CA1039862A - Ore purification process - Google Patents

Ore purification process

Info

Publication number
CA1039862A
CA1039862A CA208,916A CA208916A CA1039862A CA 1039862 A CA1039862 A CA 1039862A CA 208916 A CA208916 A CA 208916A CA 1039862 A CA1039862 A CA 1039862A
Authority
CA
Canada
Prior art keywords
conc
water
ore
eone
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA208,916A
Other languages
French (fr)
Other versions
CA208916S (en
Inventor
Thomas Burniston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Application granted granted Critical
Publication of CA1039862A publication Critical patent/CA1039862A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/016Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/06Depressants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores

Abstract

ABSTRACT OF THE DISCLOSURE
Froth flotation process for the concentration of mineral ores using as gangue depressant a mixture of a water-soluble polymer in which the solubilising groups are selected from one or more of hydroxyl, carboxyl and ether groups, and a water-soluble lignosulphonate salt. In certain proportions the mixture is more effective, on an equal weight basis, than the individual components.

Description

. Dx.26446 ~6~

. Thi8 inve~tion relates to an ore purifioation proc~ss and more particularly to the processin~ Or ore8 contalDing 8ilicaceou6 gangue mdnerals by flotation u6ing An improYed flotation agent.
lhe majority of metal ores in their natural 8tate bave the me-tal-containing minerals as60ciated with large quantitie6 of host - rock or ~a~ue from which the valuable mineral content ~u6t be concentrated into a form suitable for further processing~
Tti8 co~ce~tr~tion of the mineral content can in many cases be aohie~ed by froth flotation, in which the or~-bearing rock i~ finely ~,' ~, .

~x.26446 ~L~391~62 ground and frothed in water containing various additives which assist i~ concentratin~ the metallic ore particles in the frnth whilst allowi~g the gangue to sink~ The mineral-rich froth i6 then collected and ~urther processed. Thrae essential additi~es to the water employed in froth flotation processes are frothers~ collectors and depressantsO
Frother8l ~5 their name i~plies are added to cause formation of a froth in which the ore co~centrate collects. Typical frother6 are pine oil, high~r aliphatic alcohols~ for example, octanol, cresylic acids and hydrocarbon oils. There are also a number of commerci~lly available frother6 marketed under various trade names.
Collectors assist the as6imilation o~ mineral concentrate particle~
in the froth. Widely used as collectors are alkyl xanthate 6alts~ for example, sodium ethyl xanthate and pota~sium am~l xanthate. 9ther collectors include dithiophosphate~, for example~ ammonium dicieR~l di-thiophosphate and sodium diisopropyl dithiophosphate~ also naphthenic acids, fatty acids, resin acids and the alkali metal ~alt oP the~ acid~
~ixtures of collectors of the same or different chemical clas~es ~ay b~
u~ed.
Depres6ant6 are used in the flotation process to ensure as far a~ ;
po~sible that unwanted ~aterials do not collect in the froth with the valuable mineral componentaO ~ater-soluble polymer6, o~ten of high molecular weight, axe commo~ly u~ed as depre6sants for silicaceous ga~gue ~inerals. Examples of such polymers are polymers and copolymer6 of un-6aturated aliphatic monocarboxylic acids~ hydrolised poiyacrylonitrile7 sodium carboxymethyl cellulose and water-soluble lignosulphonate salts~
The present inrention is concerned with improved depres~ants ~or use in a froth flotation process.
According to the pres~nt inve~tion there is provided a proce6s for separation of an ore concentrat~ from associated silicate mineral : :': . . : . : ' -. : : ;: .: `~, :, , Dx.26446 ~3g8~2 ' I ~
gan6ue by froth flotation, wherein a6 a gangue depressant there i8 u~d a mixture of a water-soluble polymer in which the solubili6ing group~ ar~ selected from one or mo:re of hydroxyl, c~rboxyl and ether ~roup6, a~d a wAter-soluble lignofiulphonate ~alt.
The ~ater-soluble polymer6 which can be used in the procesfi include natural poly6accharidc gum~, derivatives o~ cellulose~ for example, alkyl, hydroxyaIkyl, carboxyalkyl and alkyl hydroxyalkyl ~thors of cellulose, water-soluble ~tarch ethers, alginate salts ~nd synthetic hydroxyllc-polymers. Specific examples of such .
10 materials are guar gum, locust bean ~um, gum arabic, methyl cellulose, ethyl methyl cellulose, hydroxyethyl cellulofie, methyl hydroxypropyl cellulose, ethyl hydroxypropyl cellulose~ ethyl hydroxyethyl cellulose~ methyl hydroxyethyl celluloso, ~odiu~ carboxymathyl cellulo~e, sodium methyl carboxymethyl cellulose, ~odiwm carboxymethyl .
15 hydroxyethyl cellulose, 60dium algin~t~, polyvinyl alcohol ~nd ethoxylated ~atty alcohol derivatives. The praferred water-soluble polymer iR ~.
~odium carbo~ymethyl cellulose. Ex~mples o~ water-solubl~ :
lignosulphonate salts are ammonium7 BodiUm~ potassium~ calciu~ and ~agnes~um lignosulphonates. . . - . :
In ge~eral, it ~ found that withi~ certa$n proportion~ the ~:
aboYe-defi~ed mdxture depres6ant i6 at lea~t as e~ecti~e o~ a we~ght :
basi~ a~ ~:he water-soluble polymer alon~ and more effecti~e than :
the 60dium 11gno~ulphonate alone. Since the latter i~ ueually .
cheaper than the water-soluble poly~er the present inve~tion pro~ides 2S both a tech~ical and commercial advantage ovar the use of the individual !co~ponents. The ~nYention i8 particularly useful ~hen the g~ngue is talc or a talc-~lkc mineral ~talcose ores) which tend to float particularly easily with the metalliferous fraction~
When carr~ing out the frotb flotation proce s, a slurry of the . finely ground ore in water is preparad. This slurry may contain, for .. . ~ -. - . . . . .. ~: .. . .

10~986Z Dx.26446 `` example, 25~ by wei6ht o~ th~ or~, but the 601ids content of the aqueous slurry depands upon the individual properties of each ore being treated, and will he adjusted accordin~ly. Ihe 61urry is m~intained as suoh by mean6 of A 6uitable agitator in the slurry vessel. Provision is made for passing air into th~ ~lurry, for example, by beating ~ir in with the motion o~ the agitator, by pa~sing air in through a 6eparatu inlet pipe or by u~ing an impeller on the end of a hollow sha~t through which air can be pa66ed. Firstly the collector i8 added to the 61urry, which i6 then allowed to condition for a few minute6.
Secondly, the gangue depressant i8 added and finally the frother~
Frothing is allowed to proceed for a ~pecified time and the ~roth which forms overflows ~rom the frothing vessel and is collected.
qhiB first froth fraction is normally referred to a6 the "rougher concentrate" and the residual slurry or "tail" as the "rougher tail".
More collector and depressant are added to the latter a3 neCe~8ary and ~rothing i~ continued to yield a second fractio~ known as the "6ca~enger concentrate" (usually returned to the flotRtion tank for - re-processing) and a second tail, which may be subjected to further frothing or may be rejected as worthle6s~ in which case it is known as the "float tail"~ - -The rougher concentrate m~y be subjected to R further floation fractionation to give a "cleaner concentrate" and a "cleaner tail".
ThJ latter will usually be returned to the flotation circuit for re-processing.
Ihe ~cbeme de~cribed above illustnatesthe general proces~ o~
~roth flotation, but it will be understood that Many yariations are pos6ible, according to the nature o~ the ore and the degree o~
enrichme~t which is required. The amounts of collector, depressa~t and rrother empleyed are also dependent upon the aame factors, but ~ usage .~ , .
i-- . . .

: . . . - ., .

Dx.26446 of 0.01 to 5.0 lbcollector/tonlo~ ore i~ ~ypical. ~he d~pressant i~ generally used in an amount from 0.o1to 5-0 lb/ton of ore, and tho frother in arnount ~rom 0.001 to 0.5 lb/ton of ore.
In the ca~e o~ the ~angue depressant QUXtUr~ which i~ used i~ .
the pre6ent i~vention, the proportion of water-soluble polymer to ligno~ulphonate ~alt ~ay be fro~ about 90:10 to 10:90 parts b~ weight. A preferred range i~ 75:25 to 40:60 part~ b~ wei~ht.
The in~entio~ iB illustrated but not 1~ited by the followi~ :
Examplas i~ which paxts and percentages are by weight:
(this iB a comparative Exa~ple) An Australian ~ickel sulphide-containi~æ ore ~a~ treated by froth ilotation usi~g sodium ethyl xanthat~ ~3.0 lb/ton3 as ~ollector, sodiu~ carboxy~ethyl cellulose ~0.5 lb/ton; 3~ w/w aqueous solution had vi600sity Or 50 150 centipoises at 20C) as depre~sant and ~Tee~roth~
D a~ ~rother. Th~ p~ of the Blurry WR8 not adjusted. A 25~ w~w aqueous slurry of the finely ground ore was used. & reeDing test :
were carried out by buIk floating all the ~ulphides without mag~eticseparat1on. lhe following float times were u~ed: s ~ougher - 12 mi~utes ;~
5ca~enger - 10 minutes Gleaner 2.5 mi~utes Re~ults are tabulated below:
- - ........................... - - - - .
Product Weight(~ ~ Ni % MgO Ni ~nit& MgO ~nits Distribl tiMgn.
__~ _ .. ... - . ~ __ ___ __ .
Cleaner conc, 25.33 9.57 10~0 2.424 2.533 69.38 18~60 Clean~r ~ail 9.30 3.64 16.6 0.338 10914 9.69 11.34 Scavonger co~c 13.11 3.1g 14.6 0.418 1.544 11.96 14.05 . . .
Float '~il52.25 o.60 14.fi 0.~ 7~28 8 qZ_ ~6.01 _ ~ ~ ~ ~ .~ . .
: Total ~ 9q . 9q . . . ~ . . _ ~ 1~ _ 100.00 100 00 Feed . 3-5 13.0 ~
* Trademark ~ .
-6- ;
., .. -h~3~,,;.

- Dx.26446 39136;~
In the aboYc t~bl~, the nature of the concentrate is given in the fir6t column and the amount of each fraction expressed a percenta~e of the wei~ht of the original ore sample i8 in the s~cond column. Columns 3 and 4 ~iYe the percentage of nick01 and of magnesium oxide respectively in each fractionO In the latter case~
analysing the sample for ~agnesium ~nd expre6sinB the contPnt as ~
MeO is a convenient way of indicating the amount of gangue present.
In colu~n 57 under Ni unit6~ the ~igur~ i8 derived by multiplying the weight % (Column 2) by the % Ni (Column 3) and dividing the result by 100. MgO units (Column 6) are obtained in a sir~lar m~nner - ~rom Columns 2 and 4 sespectively. The Ni unit~ and MgO units en~ble the ~aterials balance in the process to be seen; ideally, the total of the Ni units should equal the ~ Ni in the feed, given at the foot of the table, and ~imilarly for the MgO units.
In the final two colu~ns 7 and 8, under 'Distributio~'9 the result6 Bi~en are simply the proportion of the Ni units from the particul~r concentrate expressed as a percentage of the total Ni unlts~ and similarly for MgOo The above results pro~ide a basis agai~st which the performance of mixture depressants ~ccording to the pre~ent invention are evaluated~
. . ~ ' ' .
I~ this case the same conditions as in Example 1 are used~
sxcept that the sodium carboxymet~yl cellulose (SCMC) i8 replaced b~
- mixtures of the latter with ammonium lignosulphonate (ALS) in the proportio~s indicated. The wei~ht o~ mixture depressant was kept at 0.5 lb/ton of ore~ Cleaner fractions taken after 205, 3,0 and 3,5 minutes frothing. Results are as follows--- , '`~ ' ' ' ' u :. ~ .: - ' ~ ' . . .
~ .~ . . , 10~986Z Dx.26446 _ . _ _ _ ~ , , _ ~ _, ~ ,_ . , .. _ _ Mix Ratio Float ~ Ni ~MgO Distribution in Conc. ~ Ni recovery at (S~C:ALS) i~e (min) l~i l~3 10~ Grade . . . ._ , . .. __. _~___ 100.0 2.5 9.53 9.671 ~o9 18.10 3.o 9.34 73.c)4 65.8 3.5 9.16 75.14 -~ _ . _ ~_ 90.10 2~5 8.72 10.069.97 21.02 3.0 8.62 71.55 55.7 3.5 - 8.38 73.76 V . _ ~ _
2.5 8.89 lo.o72.99 22~2~
- 10 80.20 3.o 8.64 75.68 60.4
3.5 8.48 77.44 . __ _ . ..... __ - 2.5 9~ 22 10.0 74.59 22.20 75.2S 3.o 9.07 75.76 68.5 3.5 8.87 77.26 ~ . _ , . . ~ __ , . . . ___ _ .
2.5 10.29 9.3 67.68 16.24 70:30 3.0 9.96 69.75 69.5 3.5 9.60 71.86 ~ -~ . ,. .... - ~
2.5 10.05 10.0 74~10 20.02 60:40 3~0 9.68 76.41 ?4.5 _ 3.5 9.28 78.27 '~
.

The figures in the final column are obtained by pl~tting ~ Ni grade against X
~i reco~ery and extrapolatin or interpolatin~ to 10% Ni. The improvsment ~ Ni recovery using mixture depressant containing more than 25~ of ammonium lig~osuLpho _te i8 clearly see~O

.' . . ~ '' .
. ~
,, . . , ' . ..
'~
' "~
, ~ ,;

''''~'. ,'' . ''''.; ,.' .' '' ' ~- ' " , . ' "'.~' : '.' . ` . ' ' ' ' ,,'.' ' ': ' . " '' "' ' `'. "' ','` '' ' ' ' '' ', - ' ; ' ' . ' . , ' . ' . ' ~ ' ' ' . ". ' . ;
,'''''.~, ':. . ~,. .' ' ' '. . ' , ' , `- Dx. 26~ 6 1~)3~136Z
Exam~le 3 For purposes of compari60n a Canadian Cu/Zn sulphide ore cont~ining significant proportions of a talc/mica gangue was treated by froth flotRtion uslng potassium amyl x~nthate (0.10 lb/ton) as collector, sodium carboxy methyl cellulo6e (0.29 lb/ton; 1~ w/w aqueous solution has a visco~ity of 30-70 cp at 20C) as depressant for the talc/mica gangue, sodium cyanide ~0.045 lb/ton) a~ depressant for the zinc sulphides and methyl isobutyl carbinol as frotherO A
35% aqueous glurry of the finely ground ore was used~ and the pH was adjusted to 10.5 with lime. A rougher ~loat fraction was cl0~ned once, and clea~er ~raction~ ~ere taken off over ~ minute, ~ minute and 1 minute. Re6ults are 6hown in Table 1.
The separation is then repeated according to the present in~ention.
The same conditions a6 above are used, except that the sodium carboxy methyl cellùlose (SCMC) is replaced by mixtures of the latter with calcium lignosulphonate (CLS - Ligno~ol BD ex Lignosol Ch d cals, Quebec) in the proportions indicated. The weight o~ mixture depressant was kept at 0.29 lb/ton. The result6 are ~hown in Table 2.
The figures ln colu~ns 5 and 7 of this table are obtainad by plott~ng ~ Cu grade and ~ Insoluble grade respectively against % Cu reco~ery, and graphically estimating the values at 90~ Cu recovery.
The copper concentrate fractions were taken off over the æame period and (i) the improvements in recovery of copper in ths ~irst fraction (Cu conc 1) c~ be seen using mixture depre~sants;
(ii) the i~provement in the ~rade of &u at 90% Cu recovery can be clearly seen; (iii) the insoluble content of the copper concentrates ~i . ' . , _ 9 _ , .. : , ' ' ' .. ' . . :
':' : .' ' ''. ~: . ':
- . . . . ..

~ Dx.26446 ~35~8~
at 90~ Cu r~covery i8 largely unaffected and in some instanees improved ~lightly by usin~ mixture depres6ant6 containing up to 80 calcium lignosulphonate.
ExamPle 4 For purposes of comparison a Canadian Ni/Cu 6ulphide ore containing a proportion of talcose gangue was treated by froth flotation using sodium i~opropyl xanthate (0.07 lb/ton) and potas6ium amyl xanthate (0.04 lb/ton) as collectors, 60dium carboxy methyl cellulose (0~32 lb/ton; 1~ w/w aqueou~ solution has a vi6cosity of 30-70 cp at 20C) as depressant for the talcose ~angue, tetra sodium pyrophosphate (0.14 lb/ton) as di6per6ant and ~ethyl i60butyl carbinol as frother. A 40~ aqueous slurry o~ the finely ground ore was used and the p~ was adjusted to 8.5 with soda ash. Three rougher fraction6 were taken off over ~ a~d 5 minutes and the products were assayed for Cu, Ni and insoluble matter. The insoluble content of the concentrat~ is a measure of the talcose gangue present. Re6ults are shown in Table 3.
The 6eparation i then repeated according to the present invent;on.
The 6ame conditions a6 above are used, except that the sodium cai~boxy meth~l cellulo6e (SCMC) is replaced by mixtures o~ the lattsr with calcium lignosulphonate (CIS; Lignosol BD ex ~ignosol Chemicals, Quebec) i~ the proportions in~icated. The weight of mixture depres6ant was kept at 0.3Z lb/ton. The results are 6ho~n in Table 4.
~h~ figures in column8 5 a~d 7 of Table 4 are obtained by plotting ~ Ni grade and ~ Insoluble ærade against ~ Ni recoYery and .
. .

... ~ . ~ ... . . .. .. . .

-Dx.26446 ~39fl6Z
graphici~lly estimating thc values at 85~ Ni recovery~
The improvement in Ni Brade at 85~ Ni recovery using mixtur~ depres~ants containing up to 80~ calcium li~nosulphonate is clearly shown. Also the reduction in insoluble grade using mixtura depressants i6 d~monstrated.
Example 5 For purposes of comparison a Canadian Ni/Cu sulphide ore as employed in Example 4 was treated as indicated ~n Example 4, except that the SCMC was replaced by locuit bean gum a~ depre~sRnt.
The results are shown in Table 5.
The 6eparation i6 then repeated accorc~ng to the present in~ention.
The fiame condi~ions as in Example 4 are used, except that the locust bean gum (LEG) is replaced by mixtures of the latter and ammonium lignosulphonate (ALS: Totanin ex A/S Toten, Norway) in the proportion~ indicated. ~he welght of mixture depre6sant was kept at 0.32 lb/ton. The re~ults are shown in Table 6.
The figure6 in columns 5 and 7 of Table 6 ar8 derived as explained in Example 4. ' . .
The improYement in Ni grade at 85~ Ni reco~ery using mixtur~
depressants containing up to 80% am~onium lignoisulphonate i8 clearly 6how~. Reco~ery of the nickel in the fir6t concentrate is al~o improYed~ ancl the insoluble content of the nickel concentrates i~
- reduced using mixture depressant~.
~
For purpo~es of compari~on a Canadii~n Cu/Zn sulphide ore as in Exa~plé 3 was treated by froth flotation using potassium amyl ' ' . ~, .

- Dx.26446 1f~398~Z
xanthate (0.1 lb/ton) as collector, sodium alginat~ (0.29 lb/ton -Manutex SX~RD ex Alginate Industrles Ltd.) as deprcssant for the talc/mlca ~angue, sodium cyanide (0.045 lb/ton) a~ depres6ant for the ~inc sulphides and methyl isobutyl carbinol as frothar. A 35% aqueous lurry of the finely ground ore was used and the p~ ~3 adjusted to 10.5 with lime. A rougher float fraction was cleaned once and cleaner fraction~ taken off over ~ minute, ~ minute and 1 minute. rhe results are shown in Table 7.
The separation is then repeat~d accordin~ to the present invention.
The same conditions as above are used, except that the sodium alginate is replaced by mixture6 of the latter with calcium lignosulphonate (CLS; Ligno601 BD ex Lignosol Chemicals, Quebec) in th~ proportions indicated. The weight of mixture depressant was ~-kept at 0.29 lb/ton. The results are shown in Table 8, --The figure6 in columns 5 and 7 of Table 8 are deri~ed as ~
,; ,..
explained in Example ~. The copper concentrate fractions were taken ~ ;
o~f over the ~ame period in each test, and (i) the improve~ent in ;~
recovery of copper in the first fraction can be æee~ using mixture depressants; (ii) the improvement in the grade of copper at 90~ Gu recovery can be clearly seen; (iii) the insoluble content of the -~
copper concentrate~ at 90% Cu recover~ is largely unaffected using mixture depres~ants. - `~
am~le 7 Table 9 shows the results obtained using ~n ethoxylated ~att~ alcohol tEthox 50) and Lignosol BD (calcium lig~osulphonate) ~-depressant mixtures on the ore used in Examples 3 and 5, using similar ~, . :

Dx. 26446 ~398~;Z
condition6 to those employed in Example 3.
An improvement in Insoluble i6 ehown at 70:30 xatioO
Cu grade i8 best with between 3~ and 40~ CLS present. Some improvement in Cu grade and recovery ie demonetrAted, but re~ults ~re ~lightly inconsistent, possibly due to the pre6ence of iron sulphides.
(pyrite and pyrrhotite) in the ore which respond erratically to the flot~tion chemicals.

''" .
.
' - ' ' '; :' .
' .:
- ' - ' . "
'`

~_~J ~ - 13 - .

.. .... .... . .... . . . .. .. . ..

Dx. 26446 3~8~2 _ _. . _ ,, . ~ U~ o Ir~
. o~ o o o ~ ., . , '.
I
~A ~ ~ O . ~ t_ H ~ If~ ~ ~ 'd-~ .- . ~ . , ', '.
_ _ _ .
O .' . ~ C~ t~ ;. O
~ ~ ~ O~ O
F' ~ ~ o ~ .
~ .
c~ o t- O~ - O ~ .
~ C.) ~ O ~ ;
_ . - _ _ O
u~ O
c~ ~ o h O N - C`J d` ~ ~_ O~
~i O O o ~_ ~ o C'~ I~
_ H
U~ 0 ~ ~
~ ~ a) u~ ~ ~ ~ a U~ ~ ~ o o o o~
~ o o o o o ,_ ,_ ~ ."
~ ~ -- - ---- ~ 0 ':' - ~ ~ 1~ O O O O R 6 o _ . _ _ _ o 11 -0~ g ~ ~
. ~ u~ ~ o o o r- t-- A ~
" . ~ o o o o ' o o o ~ . ~ _ _ h - ~ ~
E~ O t- t0 ~- . 0 0 ~ U O
oo t~ U~ ~D ~ ~ i~ ~ ~ 11 .
1~ ~ In . o t _ - o~
~ a) ~ ~ ~ .
a ~
~ C~ C~ i . .
.. . ~ . _ . _ - .!i~
. v o cr~ u~ o ,~, ~ t~ o . C~ ~ 0 ~ O H H
. , .
O ~ ~O ~ O
V t~ o o .-~ I~ N ~ C~ . .

_ _ _ _ _ C~ o . ,.
- ~ CD O O
. . ___ e;
.- . ., ~ ., . ~ . ~ ' . ~ ~
~ ~ C) ~ ¢ ~
., ~ O t~ ~ ~3 . , P. ~:7 g ~: ,, o h . ~ji , . . __ . .

: .:. : , .-: ~
: :~ '.::: :
: ~- ~ , .:
.

.: .

TABLE 2 (~16~ 0~`rnixture depr~50ant) ~ L)3986Z Dx.26446 . ~ . . _ . ._ - - - ~ ~._ .
~ Cu INSOLU13I.E
RATIO PROD~C~ ~ _ _ ~ _ - _ (SGMC:CLS) Grade Recô~rery 9~,~ re- Crade Gr de at covery . __ reco~ y___ ~u cone 16.70 67.72 3-79 100~0 Cu eonc 26.~9 a9.69 6.49 4.21 4.21 Cu cone 36.05 95.~8 5.77 Rou~her5.00 100.00 14.28 . ~ .. . ......... ... .. . . . _ _ ._~ ._ _ Cu conc 1 B.52 70.13 0.79 80-20 Cu conc 2 8.26 83.54 6.80 1.30 3-70 . Cu eonc 3 8.34 92.19 4-15 Roueher 4.83 45.71 9.69 . _ . ~ . . . _._ , ___ ~__ Cu conc 1 8-93 71.30 3-97 70 30 Cu cone 2 8.81 85.98 7.60 4.92 872 . Cu conc 3 7-24 90.91 B. 29 Rou~her 5.91 93.96 16.80 . ..... .. ,---- ~ . ._ Cu eonc 1 14,63 7a.52 3.42 65'35 Cu eone 2 12.8685.69 11.10 5.44 6.8 Cu eone 3 9.4891.52 7-84 Rou6her 7.5893.96 18.50 _ . - __ , __. . . _ . ,~ . .~ .
Cu eone 1 6.5183.49 ~ 3.~9 60:40 Cu eone 2 6.1789.31 6.17 5.7 5-07 Cu eone 3 5.4892.41 7-9~
. Rougher 4.7894.36 15.18 _ _ __ . . ,. _._ _ __ Cu eone 1 9.82 87.57 7.54 50 50 Cu eone 2 9-44 90.52 9,3BB.91 8.91 Cu eone 3 8,50 92.59 11 43 Rougher 7.06 94.~2 18 85 _ - , . ~__ _ ._ _ ~ ..... , .-Cu eone 1 9.60 86.56 7 98 . -40:60 Cu eone 2 9-23 90.11 9-23 9 39 9.39 Cu eone 3 8.48 91. a5 ~ 11. 68 Rou~her 6. 8a 93 . 26 20.43 ~ -_ _ ....... _ ~ . .. _ .. ___ ~ . .. __ ~u eone 1 6.52 88.a~ 7.4~
3o-70 Cu eone 2 6.27 92.58 6.50 8.18 7.60 . Cu eone 3 5.82 94~25 10.20 Roughe~4.90 95.43 16.91 _ Cu eone i _ 86.43 - ~ ____________ 20-80 - Cu eone 2 7 . 46 90 ~ 43 7.50 8 28 B, 28 . Cu eone 3 6.90 92-67 10.83 5.43 ~ ____________ 1~.00 ____________ Cu eone 1 9.89 84.86 8.87 10:90 Cu eone 2 9.02 90.40 9.10 10.72 10.72 Cu eone 3 8.17 92,50 13 67 ., ~!~Q~ 1~1_ ~
Cu eone 1 10.73 81.~7 7.36 0:100 Cu eone 2 9-7 86J~6 8.6 9.42 12.83 Cu eone 3 B.59 89.56 12 8 Rougher5.90 91. a2 .
;
CU~ n Cumul~t~Ye; ¢O~o ~ ooncentrate f '~ .' ' ` ': ' . ~ : '' `, ~ . ~ . , . .

iL03986Z Dx. 26446 i , _ _ , ~
O ~ .- ;, .U~ ~ ~ ~
~ ,_ t_ . !
. ~ ~ ~ D
Y C~J ~ 0 C~l .
~r; ,~ . ' . 1.
E~ .~ u~ O .
R 1~ o ~ o . . . , .
. - _ _ . .
U~ . .
o .
. o o ~ . U~
r~ . . . ' _ _ _ _ . .
o o $ ~o N 0 .
~ ~ ~ ~ . . :
l~j ~ ~ ~ ,1 , ., _ _ _ _ , . _ t- ~O O ~ C~l , ,' .
t~ ~ ~ . ,_ :
. t~) N O O O
tl~ O O O O O O
E~ . _ _ ~i .
æ ~ ~ ~ ~ I
F~
o :i o C~ o . ~ ~ .
~ ~ ----- ~
~1 N O ~ d- CO ~ a ~
i~ ~; It~ - O O t_ ~ C:~ ~
~ O O O O O O .~, ~ . . ~ _ _ _ _ ~
o o 0 ~a 11 , . .
~0 ~ ~ O
~t F. d ~ ~o ~ co ~1 ; ~
. H _ . . , ~. ~ . ~ .
O ~ ~ '` . . .
. ~ ~ ~J O O C~ .' . . ~ ,~ ,, . ~
_ - ~ ~ `O .

i ~ ~'t N N . . 1~ ~1 ' .
. 00 ~ 5~ !
Z; o. o . ....... ..

: __ _ _ o _ . , i ~ , U~ O
:~ ,~ ~ 0 ~ o . . ` ' - . _ , _ . . ~ .~ ~ . . ' .
. ~ ~ o ~ ., ' : ~' ~ E~ E~:
P~ ~ . ~o ~ ~`3 oc~ ~, h . . _ .. ,. . . :

. . ; :.. : . ., ~ , . .
. !, . ~ ! :': . . , ~
.,' ' ' ,' ., ' : ~ ` ,~ ' .' .;, ` ' : ` ' ', ': ' ,' ` , . ' `, . ' , ` ' TABLE 4 tU~e of mixturc d~pr~ssarlt) ~ 98ti2 Dx.2G446 _.,. ~ . . ~ , ~ ~
Ni INSOLU~LE
MIX _ _ _ __ __ R~TIO PR D Cu~n Cum Grade .~t Cum Gmd~ at (SC~IC.CLS) O uc'r Grad~ . RecoYeIy B5% rc- Crade ~5% l~i covcry rccover,r . . ~. . , . _ ~
Conc 1 4.2 70.15 34.25 100:0Conc 22.55 90.41 3.0 51.9043.0 Conc 3 2.03 94.35 S7.61 . _ . . _ ___ ~ ~
Conc 1 4. 51 74.47 27.30 80:~0Conc 2 2.80 92.74 3.1 40.02 37.5 Co~c 3 2~29 95.~6 46.93 . . . . _ - .... __ _ . .
Conc 1 4,85 79.89 23.5~
70:~0 Conc 2 3.42 90.56 4.15 27.G9 26.0 Conc 3 2073 93.68 ~3.45 . . _ . . . ._ ___ ............. __ Conc 1 4.25 67.36 21. sa 65s35 Cono 2 3.44 82.50 3.0 29,73 35.0 Conc 3 2.64 86. 2.1 ~1 . 3g __ __ _ - ~ _ . _. ~ ,. ~
Conc 1 3.4~ 42.50 35.38 60:40 Conc 2 3.31 80.58 2.7 44.18 Conc 3 2.33 85.81 53.90 53.1 __ ~ ~
Conc 1 4.72 56.92 28.23 50:50 Co~c 2 3.3~ 85.S3 3.3 32.36 ~2.0 -Conc 3 `2.54 89.35 46.08 . , ~.,.... .. __ .. _ __ Conc 1 5.28 61.71 29.04 40:60 Conc 2 ~.80 86.15 3.95 30.49 ~o5 Conc 3 3.oo 89.9~ 39.75 _ .... .. . ~ ~ _ _ ~
Conc 1 4.88 76.48 16.88 40:60 Conc 2 3.78 90.1~ 4.30 29.1~ 21.0 Conc 3 3.02 93.97 . 38.9a __ ......... . . .. , ..... ~ . . . .. ~ __ Conc 1 4.73 69.07 23.97 30:70 Conc 2 3,71 80.08 3.5 30,29 - 31.0 Conc 3 2,65 88.86 43.~3 ~ . .. _ ~ ~
Conc 1 4.36 58.86 27.01 20:60 Conc 2 3~66 82.37 3.3 29.97 34,0Conc 3 2.77 87.31 40.34 . ~ _ ~ ___ ~ , .. , . . ~ __ .
Conc 1 `6.14 50.~3 20.02 0:~0 Conc 2 4.77 70.67 2.0 25.69 70.0 Conc 3 3.74 74.88 36.98 __ __ . ~ ~ __ __ Conc 1 5.42 57.12 17.46 0:100 Conc 2 4.00 78.56 2.~ 24.37 42,0 Conc 3 3.06 82.16 3~. 56 . _ _ ~ .................... _ _ _ ~_ ~ __, . . . . . -. ' '.
.
. . .
. .
.. _ __ __ _. .,._ .. _ __ .
Cum = Cumulative Conc = concsntr~t0 nickel tail probably due to poo~ ~rindi~g a~d ~ncompléte liberation . . . - --., 1~391~6Z , Dx. 26446 _~ ~ `D . N O _ _ 2 ~ _ _ _ . ~ .
~, _ . .. . .

U~ ~ Cl O C, ¦
:z; ~ ), _ S . "~ N ~t ._ . _ . ~. ~ I_ . .. .
F~ ~ O O O O O O -" ' ' 5 ~ uo` o ~

~ ~ O O ' O ~ O
~ --_ __ ~ ~ ~ .
O ~ N 0 ~O . N O

, ~ . ~ 0. o ~ o . ~
.. . . ~ ._ o ~. O c~ a . ~ ~ u~ . .
.. . . , . . O O ` ~ ~ ~
l ~ ~' ~'O O-' _ -, -. .~ ~O ~ o. 0~ O

~ ~ 2 ~ 2~

.,. ~ . ` , , : ~

TABIE 6 (IJs~ of mi~t~lra depre6~antj ~98 Dx.26446 ~~ Ni _ :rNsoLuBI~r~
. Pl`~oDtlc~ Gr~de I R~cov~Iy C~-dc ~ Grade ~ t .__ ._ _ _ Conc 1 5.35 32.28 25,90~
100:0 Conc 2 4.46 70.17 2.0 29.20 51.0 Conc 3 3.5 80~14 40.71 _ _ ... _ . ~ ___ ~ ... _ Conc ~ 4.36 5B.14 - 17.14 80:20 Conc 2 3.76 78.67 3.0 21.70 31.0 Conc 3 2.83 86.55 35.46 ~ .~ r -_ . __ ___ _ __ _~ _ __. -_.___ _ , ____ _ Conc 1 4~69 65.01 16.25 70:30Conc 2 3.78 82.01 3.46 25.95 30.0 Conc 3 2,44 89.73 35.~9 . - __ . ~ ___ __ ~ .' Conc 1 4.91 51.64 32,27 65:35Conc 2 4.20 76,44 3.00 34.91 45~0 Conc 3 3.21 84.03 42027 I -..... .... _ ~. - _ ~ . . _ __ Conc 1 4.9235.6~ 28.53 60:40 Conc 2 4.33 79.14 3.50 29.75 35.0 Co~c 3 3.09 85.7~ 39.48 _ . . . , . . _ _ ~ ___ ~ ~
Conc 1 5.45 50.Go . 17.16 50:50 Conc 2 4.18 81.37 3.75 25.87 30.0 Conc 3 3.44 86.72 32.17 __. . . . ~ --_ . ___ . ____ Conc 1 4~79 61.24 18.47 45:55 Conc 2 3.61 82.94 3.35 30.23 32O5 Conc 3 3.00 87.14 38.14 .. . ... .__ _,,, ...
Conc 1 4.99 54.77 22.16 40:60 Conc 2 3.70 79.84 3.oo 31~37 37.o Conc 3 2.97 85.37 39.18 . . .. _ ._. __ _ . . . __ Conc 1 3.75 65.35 18.63 30:70 Conc 2 3~17 85.34 3.15 27~54 - 27.0 Conc 3 2.74 90.62 34.25 .. __ .. ,~ ~ ,:
Conc 1 4.48 44.13 20.~7 20:80 Co~c 2 3.52 7B.~5 2.gQ 26.85 33.
Conc 3 2,93 ~5.15 33.64 ' I l ~
. ., '., . .' .. ., - ~. ~ . . .
- . . . . .

-:
. .
. _ ._ . J . _ __ __ _ Cum = Culaulat~;tre ,,, - . , . I

: . ., ,. ., -..... - ~ : . . . .
;' ' ' ' ' , ' -, '.' . ,. ' ' ', : ~

1039,86Z Dx. 2,6446 . ~ , __ _ .
~ . n ~ f~ r-- t~ g .
f~ o ~
~ ._ ~ . . ~ .
O ~f N ~ f3~ ~ N . ~ .
~ f~ f~ ~ ~
~ ~ ,,,,,, _ f~ O .
Q C~ t~ ~ O .
. ~ ~ fJ~ : .
1~ ~ f3-~ ~D o o .
~ f~ f~ ~ ' _ , , . , ... _ . _ f~ f~ N ~O f~l ~ ~ .
O N ~ ~ C~J N ~ g .
. . l~j O o o ~ , a:~ ., .
... _.___ ~ ~ ~ .

,n ~ ~ ~ O ~ ~) ~
E`~ O O O O O _ ~ _ ._. . ~. .
~ ,.~ ~o o r- ~o 0 .. ~ o o o o o C~
, ,,.. _ .. ~ .. V... .. _ . __ ~f~
? ~ ~ N O O O ~ ~ f 1 ~
:
0 _ . O O O O O O O ~ , ~
,~ o ~ o f 3 _, ~i ~ f? ~ ~ .
~ . ,.... , . . I . ,,, ~ . f~ '~3 f~ ~ ~ f_ Il~ ~ ff~
, .... - ' ," _ .. ........ . ,30 ~
. . 1~ fN fN ~-- . ' ;I' fb . ~ f,~ f~ : f~ N . f, ., ~ _ I
. ~' ~`J ft~ ~ ~ I
f ~l f~ O O ff3 , . :~
. . _ fN fN _ O O . .. _ i~f f~t ~æ ' 0~ O~ ~ , ',,;
. . . . ~ C~l ,~ ~J et C> . .
_ . , , , , _ . . _, _ _ ~:
' ~ 11 . ' ' , '~

f.~ ~ f~J ' f~ ' f~-f3~ ~ ~3 f~3 . ' ~ .
' . _,.~__,,_ ,V ~0 ~ ,f~ o o _ ,' , ~ . , ' , ' ' i -- 20. - I

TABL~ 8 (l,'r~ 0~ uixt~.~r~ d~ ~ 98~ Dx.264l~6 _ _ ,... ._ ~ _ _ .
~iIX _ . Cu INSOLUi3L~
R~.Tl , _ . _ _ S ~ ~ PRODrJCT I G Gr~.d e a t Gr~d e at Al~inat~: Grade I Reco~ery 905~ re- Grade ~ 90% Cu C LS i COV~r recove~y - .
. __ .. ___ -._ . ._ cu 1 2.31 61.71 1.28 100:0 cu 2 2.2~ 92,~8 2.30 2.1g 2.0 cu 3 2.24 -94.84 3.~4 Rou6~er ~ 2.10 95.9~ _ 6.59 7 _ .. _~ _.. . .. ._. _.
cu 1 2.82 73.16 3.21 80 20 cu 2 2.6~ 89.4~ 2063 3.62 3.7 : Cu 3 2.50 91.63 4.46 ~oug~ler 2.45 93~21 8.03 . _ . ........ . ~ ~ _~ ~
Cu 1 2.57 75.68 2.78 70 30 cu 2 2.~a 89.86 2.48 3.74 3.8 . cu 3 2.d6 91-55 4.3 D .
Rou~her 2.3, 92.75 7085 -., ~ . . ~, __. . .. . _ cu 1 3O~5 70.32 2.02 65-35 cu 2 3~6~ ~9.39 3.60 2.51 2.5 . Cu 3 ~.~2 92.25 3.20 Rougher ~.28 93.28 7.o6 .__ . . _ __. .... _ _ Cu 1 3.Bo 77.22 . 0.67 60-40 ~u 2 3064 85.47 3.46 1.36 2.6 . Cu 3 ~.46 90.12 2.62 - Rougher 3.19 92.17 7.og __ . . .. __. . _, ~. ,.. ,..... . .....
cu 1 3.8681.55 4.24 50~50 Cu 2 3.70~0.74 3.74.54 4.6 . cu 3 3.5394.25 5.38 Rougher 3.2295.44 9.9o . . . . _ .. . _ ~ ~ . . _ Cu 1 4.2370.86 2~1 -45 55 Cu 2 4.oo86.95 3.902.16 2.5 . cu 3 ~.7991.55 3.01 Rou~her 3.5693.77 7.19 .. . __ ~ _ cu 1 4.6075.19 2.41 40:~0 Cu 2 4046-84.74 4.143.07 4.50 . Cu 3 4.1490.22 4-57 .
. Rou~her 3.7992.89 8.49 _ cu 1 3.4275.35 ____~ ___ 3 70 cu 2 1 3.3785.78 3~201 2.20 3.
cu 3 1 3.34~8.81 1 2.69 Rougher 1 3.o6 91.43 ¦ 7.12 . .. .... _ I .. ~ .
. Cu 1 1 8.41 70.60 1 5.18 .
20:80 ~u 3 1 79388333o5 1 775 9-5 .
. . Rou~her 1 5.89 92.19 . 1 13-84 .
. I : i .
I . I ..
~ . A . ~ . . _ .__ . _. __ _ .. ___ ,_ r ~ _ Cum = cumulative ., .

-: , ' ' .. - : , ~ :

.. . . . .

o o ~ w o o o n o x o cno~ o . . . ... . , H
n ~ ~ ~ ~ ~ o ~ o ~ ~ u, n n ~ ~s n n n ~ n n n ~ n n n ~ n n n ~, n n n ~ n ~ ~ c ~ :
. W ~ W ~ ~- W ~ W ~ ~ W ~ ~ ~ ~

~) ~ W ~) t~ W h) (~ W ~ IP ~ W .P ~ .P t~ W W IP ~ W ~) ~ .W W W P .... ~ :
o ao ~D ~ C~ wo~ ~ CO'W~I~ C~ ) ~O a~ a~ ~ ~ .
. . fl) , _ ,. ._ ., . _ ~ . ';
o ~n ~D ~ ~ ~ ~ P CO ~ D o ~ ~D co $ ~ 0S) ~ n 5~
~ O ~ ~ w co $ ~ Ul ~n W ~1 ~ O 1--O 1~ ~--~D W ~: ~ ~ ,_ ~

. ., _ . I c ;,, ,~, ~ w ~ ~ w w w n ~ ~h CD ~ ~ . 0~ ~, X' . . .~, ~ ~ ~ :

1- 1- ---------- -- ----- -- ---- ~ ' W ~ t~ . , ~ ~ !: ~ ~ 1 ~ I~ 1_ ~ W ~ ~ W 1~) ~) O~) W ~) t~ C~ f~ (D
~ iW l,wp m ~I~moj~ mP~IwO~

--- - - ~ -- ----~ ~Dw ~
,_ w ~ w n ~t ~ ~ ~ o ~ O i_ ~ D
~r~ : ' ~ 22 -~3~62 .~ ._.. . --- ! w ,~ ,~ . , ., ~ ~ w t' ~ ~ ~: ta -~.
n o o o ,u- _~) o~ ~
C g O O ~JI tl~ O Ul o o' ~ 0 ..
. _ . H
t`) W r~l H ~ ,-t) (~ O ~ f~ ~ O ~ ~ O ~cl O
rt o O ~ C C O ~ ~: C ~ C ~ C O ~ ~ C
~I x o 1- ~, n o n ~ o n n ~ n n n ~ ~ n n t~ t~ ~
n ~n<4 ~~ o ~o o :~ o g ~ 3~ o o o 3~ g o o ~3 ~ ::
o ;~ 1_It n n n ~ n n n )t n r~ n it n n o ~3 t:
1~~_ ~1- ~ ~1- W
. ~ ~
(D ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C~
. - . ~ - - - - - -~ O ~ ~ ~ ) O ~- Ul ~ I~ n ~ ~ ::
n ~ ~ ~ o ~n o ~ ~ ~ o ~ tn ~D ~ ~
(D ' :~'''' `
~C~ tD . , O J' H
1~ ~ D) ~ n ~D ~D CO ~1 1~ ~ CO ~ ~D ~ CO ~1 O t') ;'~
n ~ ~- ,t ~ 1--~ ~ N O Ul ~ ~ W ~ ~ O C:~
. . ~ ~ ~ (A)O O ~) ~ ~ C 3 ,,~.- ::
Q) ~) o ~D O ~ CO ~ ~ ~ ~ ) ~ ~) O ~P ~ ~d . ~(D ~
(D ri n o 1~ - .
rt ~ ~ . . ~ .__- ~ ~
rt ~C O ~ ~ ~ ~ o o ~ n ~ ~- ~ ao o ~ ~ Q,. ~
~ ~ Ul W ~ ~ ~ tD g ''''" ""'-~'' Oc _ ,I~t ~: " .,~
~Q _ __ .. . , . :, " -: " ' ~ ~ t- IJ . .. ,.~
Q. 1-- ~ W 1~ ~1 ~ 1-- Y ~1 ~ ~ t`~ IX) ~3 P N Cl ~
I'~ tD .... ~ ~ - - - ., .. ~ ~ ;:
~ 0~ P ~P O O ~ D ~ Ul cn ~1 ~ c~) co Ul W ~ ."' . ~'i' ~ ~11 `J~ Uto ~9 P ~ )ao ~ 00 Q- '-'~
~0~ . ', ,~
- . .
O ~ 0~
o~ ~ w ~ ~ n ~ .
o ~I ~ ~ C ~ ~, ~ co ~ ~ c n~ '~ -._~ ___ ............. __ ~ ,i".
~: :

:, -- 23 _ .:
i~
:, .

Claims (4)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows;
1. A process for separation of an ore concentrate from associated silicate mineral gangue by froth flotation, wherein as a gangue depressant there is used a mixture of a water-soluble polymer in which the solubilising groups are selected from one or more of hydroxyl, carboxyl and ether groups, and a water-soluble lignosulphonate salt.
2. A process as claimed in Claim 1 wherein the water-soluble polymer is sodium carboxymethyl cellulose.
3. A process as claimed in Claim 1 wherein the proportion of water-soluble polymer to lignosulphate salt is from 90:10 to 10:90 parts by weight.
4. A process as claimed in Claim 3 wherein the proportion of water-soluble polymer to lignosulphate salt is from 75:25 to 40:60 parts by weight.
CA208,916A 1973-09-13 1974-09-06 Ore purification process Expired CA1039862A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB4307573A GB1456392A (en) 1973-09-13 1973-09-13 Ore purification process

Publications (1)

Publication Number Publication Date
CA1039862A true CA1039862A (en) 1978-10-03

Family

ID=10427223

Family Applications (1)

Application Number Title Priority Date Filing Date
CA208,916A Expired CA1039862A (en) 1973-09-13 1974-09-06 Ore purification process

Country Status (4)

Country Link
AU (1) AU7285174A (en)
CA (1) CA1039862A (en)
GB (1) GB1456392A (en)
ZA (1) ZA745433B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368117A (en) * 1978-06-22 1983-01-11 Outokumpu Oy Process for the selective froth-flotation of sulfidic, oxidic and salt-type minerals
ZA882394B (en) * 1988-04-05 1988-11-30 American Cyanamid Co Method for the depressing of hydrous,layered silicates
CA2014882C (en) * 1990-04-19 1996-02-20 Richard R. Klimpel Depression of the flotation of silica or siliceous gangue in mineral flotation
TR26102A (en) * 1990-05-14 1994-12-15 Dow Chemical Co REDUCTION OF SILICA AND SILICATED GANG SUBSTANCES IN MINERAL FLOTATION.
US5030340A (en) * 1990-06-08 1991-07-09 American Cyanamid Company Method for the depressing of hydrous silicates and iron sulfides with dihydroxyalkyl polysaccharides
MX2011000434A (en) 2008-07-25 2011-03-01 Cytec Tech Corp Flotation reagents and flotation processes utilizing same.
AU2013247335B2 (en) * 2012-04-12 2017-01-12 Vale S.A. A method for improving selectivity and recovery in the flotation of nickel sulphide ores that contain pyrhotite by exploiting the synergy of multiple depressants
CN106111350B (en) * 2016-06-30 2018-02-06 福州大学 A kind of method for floating of zinc oxide ore

Also Published As

Publication number Publication date
GB1456392A (en) 1976-11-24
AU7285174A (en) 1976-03-04
ZA745433B (en) 1975-09-24

Similar Documents

Publication Publication Date Title
CA1039862A (en) Ore purification process
ES8700699A1 (en) Novel collectors for the froth flotation of mineral values.
US4908125A (en) Froth flotation process for the recovery of minerals and a collector composition for use therein
CN109078762A (en) A kind of oxide ore mineral floating collecting agent
CN105268539A (en) Mineral separation technology for recycling graphite and mica in graphite tailings
CA2097372A1 (en) Process for recovery of metallic mercury from contaminated mercury-containing soil
CN105013616A (en) Method for separating molybdenum concentrate and lead-sulfur concentrate from molybdenum-lead-sulfur mixed concentrate
US3782546A (en) Cationic conditioning agents for potash flotation
CN107638949B (en) Application of the cationic etherification starch in Scheelite Flotation
CN104841564B (en) Lead-silver residue flotation combined collecting agent and application process thereof
CN109127121A (en) A kind of beneficiation method recycling copper sulphur tungsten from copper tailings
CN108187917A (en) A kind of aromatic radical phosphonic acids and its esters collecting agent and its application
US3865718A (en) Frothers for the flotation of sulfidic ores
CA1138577A (en) Flotation process for improving recovery of phosphates from ores
US3623605A (en) Process for the flotation of fluorite
US4198288A (en) Desliming of potash ores
CN101392326A (en) Method for recovering gold from all-sliming cyanidation gold extraction slag
AU2014214479B2 (en) Process to concentrate manganese ores via reverse cationic flotation of silicates
US4968415A (en) Process for selective flotation of phosphorus minerals
US1986817A (en) Flotation reagent
US1914695A (en) Concentration of phosphate-bearing material
US4045335A (en) Beneficiation of kieserite and langbeinite from a langbeinite ore
AU602584B2 (en) Method for the froth flotation of coal
US4130626A (en) Flotation separation of iron oxide from undigested matte particles obtained from autoclave leach residues
CA1111155A (en) Ore beneficiation