuring during operational cycles of the camera of Figure 1, the topmost portion of Figure 3A being intended for attachment with the -lowermost portion of Figure 3;
Figure 4 is a truth table or schedule of operational events performed by the control system of the camera of Figure 1, showing, in logic form, the input and output states of gate functions incorporated within the circuit of Figure 2 as it operates under flash lighting conditions;
Figure 5 is a partial pictorial representation of switching features - of the camera of Figure 1 with portions broken away to reveal internal struc-ture, . - .
Figure 6 is a partial pictorial representation of another switching :
feature of the camera of Figure 1 with portions broken away to reveal internal structure;
- 6 - :-. .: . :
.
Figure 7 is a partial top view of the shutter mechanism of the camera of Figure 1 showing follow-focus components of the mechanism thereof in an intercept condition;
Figure 8 is a schematic diagram of a flash ignition and sequencing network shown in block form in Figure 2;
Figure 9 is a circuit diagram illustrating one embodiment of the detect and inhibit operation of the instant inventionj Figure 10 is a circuit diagram showing another embodiment of the detect and inhibit arrangement of the instant invention;
Figure 11 is a schematic representation of another embodiment of a detect feature of the instant invention;
Fieure 12, appearing on the same drawing sheet as Figure 9, shows a circuit diagram for a warning arrangement of the invention;
Figure 13 is a schematic representation of an interlock switch within the camera of Figure l; and Figure 14 is a pictorial representation of a portion of the camera of Figure 1 revealing the viewing system thereof in greater detail.
Referring to Figure 1, a highly automated single lens reflex cam-era which may incorporate the features of the instant invention is portrayed generally at 10. The several articulated housing components of camera 10, including rear wall 12, forward wall 14 and exposure control housing 16 are pivotally associated with a base 18 so as to be foldable thereinto in nest-ing fashion. When so folded from the fully erected configuration shown, camera 10 assumes a thin and compact shape suiting it to be conveniently carried, for instance in the pocket of a garment. The specific hinge con-nections providing for the articulated structure, while not being visible in the Figure, are positioned at axes 20, 22, 24 and the lower rear portion of exposure housing 16.
When erected for photographing a scene, rear wall 12, forward wall 14 and exposure control housing 16 combine in conJunction with an opaque flexible bellows, a fragment of which is illustrated at 26, to define an ex-posure chamber generally depicted at 28.
~43~8 Base 18 includes an inner frame assembly, a portion of which is shown at 30. Inner frame assembly 30, as well as the outward portions of ;
base 18, cooperate to provide structural support for numerous instrumental-ities of the camera. For instance, frame 30 is configured to define a re-ceiving chamber for retaining and securing a film laden cassette structure 32 at the bottom of exposure chamber 28. Cassette 32 is of generally flat, rectangular shape and contains a stacked assemblage of photographic film units (not shown). These film units are arranged for sequential presenta-tion at a light entrance portion of cassette 32 which is defined by a ridge shown in phantom at 34. Cassette 32 also is formed having an elongate slot 36 disposed across the forward wall thereof. Slot 36 serves as an egress means providing for the sequential removal of each film unit after it has been exposed. Cassette 32 also is formed having a slot or opening in the upward face thereof at 38 which permits the insertion of a component of a pick mechanism shown generally at 40. Mechanism 40 functions to impart ini-tial movement to the film units as they are removed from the cassette 32.
The components of camera 10 are illustrated in orientations where-in reflex viewing and focusing may be carried out. In this regard, a taking lens 42 positioned within exposure housing 16 represents the entrance com-20 ponent of a viewing-focusing mode optical path. From lens 42, this path ex-tends to a mirror 44 positioned against the inner side of rear wall 12. The path is reflected from mirror 44 to a viewing surface 46 positioned over the exposure plane of the camera. Surface 46 is mounted upon one side of a re-flex component or carrier 50 which is shown in an orientation covering ridge 34 of cassette 32 and securing the exposure plane of the camera. Viewing surface 46 is configured having a texture and optical design facilitating the focusing of the image of the scene to be photographed. This image may be viewed by the camera operator through a collapsible optical viewing as-sembly depicted generally at 52. A configuration suited for viewing surface 46 is described in United States Patent ~o. 3,735,685.
While camera 10 is in the noted viewing-focusing operational mode, the exposure mechanism thereof, shown generally at 56 within exposure hous-1S)~3148 ing 16 establishes an aperture opening as at 58. Aperture 58 is defined by two co-acting blades 60 and 62 which slidably ride in a track (not shown) mounted within exposure housing 16. Each blade, 60 and 62, is formed having a teardrop-shaped aperture opening as shown, respectively, at 64 and 66.
Additionally, the blades are formed having secondary openings, shown respec-tively at 68 and 70, which move in synchronism with openings 64 and 66 be-fore the detecting elements of a photo-sensing network positioned behind an entrance optical assembly 72. As is apparent, openings 64 and 66 are posi-tioned for movement across the optical path of camera 10 as it is establish-ed at taking lens 42. Depending upon the position of blades 60 and 62, openings 64 and 66 symmetrically overlap to define selectively varying ap-erture sizes. In the viewing-focusing mode orientation illustrated, it may be noted that blades 60 and 62 define an aperture opening 58 of maximum width to facilitate viewing.
Blades 60 and 62 are moved in mutual symmetry as a result of their connection with a walking beam type actuator 74 rotatably mounted at its centerpoint within housing 16. Walking beam 74 is coupled at its uppermost tip to blade 60 by a pin connection 76, while its lower portion is coupled with blade 62 by pin connection 78.
Looking additionally to Figure 6, the rotational movements of walking beam 74 and, in consequence, blades 60 and 62, is controllably de-rived from a tractive electromagnetic device present as a solenoid 80 oper-ating in con~unction with an opening spring 82. Solenoid 80 includes an ex-citation winding 84 which is wound about a bobbin 86 attached, in turn, to a U-shaped frame 88. A cylindrically shaped plunger 90 is slidably mounted within a corresponding central opening within bobbin 86 and the composite assembly is fixed within exposure housing 16. Opening spring 82 is mounted about plunger 90 between frame 88 and a plunger cap 92. Cap 92 is formed having a slot 94 which loosely receives a pin 96 fixed to and extending from a lower portion of walking beam 74.
With the arrangement shown, when winding 84 of solenoid 80 is en-ergized, plunger 90 is retracted thereinto, to load or compress opening _ g _ ~0431~8 spring 82 and, simultaneously, rotate walking beam 74 in a direction causing blades 60 and 62 to close aperture opening 58. Conversely, upon the de-energization of excitation winding 84, opening spring 90 re~ersibly drives walking bea~ 74 to cause openings 64 and 66 of respective blades 60 and 62 to define progressively enlarging aperture openings about the optical path ~.
of the camera.
Operating in conjunction with solenoid 80 and opening spring 82 is a single throw double pole switch designated S4. As shown in Figure 6, switch S4 is formed having an upstanding insulated base 98 fixed, in turn, to frame 88. Base 98 supports an elongate contact rod 100, the upwardly ex-tending portion of which is con~igured to wipe across two separate conduct-ing surfaces 102 and 104. Rod 100 is normally biased to move outwardly into contact with conductive surface 104. When solenoid 80 is energized and its plunger 90 is retracted, however, a pin 106 extending laterally from cap 92 drives contact rod 100 rearwardly to wipe against and make electrical con-tact with conducting surface 102. Conducting surfaces 102 and 104 are rel-atively closely spaced such that electrical contact is effected with surface 102 when plunger 90 is closely proximate its fully retracted and seated po-sition. Coversely, contact rod 100 effects electrical contact with conduct-ing surface 104 very rapidly upon de-energization of solenoid 80. The re- - -tracted orientation of spring 82 and cap 92 is shown in Figure 6 in solid line fashion, while their extended positions under a de-energized state of winding 84 is shown with identical numeration marked with a prime (').
Returning to Figure 1, operator actuation of camera 10 to commence a photographic cycle following viewing and focusing is carried out by de-pression of a start button shown mounted upon exposure housing 16 at 108.
Such actuation will cause the energization of solenoid 80 and consequent closure of blades 60 and 62 to secure exposure chamber 28. In response to a sienal from switch S4 that blades 60 and 62 have blocked the optical path of the camera, a dc motor 110 positioned upon inner frame 30 at the rear- -ward portion of the camera is energized to drive a gear train shown general-ly at 112 extending along one side of base 18. As gears within train 112 :, ;,:, ' 1~)43148 are rotated, a cycle phase cam 114 is rotated. Cam 114 is designed for driving contact with a cam follower 116 which, in turn, is fixed to the in-ward side of a ram 118. Ram 118, in turn, is connected through a bell crank 120 to a drive spring system (not shown). That drive spring system, in turn, serves to bias reflex component 50 to pivot about hinges 122 and 124 into a position abutting the inner surface of rear wall 12. Actuation of this drive arrangement is carried out by rotating cam 114 a distance sufficient to release follower 116 such that the spring drive moves ram 118 forwardly ~ -and reflex component 50 upwardly. When component 50 is seated against the inner side of rear wall 12, a second mirror 126 is positioned to intercept light within the optical path of taking lens 42 and redirect it to the ex-posure plane of the camera. For typical ambient operation, solenoid 80 then is de-energized to permit spring 82 to drive blades 60 and 62 to define pro-gressively varying aperture values about the optical path of the camera. A
light sensing network positioned behind entrance optics 72 evaluates scene brightness and defined aperture valuations to provide a command signal which is utilized to effect the re-energization of solenoid 80 and the consequent closure of blades 60 and 62 to terminate an interval of exposure. Solenoid 80 remains energized following the exposure interval and motor 110 again is energized to drive gear train 112. The consequent rotation of cam 114 moves ram 118 rearwardly to, in turn, cock the mirror erecting spring system and move reflex component 50 into its exposure plane securing orientation. Si-multaneously with this activity, pick mechanism 40 is actuated to urge the exposed film unit forwardly through slot 38 in cassette 32 and into the bite of rolls 128 and 130 of a processing station 132. Power for rotation of these rolls is derived from gear train 112 by connection with roll 128. A
detailed description of the optical path conversion mechanism and drive for processing station 132 is provided in United States Patent ~o. 3,714,879.
Looking additionally to Figure 7, the arrangement for actuating two switches designated S3 and S5 during the movement of ram 118 is revealed in more detail. As ram 118 commences forward movement in conjunction with the noted release of reflex component 50, a tab 134 extending inwardly from ~043148 the midportion of ram 118 releases from engagement with the insulative cap 136 of a resilient leaf 138 of switch S5. Switch S5 additionally includes a resilient leaf 140 which is supported along with leaf 138 from an insulative base 142 fixed to base 18 of the camera 10. Accordingly, the contacts rep-resented by leaves 138 and 140 of switch S5 are opened substantially in syn-chronism with the initial movement of component 50 from its viewing or ex-posure plane position. This represents a first signal condition of the switch which is retained until photographic cycle termination.
The spring bias rotational travel of reflex component 50 about its hinges 122 and 124 from its seated exposure position entails about 37 . When reflex component 50 somewhat closely approaches this seated position against rear wall 12 and mirror 44, or at about 32 of rotation, tab 134 contacts the insulative cap 144 of a resilient leaf 146 of switch S3. Leaf 146 nor-mally is in contact with a second leaf 148 of switch S3 and both leaves are supported from an insulative base 150, also fixed to camera base 18. Serv- ~
ing to monitor the movement of reflex component 50, the open contacts of ;~ ~ :
switch s3 provide a signal condition evidencing that the component 50 has approached its seated position against rear wall 12. Of course, during the post-exposure operation of camera 10 and consequent driven movement of ram 118 in a rearward direction, tab 138 releases from engagement with the cap 144 of switch s3 to permit it to close and re-engages cap 136 of switch S5 to close it. The latter closure of switch S5 provides a signal utilized to terminate energization of motor llO as well as energization of solenoid 80.
Flash illuminated pictures are taken with camera lO utilizing the packaged linear array of flashlamps as shown at 160 in Figure l. Array 160 is formed having five flashlamps along with corresponding reflectors facing outwardly from each face thereof. The five flashlamps are connected by printed circuitry or the like to a downwardly extending mounting blade as at 162. Each side of blade 162 is formed having conductive surfaces which serve as terminals leading to each flashlamp and, additionally7 the mount is con-figured having a conductive surface unconnected with the flash-lamps which serves to close appropriate circuitry within the camera to cause it to carry , out a flash cycle. Appropriate connection with the circuitry of camera 10 is made upon inserting the blade 162 of array 160 into a mount 164 posi-tioned upon the top surface of exposure housing 16.
When in a flash operational mode, camera 10 may utilize a follow-focus exposure control arrangement. Under such an arrangement, aperture is established in correspondence with focal distance for the light anticipated at a subject. Accordingly blades 60 and 62 are interrupted mechanically during their opening movement at a position corresponding with focus setting.
Looking additionally to Figure 8, the intercept mechanism for carrying out this function is shown in detail. The focus wheel for camera 10 is shown at 166 and is located in a forward portion of exposure housing 16. Wheel 166 is interconnected with the bezel of taking lens 42 through an idler gear, a portion of which is shown at 168. To relate the focus position of wheel 166 with the aperture definition of blades 60 and 62, an intercept linkage is provided which includes a cam follower linkage 170 having a follower pin 172 which rides within a face groove cam formed within the inner surface of fo-cus wheel 166. Follower link 170 is pivotally mounted over the centrally disposed axle of wheel 170 at 174. Accordingly, with the rotation of wheel 166, linkage 170 is manipulated laterally. The upper portion of follower linkage 170 is configured to pivotally support an arresting link 176. Link 176 is configured having a surface 178 which is movable into the locus of travel of a corresponding intercept pin 180 extending outwardly from walking beam 74. Normally biased by a spring loaded pin 182 away from such locus of travel, arresting link 176 is moved into an intercepting orientation as a result of the energization of a second solenoid 184 mounted rearwardly and above solenoid 80 within housing 16. Solenoid 184 is configured having an excitation winding 186 which surrounds a centrally disposed cylindrical plunger 188. The tip portion of plunger 188 is connected to the central por-tion of a pull-down bar 190 which, in turn, is loosely pinned at 192 to an extension 194 of the bracket of solenoid 184. The opposite tip of pull-down bar 190 is aligned so as to be selectively contactable with an extension 196 of arresting link 176. Accordingly, with the energization of solenoid wind-1~43~48 ing 186, plunger 188 is retracted to, in turn, cause pull-down bar 190 to move arresting link 176 into an orientation wherein its surface 178 is with-in the locus of travel of pin 180. Note that the outer tip of pin 180 is configured having a flanged portion 198. With such an arrangement, winding 186 of solenoid 184 may be de-energized following the noted interception.
Inasmuch as opening spring 82 maintains walking beam 74 in a biased condi-tion enhancing the interception, no continued energization of winding 186 is required. At the conclusion of a flash exposure interval, solenoid 80 is energized to close blades 60 and 62 and camera lO cycles through a normal post-exposure operational phase.
Referring to Figures 2, 3, 3A and 4, a schematic diagram for a control circuit suited to regulate the instrumentalities of camera lO as well as a logic block diagram and related energization state truth tables are re-vealed. The circuit of Figure 2 includes a series of multi-function GATES
designated A-F. The inputs and outputs for these GATES are depicted in Boolean enumeration in the noted truth table of Figure 4. For purposes of facilitating an understanding of the tabulations of Figure 4 and the descrip- ~-tion of the circuit diagram, when the inputs or outputs of the listed com-ponents are at ground reference potential, they are referred to as "low"
20 and, additionally, such input or output may be digitally identified as "0".
Conversely, when these inputs and outputs assume or approach the voltage status of the power supply of the control circuit, they are referred to as being "high" and are given the binary designation "1". It may be noted fur-ther that certain of the GATE input terminals receive common signals. These common signal terminals are identified by the letters "a - g". Additional-ly, the outputs of GATES A - F are identified, respectively, by the letters .. ..
tl - t6.
In the disclosure to follow, the control circuit of the camera is described as the camera is operated in a flash operational mode. Looking initially to Figures 2 and 3, as camera 10 is unfolded into its erected con-figuration, an interlock switch designated S6 in main power lead 212 is closed to permit a battery power supply 214 to energize the circuit through lU43148 main power lead 216 in response to the momentary depression of a switch des-ignated S1. This switch is operator actuated upon depression of start but-ton 108 (Figure 1). As depicted by blocks 218 and 220, camera 10 will be in an initial state wherein exposure mechanism blades 60 and 62 are fully open and reflex component 50 is oriented to block the exposure plane of the cam-era. For flash operation, flash array 160 is inserted to close a switch designated S2. As indicated in Figure 3, viewing and focusing may now take place following which the operator depresses switch S1. So activated, the main power lead 216 serves to energize a latching network depicted function-ally by block 224. Network 224 operates under two energization states. The first of these states permits the operator of camera 10 to abort a photo-graphic cycle until such time as switch S5 is opened. Following the opening of switch S5, the second energization state at network 224 permits a contin-uous powering of the circuit from lines 216 and 226 even though the contacts of switch Sl are separated.
The output of latching network 224 is present at a power distribu-tion line 228 which, in turn, is connected to a branch power line 230.
Branch power line 230 is connected to a second branch power line 232 and these two lines serve to power and assert initial control conditions over the various gates and components within the entire circuit.
These conditions, as they exist at the commencement of a flash photographic cycle, are tabulated at Event No. l in Figure 4. As is illus-trated in connection with function block 234 in Figure 3, the initial opera-tional event to take place is that of energizing the excitation winding 84 of solenoid 80. This winding is indicated by an 84' in Figure 2. Energiz-ation of winding 84 is carried out by asserting select input conditions to the input terminals of multi-function GATES A and B. Looking to these in-puts, input terminals "a", commonly connected by lines 236 and 238, exhibit an initial "low" status by virtue of their connection along line 240 to the output of a trigger circuit depicted generally at 242. Trigger 242 may be of a conventional design, for instance, a Schmitt-type having a normally conducting output stage and a normally non-conducting input stage. These ~ .
1043~48 stages operate to reverse their conductive states very rapidly upon receipt at the input stage of a signal which is at least equal to a predetermined triggering reference or threshold level. Energized from branch power line 230 from line 244 and coupled to ground through line 246, the output at line 240 of trigger 242 remains "low" until a signal above the noted triggering reference level is received at any of its input lines. Upon receipt of such a signal, the output at line 240 assumes a "high" status. For exposure con-trol under ambient lighting conditions, such an input signal is received from along line 246 and is generated from an ambient control network depict-ed functionally by block 248. Function 248 is energized from line 228 and is coupled to ground through line 250.
Gate input terminal "b" of GATE A evidences a "low" state by vir-tue of its eonnection through line 252 and limiting resistor 254 to ground.
Line 252 also is eoupled through line 256 to a eorresponding gate input ter-minal "b" of GATE C and, through line 258 to one eontaet of switeh S4.
Switeh S4 eorresponds with that deseribed in eonjunetion with Figure 5 and is shown having a common terminal "C" corresponding with contact rod 100 as well as alternate contacts "A" and "B", the latter contact being coupled to line 258. When switeh S4 assumes condition "C-A", it is eonsidered to be in an orientation wherein the eontaet rod 100 is in eontaet with outwardly disposed eontaet surfaee 104. Under sueh eonditions, blades 60 and 62 will be in some open or aperture defining orientation. When switch S4 assumes eondition "C-B" it is eonsidered to be in the orientation described wherein -eontaet rod 100 is in eontaet with eondueting surfaee 102, blades 60 and 62 assuming a fully elosed orientation. Inasmueh as switeh S4 is normally in a "C-A" eondition at the eommeneement of a photographic cycle, line 258 is open cireuited. At sueh time as switeh S4 assumes a "C-B" eondition, line 258 is energized through line 260 to alter the status of eommon input ter-minals "b" to a high state.
Gate input termainal "e" of GATE A is coupled through line 262 and line 264 to the eorresponding eommon input terminal of GATE B. The initial "low" status of eommon input terminals "e" is derived as a result of the connection of line 264 through line 266 to the output line 268 of a trigger 270. Similar to trigger 242, the output of trigger 270 is normally "low"
and will assume a "high" status in response to the receipt of a signal above a predetermined triggering or threshold value at its input line 272. Trig-ger 270 operates to retain common input terminals "c" at A "low" state dur-ing the pre-exposure phase of a photographic cycle.
With the assertion of the above-described input logic, the resul-tant output, "tl" of GATE A present at line 274 is "high" and is imposed at the base of an NPN transistor Q1 The emitter of transistor Ql is coupled along line 276 to ground while its collector is connected to line 278. Line 278, in turn, connects the excitation winding 84' of the solenoid 80 to power line 216. The "high" status at line 274 serves to forward bias the base-emitter Junction of transistor Ql' thereby energizing winding 84' to cause exposure mechanism blades 60 and 62 to move to block the optical path of camera 10. The output "t2" of GATE B is "low" at the commencement of a photographic cycle and is coupled through a current limiting resistor 280 and line 282 to line 278. GATE B serves a powering down function wherein solenoid 80 is energized at a lower current level when the plunger thereof approaches its fully retracted position. To carry this out, GATE B diverts solenoid energizing current through limiting resistor 280. When transistor Ql is forward biased, however, this diversion through resistor 280 is in-significant.
As blades 60 and 62 reach their closed terminal orientations, the contacts of switch s4 transfer to derive a "C-B" condition. As noted at Event No. 2 of Figure 4, this condition for switch S4 alters the "b" input terminal state at line 252 from a "low" to a "high" to, in turn, cause the output "t1" of GATE A to become "low". In consequence, the forward bias at transistor Ql is removed and the power down energization of winding 84' en-sues.
This transfer of switch S4 to a "C-B" condition also alters the output "t3" of GATE C. Prior to such switch transfer, the output "t3" at line 284 of GATE C is "high". This "high" output is established by virtue 1043~48 of the low states of common input terminals "a" and "b" as well as a low value for common input terminal "d". However, an inverter (now shown) re-verses the output of GATE C and the input to the motor control 290. Gate input terminal "d" of GATE C remains "low" in consequence of its connection ~;
through lines 286, 288 and closed switch S5 to ground. With the transfer of the switch S4 common contact to a "C-B" orientation, and the consequent alteration of common input terminal "b" to a "high" value, the output "t3"
of GATE C converts to a "low" state which is inverted to a "high" state to effect the actuation of motor control function 290. Control 290 is coupled with main power lead 216 through line 292 and to ground through line 294.
Motor control function 290 serves to energize motor 110 to cause gear train -112 to commence to rotate cycle phase cam 114. As described in connection with Figure 6, such rotation continues until ram 118 is released to cause the opening of switch S5 as identified in line 288 in Figure 2. With this release of ram 118, camera 10 is committed to the completion of an exposure cycle. Further, it is important to note that switch S5 provides a unique closed signal condition prior to an exposure interval and a unique open con-dition during and following that exposure interval.
As disclosed at Event No. 3, the opening of switch S5 alters the status of input terminal "d" of GATE C to a "high" condition which, in turn, serves to alter the output "t3" of GATE C to a "high" state which is invert-ed to a "low" state. As a consequence, motor control function 290 de-ener- -gizes and brakes motor 110. As ram 118 is driven forwardly, reflex compo-nent 50 is spring driven toward its exposure orientation against the back wall 12 of camera 10.
The alteration of the status of common input terminal "d" also serves to signal latching network 224 to assume its second energization state by virtue of its connection with input line 286 through lines 296 and 298.
As described in connection with the mounting of flash unit 160 within camera mount 164, the camera 10 is set for flash mode operation with the closure of a mode switch identified in Figure 2 as S2. Closure of switch S2 takes place with the making of a contact between a conducting sur-1~43148 face on mounting blade 162 and with a contact within housing 16. Thus closed, switch S2 introduces a high value signal from power distribution line 228, resistor 300, line 296, resistor 302 and line 304 to ambient con-trol circuit 248. This high signal introduction along line 304 serves to disable control circuit 248. Switch S2 is shown located within line 296 and is coupled to ground through resistor 306. Line 304 also extends through line 308 to common input terminals "e" of GATES E and D. Accordingly, with the opening of switch S5, a "high" signal is asserted from line 228 through switch S2 and lines 304 and 308 to alter the state of input terminals "e" to a "high" value. Lines 310 and 312 connect common gate input terminals "a"
of GATES E and D to line 238 and, therefore, are low during the initial por-tion of a photographic cycle. Input terminal "f" of GATE D remains "low" in consequence of its connection through lines 314, 316, diode 318, closed switch S3 and ground. Switch S3 will be recognized as that described in connection with Figures 1 and 6. Diode 318 serves to suppress spurious sig-nals and the like generated in the operation of switch S3.
Input terminal "g" of GATE E retains an initial "low" status as a result of its connection along line 320 to the output stage of the trigger 322 of an R-C timing network shown generally at 324. Trigger 322 may be of a Schmitt variety, having a normally non-conducting input stage operating in conJunction with a normally conducting output stage. These stages rapidly reverse their conductive states upon receipt of a threshold level signal at the input stage.
As described in connection with Event No. 3 of Figure 4, with the opening of switch S5, the output "t4" at line 326 of GATE D becomes high.
Line 326 is coupled to the base of an NPN transistor Q2. The emitter of transistor Q2 is coupled through line 328 to ground, while its collector is coupled through lines 330 and line 332 to power lead 216. Also within line 332, is the winding 186 (shown primed) of solenoid 184. Accordingly, as described in connection with Figure 7, surface 178 of intercept link 176 is drawn to an intercepting location within the locus of travel of walking beam pin 180. At this time, output "t5" of GATE E converts to a "low" permitting . -- 19 --.
. .
,:., ., . : . ', :
'' : , ' ' '' ' ' 1(~4314191 current flow through line 334. However, as a result of the presence of a current limiting resistor 336, the value of such current is dismissable.
Looking momentarily to Figure 3, the de-activation of ambient con-trol function 248 is depicted by block 340, the energization of motor 110, release of reflex component 50 and opening of switch S5 is depicted at block 342 and the commitment of camera 10 to completion of a photographic cycle along with the energiæation of solenoid 184 is represented at block 344.
As shown at block 346 in Figure 3 and represented at Event No. 4 in Figure 4, as reflex component 50 is elevated through about 32 of rota-tion, switch S3 is opened. The technique for such opening actuation has been described in connection with Figure 6 and serves in a first aspect to activate an R-C timing network identified generally at 350. Formed of a tim-ing resistor 352 and a timing capacitor 354 coupled within line 232 to ground, network 350 serves to delay the commencement of the exposure phase of a photographic cycle. This delay is selected in accordance with a time constant sufficient to permit reflex component 50 to fully seat at its ex-posure position. Network 350 is activated upon removal of a shunt about capacitor 354 which is constituted by a line 356, connected from a point intermediate capacitor 354 and resistor 352 at input line 272 to ground through a diode 358 and switch S3. Diode 358 serves to isolate line 356 from spurious signals and the like.
Switch S3 also operates under a second aspect of asserting a pow-er-down condition upon the winding 186' of solenoid 184. As switch S3 is opened, a "high" signal is imposed from lines 316 and 314 into input ter-minal "f" of GATE D. This input alteration changes output "t4" from a "high" to a "low" state. As a consequence, the forward bias at transistor Q2 is removed and energizing current for excitation winding 186' of solenoid 184 is diverted through a path including current limiting resistor 336 and output line 334 of GATE E.
When delay network 350 atains the requisite threshold level of trigger 270, the output thereof at line 268 converts from a "low" state to a "high" state. As described in conjunction with blocks 360 and 362 of Figure .. . . . . . .
. . ' - : ' ~' : ' ' ., ' .- ,. ~ .
.
104314E~
3 and at Event No. 5 of Figure 4, this transition serves to activate flash delay network 324 and to de-energize excitation winding 84' of solenoid 82.
The exposure phase of a photographic cycle is initiated and common input terminals "c" of GATES A and B are converted to a "low" state. This conver-sion changes output "t2" of GATE B to a "high" state, thereby de-energizing excitation winding 84'. Exposure mechanism blades 60 and 62 are released for movement toward their open terminal positions.
The fixed delay provided by flash delay network 324 is selected in accordance with the amount of time required for blades 60 and 62 to achieve their terminal open positions. However, the blades usually are captured at some intermediate position by interceptor link 176 (Figure 7). To activate network 324, the "high" output of trigger 270 at line 268 is converted to a "low" state by an inverter 364. From inverter 364, the resultant "low" sig-nal is introduced along line 366 to the base of an NPN transistor Q3. The collector of transistor Q3 is connected along line 368 at a point represent-ing a junction between a timing resistor 370 and a timing capacitor 372.
The opposite side of capacitor 372 is connected to line 374 which, in turn, is coupled between the emitter of transistor Q3 and line 376 extending from trigger 322 to ground. Trigger 322 is connected with branch power line 232 from along line 378. During the time-out of delay network 350, the "high"
signal from converter 364 at line 366 serves to forward bias the base-emit-ter junction of transistor Q3, thereby imposing a shunt about capacitor 372.
When trigger 270 fires, its inverted output at line 366 removes the forward bias of transistor Q3 to remove the noted shunt and activate network 324.
As described in connection with Figure 5 at Event No. 6 of Figure 4 and at block 360 in Figure 3, when exposure mechanism blades 60 and 62 commence to open, switch S4 assumes a "C-A" contact condition. This condi-tion serves to activate by energization a flash firing circuit 380 from along line 382. Having a firing input connected to line 334 and coupled to 30 ground through line 384, circuit 380 serves to select and fire individual flashlamps within the linear array as shown at 160 in Figure 1. The ener-gization of circuit 380 is depicted in Figure 3A at block 386.
,.
16~43148 As described in connection with Figure 7, when exposure mechanism blades 60 and 62 reach their follow-focus orientation, pin 180 of walking beam 74 is captured to establish taking aperture. This capture is repre-sented in Figure 3 at block 388.
As represented at Event No. 7 in Figure 4 and at blocks 390 and 392 in Figure 3A, at the time-out of flash delay network 324, the output of trigger 322 alters from a "low" condition to a "high" state to, in turn, act through line 320 to alter the condition of input terminal "g" of GATE E from a "low" to a "high" state. This change alters the output "t5" from a "low"
state, permitting the energization of excitation winding 186', to a "high"
state de-energizing solenoid 184. As discussed in connection with Figure 7, walking beam 74 does not move inasmuch as flange 198 of pin 180 mechanically captures camming edge 178 of interceptor link 176. The pre-established ap-erture of the exposure mechanism remains unaltered. With this de-energiz-ation, a fly-back pulse is generated from winding 186' which is witnessed at lines 332, 330 and 334. Line 330 is connected through resistor 336 to in-put line 334 of flash firing circuit 380. Circuit 380 responds to the noted fly-back pulse and ignites a select flashlamp within flash array 160.
As depicted in block 394 of Figure 3A, the control system of Fig-ure 2 provides for a fixed interval of exposure corresponding with the ig-nition time of a flashlamp within array 160. With the generation of a "high"
state from trigger 322 at line 320, common input "g" of AND GATE F assumes a "high" state by virtue of its connection with line 320 through line 398.
The second input to GATE F is represented as a common input "e" which is coupled through line 400 to line 304. Line 304 maintains a "high" state with the closure of switch S2. The resultant "high" output of GATE F is present at line 402 and serves to activate flash timing network 396. Net-work 396 includes a timing capacitor 404 coupled within line 406 between an input to trigeer 242 and eround. The opposite side of network 396 is pres-ent as a timing resistor 408 present within line 402 and coupled with line 406.
As depicted at blocks 410 and 412 and represented as Event No. 8 1~43~8 in Figure 4, when network 396 achieves the threshold or triggering level of trigger 242, the output thereof at line 240 alters from a "low" to a "high"
state. The resultant "high" OUtpllt alters the status of common gate input terminals "a" to a corresponding "high" status. As a consequence, the out-puts of GATES A and B are inverted. For instance, output "tl" of GATE A is changed to a "high" status and output "t2" of GATE B is changed to a "low"
status. A "high" output at line 274 serves to forward bias the base-emitter Junction of transistor Ql' thereby energizing solenoid winding 84' from line 278. Solenoid 80 commences to retract plunger 90 to, in turn, drive expo-sure mechanism blades 60 and 62 into a closed orientation. As shown at Event No. 9 in Figure 4, as blades 60 and 62 reach closure, switch S4 trans-fers to a "C-B" orientation isolating line 382 of flash firing circuit 380.
This alteration of switch S4 additionally converts the status of input ter-minals "b" at GATES A and C from a "low" to a "high" state. As shown at Event No. 9 in Figure 4 and at block 414 in Figure 3A, the latter input alteration changes the output "t3" of GATE C to a "high" status, thereby ac-tivating motor control function 290 to, in turn, energize motor 110. The control system thereby is caused to progress to its post-exposure phase dur-ing which, as shown at blocks 416 and 418 of Figure 3A, an exposed film unit is processed and reflex component 50 is driven toward its position covering the exposure plane of camera 10. As shown at Event No. 10 in Figure 4~ at the commencement of reflex component movement, switch S3 is closed and, when the reflex component reaches its exposure plane covering orientation, switch S5 is closed as shown at Event No. 11 and at block 420 in Figure 3A. Thus closed, switch S5 serves to shut down the entire system including the de-energization of winding 84'. In consequence, as shown at block 422 at Fig-ure 3A, exposure mechanism blades 60 and 62 are driven by opening spring 82 into their fully open orientation. Note that switch S5 reassumes its closed or initial position only at the termination of a given photographic cycle.
Looking now to Figure 8, the configuration of flash firing circuit 380 is revealed in more detail. For purposes of clari~ty, where leads or lines previously identified in Figure 2 are reproduced in Figure 8, they are :~ , , , ' , ' ' 1~43~4~
presented primed ('). In the figure, a plurality of flashlamps 430a-430c are shown connected, respectively, to the terminals 432a-432c of three lamp circuit lines 434a-434c. Circuit lines 434a-434c are connected in parallel circuit relationship to one another between power leads 436 and 438. Lead 436 is coupled to battery power lead 216 (Figure 2) through switch S4 and line 382'. Correspondingly, power lead 438 is coupled to ground through line 384'. Primary switching for each of the flash-lamps 430a-430c is pro-vided by SCR's 440a-440c positioned within respective lines 434a-434c. The gate electrode 442a of SCR 440a is connected to the output of a level de-tecting network 444. Connected between power leads 436 and 438 through respective lines 446 and 448, network 444 is configured for receiving the flash energizing pulse from line 334'. This pulse is of short duration, for instance about 10 microseconds and is generated as a fly-back pulse from the de-energization of solenoid winding 186'.
The gate electrodes 442b and 442c of respective SCR's 440b and 440c are connected with sequence logic networks 450 and 452. ~etwork 450 is connected through line 454 to line 434a at the anode side of SCR 440a and, additionally, to line 434b through line 456. Similarly, logic network 452 is coupled with line 434b at the anode side of SCR 440b through line 458 and to lamp circuit line 434c at the anode side of SCR 440c through line 460. Networks 450 and 452 serve to detect the previous firing of a flash-lamp, for instance at 430a, and cause the circuit to select a next flash-lamp, i.e., 430b, by relaying a firing or gating pulse to the appropriate SCR thereof, i.e., 440b. Additionally, networks 450 and 452 serve to estab-lish a predetermined resistance or impedance intermediate the sequence of lamp circuit lines 434a-434c. Of course, it is understood, that the circuit is capable of accommodating more than three flashlamps through the expedi-ence of adding additional lamp circuit lines and sequence logic networks.
Described in detail in United States Patent No. 3,676,o45, sequence logic networks 450 and 452 respond to the impedance witnessed at the terminals of a fired flashlamp to select a next succeeding lamp. Generally, a value of impedance meant to represent a fired flashlamp is selected in the design of ~' ' - ' ': .
1C)43~48 the circuits, for instance, 75 ohms or greater, may be considered to rep-resent an open lamp circuit. Such an arrangement accommodates for misfir-ings of lamps or inoperative lamps within an array.
Returning to Figure 3, the operation of a principal embodiment of the instant invention is revealed as it relates with the photographic cycle of camera 10. As shown at block 462, with the closure of switch Sl to com-mence a photographic cycle, a flashlamp status detection arrangement is ac-tivated. This detection arrangement surveys the terminals of an array 160 to assure that an unexpended flashlamp remains. In the event that no such flashlamp is present in an operational orientation, an inhibit network is activated as represented at block 464. Network 464 alternately may prevent the energization of motor 110 as represented by dashed lead 466 or may re-act to prevent energization of solenoid 80 as represented by dashed lead 468. Simultaneously, an expended array warning may be energized as at 470 to apprise the operator of the cause of camera 10 not completing a photo-graphic cycle. Note that in the arrangement, the blocking or prevention of the carrying out of a photographic cycle takes place before cycle commitment 344. Recall that this commitment takes place when the circuit is electrical-ly latched and ram 118 has been released. The inhibition of a photographic 20 cycle at the commencement of motor energization as represented by dashed lead 466 provides particular advantage to the utilization of an expended ar-ray warning such as a light emitting diode. Looking to Figure 14, the view-ing components of camera 10 are represented in conjunction with an eye sta-tion 472 and a signal lamp 474. Note that lamp 474 is very small and locat-ed remotely from the entrance optics of viewing station 52. By permitting the energization of solenoid 80 as represented at block 234, the operator at eye station 472 will encounter a pronounced darkness effect due to the closure of blades 60 and 62. Simultaneously, the very small lamp 474 will be illuminated to apprise the operator that flash array 160 is inoperative.
30 Even though lamp 474 is displaced, the blocking of viewing through station 52 makes the illumination from small lamp 474 readily perceptible.
Returning to Figure 2, a network serving to detect that no valid '' ' ~ , .
1~43~4~
flashlamp exists in array 160 as it is oriented on camera 10 is represented in block form at 476, while a network serving to inhibit the operation of motor control 290 is represented at block 478. Network 476 is responsive from along line 480 to the closure of switch S2. Additionally, network 476 is connected with flash firing circuit 380 from along leads 482 and 484.
These leads are reproduced in primed form in Figure 8 and are located to respond to the impedance witnessed across both last l&mp terminal 432c as well as the accumulated values of resistance represented by the serial in-tercoupling of sequence logic networks 450 and 452. Power input to network 476 is derived from lines 481, 485 and 487, while connection with ground is provided through line 486. Inasmuch as line 485 is coupled to line 382, which in turn is coupled to power lead 216 through switch S4, a line 488 in-corporating a resistor 490 is coupled in shunt across the "C-A" contacts of switch S4, i.e., between lines 382 and 260. Resistor 490 is selected having a value sufficient to power down flash firing circuit 380, while remaining adequate to permit the logic operation of detect network 476. Inhibit net-work 478 is coupled to receive the unique signal of network 476 from along line 492, while its connection for disabling the operation of motor control 290 is provided from along line 494. Recall that the output "t3" of GATE C
at line 284 is "high" at such time as motor control circuit 290 energizes motor 110. Accordingly, network 478 diverts this high signal along line 494 to ground through line 496 to halt a photographic cycle. Network 478 also -is coupled through line 498 to line 288 above switch S5. As represented at block 500 in Figure 3A, this connection is required inasmuch as detecting network 476 would activate network 478 just following the firing of a last flashlamp upon the operative side of an array to prevent the completion of that valid photographic cycle. Inasmuch as switch S5 has unique orienta-tions at the commencement of a photographic cycle and during and following the initiation of optical path conversion, it is utilized to disable inhibit network 478 for this particular situation. ~etwork 478 is energized from auxiliary power line 232.
The detect and inhibit operation as encompassed within the dashed -1~43148 boundary 502 in Figure 2 is represented in detail in the embodiment of Fig-ure 9. Looking to the figure, the detecting function of the circuit taps or is coupled across the final flashlamp to be fired within one operational face of an array by previously described leads 482' and 484'. Lead 484' ex-tends through a blocking diode 504 to the base of a PNP detecting transistor Q4. The emitter of transistor Q4 is coupled through line 506 to diodes 508 and 510 to lead 482' and power input lead 485', while its collector is cou-pled through line 512 and resistor 514 to the base of an NPN transistor Q5.
A hold-off resistor 516 is connected between leads 482' and 484'. The base of transistor Q4 also is coupled through line 518 and a resistor 520 to the collector of NPN transistor Q6. The emitter of transistor Q6 is connected to ground through line 522, while the base thereof is coupled through line 524 and resistor 526 to connection with lead 487'. With the latter arrange-ment, the base-emitter junction of transistor Q6 may be forward biased into conduction with the depression of switch Sl. Under such conditions wherein transistor Q6 is on, transistor Q4 may sample the impedance and consequent voltage drop between leads 482' and 484'. Under conditions wherein a valid flashlamp is present within array 160, transistor Q4 remains off. However, with the expenditure of all lamps within the array, resistance across leads 482' and 484' approaches infinity and equals or exceeds the voltage drop represented by diodes 508, 510 and the base-emitter junction of transistor Q4. In consequence, transistor Q4 conducts. The sensitivity of this for-ward biasing of transistor Q4 also is controllable by selecting the value of resistance at resistor 520.
To provide for sampling operation of the circuit only during such time as a flash array is inserted in camera 10 and the camera is operating in a flash mode, a transistor Q7 is provided to selectively shunt the for-ward bias asserted at transistor Q6. The emitter of transistor Q7 is cou-pled to ground through lines 528 and 530, while its collector is coupled throueh line 532 to line 524 at the base of transistor Q6. The base of tran-sistor Q7 is connected through line 534 and resistors 536 and 538 to voltage supply lead 481'. Accordingly, transistor Q7 is normally biased into con-.
.
.
1~43~48 duction to, in turn, divert the forward biasing current from the base of transistor Q6. The forward bias asserted at transistor Q7 is removed, how-ever, by virtue of the connection of line 480' with line 534. Line 480' connects line 534 with ground when switch S2 is closed.
The collector of transistor Q5 is coupled with line 540 which, in turn, serially connects a light emitting diode (LED) 542, along with resis-tors 544 and 546 to line 548. The emitter of transistor Q5 is connected through line 550 to line 530. Accordingly, when transistor Q4 conducts, transistor Q5 is turned on to permit current passage from line 548 to il-luminate diode 542. Diode 542 corresponds with the illuminating device 474 described in connection with Figure 14.
The base of a PNP transistor Q8 is coupled by line 552 to line 540at a point intermediate resistors 545 and 546. The emitter of transistor Q8 is coupled with line 548, while its collector is connected through line 554, resistor 556 and line 558 to the base of an NP~ transistor Qg. The emitter of transistor Qg is coupled to line 530, while its collector is coupled to line 494'. Line 494' connects with the output line 284 of GATE C.
When transistor Q5 is on in consequence of transistor Q4 detecting an ex-pended array, transistor Q8 is drawn into conduction to, in turn, drive transistor Qg to a forward biased state. As a result, conduction is permit-ted from line 494' to divert the "high" signal at line 284 and prevent motor enereization. As is apparent, when an expended array is inserted in camera 10, LED 542 is energized to provide a perceptible warning and camera 10 is permitted to cycle only to the extent that blades 60 and 62 are driven to a closed position.
As described in connection with function block 500 of Figure 3A, it is necessary that transistor Qg not be forward biased in response to the ignition of a last flashlamp within an array. To prevent such occurrence, an ~PN transistor Q1o is positioned to selectively divert forward biasing current from line 558. In this regard, the collector of transistor Qlo is coupled through line 560 to line 558, while its emitter is coupled through line 562 to line 530. The base of transistor Qlo is coupled through resis-1~43~48 tor 564, line 566 and resistor 568 to lead 481'. Lead 481' in turn is coupled w~th voltage supply line 232'. The opposite side of line 566 is connected with lead 498', which in turn is coupled with switch S5. Accord-ingly, at the commencement of a photographic cycle wherein one last flash-lamp is available within array 160, transistor Q4 will be off to permit the control system of camera 10 to cycle to the extent that the last flashlamp is ignited. At this point within a photographic cycle, switch S5 is open and transistor Qlo is forward biased to remove drive current from line 558 and prevent the forward biasing of transistor Qg. As a consequence, the camera is permitted to carry out the post-exposure portion of a photographic cycle.
Under conditions in which all flashlamps within an array are ex-pended, transistor Qg will be forward biased inasmuch as switch S5 is closed during the initial portions of a photographic cycle. When so closed, for-ward biasing current from line 566 is diverted from transistor Qlo.
Another embodiment for the detect and inhibit feature of the in-vention is presented in Figure lO. In this arrangement, resistor 490 ex-tending between lines 260 and 382 is not required inasmuch as the embodiment utilizes the latching characteristic of a silicon control rectifier (SCR) to maintain power levels for logic performance. The remaining structure of the embodiment is substantially the same as the embodiment of Figure 9.
Looking to the Figure, a detecting PNP transistor Q11 is coupled such that its base at line 570 is connected with lead 484' through a block-ing diode 572. The emitter of transistor Qll is coupled through line 574, diodes 576 and 578 to lead 482'. It will be recalled that leads 482' and 484' couple across the terminals leading to the final flashlamp of the flash firing circuit 380. Lead 482' is powered through resistor 580 and lead 382' from the "C-A" terminal connection of switch S4. The emitter of transistor Qll is coupled through line 582 and resistor 584 to the gate electrode of an SCR 586. The base connecting lead 570 of transistor Qll additionally is coupled through line 588 and resistor 590 to the collector of an NPN tran-sistor Ql2' The emitter of transistor Ql2 is coupled through line 592 to 1~43~48 ground, while its base is coupled through line 594 and resistor 596 to lead 487'. It will be recalled that lead 487' is activated upon the closure of start switch Sl. Base connecting line 594 of transistor Q12 also is coupled ~hrough line 598 to the collector of an NPN transistor Q13 The emitter of transistor Q13 is coupled to ground, while its base is coupled through line 600, resistors 602 and 604 to lead 481'. Lead 481', in turn, couples with a branch power line of the circuit of Figure 2. Base connecting line 600 also is coupled through line 606 to lead 480', which, in turn, is connected to the upper side of switch S2.
With the above-described arrangement of transistors Q12 and Q13' an anding logic combining switches Sl and S2 is provided such that with the de-pression of switch Sl, transistor Q12 is forward biased to permit the selective forward biasing of transistor Qll in the event of a defective last flashlamp.
Should the contacts of switch S2 not be made, however, transistor Q13 is forward biased to, in turn, remove the forward bias of transistor Q12 Assuming an inserted flash array to be expended to cause the conse-quent forward biasing of transistor Qll' current flow is present at line 582 to gate SCR 586 into conduction. The anode side of SCR 586 is coupled through line 610, light emitting diode 612, resistors 614 and 616 to lead 487'. Lead 487' is coupled for energization in conjunction with the depression of switch Sl. The cathode side of SCR 586 is connected through line 618 to ground. With this arrangement, with the forward biasing of transistor Qll' SCR 586 serves to energize LED 612 to apprise the operator of an expended flashlamp. Because of its latching characteristic, SCR 586 maintains this conduction even though switch S4 transfers to a contact orientation "C-B". However, when the latter orientation is realized, an NPN transistor Q14 is forward biased by virtue of the activation of line 620 from lead 258'. Line 620 is coupled through resis-tor 622 to the base of transistor Q14' the collector thereof is coupled through line 622 to gate line 582 and the emitter thereof is coupled to ground through line 624. With this arrangement, the gating signal present at line 582 is coupled to ground to divert any noise transients generated from oper-~a!43148 ation of motor 110 when switch S4 is in the noted orientation.
As in the embodiment of Figure 9, the inhibit function of the instant embodiment includes a PNP transistor Q15' the base of which is cou-pled through line 626 to line 610 at a point intermediate resistors 614 and 616, while its emitter is coupled through line 628 to lead 487' for ener-gization in conjunction with the depression of switch Sl. The collector of transistor Q15 is coupled through line 630, resistors 632 and 634 to the base of NPN transistor Q16 The collector of transistor Q16 is coupled through line 494' to the output "t3" of motor drive GATE C, while its emit-ter is connected to ground through line 636. As before, with the forwardbiasing of transistor Q15' transistor Q16 is driven into conduction to dis-able motor control function 290.
Similar to the embodiment of Figure 9, the present circuit also includes an NPN transistor Q17' the collector of which is coupled through line 638 to line 630 and the emitter of which is coupled through line 640 to eround. Transistor Ql7 is normally biased into conduction by virtue of the connection of line 642 from its base through resistor 644 and line 481' to auxiliary power lead 232. Line 642 also is coupled to line 498', which, in turn, is connected through switch S5 to ground. Accordingly, transistor Q16 is held off when switch S5 is open. As before, this arrangement permits the completion of a photographic cycle utilizing the last valid flashlamp within an array.
Figure 11 presents another embodiment for the detector arrangement of the invention. In this arrangement, the impedance exhibited by the flashlamp array again is present between terminal leads 482' and 484'. Lead 482' is coupled through line 650 to line 652 at a point intermediate resis-tors 654 and 656. The upward side of line 652 is coupled to a voltage sup-ply through resistor 654, for instance as may be derived from lead 481. The opposite side of line 652 extends through resistor 658, line 660 and into the switches Sl, S2 AND LOGIC feature described in Figures 9 and lO, re-spectively, in connection with transistors Q6~ Q7 and Q12 and Q13 Function 662 is shown coupled to ground through line 664.
1~43~48 The opposite lead 484 ' from the flash array is connected to line666, in turn leading through resistor 668 and line 660 to AND LOGIC block 662. Line 666 also is coupled through line 670 to one input of a differen-tial type operational amplifier 672. The opposite input to amplifier 672 is present at line 674 which is coupled to line 652 at a point intermediate resistors 656 and 658. The resistance value of resistor 656 is selected to correspond with the predetermined impedance evidenced by a fully expended flash array, for instance, 75 ohms. Resistors 668 and 658 are configured having the same resistive values so as to evolve a voltage dividing compar-ison network, the output of which at lines 670 and 674 is amplified at am-plifier 672. Note that amplifier 672 is coupled to a +V supply through line 676 and to a lead of opposite polarity at line 678. The output of amplifier 672 is coupled through line 680 to an inhibit and warn network 682. Such a network has been described in Figures 9 and 10, respectively, in connection with transistors Q5 ~ Q8 - Q1o and SCR 586, in conjunction with transistors Q15 - Q17- When an operative flash array is present within the system, the output of amplifier 672 may be considered "low" and when the resistance across lines 650 and 670 is "high", the output of amplifier 672 reverts to an opposite level, for instance "high". Such a "high" value would serve to forward bias transistor Q5 as represented in Figure 9 or to gate SCR 586 as shown in Figure 10.
Returning to Figure 3, another embodiment for the expended array warning feature of the invention is revealed. As shown at block 690, a lamp status detection network may be incorporated within the exposure con-trol of camera 10 which is activated upon the erecting of the camera into its operative orientation shown in Figure 1. Upon effecting such erection and the inserting of a flash array as shown at block 222, lam~ status detect function 690 will provide an expended array warning as shown at block 692 contemporaneously with viewing and focusing procedures. This warning would 30 ~, be provided as described at almp 474 in Figure 14. Such a warning is avail-able inasmuch as switch S4 maintains a "C-A" configuration during periods of non-use and during focusing and viewing procedures. In consequence, energy 1~43148 is available to flash firing circuit 380 when interlock switch S6 in line 212 is closed.
Looking to Figure 13, the structure of this interlock switch S6 is revealed in detail as it is positioned at a rear corner of camera 10.
The figure reveals in detail that back cover 12 is connected to inner frame 30 at an offset hinge connection depicted generally at 20. Hinge 20 includ-es a pinned connection 694 coupling back wall 12 to inner frame 30 and a bi-furcate eccentric extension 696 which is slotted at 698. Note that the bi-furcate structure 696 defines an internal slot or keyway 700 within slot 698 and pinned for movement within slot 698 is a switch actuator 702. Actu-ator 702 is constrained for vertical movement in con~unction with the pivot-al movement of back wall 12. Actuator 702 is formed of plastic insulative material except for its lower portion which is configured to retain a con-ductive pin, the conducting surfaces of which are shown at 704. Biased against opposite sides of actuator 702 are resilient switch leaves 706 and 708. With the arrangement shown, when back cover 12 is maneuvered upwardly from the partially erected orientation shown, conducting surfaces 704 will ; move into contact simultaneously with resilient leaves 706 and 708 to close switch S6 when camera 10 is fully erected. As shown in Figure 2, the clos-ure of switch S6 provides for the assertion of power through lines 216, 260, switch S4 and line 382 to flash firing circuit 380.
Returning to Figure 12, when a flash array is inserted in camera 10, the base of PNP transistor Q18 will be coupled through line 712 and blocking diode 714 to lead 484', while its emitter will be connected through line 716, diodes 718 and 720, to opposite flash firing circuit lead 482 ' .
Line 712 further is coupled through line 722 and resistor 724 to switch S2 lead 480 ' . The collector of transistor Q18 is coupled through line 726, resistor 728 and light emitting diode (LED) 730 to ground. With the arrange-ment shown, in the presence of an expended flash array, transistor 218 will 30 be forward biased to permit current conduction through line 726 to energize LED 730. As in the embodiments of Figures 9 and 10, the resistance value at resistor 724 as well as the selection of voltage drop evidenced at diodes - 33- ;
- .. .
' ." .'. ......... : ' ' '' ~ :' ' . . .. .. " ,, , . , ,~ . .. .
1C)43148 718, 720 and the base emitter junction of transistor ~ 8 establishes the impedance sensitivity of the detector circuit.
Since certain changes may be made in the above-described system : and apparatus without departing from the scope of the invention herein in-volved, it is intended that all matter contained in the description thereof as shown in the accompanying drawings shall be interpreted as illustrative : and not in a limiting sense.
i~ j ~ .
A recent development in the field of flash photography has been the packaged linear flashlamp array. Developed for use with a highly automated camera, this flashlamp packaging arrangement is formed of two operational faces, each exhibiting an array of five flashlamps. Accordingly, when util-ized in conjunction with an automatic camera, a rapid succession of photo-graphic cycles may be carried out inasmuch as no mechanical indexing or aligning of flashlamps need be performed following each exposure.
Described in detail in United States Patent Nos. 3,598,984 and 3,598,985, the dual arrays of flashlamps are compactly packaged by internest-ing the oppositely disposed flashlamps of each face thereof. The igniting terminals of individual lamps within the packaged arrays are connected by printed circuit technique to a downwardly extending blade mount, each side of ; which is configured to expose five input contacts, a common bus or lead and a circuit completing conductive surface. By inserting the downwardly extending blade mount within an appropriate receptacle within the noted camera, electri-cal connection is made with the five input contacts of an operationally facing array and the noted conductive surface serves to provide circuit completing contact for switching the control system of the camera into an operational mode suited for flash illumination.
To ignite successive ones of those flashlamps within an appropriately oriented operational face of an array, flash firing circuits are incorporated within the camera. Typical of such circuits is that described in United States Patent ~o. 3,676,045. These circuits gen-erally incorporate discrete firing networks which operate in conjunction with an aligning circuit to sequentially ignite an individual flashlamp with each actuation of the camera. The aligning circuit operates in accordance with the terminal or output characteristics common to the design of the flashlamp.
The general structure of a flashlamp with which logic sequencing or firing circuits must operate includes a glass envelope within which is sealed a quantity of combustive filamentary strand material or the like and a combustion supporting gas. This combustable component of a lamp is positioned in intimate relationship with the filament of an igniting assembly electrically coupled across the input leads of the lamp. Upon application of current to the terminals of the flashlamp, the igniting filament rapidly heats to the combustion point of the strand material and flash ignition ensues. Following ignition, the igniting filament as well as the strand material is melted and/or reduced to an ash residue which remains within the glass envelope. As a result, the terminals leading to a glass envelope are open circuited and the switching circuit to which they are coupled witnesses an infinite resistance. Should the igniting filament or strand of material incompletely combust and short the otherwise open circuited terminals of a flashlamp, ' ' ~ , . . .
: :
.
a relatively high resistance will be witnessed across the terminals. The flash firing circuits react to a predetermined ohmic value across the fired or unfired bulb to derive the noted sequential selection of lamps for ignition during a given photographic cycle.
Following the expenditure of ignition of five flashlamps within one operational face of a packaged array, the operator removes the packaged array and reinserts it within the camera mounting structure in reverse to present the oppositely disposed operational face, thereby accommodating for a next five photographic flash cycles.
Often taken with the excitement of the "photo-graphic moment" of a scene, a photographer may fail to perceive that all flashlamps within the operating side of an array have been ignited.
Failure to reverse or replace the array will cause an ensuing photograph to be aborted for improper illumination.
SUMMARY
The present invention is addressed to a flash exposure system for photographic apparatus of a variety intended for use with an array of flashlamps each of which is forwardly oriented to illuminate a scene. With the expenditure of a final or last one of the thus oriented flashlamps, the system serves to prevent the carrying out of a next succeeding photographic cycle of the apparatus in the event there is no replenishment of the flashlamp array.
In one embodiment, the photographic apparatus is present as a highly automated camera which carries out an - 3 - ~-.~. .. .
involved sequence of successive operational events from first to last to define a photographic cycle. The system of the invention responds to the expenditure of all forwardly oriented flashlamps within the array to permit the carrying out of the first of these operational events and to inhibit -~
the further progression of such events. In one arrangement of this embodiment, the system provides a perceptible warning in conjunction with the noted inhibition of all operational events following the first.
Where the noted automated camera is of a single lens rePlex variety, the first and only operational event permitted to be carried out is that of blocking the taking optical path of the camera. Simultaneously with such activity, a warning light located on the camera housing near the entrance optics of its viewfinder is energized to apprise the operator that a photographic cycle cannot be completed without replenishment of the artificial light source. The warning light advantageously may be spaced away from the entrance optics of the viewfinder of the camera inasmuch as the camera operator will perceive only a dark background which correspondingly enhances his ability to immediately perceive a warning light even though that light is positioned remotely from the viewfinder.
As another object and feature, the flash exposure system of the invention is characterized in the use of a detector arrangement responsiue to an electronic state extant at the flashlamp coupled terminals of a flashlamp selecting and firing circuit. When this state corresponds with an ~-effective expenditure of all lamps within a forwardly oriented array of the flashlamps, the detector arrangement .- - . . : .
.. . . . .
", . ,,.. .... .: . ~
lQ43148 derives a unique signal condition representative thereof. The exposure system further includes an inhibit means or arrangement which responds to that unique signal condition to prevent the carrying out of or completion of an otherwise attempted photographic cycle. The noted response of the detector and inhibit arrangements are necessarily rapid being electronic in nature.
Accordingly, the inhibit arrangement of this system further responds to a condition representing the immediate ignition of a last flashlamp of the array thereof to permit the completion of the photographic cycle representing the expenditure of that last flashlamp. For instance, in one embodiment of the invention, the inhibit arrangement is responsive to a unique signal condition of a post-exposure interval operational event to permit the camera to complete the noted photographic cycle corresponding with the ignition of a last flashlamp within an array.
As another object and feature, where the automated camera is of a folding variety, erectible from a compact orientation for carrying, the perceptible warning may be provided in conjunction with such erection. Such warning is possible inasmuch as the automated camera necessarily includes interlock switching and the like to prevent battery drain during periods of non-use.
According to a broad aspect of the present invention, there is pro-vided a photographic camera comprising: means actuatable for automatically performing a sequence of operational events from first to last defining an operational cycle of said camera; selectively operative means for actuating said performing means; means actuatable responsive to operation of said per-forming means for continuously monitoring the operational condition of said camera and for inhibiting the performance of at least a select one of said events to interrupt said sequence when said camera condition is unsuited for performance of said camera cycle; and means responsive to the progression of said performing means through a portion of said cycle and at least through ~431~8 said select event for disabling said monitoring and inhibiting means to at least override the inhibiting function thereof during at least a subsequent portion of the remainder of said cycle.
The invention accordingly comprises the system and apparatus possess-ing the construction, combination of elements and arrangement of parts which are exemplified in the following detailed disclosure.
The present invention in conjunction with the invention of Canadian Application Serial No. 219,279 will now be described by way of example with reference to the accompanying drawings in which:-Figure 1 is a pictorial view of a fully automatic hand-held camera :
incorporating the flash exposure system of the instant invention, the view having portions broken away or removed to reveal internal structure;
Figure 2 is a schematic diagram of a control circuit used in con-junction with the control system of the camera of Figure l;
Figures 3 and 3A combine to form a block logic diagram showing the : sequence of events occuring during operational cycles of the camera of Figure 1, the topmost portion of Figure 3A being intended for attachment with the -lowermost portion of Figure 3;
Figure 4 is a truth table or schedule of operational events performed by the control system of the camera of Figure 1, showing, in logic form, the input and output states of gate functions incorporated within the circuit of Figure 2 as it operates under flash lighting conditions;
Figure 5 is a partial pictorial representation of switching features - of the camera of Figure 1 with portions broken away to reveal internal struc-ture, . - .
Figure 6 is a partial pictorial representation of another switching :
feature of the camera of Figure 1 with portions broken away to reveal internal structure;
- 6 - :-. .: . :
.
Figure 7 is a partial top view of the shutter mechanism of the camera of Figure 1 showing follow-focus components of the mechanism thereof in an intercept condition;
Figure 8 is a schematic diagram of a flash ignition and sequencing network shown in block form in Figure 2;
Figure 9 is a circuit diagram illustrating one embodiment of the detect and inhibit operation of the instant inventionj Figure 10 is a circuit diagram showing another embodiment of the detect and inhibit arrangement of the instant invention;
Figure 11 is a schematic representation of another embodiment of a detect feature of the instant invention;
Fieure 12, appearing on the same drawing sheet as Figure 9, shows a circuit diagram for a warning arrangement of the invention;
Figure 13 is a schematic representation of an interlock switch within the camera of Figure l; and Figure 14 is a pictorial representation of a portion of the camera of Figure 1 revealing the viewing system thereof in greater detail.
Referring to Figure 1, a highly automated single lens reflex cam-era which may incorporate the features of the instant invention is portrayed generally at 10. The several articulated housing components of camera 10, including rear wall 12, forward wall 14 and exposure control housing 16 are pivotally associated with a base 18 so as to be foldable thereinto in nest-ing fashion. When so folded from the fully erected configuration shown, camera 10 assumes a thin and compact shape suiting it to be conveniently carried, for instance in the pocket of a garment. The specific hinge con-nections providing for the articulated structure, while not being visible in the Figure, are positioned at axes 20, 22, 24 and the lower rear portion of exposure housing 16.
When erected for photographing a scene, rear wall 12, forward wall 14 and exposure control housing 16 combine in conJunction with an opaque flexible bellows, a fragment of which is illustrated at 26, to define an ex-posure chamber generally depicted at 28.
~43~8 Base 18 includes an inner frame assembly, a portion of which is shown at 30. Inner frame assembly 30, as well as the outward portions of ;
base 18, cooperate to provide structural support for numerous instrumental-ities of the camera. For instance, frame 30 is configured to define a re-ceiving chamber for retaining and securing a film laden cassette structure 32 at the bottom of exposure chamber 28. Cassette 32 is of generally flat, rectangular shape and contains a stacked assemblage of photographic film units (not shown). These film units are arranged for sequential presenta-tion at a light entrance portion of cassette 32 which is defined by a ridge shown in phantom at 34. Cassette 32 also is formed having an elongate slot 36 disposed across the forward wall thereof. Slot 36 serves as an egress means providing for the sequential removal of each film unit after it has been exposed. Cassette 32 also is formed having a slot or opening in the upward face thereof at 38 which permits the insertion of a component of a pick mechanism shown generally at 40. Mechanism 40 functions to impart ini-tial movement to the film units as they are removed from the cassette 32.
The components of camera 10 are illustrated in orientations where-in reflex viewing and focusing may be carried out. In this regard, a taking lens 42 positioned within exposure housing 16 represents the entrance com-20 ponent of a viewing-focusing mode optical path. From lens 42, this path ex-tends to a mirror 44 positioned against the inner side of rear wall 12. The path is reflected from mirror 44 to a viewing surface 46 positioned over the exposure plane of the camera. Surface 46 is mounted upon one side of a re-flex component or carrier 50 which is shown in an orientation covering ridge 34 of cassette 32 and securing the exposure plane of the camera. Viewing surface 46 is configured having a texture and optical design facilitating the focusing of the image of the scene to be photographed. This image may be viewed by the camera operator through a collapsible optical viewing as-sembly depicted generally at 52. A configuration suited for viewing surface 46 is described in United States Patent ~o. 3,735,685.
While camera 10 is in the noted viewing-focusing operational mode, the exposure mechanism thereof, shown generally at 56 within exposure hous-1S)~3148 ing 16 establishes an aperture opening as at 58. Aperture 58 is defined by two co-acting blades 60 and 62 which slidably ride in a track (not shown) mounted within exposure housing 16. Each blade, 60 and 62, is formed having a teardrop-shaped aperture opening as shown, respectively, at 64 and 66.
Additionally, the blades are formed having secondary openings, shown respec-tively at 68 and 70, which move in synchronism with openings 64 and 66 be-fore the detecting elements of a photo-sensing network positioned behind an entrance optical assembly 72. As is apparent, openings 64 and 66 are posi-tioned for movement across the optical path of camera 10 as it is establish-ed at taking lens 42. Depending upon the position of blades 60 and 62, openings 64 and 66 symmetrically overlap to define selectively varying ap-erture sizes. In the viewing-focusing mode orientation illustrated, it may be noted that blades 60 and 62 define an aperture opening 58 of maximum width to facilitate viewing.
Blades 60 and 62 are moved in mutual symmetry as a result of their connection with a walking beam type actuator 74 rotatably mounted at its centerpoint within housing 16. Walking beam 74 is coupled at its uppermost tip to blade 60 by a pin connection 76, while its lower portion is coupled with blade 62 by pin connection 78.
Looking additionally to Figure 6, the rotational movements of walking beam 74 and, in consequence, blades 60 and 62, is controllably de-rived from a tractive electromagnetic device present as a solenoid 80 oper-ating in con~unction with an opening spring 82. Solenoid 80 includes an ex-citation winding 84 which is wound about a bobbin 86 attached, in turn, to a U-shaped frame 88. A cylindrically shaped plunger 90 is slidably mounted within a corresponding central opening within bobbin 86 and the composite assembly is fixed within exposure housing 16. Opening spring 82 is mounted about plunger 90 between frame 88 and a plunger cap 92. Cap 92 is formed having a slot 94 which loosely receives a pin 96 fixed to and extending from a lower portion of walking beam 74.
With the arrangement shown, when winding 84 of solenoid 80 is en-ergized, plunger 90 is retracted thereinto, to load or compress opening _ g _ ~0431~8 spring 82 and, simultaneously, rotate walking beam 74 in a direction causing blades 60 and 62 to close aperture opening 58. Conversely, upon the de-energization of excitation winding 84, opening spring 90 re~ersibly drives walking bea~ 74 to cause openings 64 and 66 of respective blades 60 and 62 to define progressively enlarging aperture openings about the optical path ~.
of the camera.
Operating in conjunction with solenoid 80 and opening spring 82 is a single throw double pole switch designated S4. As shown in Figure 6, switch S4 is formed having an upstanding insulated base 98 fixed, in turn, to frame 88. Base 98 supports an elongate contact rod 100, the upwardly ex-tending portion of which is con~igured to wipe across two separate conduct-ing surfaces 102 and 104. Rod 100 is normally biased to move outwardly into contact with conductive surface 104. When solenoid 80 is energized and its plunger 90 is retracted, however, a pin 106 extending laterally from cap 92 drives contact rod 100 rearwardly to wipe against and make electrical con-tact with conducting surface 102. Conducting surfaces 102 and 104 are rel-atively closely spaced such that electrical contact is effected with surface 102 when plunger 90 is closely proximate its fully retracted and seated po-sition. Coversely, contact rod 100 effects electrical contact with conduct-ing surface 104 very rapidly upon de-energization of solenoid 80. The re- - -tracted orientation of spring 82 and cap 92 is shown in Figure 6 in solid line fashion, while their extended positions under a de-energized state of winding 84 is shown with identical numeration marked with a prime (').
Returning to Figure 1, operator actuation of camera 10 to commence a photographic cycle following viewing and focusing is carried out by de-pression of a start button shown mounted upon exposure housing 16 at 108.
Such actuation will cause the energization of solenoid 80 and consequent closure of blades 60 and 62 to secure exposure chamber 28. In response to a sienal from switch S4 that blades 60 and 62 have blocked the optical path of the camera, a dc motor 110 positioned upon inner frame 30 at the rear- -ward portion of the camera is energized to drive a gear train shown general-ly at 112 extending along one side of base 18. As gears within train 112 :, ;,:, ' 1~)43148 are rotated, a cycle phase cam 114 is rotated. Cam 114 is designed for driving contact with a cam follower 116 which, in turn, is fixed to the in-ward side of a ram 118. Ram 118, in turn, is connected through a bell crank 120 to a drive spring system (not shown). That drive spring system, in turn, serves to bias reflex component 50 to pivot about hinges 122 and 124 into a position abutting the inner surface of rear wall 12. Actuation of this drive arrangement is carried out by rotating cam 114 a distance sufficient to release follower 116 such that the spring drive moves ram 118 forwardly ~ -and reflex component 50 upwardly. When component 50 is seated against the inner side of rear wall 12, a second mirror 126 is positioned to intercept light within the optical path of taking lens 42 and redirect it to the ex-posure plane of the camera. For typical ambient operation, solenoid 80 then is de-energized to permit spring 82 to drive blades 60 and 62 to define pro-gressively varying aperture values about the optical path of the camera. A
light sensing network positioned behind entrance optics 72 evaluates scene brightness and defined aperture valuations to provide a command signal which is utilized to effect the re-energization of solenoid 80 and the consequent closure of blades 60 and 62 to terminate an interval of exposure. Solenoid 80 remains energized following the exposure interval and motor 110 again is energized to drive gear train 112. The consequent rotation of cam 114 moves ram 118 rearwardly to, in turn, cock the mirror erecting spring system and move reflex component 50 into its exposure plane securing orientation. Si-multaneously with this activity, pick mechanism 40 is actuated to urge the exposed film unit forwardly through slot 38 in cassette 32 and into the bite of rolls 128 and 130 of a processing station 132. Power for rotation of these rolls is derived from gear train 112 by connection with roll 128. A
detailed description of the optical path conversion mechanism and drive for processing station 132 is provided in United States Patent ~o. 3,714,879.
Looking additionally to Figure 7, the arrangement for actuating two switches designated S3 and S5 during the movement of ram 118 is revealed in more detail. As ram 118 commences forward movement in conjunction with the noted release of reflex component 50, a tab 134 extending inwardly from ~043148 the midportion of ram 118 releases from engagement with the insulative cap 136 of a resilient leaf 138 of switch S5. Switch S5 additionally includes a resilient leaf 140 which is supported along with leaf 138 from an insulative base 142 fixed to base 18 of the camera 10. Accordingly, the contacts rep-resented by leaves 138 and 140 of switch S5 are opened substantially in syn-chronism with the initial movement of component 50 from its viewing or ex-posure plane position. This represents a first signal condition of the switch which is retained until photographic cycle termination.
The spring bias rotational travel of reflex component 50 about its hinges 122 and 124 from its seated exposure position entails about 37 . When reflex component 50 somewhat closely approaches this seated position against rear wall 12 and mirror 44, or at about 32 of rotation, tab 134 contacts the insulative cap 144 of a resilient leaf 146 of switch S3. Leaf 146 nor-mally is in contact with a second leaf 148 of switch S3 and both leaves are supported from an insulative base 150, also fixed to camera base 18. Serv- ~
ing to monitor the movement of reflex component 50, the open contacts of ;~ ~ :
switch s3 provide a signal condition evidencing that the component 50 has approached its seated position against rear wall 12. Of course, during the post-exposure operation of camera 10 and consequent driven movement of ram 118 in a rearward direction, tab 138 releases from engagement with the cap 144 of switch s3 to permit it to close and re-engages cap 136 of switch S5 to close it. The latter closure of switch S5 provides a signal utilized to terminate energization of motor llO as well as energization of solenoid 80.
Flash illuminated pictures are taken with camera lO utilizing the packaged linear array of flashlamps as shown at 160 in Figure l. Array 160 is formed having five flashlamps along with corresponding reflectors facing outwardly from each face thereof. The five flashlamps are connected by printed circuitry or the like to a downwardly extending mounting blade as at 162. Each side of blade 162 is formed having conductive surfaces which serve as terminals leading to each flashlamp and, additionally7 the mount is con-figured having a conductive surface unconnected with the flash-lamps which serves to close appropriate circuitry within the camera to cause it to carry , out a flash cycle. Appropriate connection with the circuitry of camera 10 is made upon inserting the blade 162 of array 160 into a mount 164 posi-tioned upon the top surface of exposure housing 16.
When in a flash operational mode, camera 10 may utilize a follow-focus exposure control arrangement. Under such an arrangement, aperture is established in correspondence with focal distance for the light anticipated at a subject. Accordingly blades 60 and 62 are interrupted mechanically during their opening movement at a position corresponding with focus setting.
Looking additionally to Figure 8, the intercept mechanism for carrying out this function is shown in detail. The focus wheel for camera 10 is shown at 166 and is located in a forward portion of exposure housing 16. Wheel 166 is interconnected with the bezel of taking lens 42 through an idler gear, a portion of which is shown at 168. To relate the focus position of wheel 166 with the aperture definition of blades 60 and 62, an intercept linkage is provided which includes a cam follower linkage 170 having a follower pin 172 which rides within a face groove cam formed within the inner surface of fo-cus wheel 166. Follower link 170 is pivotally mounted over the centrally disposed axle of wheel 170 at 174. Accordingly, with the rotation of wheel 166, linkage 170 is manipulated laterally. The upper portion of follower linkage 170 is configured to pivotally support an arresting link 176. Link 176 is configured having a surface 178 which is movable into the locus of travel of a corresponding intercept pin 180 extending outwardly from walking beam 74. Normally biased by a spring loaded pin 182 away from such locus of travel, arresting link 176 is moved into an intercepting orientation as a result of the energization of a second solenoid 184 mounted rearwardly and above solenoid 80 within housing 16. Solenoid 184 is configured having an excitation winding 186 which surrounds a centrally disposed cylindrical plunger 188. The tip portion of plunger 188 is connected to the central por-tion of a pull-down bar 190 which, in turn, is loosely pinned at 192 to an extension 194 of the bracket of solenoid 184. The opposite tip of pull-down bar 190 is aligned so as to be selectively contactable with an extension 196 of arresting link 176. Accordingly, with the energization of solenoid wind-1~43~48 ing 186, plunger 188 is retracted to, in turn, cause pull-down bar 190 to move arresting link 176 into an orientation wherein its surface 178 is with-in the locus of travel of pin 180. Note that the outer tip of pin 180 is configured having a flanged portion 198. With such an arrangement, winding 186 of solenoid 184 may be de-energized following the noted interception.
Inasmuch as opening spring 82 maintains walking beam 74 in a biased condi-tion enhancing the interception, no continued energization of winding 186 is required. At the conclusion of a flash exposure interval, solenoid 80 is energized to close blades 60 and 62 and camera lO cycles through a normal post-exposure operational phase.
Referring to Figures 2, 3, 3A and 4, a schematic diagram for a control circuit suited to regulate the instrumentalities of camera lO as well as a logic block diagram and related energization state truth tables are re-vealed. The circuit of Figure 2 includes a series of multi-function GATES
designated A-F. The inputs and outputs for these GATES are depicted in Boolean enumeration in the noted truth table of Figure 4. For purposes of facilitating an understanding of the tabulations of Figure 4 and the descrip- ~-tion of the circuit diagram, when the inputs or outputs of the listed com-ponents are at ground reference potential, they are referred to as "low"
20 and, additionally, such input or output may be digitally identified as "0".
Conversely, when these inputs and outputs assume or approach the voltage status of the power supply of the control circuit, they are referred to as being "high" and are given the binary designation "1". It may be noted fur-ther that certain of the GATE input terminals receive common signals. These common signal terminals are identified by the letters "a - g". Additional-ly, the outputs of GATES A - F are identified, respectively, by the letters .. ..
tl - t6.
In the disclosure to follow, the control circuit of the camera is described as the camera is operated in a flash operational mode. Looking initially to Figures 2 and 3, as camera 10 is unfolded into its erected con-figuration, an interlock switch designated S6 in main power lead 212 is closed to permit a battery power supply 214 to energize the circuit through lU43148 main power lead 216 in response to the momentary depression of a switch des-ignated S1. This switch is operator actuated upon depression of start but-ton 108 (Figure 1). As depicted by blocks 218 and 220, camera 10 will be in an initial state wherein exposure mechanism blades 60 and 62 are fully open and reflex component 50 is oriented to block the exposure plane of the cam-era. For flash operation, flash array 160 is inserted to close a switch designated S2. As indicated in Figure 3, viewing and focusing may now take place following which the operator depresses switch S1. So activated, the main power lead 216 serves to energize a latching network depicted function-ally by block 224. Network 224 operates under two energization states. The first of these states permits the operator of camera 10 to abort a photo-graphic cycle until such time as switch S5 is opened. Following the opening of switch S5, the second energization state at network 224 permits a contin-uous powering of the circuit from lines 216 and 226 even though the contacts of switch Sl are separated.
The output of latching network 224 is present at a power distribu-tion line 228 which, in turn, is connected to a branch power line 230.
Branch power line 230 is connected to a second branch power line 232 and these two lines serve to power and assert initial control conditions over the various gates and components within the entire circuit.
These conditions, as they exist at the commencement of a flash photographic cycle, are tabulated at Event No. l in Figure 4. As is illus-trated in connection with function block 234 in Figure 3, the initial opera-tional event to take place is that of energizing the excitation winding 84 of solenoid 80. This winding is indicated by an 84' in Figure 2. Energiz-ation of winding 84 is carried out by asserting select input conditions to the input terminals of multi-function GATES A and B. Looking to these in-puts, input terminals "a", commonly connected by lines 236 and 238, exhibit an initial "low" status by virtue of their connection along line 240 to the output of a trigger circuit depicted generally at 242. Trigger 242 may be of a conventional design, for instance, a Schmitt-type having a normally conducting output stage and a normally non-conducting input stage. These ~ .
1043~48 stages operate to reverse their conductive states very rapidly upon receipt at the input stage of a signal which is at least equal to a predetermined triggering reference or threshold level. Energized from branch power line 230 from line 244 and coupled to ground through line 246, the output at line 240 of trigger 242 remains "low" until a signal above the noted triggering reference level is received at any of its input lines. Upon receipt of such a signal, the output at line 240 assumes a "high" status. For exposure con-trol under ambient lighting conditions, such an input signal is received from along line 246 and is generated from an ambient control network depict-ed functionally by block 248. Function 248 is energized from line 228 and is coupled to ground through line 250.
Gate input terminal "b" of GATE A evidences a "low" state by vir-tue of its eonnection through line 252 and limiting resistor 254 to ground.
Line 252 also is eoupled through line 256 to a eorresponding gate input ter-minal "b" of GATE C and, through line 258 to one eontaet of switeh S4.
Switeh S4 eorresponds with that deseribed in eonjunetion with Figure 5 and is shown having a common terminal "C" corresponding with contact rod 100 as well as alternate contacts "A" and "B", the latter contact being coupled to line 258. When switeh S4 assumes condition "C-A", it is eonsidered to be in an orientation wherein the eontaet rod 100 is in eontaet with outwardly disposed eontaet surfaee 104. Under sueh eonditions, blades 60 and 62 will be in some open or aperture defining orientation. When switch S4 assumes eondition "C-B" it is eonsidered to be in the orientation described wherein -eontaet rod 100 is in eontaet with eondueting surfaee 102, blades 60 and 62 assuming a fully elosed orientation. Inasmueh as switeh S4 is normally in a "C-A" eondition at the eommeneement of a photographic cycle, line 258 is open cireuited. At sueh time as switeh S4 assumes a "C-B" eondition, line 258 is energized through line 260 to alter the status of eommon input ter-minals "b" to a high state.
Gate input termainal "e" of GATE A is coupled through line 262 and line 264 to the eorresponding eommon input terminal of GATE B. The initial "low" status of eommon input terminals "e" is derived as a result of the connection of line 264 through line 266 to the output line 268 of a trigger 270. Similar to trigger 242, the output of trigger 270 is normally "low"
and will assume a "high" status in response to the receipt of a signal above a predetermined triggering or threshold value at its input line 272. Trig-ger 270 operates to retain common input terminals "c" at A "low" state dur-ing the pre-exposure phase of a photographic cycle.
With the assertion of the above-described input logic, the resul-tant output, "tl" of GATE A present at line 274 is "high" and is imposed at the base of an NPN transistor Q1 The emitter of transistor Ql is coupled along line 276 to ground while its collector is connected to line 278. Line 278, in turn, connects the excitation winding 84' of the solenoid 80 to power line 216. The "high" status at line 274 serves to forward bias the base-emitter Junction of transistor Ql' thereby energizing winding 84' to cause exposure mechanism blades 60 and 62 to move to block the optical path of camera 10. The output "t2" of GATE B is "low" at the commencement of a photographic cycle and is coupled through a current limiting resistor 280 and line 282 to line 278. GATE B serves a powering down function wherein solenoid 80 is energized at a lower current level when the plunger thereof approaches its fully retracted position. To carry this out, GATE B diverts solenoid energizing current through limiting resistor 280. When transistor Ql is forward biased, however, this diversion through resistor 280 is in-significant.
As blades 60 and 62 reach their closed terminal orientations, the contacts of switch s4 transfer to derive a "C-B" condition. As noted at Event No. 2 of Figure 4, this condition for switch S4 alters the "b" input terminal state at line 252 from a "low" to a "high" to, in turn, cause the output "t1" of GATE A to become "low". In consequence, the forward bias at transistor Ql is removed and the power down energization of winding 84' en-sues.
This transfer of switch S4 to a "C-B" condition also alters the output "t3" of GATE C. Prior to such switch transfer, the output "t3" at line 284 of GATE C is "high". This "high" output is established by virtue 1043~48 of the low states of common input terminals "a" and "b" as well as a low value for common input terminal "d". However, an inverter (now shown) re-verses the output of GATE C and the input to the motor control 290. Gate input terminal "d" of GATE C remains "low" in consequence of its connection ~;
through lines 286, 288 and closed switch S5 to ground. With the transfer of the switch S4 common contact to a "C-B" orientation, and the consequent alteration of common input terminal "b" to a "high" value, the output "t3"
of GATE C converts to a "low" state which is inverted to a "high" state to effect the actuation of motor control function 290. Control 290 is coupled with main power lead 216 through line 292 and to ground through line 294.
Motor control function 290 serves to energize motor 110 to cause gear train -112 to commence to rotate cycle phase cam 114. As described in connection with Figure 6, such rotation continues until ram 118 is released to cause the opening of switch S5 as identified in line 288 in Figure 2. With this release of ram 118, camera 10 is committed to the completion of an exposure cycle. Further, it is important to note that switch S5 provides a unique closed signal condition prior to an exposure interval and a unique open con-dition during and following that exposure interval.
As disclosed at Event No. 3, the opening of switch S5 alters the status of input terminal "d" of GATE C to a "high" condition which, in turn, serves to alter the output "t3" of GATE C to a "high" state which is invert-ed to a "low" state. As a consequence, motor control function 290 de-ener- -gizes and brakes motor 110. As ram 118 is driven forwardly, reflex compo-nent 50 is spring driven toward its exposure orientation against the back wall 12 of camera 10.
The alteration of the status of common input terminal "d" also serves to signal latching network 224 to assume its second energization state by virtue of its connection with input line 286 through lines 296 and 298.
As described in connection with the mounting of flash unit 160 within camera mount 164, the camera 10 is set for flash mode operation with the closure of a mode switch identified in Figure 2 as S2. Closure of switch S2 takes place with the making of a contact between a conducting sur-1~43148 face on mounting blade 162 and with a contact within housing 16. Thus closed, switch S2 introduces a high value signal from power distribution line 228, resistor 300, line 296, resistor 302 and line 304 to ambient con-trol circuit 248. This high signal introduction along line 304 serves to disable control circuit 248. Switch S2 is shown located within line 296 and is coupled to ground through resistor 306. Line 304 also extends through line 308 to common input terminals "e" of GATES E and D. Accordingly, with the opening of switch S5, a "high" signal is asserted from line 228 through switch S2 and lines 304 and 308 to alter the state of input terminals "e" to a "high" value. Lines 310 and 312 connect common gate input terminals "a"
of GATES E and D to line 238 and, therefore, are low during the initial por-tion of a photographic cycle. Input terminal "f" of GATE D remains "low" in consequence of its connection through lines 314, 316, diode 318, closed switch S3 and ground. Switch S3 will be recognized as that described in connection with Figures 1 and 6. Diode 318 serves to suppress spurious sig-nals and the like generated in the operation of switch S3.
Input terminal "g" of GATE E retains an initial "low" status as a result of its connection along line 320 to the output stage of the trigger 322 of an R-C timing network shown generally at 324. Trigger 322 may be of a Schmitt variety, having a normally non-conducting input stage operating in conJunction with a normally conducting output stage. These stages rapidly reverse their conductive states upon receipt of a threshold level signal at the input stage.
As described in connection with Event No. 3 of Figure 4, with the opening of switch S5, the output "t4" at line 326 of GATE D becomes high.
Line 326 is coupled to the base of an NPN transistor Q2. The emitter of transistor Q2 is coupled through line 328 to ground, while its collector is coupled through lines 330 and line 332 to power lead 216. Also within line 332, is the winding 186 (shown primed) of solenoid 184. Accordingly, as described in connection with Figure 7, surface 178 of intercept link 176 is drawn to an intercepting location within the locus of travel of walking beam pin 180. At this time, output "t5" of GATE E converts to a "low" permitting . -- 19 --.
. .
,:., ., . : . ', :
'' : , ' ' '' ' ' 1(~4314191 current flow through line 334. However, as a result of the presence of a current limiting resistor 336, the value of such current is dismissable.
Looking momentarily to Figure 3, the de-activation of ambient con-trol function 248 is depicted by block 340, the energization of motor 110, release of reflex component 50 and opening of switch S5 is depicted at block 342 and the commitment of camera 10 to completion of a photographic cycle along with the energiæation of solenoid 184 is represented at block 344.
As shown at block 346 in Figure 3 and represented at Event No. 4 in Figure 4, as reflex component 50 is elevated through about 32 of rota-tion, switch S3 is opened. The technique for such opening actuation has been described in connection with Figure 6 and serves in a first aspect to activate an R-C timing network identified generally at 350. Formed of a tim-ing resistor 352 and a timing capacitor 354 coupled within line 232 to ground, network 350 serves to delay the commencement of the exposure phase of a photographic cycle. This delay is selected in accordance with a time constant sufficient to permit reflex component 50 to fully seat at its ex-posure position. Network 350 is activated upon removal of a shunt about capacitor 354 which is constituted by a line 356, connected from a point intermediate capacitor 354 and resistor 352 at input line 272 to ground through a diode 358 and switch S3. Diode 358 serves to isolate line 356 from spurious signals and the like.
Switch S3 also operates under a second aspect of asserting a pow-er-down condition upon the winding 186' of solenoid 184. As switch S3 is opened, a "high" signal is imposed from lines 316 and 314 into input ter-minal "f" of GATE D. This input alteration changes output "t4" from a "high" to a "low" state. As a consequence, the forward bias at transistor Q2 is removed and energizing current for excitation winding 186' of solenoid 184 is diverted through a path including current limiting resistor 336 and output line 334 of GATE E.
When delay network 350 atains the requisite threshold level of trigger 270, the output thereof at line 268 converts from a "low" state to a "high" state. As described in conjunction with blocks 360 and 362 of Figure .. . . . . . .
. . ' - : ' ~' : ' ' ., ' .- ,. ~ .
.
104314E~
3 and at Event No. 5 of Figure 4, this transition serves to activate flash delay network 324 and to de-energize excitation winding 84' of solenoid 82.
The exposure phase of a photographic cycle is initiated and common input terminals "c" of GATES A and B are converted to a "low" state. This conver-sion changes output "t2" of GATE B to a "high" state, thereby de-energizing excitation winding 84'. Exposure mechanism blades 60 and 62 are released for movement toward their open terminal positions.
The fixed delay provided by flash delay network 324 is selected in accordance with the amount of time required for blades 60 and 62 to achieve their terminal open positions. However, the blades usually are captured at some intermediate position by interceptor link 176 (Figure 7). To activate network 324, the "high" output of trigger 270 at line 268 is converted to a "low" state by an inverter 364. From inverter 364, the resultant "low" sig-nal is introduced along line 366 to the base of an NPN transistor Q3. The collector of transistor Q3 is connected along line 368 at a point represent-ing a junction between a timing resistor 370 and a timing capacitor 372.
The opposite side of capacitor 372 is connected to line 374 which, in turn, is coupled between the emitter of transistor Q3 and line 376 extending from trigger 322 to ground. Trigger 322 is connected with branch power line 232 from along line 378. During the time-out of delay network 350, the "high"
signal from converter 364 at line 366 serves to forward bias the base-emit-ter junction of transistor Q3, thereby imposing a shunt about capacitor 372.
When trigger 270 fires, its inverted output at line 366 removes the forward bias of transistor Q3 to remove the noted shunt and activate network 324.
As described in connection with Figure 5 at Event No. 6 of Figure 4 and at block 360 in Figure 3, when exposure mechanism blades 60 and 62 commence to open, switch S4 assumes a "C-A" contact condition. This condi-tion serves to activate by energization a flash firing circuit 380 from along line 382. Having a firing input connected to line 334 and coupled to 30 ground through line 384, circuit 380 serves to select and fire individual flashlamps within the linear array as shown at 160 in Figure 1. The ener-gization of circuit 380 is depicted in Figure 3A at block 386.
,.
16~43148 As described in connection with Figure 7, when exposure mechanism blades 60 and 62 reach their follow-focus orientation, pin 180 of walking beam 74 is captured to establish taking aperture. This capture is repre-sented in Figure 3 at block 388.
As represented at Event No. 7 in Figure 4 and at blocks 390 and 392 in Figure 3A, at the time-out of flash delay network 324, the output of trigger 322 alters from a "low" condition to a "high" state to, in turn, act through line 320 to alter the condition of input terminal "g" of GATE E from a "low" to a "high" state. This change alters the output "t5" from a "low"
state, permitting the energization of excitation winding 186', to a "high"
state de-energizing solenoid 184. As discussed in connection with Figure 7, walking beam 74 does not move inasmuch as flange 198 of pin 180 mechanically captures camming edge 178 of interceptor link 176. The pre-established ap-erture of the exposure mechanism remains unaltered. With this de-energiz-ation, a fly-back pulse is generated from winding 186' which is witnessed at lines 332, 330 and 334. Line 330 is connected through resistor 336 to in-put line 334 of flash firing circuit 380. Circuit 380 responds to the noted fly-back pulse and ignites a select flashlamp within flash array 160.
As depicted in block 394 of Figure 3A, the control system of Fig-ure 2 provides for a fixed interval of exposure corresponding with the ig-nition time of a flashlamp within array 160. With the generation of a "high"
state from trigger 322 at line 320, common input "g" of AND GATE F assumes a "high" state by virtue of its connection with line 320 through line 398.
The second input to GATE F is represented as a common input "e" which is coupled through line 400 to line 304. Line 304 maintains a "high" state with the closure of switch S2. The resultant "high" output of GATE F is present at line 402 and serves to activate flash timing network 396. Net-work 396 includes a timing capacitor 404 coupled within line 406 between an input to trigeer 242 and eround. The opposite side of network 396 is pres-ent as a timing resistor 408 present within line 402 and coupled with line 406.
As depicted at blocks 410 and 412 and represented as Event No. 8 1~43~8 in Figure 4, when network 396 achieves the threshold or triggering level of trigger 242, the output thereof at line 240 alters from a "low" to a "high"
state. The resultant "high" OUtpllt alters the status of common gate input terminals "a" to a corresponding "high" status. As a consequence, the out-puts of GATES A and B are inverted. For instance, output "tl" of GATE A is changed to a "high" status and output "t2" of GATE B is changed to a "low"
status. A "high" output at line 274 serves to forward bias the base-emitter Junction of transistor Ql' thereby energizing solenoid winding 84' from line 278. Solenoid 80 commences to retract plunger 90 to, in turn, drive expo-sure mechanism blades 60 and 62 into a closed orientation. As shown at Event No. 9 in Figure 4, as blades 60 and 62 reach closure, switch S4 trans-fers to a "C-B" orientation isolating line 382 of flash firing circuit 380.
This alteration of switch S4 additionally converts the status of input ter-minals "b" at GATES A and C from a "low" to a "high" state. As shown at Event No. 9 in Figure 4 and at block 414 in Figure 3A, the latter input alteration changes the output "t3" of GATE C to a "high" status, thereby ac-tivating motor control function 290 to, in turn, energize motor 110. The control system thereby is caused to progress to its post-exposure phase dur-ing which, as shown at blocks 416 and 418 of Figure 3A, an exposed film unit is processed and reflex component 50 is driven toward its position covering the exposure plane of camera 10. As shown at Event No. 10 in Figure 4~ at the commencement of reflex component movement, switch S3 is closed and, when the reflex component reaches its exposure plane covering orientation, switch S5 is closed as shown at Event No. 11 and at block 420 in Figure 3A. Thus closed, switch S5 serves to shut down the entire system including the de-energization of winding 84'. In consequence, as shown at block 422 at Fig-ure 3A, exposure mechanism blades 60 and 62 are driven by opening spring 82 into their fully open orientation. Note that switch S5 reassumes its closed or initial position only at the termination of a given photographic cycle.
Looking now to Figure 8, the configuration of flash firing circuit 380 is revealed in more detail. For purposes of clari~ty, where leads or lines previously identified in Figure 2 are reproduced in Figure 8, they are :~ , , , ' , ' ' 1~43~4~
presented primed ('). In the figure, a plurality of flashlamps 430a-430c are shown connected, respectively, to the terminals 432a-432c of three lamp circuit lines 434a-434c. Circuit lines 434a-434c are connected in parallel circuit relationship to one another between power leads 436 and 438. Lead 436 is coupled to battery power lead 216 (Figure 2) through switch S4 and line 382'. Correspondingly, power lead 438 is coupled to ground through line 384'. Primary switching for each of the flash-lamps 430a-430c is pro-vided by SCR's 440a-440c positioned within respective lines 434a-434c. The gate electrode 442a of SCR 440a is connected to the output of a level de-tecting network 444. Connected between power leads 436 and 438 through respective lines 446 and 448, network 444 is configured for receiving the flash energizing pulse from line 334'. This pulse is of short duration, for instance about 10 microseconds and is generated as a fly-back pulse from the de-energization of solenoid winding 186'.
The gate electrodes 442b and 442c of respective SCR's 440b and 440c are connected with sequence logic networks 450 and 452. ~etwork 450 is connected through line 454 to line 434a at the anode side of SCR 440a and, additionally, to line 434b through line 456. Similarly, logic network 452 is coupled with line 434b at the anode side of SCR 440b through line 458 and to lamp circuit line 434c at the anode side of SCR 440c through line 460. Networks 450 and 452 serve to detect the previous firing of a flash-lamp, for instance at 430a, and cause the circuit to select a next flash-lamp, i.e., 430b, by relaying a firing or gating pulse to the appropriate SCR thereof, i.e., 440b. Additionally, networks 450 and 452 serve to estab-lish a predetermined resistance or impedance intermediate the sequence of lamp circuit lines 434a-434c. Of course, it is understood, that the circuit is capable of accommodating more than three flashlamps through the expedi-ence of adding additional lamp circuit lines and sequence logic networks.
Described in detail in United States Patent No. 3,676,o45, sequence logic networks 450 and 452 respond to the impedance witnessed at the terminals of a fired flashlamp to select a next succeeding lamp. Generally, a value of impedance meant to represent a fired flashlamp is selected in the design of ~' ' - ' ': .
1C)43~48 the circuits, for instance, 75 ohms or greater, may be considered to rep-resent an open lamp circuit. Such an arrangement accommodates for misfir-ings of lamps or inoperative lamps within an array.
Returning to Figure 3, the operation of a principal embodiment of the instant invention is revealed as it relates with the photographic cycle of camera 10. As shown at block 462, with the closure of switch Sl to com-mence a photographic cycle, a flashlamp status detection arrangement is ac-tivated. This detection arrangement surveys the terminals of an array 160 to assure that an unexpended flashlamp remains. In the event that no such flashlamp is present in an operational orientation, an inhibit network is activated as represented at block 464. Network 464 alternately may prevent the energization of motor 110 as represented by dashed lead 466 or may re-act to prevent energization of solenoid 80 as represented by dashed lead 468. Simultaneously, an expended array warning may be energized as at 470 to apprise the operator of the cause of camera 10 not completing a photo-graphic cycle. Note that in the arrangement, the blocking or prevention of the carrying out of a photographic cycle takes place before cycle commitment 344. Recall that this commitment takes place when the circuit is electrical-ly latched and ram 118 has been released. The inhibition of a photographic 20 cycle at the commencement of motor energization as represented by dashed lead 466 provides particular advantage to the utilization of an expended ar-ray warning such as a light emitting diode. Looking to Figure 14, the view-ing components of camera 10 are represented in conjunction with an eye sta-tion 472 and a signal lamp 474. Note that lamp 474 is very small and locat-ed remotely from the entrance optics of viewing station 52. By permitting the energization of solenoid 80 as represented at block 234, the operator at eye station 472 will encounter a pronounced darkness effect due to the closure of blades 60 and 62. Simultaneously, the very small lamp 474 will be illuminated to apprise the operator that flash array 160 is inoperative.
30 Even though lamp 474 is displaced, the blocking of viewing through station 52 makes the illumination from small lamp 474 readily perceptible.
Returning to Figure 2, a network serving to detect that no valid '' ' ~ , .
1~43~4~
flashlamp exists in array 160 as it is oriented on camera 10 is represented in block form at 476, while a network serving to inhibit the operation of motor control 290 is represented at block 478. Network 476 is responsive from along line 480 to the closure of switch S2. Additionally, network 476 is connected with flash firing circuit 380 from along leads 482 and 484.
These leads are reproduced in primed form in Figure 8 and are located to respond to the impedance witnessed across both last l&mp terminal 432c as well as the accumulated values of resistance represented by the serial in-tercoupling of sequence logic networks 450 and 452. Power input to network 476 is derived from lines 481, 485 and 487, while connection with ground is provided through line 486. Inasmuch as line 485 is coupled to line 382, which in turn is coupled to power lead 216 through switch S4, a line 488 in-corporating a resistor 490 is coupled in shunt across the "C-A" contacts of switch S4, i.e., between lines 382 and 260. Resistor 490 is selected having a value sufficient to power down flash firing circuit 380, while remaining adequate to permit the logic operation of detect network 476. Inhibit net-work 478 is coupled to receive the unique signal of network 476 from along line 492, while its connection for disabling the operation of motor control 290 is provided from along line 494. Recall that the output "t3" of GATE C
at line 284 is "high" at such time as motor control circuit 290 energizes motor 110. Accordingly, network 478 diverts this high signal along line 494 to ground through line 496 to halt a photographic cycle. Network 478 also -is coupled through line 498 to line 288 above switch S5. As represented at block 500 in Figure 3A, this connection is required inasmuch as detecting network 476 would activate network 478 just following the firing of a last flashlamp upon the operative side of an array to prevent the completion of that valid photographic cycle. Inasmuch as switch S5 has unique orienta-tions at the commencement of a photographic cycle and during and following the initiation of optical path conversion, it is utilized to disable inhibit network 478 for this particular situation. ~etwork 478 is energized from auxiliary power line 232.
The detect and inhibit operation as encompassed within the dashed -1~43148 boundary 502 in Figure 2 is represented in detail in the embodiment of Fig-ure 9. Looking to the figure, the detecting function of the circuit taps or is coupled across the final flashlamp to be fired within one operational face of an array by previously described leads 482' and 484'. Lead 484' ex-tends through a blocking diode 504 to the base of a PNP detecting transistor Q4. The emitter of transistor Q4 is coupled through line 506 to diodes 508 and 510 to lead 482' and power input lead 485', while its collector is cou-pled through line 512 and resistor 514 to the base of an NPN transistor Q5.
A hold-off resistor 516 is connected between leads 482' and 484'. The base of transistor Q4 also is coupled through line 518 and a resistor 520 to the collector of NPN transistor Q6. The emitter of transistor Q6 is connected to ground through line 522, while the base thereof is coupled through line 524 and resistor 526 to connection with lead 487'. With the latter arrange-ment, the base-emitter junction of transistor Q6 may be forward biased into conduction with the depression of switch Sl. Under such conditions wherein transistor Q6 is on, transistor Q4 may sample the impedance and consequent voltage drop between leads 482' and 484'. Under conditions wherein a valid flashlamp is present within array 160, transistor Q4 remains off. However, with the expenditure of all lamps within the array, resistance across leads 482' and 484' approaches infinity and equals or exceeds the voltage drop represented by diodes 508, 510 and the base-emitter junction of transistor Q4. In consequence, transistor Q4 conducts. The sensitivity of this for-ward biasing of transistor Q4 also is controllable by selecting the value of resistance at resistor 520.
To provide for sampling operation of the circuit only during such time as a flash array is inserted in camera 10 and the camera is operating in a flash mode, a transistor Q7 is provided to selectively shunt the for-ward bias asserted at transistor Q6. The emitter of transistor Q7 is cou-pled to ground through lines 528 and 530, while its collector is coupled throueh line 532 to line 524 at the base of transistor Q6. The base of tran-sistor Q7 is connected through line 534 and resistors 536 and 538 to voltage supply lead 481'. Accordingly, transistor Q7 is normally biased into con-.
.
.
1~43~48 duction to, in turn, divert the forward biasing current from the base of transistor Q6. The forward bias asserted at transistor Q7 is removed, how-ever, by virtue of the connection of line 480' with line 534. Line 480' connects line 534 with ground when switch S2 is closed.
The collector of transistor Q5 is coupled with line 540 which, in turn, serially connects a light emitting diode (LED) 542, along with resis-tors 544 and 546 to line 548. The emitter of transistor Q5 is connected through line 550 to line 530. Accordingly, when transistor Q4 conducts, transistor Q5 is turned on to permit current passage from line 548 to il-luminate diode 542. Diode 542 corresponds with the illuminating device 474 described in connection with Figure 14.
The base of a PNP transistor Q8 is coupled by line 552 to line 540at a point intermediate resistors 545 and 546. The emitter of transistor Q8 is coupled with line 548, while its collector is connected through line 554, resistor 556 and line 558 to the base of an NP~ transistor Qg. The emitter of transistor Qg is coupled to line 530, while its collector is coupled to line 494'. Line 494' connects with the output line 284 of GATE C.
When transistor Q5 is on in consequence of transistor Q4 detecting an ex-pended array, transistor Q8 is drawn into conduction to, in turn, drive transistor Qg to a forward biased state. As a result, conduction is permit-ted from line 494' to divert the "high" signal at line 284 and prevent motor enereization. As is apparent, when an expended array is inserted in camera 10, LED 542 is energized to provide a perceptible warning and camera 10 is permitted to cycle only to the extent that blades 60 and 62 are driven to a closed position.
As described in connection with function block 500 of Figure 3A, it is necessary that transistor Qg not be forward biased in response to the ignition of a last flashlamp within an array. To prevent such occurrence, an ~PN transistor Q1o is positioned to selectively divert forward biasing current from line 558. In this regard, the collector of transistor Qlo is coupled through line 560 to line 558, while its emitter is coupled through line 562 to line 530. The base of transistor Qlo is coupled through resis-1~43~48 tor 564, line 566 and resistor 568 to lead 481'. Lead 481' in turn is coupled w~th voltage supply line 232'. The opposite side of line 566 is connected with lead 498', which in turn is coupled with switch S5. Accord-ingly, at the commencement of a photographic cycle wherein one last flash-lamp is available within array 160, transistor Q4 will be off to permit the control system of camera 10 to cycle to the extent that the last flashlamp is ignited. At this point within a photographic cycle, switch S5 is open and transistor Qlo is forward biased to remove drive current from line 558 and prevent the forward biasing of transistor Qg. As a consequence, the camera is permitted to carry out the post-exposure portion of a photographic cycle.
Under conditions in which all flashlamps within an array are ex-pended, transistor Qg will be forward biased inasmuch as switch S5 is closed during the initial portions of a photographic cycle. When so closed, for-ward biasing current from line 566 is diverted from transistor Qlo.
Another embodiment for the detect and inhibit feature of the in-vention is presented in Figure lO. In this arrangement, resistor 490 ex-tending between lines 260 and 382 is not required inasmuch as the embodiment utilizes the latching characteristic of a silicon control rectifier (SCR) to maintain power levels for logic performance. The remaining structure of the embodiment is substantially the same as the embodiment of Figure 9.
Looking to the Figure, a detecting PNP transistor Q11 is coupled such that its base at line 570 is connected with lead 484' through a block-ing diode 572. The emitter of transistor Qll is coupled through line 574, diodes 576 and 578 to lead 482'. It will be recalled that leads 482' and 484' couple across the terminals leading to the final flashlamp of the flash firing circuit 380. Lead 482' is powered through resistor 580 and lead 382' from the "C-A" terminal connection of switch S4. The emitter of transistor Qll is coupled through line 582 and resistor 584 to the gate electrode of an SCR 586. The base connecting lead 570 of transistor Qll additionally is coupled through line 588 and resistor 590 to the collector of an NPN tran-sistor Ql2' The emitter of transistor Ql2 is coupled through line 592 to 1~43~48 ground, while its base is coupled through line 594 and resistor 596 to lead 487'. It will be recalled that lead 487' is activated upon the closure of start switch Sl. Base connecting line 594 of transistor Q12 also is coupled ~hrough line 598 to the collector of an NPN transistor Q13 The emitter of transistor Q13 is coupled to ground, while its base is coupled through line 600, resistors 602 and 604 to lead 481'. Lead 481', in turn, couples with a branch power line of the circuit of Figure 2. Base connecting line 600 also is coupled through line 606 to lead 480', which, in turn, is connected to the upper side of switch S2.
With the above-described arrangement of transistors Q12 and Q13' an anding logic combining switches Sl and S2 is provided such that with the de-pression of switch Sl, transistor Q12 is forward biased to permit the selective forward biasing of transistor Qll in the event of a defective last flashlamp.
Should the contacts of switch S2 not be made, however, transistor Q13 is forward biased to, in turn, remove the forward bias of transistor Q12 Assuming an inserted flash array to be expended to cause the conse-quent forward biasing of transistor Qll' current flow is present at line 582 to gate SCR 586 into conduction. The anode side of SCR 586 is coupled through line 610, light emitting diode 612, resistors 614 and 616 to lead 487'. Lead 487' is coupled for energization in conjunction with the depression of switch Sl. The cathode side of SCR 586 is connected through line 618 to ground. With this arrangement, with the forward biasing of transistor Qll' SCR 586 serves to energize LED 612 to apprise the operator of an expended flashlamp. Because of its latching characteristic, SCR 586 maintains this conduction even though switch S4 transfers to a contact orientation "C-B". However, when the latter orientation is realized, an NPN transistor Q14 is forward biased by virtue of the activation of line 620 from lead 258'. Line 620 is coupled through resis-tor 622 to the base of transistor Q14' the collector thereof is coupled through line 622 to gate line 582 and the emitter thereof is coupled to ground through line 624. With this arrangement, the gating signal present at line 582 is coupled to ground to divert any noise transients generated from oper-~a!43148 ation of motor 110 when switch S4 is in the noted orientation.
As in the embodiment of Figure 9, the inhibit function of the instant embodiment includes a PNP transistor Q15' the base of which is cou-pled through line 626 to line 610 at a point intermediate resistors 614 and 616, while its emitter is coupled through line 628 to lead 487' for ener-gization in conjunction with the depression of switch Sl. The collector of transistor Q15 is coupled through line 630, resistors 632 and 634 to the base of NPN transistor Q16 The collector of transistor Q16 is coupled through line 494' to the output "t3" of motor drive GATE C, while its emit-ter is connected to ground through line 636. As before, with the forwardbiasing of transistor Q15' transistor Q16 is driven into conduction to dis-able motor control function 290.
Similar to the embodiment of Figure 9, the present circuit also includes an NPN transistor Q17' the collector of which is coupled through line 638 to line 630 and the emitter of which is coupled through line 640 to eround. Transistor Ql7 is normally biased into conduction by virtue of the connection of line 642 from its base through resistor 644 and line 481' to auxiliary power lead 232. Line 642 also is coupled to line 498', which, in turn, is connected through switch S5 to ground. Accordingly, transistor Q16 is held off when switch S5 is open. As before, this arrangement permits the completion of a photographic cycle utilizing the last valid flashlamp within an array.
Figure 11 presents another embodiment for the detector arrangement of the invention. In this arrangement, the impedance exhibited by the flashlamp array again is present between terminal leads 482' and 484'. Lead 482' is coupled through line 650 to line 652 at a point intermediate resis-tors 654 and 656. The upward side of line 652 is coupled to a voltage sup-ply through resistor 654, for instance as may be derived from lead 481. The opposite side of line 652 extends through resistor 658, line 660 and into the switches Sl, S2 AND LOGIC feature described in Figures 9 and lO, re-spectively, in connection with transistors Q6~ Q7 and Q12 and Q13 Function 662 is shown coupled to ground through line 664.
1~43~48 The opposite lead 484 ' from the flash array is connected to line666, in turn leading through resistor 668 and line 660 to AND LOGIC block 662. Line 666 also is coupled through line 670 to one input of a differen-tial type operational amplifier 672. The opposite input to amplifier 672 is present at line 674 which is coupled to line 652 at a point intermediate resistors 656 and 658. The resistance value of resistor 656 is selected to correspond with the predetermined impedance evidenced by a fully expended flash array, for instance, 75 ohms. Resistors 668 and 658 are configured having the same resistive values so as to evolve a voltage dividing compar-ison network, the output of which at lines 670 and 674 is amplified at am-plifier 672. Note that amplifier 672 is coupled to a +V supply through line 676 and to a lead of opposite polarity at line 678. The output of amplifier 672 is coupled through line 680 to an inhibit and warn network 682. Such a network has been described in Figures 9 and 10, respectively, in connection with transistors Q5 ~ Q8 - Q1o and SCR 586, in conjunction with transistors Q15 - Q17- When an operative flash array is present within the system, the output of amplifier 672 may be considered "low" and when the resistance across lines 650 and 670 is "high", the output of amplifier 672 reverts to an opposite level, for instance "high". Such a "high" value would serve to forward bias transistor Q5 as represented in Figure 9 or to gate SCR 586 as shown in Figure 10.
Returning to Figure 3, another embodiment for the expended array warning feature of the invention is revealed. As shown at block 690, a lamp status detection network may be incorporated within the exposure con-trol of camera 10 which is activated upon the erecting of the camera into its operative orientation shown in Figure 1. Upon effecting such erection and the inserting of a flash array as shown at block 222, lam~ status detect function 690 will provide an expended array warning as shown at block 692 contemporaneously with viewing and focusing procedures. This warning would 30 ~, be provided as described at almp 474 in Figure 14. Such a warning is avail-able inasmuch as switch S4 maintains a "C-A" configuration during periods of non-use and during focusing and viewing procedures. In consequence, energy 1~43148 is available to flash firing circuit 380 when interlock switch S6 in line 212 is closed.
Looking to Figure 13, the structure of this interlock switch S6 is revealed in detail as it is positioned at a rear corner of camera 10.
The figure reveals in detail that back cover 12 is connected to inner frame 30 at an offset hinge connection depicted generally at 20. Hinge 20 includ-es a pinned connection 694 coupling back wall 12 to inner frame 30 and a bi-furcate eccentric extension 696 which is slotted at 698. Note that the bi-furcate structure 696 defines an internal slot or keyway 700 within slot 698 and pinned for movement within slot 698 is a switch actuator 702. Actu-ator 702 is constrained for vertical movement in con~unction with the pivot-al movement of back wall 12. Actuator 702 is formed of plastic insulative material except for its lower portion which is configured to retain a con-ductive pin, the conducting surfaces of which are shown at 704. Biased against opposite sides of actuator 702 are resilient switch leaves 706 and 708. With the arrangement shown, when back cover 12 is maneuvered upwardly from the partially erected orientation shown, conducting surfaces 704 will ; move into contact simultaneously with resilient leaves 706 and 708 to close switch S6 when camera 10 is fully erected. As shown in Figure 2, the clos-ure of switch S6 provides for the assertion of power through lines 216, 260, switch S4 and line 382 to flash firing circuit 380.
Returning to Figure 12, when a flash array is inserted in camera 10, the base of PNP transistor Q18 will be coupled through line 712 and blocking diode 714 to lead 484', while its emitter will be connected through line 716, diodes 718 and 720, to opposite flash firing circuit lead 482 ' .
Line 712 further is coupled through line 722 and resistor 724 to switch S2 lead 480 ' . The collector of transistor Q18 is coupled through line 726, resistor 728 and light emitting diode (LED) 730 to ground. With the arrange-ment shown, in the presence of an expended flash array, transistor 218 will 30 be forward biased to permit current conduction through line 726 to energize LED 730. As in the embodiments of Figures 9 and 10, the resistance value at resistor 724 as well as the selection of voltage drop evidenced at diodes - 33- ;
- .. .
' ." .'. ......... : ' ' '' ~ :' ' . . .. .. " ,, , . , ,~ . .. .
1C)43148 718, 720 and the base emitter junction of transistor ~ 8 establishes the impedance sensitivity of the detector circuit.
Since certain changes may be made in the above-described system : and apparatus without departing from the scope of the invention herein in-volved, it is intended that all matter contained in the description thereof as shown in the accompanying drawings shall be interpreted as illustrative : and not in a limiting sense.
i~ j ~ .
Claims (10)
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:-
1. A photographic camera comprising: means actuatable for automatic-ally performing a sequence of operational events from first to last defining an operational cycle of said camera; selectively operative means for actuating said performing means; means actuatable responsive to operation of said performing means for continuously monitoring the operational condition of said camera and for inhibiting the performance of at least a select one of said events to interrupt said sequence when said camera condition is unsuited for performance of said camera cycle; and means responsive to the progression of said performing means through a portion of said cycle and at least through said select event for disabling said monitoring and inhibiting means to at least override the inhibiting function thereof during at least a subsequent portion of the remainder of said cycle.
2. The system of claim 1 wherein said monitoring and inhibiting means includes a detector circuit providing a given output signal when said camera condition is unsuited for performance of said camera cycle and an inhibit circuit responsive to said given detector output signal for inhibiting the performance of said select one event, and said inhibit means includes an over-ride circuit responsive to performance of said select event for precluding operation of said inhibit circuit during said portion of the remainder of said cycle.
3. The system of claim 1 wherein said performing means includes a selectively operative illumination producing device having a first state wherein said device is actuatable to produce a flash of illumination of a magnitude suitable for film exposure and a second state wherein said device is incapable of producing said magnitude of illumination, and said monitoring and inhibiting means includes means for sensing said states of said device and for permitting the performance of said sequence when said device is in its said first state and prohibiting the performance of said one event and said sequence when said device is in said second state.
4. The system of claim 3 wherein said camera includes means for mount-ing photographic film material at a given exposure position, means for defining an optical path between a photographic scene and said film material, said performing means includes a shutter mechanism operable to unblock and block said optical path to produce an exposure of said film material, means for actuating said illumination producing device during said exposure, and a drive mechanism operable in said sequence both before and after said exposure, said monitoring and inhibiting means prohibiting the operation of said drive mechanism when said illumination producing device is in said second state, and said inhibit means is responsive to operation of said drive means before said exposure operation to override said inhibit function and thereby permit operation of said drive mechanism after said exposure operation even when said illumination producing device is in its said second state as a result of its actuation during said exposure operation.
5. The camera of claim 1 wherein said performing means comprises a control circuit electrically energizable from a power source to perform said sequence of events, said selectively operative means includes a manually operative switch at least initially coupling said control circuit to said power source, and said disabling means includes latch means responsive to performance of said select event for continuing the energization of said control circuit to commit said control circuit to effect complete performance of said camera cycle.
6. A photographic camera according to claim 1 further comprising drive means actuable for converting an optical path between viewing and exposure orientations, reflex viewing means for operator viewing and framing of a scene to be photographed, shutter means selectively actuable to block and unblock said optical path, control means responsive to start actuation for actuating said shutter means and said drive means in a manner providing a predetermined series of operational events defining a photographic cycle, said control means being operative to actuate said shutter means to block said optical path prior to said drive means actuation and including trans-ducer means having a first condition at the commencement of a said photo-graphic cycle and a second condition commencing when said optical path con-verts to said exposure orientation, said camera further including means for mounting an array of flashlamps in an orientation for ignition to illuminate a scene, said mounting means including terminal means for providing electrical connection with each of said flashlamps and for exhibiting a predetermined electrical state in the presence of a condition representing an ignition of all of said flashlamps within said array, firing circuit means connected with said terminal means for selecting one of said flashlamps in predetermined order from first to last and igniting said selected flashlamp in synchronism with a predetermined one of said operational events, electrical detector means responsive to said terminal means electrical state for deriving a unique elec-trical signal condition representative thereof, inhibit means responsive to said unique electrical signal condition for preventing the carrying out of select operational events following the expending of all said flashlamps arrayed in said orientation to illuminate a scene, and sensing means responsive to said transducer means second condition for overriding said inhibit means cycle prevention performance, whereby said photographic cycle may be completed upon the ignition of the last one of said flashlamps operably positioned within said array.
7. The improved apparatus of claim 6 in which said detector means includes enabling means responsive when said apparatus is operated to ignite a flashlamp for enabling said detector means to derive said unique signal condition, and said detector means is so operative in response to said start actuation.
8. The improved apparatus of claim 7 in which said inhibit means is operative in response to said unique signal condition to inhibit said drive means actuation following said start actuation of said shutter means.
9. The improved apparatus of claim 8 in which said inhibit means further comprises indicator means energizable in response to said unique signal condition for providing a perceptible warning signal.
10. The improved apparatus of claim 6 in which said inhibit means further comprises indicator means energizable in response to said unique signal condition for providing a perceptible warning signal, said indicator means being mounted upon said apparatus in a position spaced from said reflex viewing means but perceptible by said operator when so energized.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA219,279A CA1032390A (en) | 1975-02-03 | 1975-02-03 | Flash photographic system with camera inhibit feature |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1043148A true CA1043148A (en) | 1978-11-28 |
Family
ID=4102196
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA219,279A Expired CA1032390A (en) | 1975-02-03 | 1975-02-03 | Flash photographic system with camera inhibit feature |
CA291,695A Expired CA1043148A (en) | 1975-02-03 | 1977-11-24 | Flash photographic system with camera inhibit feature |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA219,279A Expired CA1032390A (en) | 1975-02-03 | 1975-02-03 | Flash photographic system with camera inhibit feature |
Country Status (1)
Country | Link |
---|---|
CA (2) | CA1032390A (en) |
-
1975
- 1975-02-03 CA CA219,279A patent/CA1032390A/en not_active Expired
-
1977
- 1977-11-24 CA CA291,695A patent/CA1043148A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CA1032390A (en) | 1978-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3813679A (en) | Focus detector device | |
US3953864A (en) | Camera device having a photographic flash device combined therewith | |
US4016575A (en) | Exposure control system for flash photography | |
GB2087594A (en) | Photographic system including remote controllable flash unit | |
US4064519A (en) | Regulated strobe for camera with sixth flash inhibit | |
JPS6052411B2 (en) | Electronic flash device ignition device | |
US4493547A (en) | Data recording photographic camera | |
US3676045A (en) | Sequencing static electronic flashing circuits for photoflash lamp array | |
US3776112A (en) | Adapter circuit for use with auto exposure camera | |
US4074288A (en) | Time delay quench strobe with improved fill-in flash performance | |
US4072964A (en) | Scene light responsive variable quench time delay for quench strobe | |
US3511142A (en) | Exposure control means | |
CA1043148A (en) | Flash photographic system with camera inhibit feature | |
US4005449A (en) | Flash photographic system with camera inhibit feature | |
US2844081A (en) | Electrical flashlight device with condenser ignition | |
US3668468A (en) | Solid state circuits for guaranteed sequential flashing of photoflash lamp array | |
US4395100A (en) | Illumination mode switching circuit for automatic electronic flash | |
US4190335A (en) | Shutter controlling aid means for use with camera | |
US4001843A (en) | Photographic control system with evaluation control | |
US4436396A (en) | Electroflash unit | |
US4152055A (en) | Device for indicating light and photoflash circuit conditions in camera | |
US4305648A (en) | Electric circuits for use in camera | |
US4220407A (en) | Camera with film transport motor powered by battery which also charges a flash unit during intervals of transport motor inoperativeness | |
US3818499A (en) | Remote control system for photographic apparatus | |
US4429971A (en) | Apparatus for testing automatic electronic flash |