BRPI1102153A2 - Biogas production process and system from vegetable biomass - Google Patents

Biogas production process and system from vegetable biomass Download PDF

Info

Publication number
BRPI1102153A2
BRPI1102153A2 BRPI1102153-5A BRPI1102153A BRPI1102153A2 BR PI1102153 A2 BRPI1102153 A2 BR PI1102153A2 BR PI1102153 A BRPI1102153 A BR PI1102153A BR PI1102153 A2 BRPI1102153 A2 BR PI1102153A2
Authority
BR
Brazil
Prior art keywords
reactor
hydrolysis
process according
biomass
addition
Prior art date
Application number
BRPI1102153-5A
Other languages
Portuguese (pt)
Inventor
Haandel Adrianus Cornelius Van
Claudia Rodrigues Barbosa
Original Assignee
Cetrel S A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cetrel S A filed Critical Cetrel S A
Priority to BRPI1102153-5A priority Critical patent/BRPI1102153A2/en
Priority to PCT/IB2012/001031 priority patent/WO2012153188A2/en
Publication of BRPI1102153A2 publication Critical patent/BRPI1102153A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROCESSO E SISTEMA DE PRODUÇçO DE BIOGÁS A PARTIR DA BIOMASSA VEGETAL . A presente invenção refere-se a um processo de produção de biogás a partir de materiais lignocelulósicos, compreendendo as etapas de: (a) tratamento de biomassa vegetal através de explosão a vapor; e (b) hidrólise, e digestão anaerôbia do material tratado na etapa (a) por bactérias anaeróbias; em que as etapas (a) e (b) são realizadas em reatores separados, a etapa (b) é realizada em um único reator e os produtos da etapa (b) são o biogás e a biomassa digerida. Alternativamente, a hidrólise e a digestão podem ser realizadas em reatores separados. A presente invenção refere-se ainda a um sistema para a realização do processo de produção de biogás também objeto da invenção, o qual compreende: (i) um primeiro reator para o tratamento de biomassa vegetal através de explosão a vapor; e (ii) um segundo reator para a hidrólise e a digestão anaeróbia do material tratado na etapa (i) por bactérias anaeróbias. Em uma concretização preferencial, ambos os processos e sistemas da invenção podem adicionalmente compreender, no reator de hidrólise e digestão anaeróbia, enzimas celulases com ou sem adição de xilanases. Em uma configuração alternativa, a hidrólise pode ocorrer em reatores separados.BIOGAS PRODUCTION PROCESS AND SYSTEM FROM VEGETABLE BIOMASS. The present invention relates to a process for producing biogas from lignocellulosic materials, comprising the steps of: (a) steam blasting plant biomass; and (b) hydrolysis, and anaerobic digestion of the material treated in step (a) by anaerobic bacteria; wherein steps (a) and (b) are performed in separate reactors, step (b) is performed in a single reactor and the products of step (b) are biogas and digested biomass. Alternatively, hydrolysis and digestion may be performed in separate reactors. The present invention further relates to a system for carrying out the biogas production process also object of the invention which comprises: (i) a first reactor for the treatment of plant biomass by steam explosion; and (ii) a second reactor for hydrolysis and anaerobic digestion of material treated in step (i) by anaerobic bacteria. In a preferred embodiment, both processes and systems of the invention may further comprise in the anaerobic digestion and hydrolysis reactor cellulase enzymes with or without the addition of xylanases. In an alternative embodiment, hydrolysis may occur in separate reactors.

Description

Relatorio Descritivo da Patente de Invengao para "PROCESSO E SISTEMA DE PRODUgAO DE BIOGAS A PARTIR DE BIOMASSA VE- GETAL".Descriptive Report of the Invention Patent for "BIOGAS PRODUCTION PROCESS AND SYSTEM FROM VEGETABLE BIOMASS".

CAMPO DA INVENCAO A presente irivengao insere-se no campo da tecnologia verde,FIELD OF THE INVENTION The present invention falls within the field of green technology,

por meio da produgao de biogas, a partir de biomassa vegetal, em reatores operados em processo semicontinuo ou continuo.by the production of biogas from plant biomass in reactors operated in a semi-continuous or continuous process.

FUNDAMENTOS DA INVENCAOBACKGROUND OF THE INVENTION

As preocupag5es referentes ao aumento da demanda energeti- ca, ao aciimulo de CO2 atmosferico devido a queima dos combustiveis fos- se is, a seguranga energetica nacional aliada ao fim dos combustiveis fosseis e ao desenvolvimento da economia rural sao os principals motivos para a busca de fontes energeticas sustentaveis e provenientes de materials reno- vaveis. Metodos, materials e tecnicas de geragao de novos produtos e pro- cessos que causem menos impacto ambiental e/ou que auxiiiem na redugao da poluigao e dos danos ao meio ambiente sao englobados no campo da tecnologia verde ou tecnologia ambiental.Concerns about increasing energy demand, the increase in atmospheric CO2 due to fossil fuel burning, national energy security combined with the end of fossil fuels and the development of the rural economy are the main reasons for the search for energy. sustainable energy sources and from renewable materials. Methods, materials and techniques for generating new products and processes that cause less environmental impact and / or help reduce pollution and damage to the environment are encompassed in the field of green technology or environmental technology.

Como um dos principals produtos agricolas do Brasil, cultivada desde a epoca da sua colonizagao, a cana-de-agiicar constitui um potencial gerador de energia, com a vantagem de ser completamente renovavel. O Brasil encontra-se em uma situagao bastante favoravel quanto a produgao da cana-de-agiicar, sendo que ate a segunda quinzena de novembro de 2008,aproximadamente 460 milhoes de toneladas de cana foram processa- das na safra 2008/2009. Em 2010, aproximadamente 654 milh5es de tonela- das de cana foram processadas na safra de 2009/2010.As one of the main agricultural products in Brazil, cultivated since the time of its colonization, sugarcane is a potential energy generator, with the advantage of being completely renewable. Brazil is in a very favorable situation for sugarcane production, and by the second half of November 2008 , approximately 460 million tons of sugarcane were processed in the 2008/2009 harvest. In 2010, approximately 654 million tons of sugarcane were processed in the 2009/2010 harvest.

Como consequencia do aumento da produgao de etanol nos ύΙ- timos anos, tem-se ο aumento dos residuos agroindustriais deste processo, tais como a palha e ο baga?o da cana-de-agiicar. O potencial de produgao de residuos da cana-de-agiicar (materia-seca) representa em media 14% da massa da cana. Dessa forma, para cada tonelada de cana produzida, tem-se 140kg de bagago e 140kg de palha, e segundo dados da safra 2008/2009, ο Brasil esta acumulando aproximadamente 130 milhoes de toneladas de resi- duos (palha e bagago de cana) (Seabra. Analise de opgoes tecnologicas pa- ra uso integral da biomassa no setor de cana-de-agdcar e suas implicagdes. Tese de doutorado. Unicamp, 298p.’ 2008). Segundo dados da safra de 2009/2010, ο aciimulo e de aproximadamente 183 milhdes de toneladas de residuos (palha e baga?o de cana).As a consequence of the increase in ethanol production in recent years, there has been an increase in agro-industrial waste from this process, such as straw and sugarcane bagasse. The production potential of sugarcane (dry matter) residues represents on average 14% of the sugarcane mass. Thus, for each ton of sugarcane produced, there is 140kg of bagago and 140kg of straw, and according to data from the 2008/2009 harvest, Brazil is accumulating approximately 130 million tons of residues (straw and sugarcane bagasse). (Seabra. Analysis of technological options for the full use of biomass in the sugarcane sector and its implications. Doctoral dissertation. Unicamp, 298p. '2008). According to data from the 2009/2010 harvest, the amount is approximately 183 million tons of waste (straw and sugarcane bagasse).

A composigao do bagago e da palha de cana e variavel; ο maior componente e a celulose (40-50%), seguido de hemicelulose (20-30%) e Iignina (25-35%). Cinzas, compostos fenolicos, acidos graxos e outros cons- tituintes, denominados extrativos, compoem a fragao remanescente destas biomassas vegetais (Reddy, N.; Yang, Y. Biofibers from agricultural bypro- ducts for industrial applications. Trends in Biotechnology, v.23, p.22-27, 2005). As fragoes celulosica e hemicelulosica podem ser hidrolisadas e con- vertidas em agiicares fermeritesciveis, por metodos fisicos (por exemplo ex- plosao a vapor), quimicos (por exemplo alcalis, acidos, solventes, gases) e biologicos (por exemplo enzimas ou fungos).The composition of bagasse and sugarcane straw is variable; ο the largest component is cellulose (40-50%), followed by hemicellulose (20-30%) and lignin (25-35%). Ashes, phenolic compounds, fatty acids and other constituents, called extractive compounds, make up the remnant fragment of these plant biomasses (Reddy, N.; Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, v.23 , p.22-27, 2005). Cellulosic and hemicellulosic fractions may be hydrolysed and converted into fermeritesible agitators by physical (e.g. steam extraction), chemical (e.g. alkalis, acids, solvents, gases) and biological (e.g. enzymes or fungi) methods. .

Como alternativas economicas para a utilizagao do bagago e da palha residual de cana, podem ser citados como exemplos: uso como com- bustivel nas caldeiras de indiistrias/fazendas, uso na indiistria de papel e papelao, uso na produgao de biomassa microbiana e uso na alimentagao de animais.As economic alternatives for the use of sugarcane bagasse and residual straw, the following can be cited as: use as fuel in the industrial / farm boilers, use in the paper and paper industry, use in the production of microbial biomass and use in animal feed.

O potencial energ6tico observado para ο volume de residuos de cana-de-agiicar tambem pode ser verificado em outras culturas, como, por exemplo, arroz (casca de arroz), milho (palha de milho), cevada (palha de cevada), trigo (palha de trigo), madeira (cavacos de eucalipto) e banana (pseudocaule de bananeira). Toda esta biomassa vegetal tern sido objeto de uma serie de estudos para aplicagdes em tecnologias verdes para obtenpao de produtos de interesse industrial, como alcoois (por exemplo, etanol, buta- nol), acidos organicos (por exemplo, acido lactico, acetico, citrico) e biogas.The observed energy potential for sugarcane waste volume can also be found in other crops such as rice (rice husk), maize (maize straw), barley (barley straw), wheat (wheat straw), wood (eucalyptus chips) and banana (banana pseudostem). All of this plant biomass has been the subject of a series of studies for applications in green technologies to obtain products of industrial interest, such as alcohols (eg ethanol, butanol), organic acids (eg lactic acid, acetylic acid, citric acid). ) and biogas.

A digestao anaerobia e um processo realizado por um consorcio de micro-organismos sob condig5es anaerobias (ausencia de oxigenio) con- vertendo ο material organico complexo em compostos mais simples e mate-Anaerobic digestion is a process carried out by a consortium of microorganisms under anaerobic conditions (absence of oxygen) converting complex organic material into simpler and more matte compounds.

rial celular. O biogas gerado e composto de metano, dioxido de carbono, agua, gas sulfidrico, amonia entre outros, dependendo da composigao da biomassa empregada. O processo e desenvolvido em estagios sequenciais envolvendo processos metabolicos complexos, que dependem da atividade de, no minimo, quatro grupos de micro-organismos, sendo: bacterias hidroli- ticas, responsaveis pela Iiberagao de exoenzimas que catalisam a hidrolise de polimeros organicos complexos como a pectina, a hemicelulose e a celu- Iose a agCicares, acidos carboxilicos de cadeia Ionga e glicerol; bacterias acidogenicas, que metabolizam os produtos hidrolisados em outros ainda mais simples como acidos carboxilicos de cadeia curta, alcoois, acido Iacti- co, CO2, H2, NH3 e H2S em fungao das condig5es do meio; bacterias aceto- genicas, que convertem os produtos resultantes do metabolismo das acido- genicas em acetato, hidrogenio e dioxido de carbono e, por fim, estes sao convertidos a metano e dioxido de carbono, pelas bacterias metanogenicas (Chernicharo, C.A.L.. Reatores anaerobios. Departamento de Engenharia Sanitaria e Ambiental-UFMG, 246p.,1997).cellular phone. The generated biogas is composed of methane, carbon dioxide, water, sulfur gas, ammonia among others, depending on the biomass composition employed. The process is developed in sequential stages involving complex metabolic processes, which depend on the activity of at least four groups of microorganisms, namely: hydrolytic bacteria, responsible for the release of exoenzymes that catalyze the hydrolysis of complex organic polymers such as pectin, hemicellulose and cellulose to sugars, long chain carboxylic acids and glycerol; acidogenic bacteria, which metabolize hydrolysed products to even simpler ones such as short chain carboxylic acids, alcohols, lactic acid, CO2, H2, NH3 and H2S depending on the conditions of the medium; acetogenic bacteria, which convert the acid metabolism products into acetate, hydrogen and carbon dioxide, and finally these are converted to methane and carbon dioxide by methanogenic bacteria (Chernicharo, CAL. Anaerobic Reactors. Department of Sanitary and Environmental Engineering-UFMG, 246p. , 1997).

Alguns parametros possuem uma significancia maior no monito- ramento de reatores anaerobios por serem um indicativo da eficiencia, do estagio operacional e de alterag5es externas ou intemas dos processos que ocorrem no reator. Podemos destacar a alcalinidade, ο pH, os acidos graxos volateis (AGV) e a temperatura como os fatores mais preponderantesSome parameters have a greater significance in the monitoring of anaerobic reactors as they are indicative of the efficiency, operational stage and external or internal changes of processes that occur in the reactor. We can highlight alkalinity, pH, volatile fatty acids (VFA) and temperature as the most important factors.

A temperatura no processo de digestao anaerobia exerce influ- encia forte sobre a taxa de conversao do material organico e sobre as espe- cies predominantes em determinada faixa de temperatura. Ha tres faixas de temperatura que possuem alguma relagao com ο crescimento microbiano na maioria dos processos biologicos, a saber: a faixa psicrofila compreendida entre 4 e 15 0C; a faixa mesofila de 20 a 40 0C e a faixa termofila entre 45 e 70 0C (Lettinga, G. Sustainable integrated biological wastewater treatment. Water Science and Technology, v. 33, n. 3. p. 85-98,1996).The temperature in the anaerobic digestion process has a strong influence on the conversion rate of the organic material and on the predominant species in a given temperature range. There are three temperature ranges that have some relationship to microbial growth in most biological processes, namely: the psychrophil range between 4 and 150 ° C; the mesophyll range from 20 to 40 ° C and the thermophile range from 45 to 70 ° C (Lettinga, G. Sustainable Integrated Biological Wastewater Treatment. Water Science and Technology, v. 33, no. 3. p. 85-98, 1996).

Alcalinidade de um sistema e a capacidade que este tern de neutralizar acidos, resultado da presenga de especies quimicas de natureza alcalina. A alcalinidade e um indicativo da capacidade tamponante de umAlkalinity of a system and its ability to neutralize acids as a result of the presence of chemical species of alkaline nature. Alkalinity is an indication of the buffering capacity of a

determinado sistema e sendo assim, para uma alcalinidade alta, nao deve ser entendida que ο pH esteja necessariamente alto. Os acidos graxos vola- teis mantem uma relagao estreita com a alcalinidade. Os acidos formados no processo tendem a reduzir ο pH tornando-o acido e inadequado aos proces- sos anaerobios. Neste sentido ο efeito tamponante da solugao evita quedas bruscas e oscilagdes frequentes do pH (Chernicharo, C.A丄■■ Reatores anae- robios. Departamento de Engenharia Sanitaria e Ambiental-UFMG, 246p.,1997).Thus, for a high alkalinity, it should not be understood that pH is necessarily high. Volatile fatty acids maintain a close relationship with alkalinity. The acids formed in the process tend to reduce the pH making it acidic and unsuitable for anaerobic processes. In this sense the buffering effect of the solution avoids sudden drops and frequent pH fluctuations (Chernicharo, C.A an ■■ Analogous Reactors. Department of Sanitary and Environmental Engineering-UFMG, 246p., 1997).

Um tipo de digestor anaerobio muito utilizado e ο tipo UASB (Up- flow Anaerobic Sludge Bed), que proporciona mecanismos de contato inten- sivo entre ο substrato afluente e as bacterias, com eficiencias que variam de 70 a 85%. Devido a capacidade de aplicagao de elevadas cargas organicas, articulada a alta capacidade de retengao celular, os reatores UASB sao con- siderados um dos sistemas anaerobios com maior aplicagao pratica no tra- tamento de aguas residuarias domesticas e industrials. Um exemplo de sistema de hidrolise e digestao de solidos para aA widely used type of anaerobic digester is the UASB (Upflow Anaerobic Sludge Bed) type, which provides intensive contact mechanisms between the affluent substrate and bacteria, with efficiencies ranging from 70 to 85%. Due to their ability to apply high organic loads, coupled with their high cell retention capacity, UASB reactors are considered one of the most practical anaerobic systems in domestic and industrial wastewater treatment. An example of a hydrolysis and digestion system for solids for

produpao de biogas e descrito no documento de patente U.S. 2008/193994 (publicado em 14.08.2008, em nome de Chris E. Choate e James H. Lord), no qual a materia-prima e composta por uma mistura de residuo solido mu- nicipal e esgoto domestico, e compreende: 1) um sistema de produgao de biomassa corifigurado para a conversao de residuos organicos solidos em biomassa uniforme; 2) um reator de hidrolise configurado para converter a biomassa em solidos residuais e um Iiquido contendo compostos soluveis, por meio de hidrolise e fermentagao acida volatil; e 3) um digestor anaerobio configurado para receber rejeitos Iiquidos contendo os compostos soliiveis em conjunto com esgoto sanitario para produzir biogas a partir dos mesmos.biogas production is described in US Patent Document 2008/193994 (published on 14.08.2008, in the name of Chris E. Choate and James H. Lord), in which the raw material is composed of a solid solid waste mixture. sewage, and comprises: 1) a modified biomass production system for converting solid organic waste into uniform biomass; 2) a hydrolysis reactor configured to convert biomass to residual solids and a liquid containing soluble compounds by volatile acid hydrolysis and fermentation; and 3) an anaerobic digester configured to receive liquid waste containing soluble compounds together with sanitary sewage to produce biogas from them.

Na presente invengao poderao ser utilizados materials Iignocelu- Iosicos de diversas fontes para a produgao de biogas, em que a etapa 1 e um pre-tratamento realizado em reator hidrolitico, atraves do processo de explosao a vapor e a etapa de hidrolise da biomassa e realizada com bacte- rias hidroliticas, podendo ter a adigao de catalisador biologico (enzimas in- dustrials) combinado com estas bacterias hidroliticas. Na etapa 3, apenas οIn the present invention, Iignocellulosic materials from various sources may be used for the production of biogas, wherein step 1 is a pretreatment performed in a hydrolytic reactor through the steam blasting process and the hydrolysis step of the biomass is carried out. with hydrolytic bacteria, and may have the addition of biological catalyst (industrial enzymes) combined with these hydrolytic bacteria. In step 3, only ο

Iiquido removido apos a etapa de hidrolise e adicionado ao reator de diges- tao anaerobia, sem a utilizagao de nenhum substrato adicional como esgoto sanitario para produgao de biogas.Liquid is removed after the hydrolysis step and added to the anaerobic digestion reactor without the use of any additional substrate as sanitary sewage for biogas production.

O document。de patente U.S. 2010/0173354 (publicado em 08.07.2010, em nome de Bjoern Schwarz et al.) descreve um processo para a fermentagao de materia-prima renovavel de silagem, ο qual compreende: 1) Iavagem e esmagamento da materia-prima renovavel de silagem; 2) re- mogao de pelo menos parte da agua do material; 3) hidrolise do material uti- Iizando Iodo ativado de esta?ao de tratamento de esgoto e opcionalmente, esterco e 4) produgao de biogas a partir do material hidrolisado, em fermen- tadores. As etapas de tratamento da materia-prima renovavel de silagem, hidrolise e fermentasao podem ser realizadas separadamente.US Patent Document 2010/0173354 (published 08.07.2010, on behalf of Bjoern Schwarz et al.) Describes a process for fermentation of renewable silage feedstock, which comprises: 1) Washing and crushing of the material renewable silage feedstock; 2) removal of at least part of the water of the material; 3) hydrolysis of material using activated sludge from the sewage treatment plant and optionally manure; and 4) production of biogas from the hydrolyzed material in fermenters. The steps of treatment of renewable silage, hydrolysis and fermentation raw materials can be performed separately.

A presente invengao diferencia-se pela etapa de pre-tratamento empregado (explosao a vapor), materia-prima e tambem pela possibilidade de adigao de catalisador biologico na etapa de hidrolise. A biomassa e hidro- Iisada na etapa 2 e ο Iiquido provenierite da separagao solido/liquido e utili- zado na etapa 3 para a produgao de biogas, diferentemente do que ocorre na patente U.S. 2010/0173354,na qual ambas as fragdes solida e Iiquida do material hidrolisado sao utilizadas nos digestores para a produgao de biogas.The present invention is differentiated by the pre-treatment step employed (steam blasting), raw material and also by the possibility of biological catalyst addition in the hydrolysis step. The biomass is hydrolyzed in step 2 and is liquid from the solid / liquid separation and used in step 3 for biogas production, unlike in US 2010/0173354 , in which both solid and liquid fragments of hydrolyzed material are used in digesters for the production of biogas.

As celulases sao usualmente uma mistura de diversas enzimas que catalisam a hidrolise da celulose, convertendo-a em agiicares redutores (principalmente glicose) que podem ser utilizados por micro-organismos para a produgao de insumos de interesse industrial. Admite-se a existencia de tres tipos de celulases, responsaveis pela hidrolise da celulose: (1) endoce- Iulase - responsavel pelo rompimento de liga?oes polimericas que conferem estrutura cristalina a celulose; (2) exocelulase - cliva segmentos das cadeias expostas pela endocelulase, gerando celobiose (dissacaridio); e (3) beta- glicosidase - hidrolisa celobiose, gerando monomeros de glicose. As xilana- ses catalisam a hidrolise da fragao hemicelulosica da biomassa, produzindo hidrolisado com cerca de 90% de pentoses (principalmente xilose e arabino- se) (Sun, Y.; Cheng, J. Hydrolysis of Iignocellulosic materials for ethanol pro- duction: a review. Bioresource Technology, v. 83, p. 1 — 11, 2002).Cellulases are usually a mixture of several enzymes that catalyze the hydrolysis of cellulose, converting it into reducing agents (mainly glucose) that can be used by microorganisms to produce inputs of industrial interest. Three types of cellulases responsible for cellulose hydrolysis are believed to exist: (1) endocululase - responsible for the disruption of polymeric bonds that give the cellulose crystalline structure; (2) exocellulase - cleaves segments of the chains exposed by endocellulase, generating cellobiose (disaccharide); and (3) beta glycosidase - hydrolyzes cellobiose, generating glucose monomers. Xylanes catalyze the hydrolysis of the hemicellulosic fragment of biomass, producing hydrolysate with about 90% pentoses (mainly xylose and arabinase) (Sun, Y .; Cheng, J. Hydrolysis of Iignocellulosic materials for ethanol production: Bioresource Technology, v. 83, pp. 1-11, 2002).

sumArio da invencAo A presente irivengao refere-se a um processo de produ^ao de biogas compreendendo as etapas de:SUMMARY OF THE INVENTION This invention relates to a biogas production process comprising the steps of:

(a) pre-tratamento de biomassa vegetal atraves de explosao a(a) pretreatment of plant biomass by explosion

vapor;steam;

(b) hidrolise do material tratado na etapa (a) por bacterias hidroli-(b) hydrolysis of material treated in step (a) by hydrolytic bacteria.

ticas, com ou sem a adigao de enzimas celulases em conjunto ou nao com enzimas xilanases; etypical, whether or not cellulase enzymes are added together or not with xylanase enzymes; and

(c) digestao anaerobia do material hidrolisado na etapa (b); em que as etapas (a), (b) e (c) sao realizadas em reatores separados e ο produto da etapa (c) e ο biogas.(c) anaerobic digestion of the hydrolyzed material in step (b); wherein steps (a), (b) and (c) are performed in separate reactors and is the product of step (c) and biogas.

A presente invengao refere-se ainda a um sistema para a reali- zagao do processo de produpao de biogas tambem objeto da invengao, ο qual compreende:The present invention further relates to a system for carrying out the biogas production process also subject to the invention, which comprises:

(i) um primeiro reator para ο pre-tratamento de biomassa vegetal atraves de explosao a vapor;(i) a first reactor for the pretreatment of plant biomass by steam explosion;

(ii) um segundo reator para a hidrblise do material tratado na e- tapa (i) por bacterias hidroliticas, com ou sem a adigao de enzimas celulases em conjunto ou nao com enzimas xilanases; e(ii) a second reactor for the hydrolysis of the material treated in step (i) by hydrolytic bacteria, with or without the addition of cellulase enzymes together or not with xylanase enzymes; and

(iii) um terceiro reator para a digestao anaerobia do material hi- drolisado na etapa (ii).(iii) a third reactor for anaerobic digestion of hydrolyzed material in step (ii).

BREVE DESCRICAQ DOS DESENHOSBRIEF DESCRIPTION OF DRAWINGS

Figura 1 - A figura 1 corresponde a representagao esquematica do sistema e do processo de produgao de biogas a partir de biomassa vege- tal, com um reator de pre-tratamento por explosao a vapor (10), um reator de hidrolise (20) e um reator de digestao anaerobia (30), sem adigao de enzi- mas industrials de acordo com a presente invengao.Figure 1 - Figure 1 is a schematic representation of the system and process of producing biogas from plant biomass, with a steam blast pretreatment reactor (10), a hydrolysis reactor (20) and an anaerobic digestion reactor (30), without the addition of industrial enzymes according to the present invention.

Figura 2 - A figura 2 corresponde a representagao esquematica do sistema e do processo de produgao de biogas a partir de biomassa vege- tal, com um reator de pre-tratamento por explosao a vapor (10), um reator de hidrolise (20) e um reator de digestao anaerobia (30), com adigao de enzi- mas industrials de acordo com a presente invengao.Figure 2 - Figure 2 is a schematic representation of the system and process of producing biogas from plant biomass, with a steam blast pretreatment reactor (10), a hydrolysis reactor (20) and an anaerobic digestion reactor (30) with industrial enzyme addition according to the present invention.

DESCRICAQ DETALHADA DA INVENCAO A presente inveng§o refere-se a um processo de produgao de biogas compreendendo as etapas de:DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a biogas production process comprising the steps of:

(a) pre-tratamento de biomassa vegetal atraves de explosao a(a) pretreatment of plant biomass by explosion

vapor;steam;

(b) hidrolise do material tratado na etapa (a) por bacterias hidroli- ticas, com ou sem adigao de enzimas eeluIases, em conjunto ou nao com enzimas xilanases; e(b) hydrolysis of material treated in step (a) by hydrolytic bacteria, with or without the addition of eeluase enzymes, whether or not together with xylanase enzymes; and

(c) digestao anaerobia do material hidrolisado na etapa (b);(c) anaerobic digestion of the hydrolyzed material in step (b);

em que as referidas etapas (a), (b) e (c) sao realizadas em reatores separa- dos e ο produto da etapa (c) e ο biogas.wherein said steps (a), (b) and (c) are performed in separate reactors and the product of step (c) and biogas.

A produgao de biogas de acordo com a invengao e realizada a partir de biomassa vegetal, que pode ser selecionada a partir do grupo con- sistindo em: bagago de cana-de-agijcar, palha de cana-de-agOcar, casca de arroz, palha de milho, palha de cevada, palha de trigo, cavacos de eucalipto, pseudocaule de bananeira e misturas dos mesmos.The production of biogas according to the invention is made from plant biomass, which can be selected from the group consisting of: cane bagasse, cane straw, rice husk, corn straw, barley straw, wheat straw, eucalyptus chips, banana pseudostem and mixtures thereof.

A primeira etapa do processo da invengao, a etapa (a), compre- ende ο pre-tratamento do material Iignocelulosico em um primeiro reator, atraves de explosao a vapor, como apresentado esquematicamente nas figu- res 1 e 2 (reator 10). A hemicelulose, por apresentar estrutura amorfa e me- nor grau de polimerizagao que a celulose, e hidrolisada parcialmente ou completamente nesta etapa de pre-tratamento, dependendo das condig5es de rea9§o empregadas. O referido pre-tratamento tambem visa a desestrutu- ragao da fibra da biomassa vegetal, reduzindo a cristalinidade e aumentando a porosidade, de modo a facilitar a hidrolise da fragao celulosica.The first step of the inventive process, step (a), comprises the pretreatment of the lignocellulosic material into a first reactor by steam explosion as shown schematically in Figures 1 and 2 (reactor 10). Hemicellulose, having an amorphous structure and a lower degree of polymerization than cellulose, is partially or completely hydrolyzed in this pretreatment step, depending on the reaction conditions employed. Said pretreatment also aims at destroying the plant biomass fiber, reducing crystallinity and increasing porosity in order to facilitate hydrolysis of the cellulosic fragment.

O pre- tratamento da etapa (a) do processo da invengao com- preende explosao a vapor pela aplicagao de vapor d'agua na biomassa ve- getal, no referido primeiro reator, com temperatures que variam de 160- 260°C, ο que corresponde a pressSes de 0,62- 4,7MPa e tempo de reagao variando de alguns segundos a poucos minutos antes da descompressao. Preferencialmente1 a reagao deve ser realizada a temperaturas na faixa de 180-220°C e tempos de reagao de 3-15 minutos.The pretreatment of step (a) of the invention process comprises steam blasting by the application of water vapor to the plant biomass in said first reactor at temperatures ranging from 160 to 260 ° C. corresponds to pressures of 0.62 - 4.7MPa and reaction time ranging from a few seconds to a few minutes prior to decompression. Preferably the reaction should be carried out at temperatures in the range 180-220 ° C and reaction times 3-15 minutes.

O processo de explosao a vapor consiste na descompressao sCibita de um sistema pressurizado contendo ο vapor d'agua saturado a ele- vada pressao e a biomassa vegetal. A agua, sob elevada pressao, penetra na estrutura celular da biomassa, hid rata a celulose e hidrolisa a hemicelulo- se. As pentoses da fragao hemicelulosica podem ser separadas e ο acesso das enzimas a celulose e facilitado. Antes da etapa de hidrolise (b), os agij- cares provenientes da fragao hemicelulosica podem ser transferidos para fase Iiquida por uma etapa de Iavagem da biomassa, e este Iiquido rico em material organico pode ser enviado diretamente para a etapa c (digestao anaerobia). A biomassa pre-tratada apresenta umidade em torno de 55-60%. A segunda etapa do processo da invengao, a etapa (b), compre-The steam blasting process consists of the single decompression of a pressurized system containing high pressure saturated water vapor and plant biomass. Water under high pressure penetrates the cellular structure of the biomass, hydrates the cellulose and hydrolyzes the hemicellulose. The pentoses of the hemicellulosic fragment can be separated and access of enzymes to cellulose is facilitated. Prior to hydrolysis step (b), the clusters from the hemicellulosic fragment can be transferred to the liquid phase by a biomass wash step, and this organically rich liquid can be sent directly to step c (anaerobic digestion) . The pretreated biomass has humidity around 55-60%. The second stage of the invention process, step (b), comprises

ende a hidrolise do material tratado na referida etapa (a) em um segundo reator. O material tratado na etapa (a) sofre hidrolise no referido segundo reator (reator 20’ conforme apresentado nas figuras 1 e 2) ο qual pode ope- rar com temperatura na faixa mesofilica ou termofilica, preferencialmente na faixa de 45-55°C. Bacterias hidroliticas sao adicionadas ao reator, ο qual deve ser operado com pH entre 5,0-8,0, preferivelmente 5,0-6,0. A concen- tragao de solidos totais no reator de hidrolise esta compreendida na faixa de 5-50%, sendo preferivelmente 5-15% para este processo. Enzimas industri- als (celulases em conjunto ou nao com enzimas xilanases) podem ser adi- cionadas ao reator nesta etapa, em conjunto com as bacterias hidroliticas para elevar a eficiencia da hidrolise.hydrolysis of the material treated in said step (a) in a second reactor. The material treated in step (a) undergoes hydrolysis in said second reactor (20 'reactor as shown in figures 1 and 2) which can operate with temperature in the mesophilic or thermophilic range, preferably in the range 45-55 ° C. Hydrolytic bacteria are added to the reactor, which should be operated at a pH between 5.0-8.0, preferably 5.0-6.0. The concentration of total solids in the hydrolysis reactor is in the range of 5-50%, preferably 5-15% for this process. Industrial enzymes (cellulases with or without xylanase enzymes) may be added to the reactor at this stage, in conjunction with hydrolytic bacteria to increase hydrolysis efficiency.

O pH pode ser controlado pela adi?ao de agentes alcalinizantes (bases fortes ou fracas), preferivelmente hidroxido de sodio ou ureia. Alter- nativamente, ο controle do pH pode ser obtido recirculando ο material conti- do no reator, com ou sem a adigao dos alcalinizantes.The pH may be controlled by the addition of alkalizing agents (strong or weak bases), preferably sodium hydroxide or urea. Alternatively, pH control can be achieved by recirculating the material contained in the reactor, with or without the addition of alkalinizers.

No reator de hidrolise, as fragdes celulosica e hemicelulosica podem ser convertidas em compostos de menor massa molecular por bacte- rias hidroliticas. A adigao das enzimas industrials, celulases e xilanases, tern ο objetivo de aumentar a eficiencia e produtividade da reagao de hidrolise, uma vez que ο produto da hidrolise pode ser prontamente convertido pelas bacterias acidogenicas e acetogenicas a acidos organicos volateis.In the hydrolysis reactor, the cellulosic and hemicellulosic fragments can be converted to lower molecular weight compounds by hydrolytic bacteria. Addition of industrial enzymes, cellulases and xylanases is intended to increase the efficiency and productivity of the hydrolysis reaction, as the hydrolysis product can be readily converted by acidogenic and acetogenic bacteria to volatile organic acids.

O fungo Trichoderma reesei e ο micro-organismo mais utilizado industrialmente para a produgao de eeluIases e xilanases, mas algumas bac- terias tambem sao capazes de produzir tais enzimas, como, por exemplo, Clostridium thermocellum, Ruminococcus albus e Streptomyces sp. (Corre- dor et al. Pretreatment and Enzymatic Hydrolysis of Sorghum Bran. Cereal Chemistry, v.84, p.61-66, 2007). As bacterias hidroliticas podem ser selecio- nadas a partir de Iodos anaerobios provenientes de esta?oes de tratamentos de efluentes domesticos ou industrials. Os micro-organismos devem ser a- daptados ao meio contendo a biomassa empregada, durante um periodo que pode variar de 20-60 dias. A carga organica volumetrica mais adequada aplicada no reator esta na faixa de 5-30 g DQO/L.dia, mais preferivelmente de 10-20 g DQO/L.dia. Esta carga organica deve ser aumentada Ientamente, garantindo condigoes que propiciem ο desenvolvimento de bacterias hidroli- ticas.The fungus Trichoderma reesei is the most industrially used microorganism for the production of eeluIases and xylanases, but some bacteria are also capable of producing such enzymes, such as Clostridium thermocellum, Ruminococcus albus and Streptomyces sp. (Corretor et al. Pretreatment and Enzymatic Hydrolysis of Sorghum Bran. Cereal Chemistry, v.84, p.61-66, 2007). Hydrolytic bacteria can be selected from anaerobic sludge from domestic or industrial wastewater treatment plants. The microorganisms should be adapted to the medium containing the biomass employed for a period ranging from 20-60 days. The most suitable volumetric organic load applied to the reactor is in the range of 5-30 g COD / L.day, more preferably 10-20 g COD / L.day. This organic load should be increased slowly, ensuring conditions that favor the development of hydrolytic bacteria.

O reator de hidrolise que sera componente deste processo dife- rencia-se dos restores comumente empregados para hidrolise de biomassa, como por exemplo, do sistema utilizado para produgao de etanol de segunda geragao. Para ο etanol de segunda geragao, se utiliza apenas enzimas e os produtos da hidrolise sao carboidratos. Na presente invengao, estes carboi- dratos sao convertidos a acidos organicos volateis pelas bacterias acidoge- nicas e acetogenicas presentes no reator.The hydrolysis reactor that will be a component of this process differs from the restorations commonly used for biomass hydrolysis, such as the system used for the production of second generation ethanol. For second generation ethanol, only enzymes are used and the hydrolysis products are carbohydrates. In the present invention, these carbohydrates are converted to volatile organic acids by the acidogenic and acetogenic bacteria present in the reactor.

O tipo e a dosagem das enzimas empregadas no processo de hidrolise sao dependentes de fatores como: composigao da biomassa, grau de cristalinidade da cadeia polimerica, tipo de pre-tratamento empregado e condigdes de processo, principalmente temperatura e pH. A hidrolise da fragao celulosica da biomassa vegetal para produ-The type and dosage of enzymes employed in the hydrolysis process are dependent on factors such as biomass composition, degree of crystallinity of the polymer chain, type of pretreatment employed and process conditions, especially temperature and pH. The hydrolysis of the cellulosic fragment of plant biomass for

Qao de biogas pode ser realizada com adigao de celulases, em quantidades de cerca de 0,05-5% em massa de solidos totais (ST), mais preferivelmente de 0,5-4% em massa de ST. A xilanase e adicionada em uma quantidade suficiente para hidrolisar a hemicelulose em xilose, em concentragoes de 0,001-1% em massa de ST, mais preferivelmente de 0,05-0,2%. No entanto, ο tratamento da hemicelulose com a adipao de xilanase nao e obrigatorio deBiogas can be performed with cellulase additions in amounts of about 0.05-5 mass% of total solids (ST), more preferably 0.5-4 mass% of ST. The xylanase is added in an amount sufficient to hydrolyze the hemicellulose to xylose at concentrations of 0.001-1% by mass of ST, more preferably 0.05-0.2%. However, the treatment of hemicellulose with xylanase adipation is not mandatory.

acordo com a presente invengao, apos ο pre-tratamento com explosao a va- por.according to the present invention after pre-treatment with the blow-out.

As bacterias hidroliticas do referido segundo reator (etapa (b)) sao obtidas pela inoculagao do mesmo com 5-40% v/v de Iodo anaerobio, preferivelmente de 10-20% v/v. Tal inocuIagao visa a conversao da biomas- sa em carboidratos, com subsequente produgao de acidos organicos, os quais poderao ser convertidos a metano e dioxido de carbono no terceiro reator de digestao anaerobia da etapa (c) detalhada a seguir.The hydrolytic bacteria of said second reactor (step (b)) are obtained by inoculating it with 5-40% v / v anaerobic iodine, preferably 10-20% v / v. Such inoculation is aimed at converting the biomass into carbohydrates with subsequent production of organic acids which can be converted to methane and carbon dioxide in the third anaerobic digestion reactor from step (c) detailed below.

Na etapa (b), ο referido segundo reator pode compreender adi- cionalmente uma solugao de nutrientes organicos, com objetivo de estimular a produgao de enzimas pelas bacterias hidroliticas. A solugao de nutrientes ideal, deve conter macro (N-NH4+, P-PO43", Mg, Ca) e micro-nutrientes (Fe, Ni, Zn, Co, etc.), bem como alcalinidade (NaHCO3 ou KH2PO4 e K2HPO4) (Aquino et al. Eng. San. Amb. vol.12 - n0 2 (2007), p. 192-201). Uma fragao da solugao de nutrientes pode ser composta por vinhaga (5-20%), subprodu- to do processo de destilagao para produgao de etanol de usinas de alcool e a^Licar. A quantidade de nutrientes adicionada deve ser suficiente para ο desenvolvimento de bacterias hidroliticas.In step (b), said second reactor may additionally comprise a solution of organic nutrients for the purpose of stimulating enzyme production by hydrolytic bacteria. The ideal nutrient solution should contain macro (N-NH4 +, P-PO43 ", Mg, Ca) and micro-nutrients (Fe, Ni, Zn, Co, etc.) as well as alkalinity (NaHCO3 or KH2PO4 and K2HPO4) (Aquino et al. Eng. San. Amb. Vol.12 - no. 2 (2007), p. 192-201) A fragment of the nutrient solution can be composed of vinasse (5-20%), byproduct of distillation process for ethanol production from alcohol and sugar mills The amount of nutrients added should be sufficient for the development of hydrolytic bacteria.

Finalizada a hidrolise da etapa (b), realiza-se a separapao soli- do/liquido do material hidrolisado, ο que pode ser feito por filtragao, prensa- gem ou centrifugagao. O Iiquido obtido e encaminhado para a etapa (c) pos- terior.After the hydrolysis of step (b) is completed, solid / liquid separation of the hydrolyzed material is performed, which can be done by filtration, pressing or centrifugation. The liquid obtained is forwarded to the next step (c).

Os parametros monitorados no reator de hidrolise, para auxiliar no acompanhamento da estabilidade e do desempenho dos reatores, sao pH, temperatura, alcalinidade, acidos graxos volateis, DQO (Demanda Qui- mica de Oxigenio), solidos totais, solidos suspensos, solidos volateis, densi- dade e umidade da biomassa.The parameters monitored in the hydrolysis reactor to assist in monitoring reactor stability and performance are pH, temperature, alkalinity, volatile fatty acids, COD (Chemical Oxygen Demand), suspended solids, volatile solids, biomass density and humidity.

A terceira etapa do processo da invengao, a etapa (c), compre- ende a digestao anaerobia do material hidrolisado na referida etapa (b), em um terceiro reator (reator 30, conforme apresentado nas figuras 1 e 2). O material hidrolisado na referida etapa (b) e submetido a digestao anaerobia no referido terceiro reator, ο qual opera com temperatura na faixa mesofilica, mais preferencialmente de 30-40°C. O pH pode ser controlado pela adigao de agentes alcalinizantes, tais como ureia ou hidroxido de sodio, e deve ser mantido na faixa de 6,0- 8,0, mais preferivelmente de 6,0-7,0. Alternativamente, ο controle do pH po- de ser obtido recirculando ο material contido no reator, com ou sem a adigao de alcalinizantes.The third step of the inventive process, step (c), comprises the anaerobic digestion of the hydrolyzed material in said step (b) in a third reactor (reactor 30, as shown in figures 1 and 2). The hydrolyzed material in said step (b) is subjected to anaerobic digestion in said third reactor, which operates at temperature in the mesophilic range, more preferably 30-40 ° C. The pH may be controlled by the addition of alkalizing agents such as urea or sodium hydroxide, and should be kept in the range 6.0-8.0, more preferably 6.0-7.0. Alternatively, pH control can be achieved by recirculating the material contained in the reactor, with or without the addition of alkalinizers.

Na presente invenpao, pode-se utilizar um reator tipo UASB, ali- mentado com a fragao Iiquida obtida apos a hidrolise do bagago por bacte- rias, com ou sem a adigao de enzimas. A velocidade ascensional utilizada esta compreendida na faixa de 0,3-1,5 m/h, mais preferencialmente de 0,5- 1,0 m/h, tempo de retengao de 4-15 horas, preferencialmente de 7-10 horas, e carga organica volumetrica de 3-30 gDQO/L.dia, preferencialmente de 10- gDQO/L.dia.In the present invention, a UASB-type reactor can be used, fed with the liquid fragment obtained after bacterium hydrolysis by bacteria, with or without the addition of enzymes. The lift speed used is in the range of 0.3-1.5 m / hr, more preferably 0.5-1.0 m / hr, retention time of 4-15 hours, preferably 7-10 hours, and volumetric organic charge of 3-30 gDQO / L.day, preferably 10- gDQO / L.day.

A presente invengao refere-se ainda a um sistema para a reali- zagao do processo de produgao de biogas tambem objeto da invengao, ο qual compreende:The present invention further relates to a system for carrying out the biogas production process also subject to the invention, which comprises:

(i) um primeiro reator para ο pre-tratamento de material organico ou biomassa vegetal atraves de expIosao a vapor;(i) a first reactor for the pretreatment of organic material or plant biomass by vapor exposure;

(ii) um segundo reator para a hidrolise do material tratado na e- tapa (i) por bacterias hidroliticas, com ou sem adigao de enzimas celulases, em conjunto ou nao com enzimas xilanases; e(ii) a second reactor for the hydrolysis of the material treated in step (i) by hydrolytic bacteria, with or without cellulase enzyme addition, together or not with xylanase enzymes; and

(iii) um terceiro reator para a digestao anaerobia do material hi- drolisado na etapa (ii).(iii) a third reactor for anaerobic digestion of hydrolyzed material in step (ii).

EXEMPLOS:EXAMPLES:

EXEMPLQ 1:EXAMPLE 1:

Utilizou-se bagago de cana-de-agiicar como material de biomas- sa, ο qual foi submetido a um pre-tratamento, em um primeiro reator de ex- plosao a vapor, empregando-se temperaturas em torno de 200°C, pressao de 1,6 MPa (16 bar) e tempo de reagao de 7 minutos. A umidade do bagago explodido situou-se em torno de 50%.Sugarcane bagasse was used as biomass material, which was pre-treated in a first steam extraction reactor using temperatures around 200 ° C, pressure 1.6 MPa (16 bar) and reaction time 7 minutes. The humidity of the exploded bagago was around 50%.

O bagago pre-tratado foi transferido para ο segundo reator (rea- tor de hidrolise) e sua hidrolise foi conduzida. O reator hidrolitico operou em condigao mesofilica (37 土 0,5oC), pH em torno de 5,5 e concentragao de so- lidos em torno de 15%, com alimentagao semicontinua. A cada dois dias, ο segundo reator foi alimentado com bagago explodido e foi retirada uma parte do baga^o hidrolisado (torta para descarte), sendo que ο tempo de retengao de solidos foi em torno de 20 dias.The pretreated bagasse was transferred to the second reactor (hydrolysis reactor) and its hydrolysis was conducted. The hydrolytic reactor operated in mesophilic condition (37 土 0.5oC), pH around 5.5 and solids concentration around 15%, with semi-continuous feeding. Every two days, the second reactor was fed with exploded bagasse and a portion of the hydrolyzed bag (cake for disposal) was removed, and the retention time of solids was around 20 days.

No segundo reator de hidrolise, as fragdes celulosica e hemice-In the second hydrolysis reactor, the cellulosic and hemicellular

Iulosica do substrato utilizado (bagago pre-tratado) foram convertidas em agiicares de menor massa molecular, por bacterias hidroliticas. Para isso,ο segundo reator hidrolitico foi inoculado com 20% v/v de Iodo anaerobio, com concentragao de solidos volateis totais de 32gSTV.L"1 e atividade metanoge- nica especifica (AME) de 0,3gDQO.gSTV"1 .dia"1 utilizando substrato padrao. O Iodo foi adquirido de uma unidade de digestao anaerobia de efluentes de cervejaria e foi adaptado ao substrato utilizado (bagago pre-tratado) por cer- ca de 30 dias.The substrate emulsion used (pretreated bagasse) was converted to lower molecular weight agaric by hydrolytic bacteria. For this purpose, the second hydrolytic reactor was inoculated with 20% v / v of anaerobic iodine, with total volatile solids concentration of 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV" 1 .day "1 using standard substrate. Iodine was purchased from an anaerobic brewery effluent digestion unit and was adapted to the substrate used (pretreated bagasse) for about 30 days.

Os parametros monitorados no segundo reator de hidrolise, para auxiliar no acompanhamento da estabilidade e do desempenho do reator utilizado no processo, foram: pH, temperatura, alcalinidade, acidos graxos volateis, DQO1 solidos totais, solidos volateis suspensos, solidos volateis totais, solidos fixos totais, densidade e umidade do bagago e densidade e umidade da torta. Depois de decorrido ο tempo de hidrolise (48h), ο bagago hidrolisado foi submetido a separa?ao solido/liquido, e ο Iiquido obtido por filtragao contendo compostos soldveis (lixiviado), rico em agCicares, foi envi- ado para ο terceiro reator de digestao anaerobia.The parameters monitored in the second hydrolysis reactor, to assist in monitoring the stability and performance of the reactor used in the process, were: pH, temperature, alkalinity, volatile fatty acids, COD1 total solids, suspended volatile solids, total volatile solids, fixed solids. totals, bagago density and moisture and cake density and moisture. After the hydrolysis time (48h), the hydrolyzed bagasse was subjected to solid / liquid separation, and the liquid obtained by filtration containing weldable compounds (leached), rich in agar, was sent to the third reactor. Anaerobic digestion.

Nao foi empregado nenhum tipo de cataiisador no processo, como enzimas industrials ou acidos inorganicos. O terceiro reator de digestao anaerobia utilizado foi um reator di-No type of catalyst was employed in the process, such as industrial enzymes or inorganic acids. The third anaerobic digestion reactor used was a di-

gestor do tipo UASB1 alimentado com a fragao Iiquida obtida apos a hidrolise do bagago por bacterias. A velocidade ascensional utilizada foi de 0,5m/h, tempo de retengao em torno de 3h e carga organica volumetrica adequada a este tipo de reator. O terceiro reator UASB foi operado em condigao mesofi- Iica (37 ±0,5oC) e pH em torno de 6.UASB1 type manager fed with the liquid fragment obtained after bacterial hydrolysis of bagago. The lift speed used was 0.5m / h, retention time around 3h and volumetric organic load suitable for this type of reactor. The third UASB reactor was operated in mesophilic condition (37 ± 0.5oC) and pH around 6.

EXEMPLO 2:EXAMPLE 2:

Utilizou-se bagago de cana-de-agiicar como material de biomas- sa, ο qual foi submetido a um pre-tratamento, em um primeiro reator de ex- plosao a vapor, empregando-se temperaturas em torno de 200°C, pressao de 1,6 MPa (16 bar) e tempo de reagao de 7 minutos. A umidade do bagago explodido situou-se em torno de 50%.Sugarcane bagasse was used as biomass material, which was pre-treated in a first steam extraction reactor using temperatures around 200 ° C, pressure 1.6 MPa (16 bar) and reaction time 7 minutes. The humidity of the exploded bagago was around 50%.

O baga?o pre-tratado foi transferido para ο segundo reator (rea-The pre-treated berry was transferred to the second reactor (reactor

tor de hidrolise) e sua hidrolise foi conduzida. O reator hidrolitico operou em condigao mesofilica (37 土 0,5oC),pH em torno de 5,5 e concentraQao de so- Iidos em torno de 15%, com alimentagao semicontinua. A cada dois dias, ο segundo reator foi alimentado com bagago explodido e foi retirada uma parte do bagago hidrolisado (torta para descarte), sendo que ο tempo de retengao de solidos foi em torno de 20 dias.hydrolysis torch) and its hydrolysis was conducted. The hydrolytic reactor operated in a mesophilic condition (37 土 0.5oC) , pH around 5.5 and solids concentration around 15%, with semi-continuous feeding. Every two days, the second reactor was fed with exploded bagasse and a portion of the hydrolyzed bagago (cake for disposal) was removed, and the retention time of solids was around 20 days.

No segundo reator de hidrolise, as fragoes celulosica e hemice- Iulosica do substrato utilizado (bagago pre-tratado) foram convertidas em agiicares de menor massa molecular, por bacterias hidroliticas e enzimas comerciais dos tipos celulase e xilanase, cujo objetivo foi aumentar a eficien- cia e a produtividade da hidrolise no segundo reator. Para isso, ο segundo reator hidrolitico foi inoculado com 20% v/v de Iodo anaerobio, com concen- tragao de solidos volateis totais de 32gSTV.L"1 e atividade metanogenica especifica (AME) de 0,3gDQO.gSTV"1 .dia"1 utilizando substrato padrao, e com um coquetel de enzima comercial compost。por celulases e xilanases. As enzimas eram diluidas em agua e aplicadas diretamente ao bagago du- rante cada alimentagao. O Iodo foi adquirido de uma unidade de digestao anaerobia de efluentes de cervejaria e foi adaptado ao substrato utilizado (bagago pre-tratado) por cerca de 30 dias. Os parametros monitorados no segundo reator de hidrolise, paraIn the second hydrolysis reactor, the cellulosic and hemicellulosic fractions of the substrate used (pretreated bagasse) were converted to lower molecular mass agicides by hydrolytic bacteria and commercial enzymes of the cellulase and xylanase types, whose objective was to increase the efficiency. and the productivity of hydrolysis in the second reactor. For this, the second hydrolytic reactor was inoculated with 20% v / v anaerobic iodine, with total volatile solids concentration of 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV" 1 .day "1 using standard substrate, and with a commercial enzyme cocktail composed of cellulases and xylanases. The enzymes were diluted in water and applied directly to the bagasse during each feed. Iodine was purchased from an anaerobic digestion unit of and was adapted to the substrate used (pretreated bagago) for about 30 days.The parameters monitored in the second hydrolysis reactor to

auxiliar no acompanhamento da estabilidade e do desempenho do reator utilizado no processo, foram: pH, temperatura, alcalinidade, acidos graxos volateis, DQO, solidos totais, solidos volateis suspensos, solidos volateis totais, solidos fixos totais, densidade e umidade do bagago e densidade e umidade da torta. Depois de decorrido ο tempo de hidrolise (48h), ο bagago hidrolisado foi submetido a separagao solido/liquido, e ο Iiquido obtido porTo assist in monitoring the stability and performance of the reactor used in the process were: pH, temperature, alkalinity, volatile fatty acids, COD, total solids, suspended volatile solids, total volatile solids, total fixed solids, bagago density and humidity and density and moisture in the pie. After the hydrolysis time (48h), the hydrolyzed bagasse was subjected to solid / liquid separation, and the liquid obtained by

filtragao contendo compostos soliiveis (Iixiviado)1 rico em agiicares, foi envi- ado para ο terceiro reator de digestao anaerobia. A eficiencia de hidrolise da biomassa foi calculada considerando ο valor de DQO do bagago que entra no reator, DQO do bagago que sai do reator e da DQO do lixiviado, obtido pela analise do liquid。extraido do bagago hidrolisado. A eficiencia do se- gundo reator hidrolitico aumentou em torno de 150% com relagao ao Exem- plo 1.A filtration containing agicide-soluble (leached) 1 compounds was sent to the third anaerobic digestion reactor. The hydrolysis efficiency of the biomass was calculated considering the COD value of the bagasse entering the reactor, COD of the bagasse leaving the reactor and the COD of the leachate, obtained by the analysis of the extracted hydrolyzed bagage liquid. The efficiency of the second hydrolytic reactor increased by about 150% compared to Example 1.

O terceiro reator de digestao anaerobia utilizado foi um reator di- gestor do tipo UASB, alimentado com a fragao Iiquida obtida apos a hidrolise do bagago por bacterias e enzimas comerciais. A velocidade ascensional utilizada foi de 0,5m/h, tempo de retengao em torno de 3h e carga organica volumetrica adequada a este tipo de reator. O terceiro reator UASB foi ope- rado em condigao mesofilica (37 ±0’5。C) e pH em torno de 6.The third anaerobic digestion reactor used was a UASB type reactor reactor, fed with the liquid fragment obtained after the hydrolysis of bagago by bacteria and commercial enzymes. The lift speed used was 0.5m / h, retention time around 3h and volumetric organic load suitable for this type of reactor. The third UASB reactor was operated under mesophilic condition (37 ± 0'5。C) and pH around 6.

EXEMPLO 3:EXAMPLE 3:

Utilizou-se bagago de cana-de-agiicar como material de biomas- sa, ο qual foi submetido a um pre-tratamento, em um primeiro reator de ex- plosao a vapor, empregando-se temperaturas em torno de 200。C, pressao de 1,6 MPa (16 bar) e tempo de reagao de 7 minutos. A umidade do bagago explodido situou-se em torno de 50%.Sugarcane bagasse was used as biomass material, which was pre-treated in a first steam extraction reactor using temperatures around 200 emC, pressure 1.6 MPa (16 bar) and reaction time 7 minutes. The humidity of the exploded bagago was around 50%.

O bagago pre-tratado foi transferido para ο segundo reator (rea- tor de hidrolise) e sua hidrolise foi conduzida. O reator hidrolitico operou em condi?ao termofilica (55 土 0,5。C), pH em torno de 5,5 e concentragao de so- Iidos em torno de 15%, com alimentagao semicontinua. A cada dois dias, ο segundo reator foi alimentado com bagago explodido e foi retirada uma parte do bagago hidrolisado (torta para descarte), sendo que ο tempo de retengao de solidos foi em torno de 20 dias.The pretreated bagasse was transferred to the second reactor (hydrolysis reactor) and its hydrolysis was conducted. The hydrolytic reactor operated under thermophilic condition (55 土 0.5土C), pH around 5.5 and solids concentration around 15%, with semi-continuous feeding. Every two days, the second reactor was fed with exploded bagasse and a portion of the hydrolyzed bagago (cake for disposal) was removed, and the retention time of solids was around 20 days.

No segundo reator de hidrolise, as frag5es celulosica e hemice- Iulosica do substrato utilizado (bagago pre-tratado) foram convertidas em agiicares de menor massa molecular, por bacterias hidroliticas. Para isso, ο segundo reator hidrolitico foi inoculado com 20% v/v de Iodo anaerobio, com concentragao de solidos volateis totais de 32gSTV.L"1 e atividade metanoge- nica especifica (AME) de 0,3gDQO.gSTV"1 .dia"1 com substrato padrao. OIn the second hydrolysis reactor, the cellulosic and hemicellulosic fragments of the substrate used (pretreated bagasse) were converted to lower molecular weight agaric by hydrolytic bacteria. For this, the second hydrolytic reactor was inoculated with 20% v / v of anaerobic iodine, with total volatile solids concentration of 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV" 1 .day "1 with standard substrate.

Iodo foi adquirido de uma unidade de digestao anaerobia de efluentes de cervejaria e foi adaptado ao substrato utilizado (baga?o pre-tratado) por cer- ca de 30 dias.Iodine was purchased from an anaerobic digestion unit of brewery effluent and was adapted to the substrate used (pretreated berry) for about 30 days.

Os parametros monitorados no segundo reator de hidrolise, para auxiliar no acompanhamento da estabilidade e do desempenho do reator utilizado no processo, foram: pH, temperatura, alcalinidade, acidos graxos volateis, DQO1 solidos totais, solidos volateis suspensos, solidos volateis totais, solidos fixos totais, densidade e umidade do bagago e densidade e umidade da torta. Depois de decorrido ο tempo de hidrolise (48h), ο bagago hidrolisado foi submetido a separagao solido/liquido, e ο Iiquido obtido por filtragao contendo compostos solCiveis (lixiviado), rico em agiicares, foi envi- ado para ο terceiro reator de digestao anaerobia. A eficiencia de hidrolise da biomassa foi calculada considerando ο valor de DQO do bagago que entra no reator, DQO do bagagio que sai do reator e da DQO do lixiviado, obtido pela analise do Iiquido extraido do bagago hidrolisado. Para aumentar a efi- ciencia da hidrolise, foi adicionada uma solugao contendo nutrientes especi- ficos para promover a sintese de enzimas celuloliticas pelas bacterias pre- sentes no Iodo anaerobico. A eficiencia do segundo reator hidrolitico foi em torno de 150% maior que ο Exemplo 1.The parameters monitored in the second hydrolysis reactor, to assist in monitoring the stability and performance of the reactor used in the process, were: pH, temperature, alkalinity, volatile fatty acids, COD1 total solids, suspended volatile solids, total volatile solids, fixed solids. totals, bagago density and moisture and cake density and moisture. After the hydrolysis time (48h), the hydrolyzed bagasse was subjected to solid / liquid separation, and the liquid obtained by filtration containing aglycemic soluble (leached) compounds was sent to the third anaerobic digestion reactor. . The hydrolysis efficiency of the biomass was calculated considering the COD value of the bagasse entering the reactor, COD of the bagasse leaving the reactor and the COD of the leachate, obtained by the analysis of the liquid extracted from the hydrolyzed bagage. To increase the hydrolysis efficiency, a solution containing specific nutrients was added to promote the synthesis of cellulolytic enzymes by the bacteria present in the anaerobic iodine. The efficiency of the second hydrolytic reactor was about 150% higher than Example 1.

Nao foi empregado nenhum tipo de catalisador no processo, como enzimas industrials ou acidos inorganicos.No type of catalyst was employed in the process, such as industrial enzymes or inorganic acids.

O terceiro reator de digestao anaerobia utilizado foi um reator di- gestor do tipo UASB alimentado com a fragao Iiquida obtida apos a hidrolise do bagago por bacterias. A velocidade ascensional utilizada foi de 0’5m/h, tempo de retengao em torno de 3h e carga organica volumetrica adequada a este tipo de reator. O terceiro reator UASB foi operado em condigao mesofi- Iica (37 ±0,5°C) e pH em torno de 6.The third anaerobic digestion reactor used was a UASB type reactor fed with the liquid fragment obtained after bacterial hydrolysis of bagago. The lift speed used was 0'5m / h, retention time around 3h and volumetric organic load suitable for this type of reactor. The third UASB reactor was operated in mesophilic condition (37 ± 0.5 ° C) and pH around 6 ° C.

EXEMPLO 4:EXAMPLE 4:

Utilizou-se bagago de cana-de-agiicar como material de biomas- sa, ο qual foi submetido a um pre-tratamerito, em um primeiro reator de ex- plosao a vapor, empregando-se temperaturas em torno de 200°C, pressao de 1,6 MPa (16 bar) e tempo de reagao de 7 minutos. A umidade do bagagoSugarcane bagasse was used as biomass material, which was subjected to a pretreatment in a first steam extraction reactor, using temperatures around 200 ° C, pressure 1.6 MPa (16 bar) and reaction time 7 minutes. The moisture of bagago

explodido situou-se em torno de 50%. O bagago pre-tratado foi transferido para ο segundo reator (rea- tor de hidrolise) e sua hidrolise foi conduzida. O reator hidrolitico operou em condigao termofilica (55 土 0,5oC), pH em torno de 5,5 e concentragao de so- Iidos em torno de 15%, com alimentagao semicontinua. A cada dois dias, ο segundo reator foi alimentado com bagago explodido e foi retirada uma parte do baga^o hidrolisado (torta para descarte), sendo que ο tempo de retengao de solidos foi em torno de 20 dias.exploded was around 50%. The pretreated bagasse was transferred to the second reactor (hydrolysis reactor) and its hydrolysis was conducted. The hydrolytic reactor operated in thermophilic condition (55 土 0,5oC), pH around 5.5 and solids concentration around 15%, with semi-continuous feeding. Every two days, the second reactor was fed with exploded bagasse and a portion of the hydrolyzed bag (cake for disposal) was removed, and the retention time of solids was around 20 days.

No segundo reator de hidrolise, as fragoes celulosica e hemice- Iulosica do substrato utilizado (bagago pre-tratado) foram convertidas em agiicares de menor massa molecular, por bacterias hidroliticas e enzimas comerciais dos tipos celulase e xilanase, cujo objetivo foi aumentar a eficien- cia e a produtividade da hidrolise no segundo reator. Para isso, ο segundo reator hidrolitico foi inoculado com 20% v/v de Iodo anaerobio, com concen- tragao de solidos volateis totais de 32gSTV.L"1 e atividade metanogenica especifica (AME) de 0,3gDQO.gSTV"1 .dia"1 utilizando substrato padrao, e com um coquetel de enzima comercial composto por celulase e xilanase. As enzimas eram diluidas em agua e aplicadas diretamente ao baga?o durante cada alimentagao. O Iodo foi adquirido de uma unidade de digestao anaero- bia de efluentes de cervejaria e foi adaptado ao substrato utilizado (bagago pre-tratado) por cerca de 30 dias.In the second hydrolysis reactor, the cellulosic and hemicellulosic fractions of the substrate used (pretreated bagasse) were converted to lower molecular mass agicides by hydrolytic bacteria and commercial enzymes of the cellulase and xylanase types, whose objective was to increase the efficiency. and the productivity of hydrolysis in the second reactor. For this, the second hydrolytic reactor was inoculated with 20% v / v anaerobic iodine, with total volatile solids concentration of 32gSTV.L "1 and specific methanogenic activity (AME) of 0.3gDQO.gSTV" 1 .day "1 using standard substrate, and with a commercial enzyme cocktail composed of cellulase and xylanase. The enzymes were diluted in water and applied directly to the berry during each feed. Iodine was purchased from an anaerobic effluent digestion unit. brewery and was adapted to the substrate used (pretreated bagago) for about 30 days.

Os parametros monitorados no segundo reator de hidrolise, para auxiliar no acompanhamento da estabilidade e do desempenho do reator utilizado no processo, foram: pH, temperatura, alcalinidade, acidos graxos volateis, DQO1 solidos totais, solidos volateis suspensos, solidos volateis totais, solidos fixos totais, densidade e umidade do bagago e densidade e umidade da torta. Depois de decorrido ο tempo de hidrolise (48h), ο bagago hidrolisado foi submetido a separagao solido/liquido, e ο Iiquido obtido por fiItragao contendo compostos soldveis (lixiviado), rico em agOcares, foi envi- ado para ο terceiro reator de digestao anaerobia. A eficiencia de hidrolise da biomassa foi calculada considerando ο valor de DQO do bagago que entra no reator, DQO do bagago que sai do reator e da DQO do lixiviado, obtidoThe parameters monitored in the second hydrolysis reactor, to assist in monitoring the stability and performance of the reactor used in the process, were: pH, temperature, alkalinity, volatile fatty acids, COD1 total solids, suspended volatile solids, total volatile solids, fixed solids. totals, bagago density and moisture and cake density and moisture. After the hydrolysis time (48h), the hydrolyzed bagasse was subjected to solid / liquid separation, and the liquid obtained by filtration containing weldable compounds (leached), rich in sugars, was sent to the third anaerobic digestion reactor. . The hydrolysis efficiency of the biomass was calculated considering the COD value of the bagasse entering the reactor, COD of the bagasse leaving the reactor and the leachate COD obtained.

pela analise do Iiquido extraido do bagago hidrolisado. Para aumentar a efi- ciencia da hidrolise, foi adicionada uma solugao contendo nutrientes especi- ficos para promover a sintese de enzimas celuloliticas pelas bacterias pre- sentes no Iodo anaerobico. A eficiencia do segundo reator hidrolitico foi em torno de 175% em relagao ao Exemplo 1.by the analysis of the liquid extracted from the hydrolyzed bagasse. To increase the hydrolysis efficiency, a solution containing specific nutrients was added to promote the synthesis of cellulolytic enzymes by the bacteria present in the anaerobic iodine. The efficiency of the second hydrolytic reactor was around 175% over Example 1.

O terceiro reator de digestao anaerobia utilizado foi um reator digestor do tipo UASB alimentado com a fragao Iiquida obtida apos a hidroli- se do bagago por bacterias e enzimas comerciais. A velocidade ascensional utilizada foi de 0,5m/h, tempo de retengao em torno de 3h e carga organica volumetrica adequada a este tipo de reator. O terceiro reator UASB foi ope- rado em condigao mesofilica (37 土 0,5oC) e pH em torno de 6.The third anaerobic digestion reactor used was a UASB-type digestor reactor fed with the liquid fragment obtained after bagasse hydrolysis by commercial bacteria and enzymes. The lift speed used was 0.5m / h, retention time around 3h and volumetric organic load suitable for this type of reactor. The third UASB reactor was operated under mesophilic condition (37 土 0.5oC) and pH around 6.

Claims (16)

1. Processo de produgao de biogas, caracterizado pelo fato de que compreende as etapas de: (a) pre-tratamento de biomassa vegetal atraves de explosao a vapor; (b) hidrolise do material tratado na etapa (a) por bacterias hidroli- ticas; e (c) digestao anaerobia do material hidrolisado na etapa (b); em que as etapas (a), (b) e (c) sao realizadas em reatores separados e ο produto da etapa (c) e ο biogas.1. Biogas production process, characterized by the fact that it comprises the steps of: (a) pretreatment of plant biomass by steam explosion; (b) hydrolysis of the material treated in step (a) by hydrolytic bacteria; and (c) anaerobic digestion of the hydrolyzed material in step (b); wherein steps (a), (b) and (c) are performed in separate reactors and is the product of step (c) and biogas. 2. Processo de acordo com a reivindicagao 1, caracterizado pelo fato de que a biomassa vegetal da etapa (a) e selecionada a partir do grupo consistindo em bagago de cana-de-agiicar, palha de cana-de-agucar, casca de arroz, palha de milho, palha de cevada, palha de trigo, cavacos de euca- lipto, pseudocaule de bananeira e misturas dos mesmos.Process according to Claim 1, characterized in that the plant biomass of step (a) is selected from the group consisting of sugarcane bagasse, sugarcane straw, rice husk , maize straw, barley straw, wheat straw, eucalyptus chips, banana pseudostem and mixtures thereof. 3. Processo de acordo com a reivindica^ao 1 ou 2,caracterizado pelo fato de que a etapa (a) compreende ο processo de explosao a vapor para ο pre-tratamento da biomassa vegetal, em um reator com temperatura de 160 a 260 C e pressao de 0,62 a 4,7 MPa.Process according to Claim 1 or 2, characterized in that step (a) comprises a steam blasting process for the pretreatment of plant biomass in a reactor with a temperature of 160 to 260 ° C. and pressure from 0.62 to 4.7 MPa. 4. Processo de acordo com uma das reivindicagoes 1-3’ caracte- rizado pelo fato de a biomassa obtida na etapa (a) pode ser submetida a uma etapa de Iavagem para recuperagao de material organico provenierite da hidrolise da frapao hemicelulosica, send。que este Iiquido pode ser envi- ado diretamente para ο reator da etapa (c).Process according to any one of claims 1-3 ', characterized in that the biomass obtained in step (a) may be subjected to a washing step for recovery of organic material from the hydrolysis of the hemicellular fraction, which may be This liquid can be sent directly to the reactor of step (c). 5. Processo de acordo com qualquer uma das reivindicagoes 1- 4’ caracterizado pelo fato de que a etapa (b) compreende a hidrolise do ma- terial tratado na etapa (a), em um reator que pode operar em condigoes me- sofilicas, com bacterias hidroliticas, pH de 5,0-8,0, preferencialmente de 5,0- 6,0, concentragao de solidos de 5-50%, sendo preferencialmente de 5-15%, alimentagao semicontinua ou continua e temperatura de 20-70°C, preferen- cialmente de 30-40°C.Process according to any one of claims 1-4 ', characterized in that step (b) comprises hydrolysis of the material treated in step (a) in a reactor that can operate under metallurgical conditions; with hydrolytic bacteria, pH 5.0-8.0, preferably 5.0-6.0, concentration of solids 5-50%, preferably 5-15%, semi-continuous or continuous feeding and temperature 20-20 ° C. 70 ° C, preferably 30-40 ° C. 6. Processo de acordo com qualquer uma das reivindicagoes 1- -4, caracterizado pelo fato de que a etapa (b) compreende a hidrolise do ma- terial tratado na etapa (a), em um reator que pode operar em condigoes ter- mofilicas, com bacterias hidroliticas, pH de 5,0-8,0, preferencialmente de -5,0-6,0, concentragao de solidos de 5-50%, sendo preferencialmente de 5- -15%, alimentagao semicontinua ou continua e temperatura de 20-70°C, pre- ferencialmente de 45-55°C.Process according to any one of claims 1-4, characterized in that step (b) comprises hydrolysis of the material treated in step (a) in a reactor that can operate under thermophilic conditions. with hydrolytic bacteria, pH 5.0-8.0, preferably -5.0-6.0, 5-50% solids concentration, preferably 5-15%, semicontinuous or continuous feeding and temperature 20-70 ° C, preferably 45-55 ° C. 7. Processo de acordo com as reivindicagoes 5 e 6,caracteriza- do pelo fato de que ο pH e controlado pela adigao de agentes alcalinizantes como ureia e hidroxido de sodio, alternativamente com recirculagao do mate- rial contido no reator com ou sem a adigao de alcalinizantes.Process according to Claims 5 and 6, characterized in that the pH is controlled by the addition of alkalizing agents such as urea and sodium hydroxide, alternatively with recirculation of the material contained in the reactor with or without the addition. of alkalinizers. 8. Processo de acordo com qualquer uma das reivindicagoes 1- -7, caracterizado pelo fato de que as bacterias hidroliticas do reator da etapa (b) sao obtidas pela inoculagao do referido reator com 5-40-% v/v de Iodo anaerobio, preferivelmente de 10-20 %v/v.Process according to any one of claims 1-7, characterized in that the hydrolytic bacteria from the reactor of step (b) are obtained by inoculating said reactor with 5-40-% v / v anaerobic iodine, preferably from 10-20% v / v. 9. Process。de acordo com qualquer uma das reivindicagdes 1- -8,caracterizado pelo fato de que ο reator da etapa (b) compreende ainda adigao de uma solugao de nutrientes organicos.Process according to any one of claims 1-8, characterized in that the reactor of step (b) further comprises adding an organic nutrient solution. 10. Processo de acordo com qualquer uma das reivindicagoes 1- -9’ caracterizado pelo fato de que a etapa (b) compreende ainda adigao de enzimas celulases em conju门to ou nao com enzimas xilanases.Process according to any one of claims 1-9 ', characterized in that step (b) further comprises the addition of cellulase enzymes in conjunction or not with xylanase enzymes. 11. ■ Processo de acordo com qualquer uma das reivindicagoes 1- -10’ caracterizado pelo fato de que a etapa (b) compreende ainda a separa- ?ao solido/liquido do material hidrolisado da etapa (b), em que ο Iiquido con- tendo material organico soliivel e obtido e encaminhado para a etapa (c).A process according to any one of claims 1-10 'wherein step (b) further comprises solid / liquid separation of the hydrolyzed material from step (b), wherein the liquid with - having soluble organic material is obtained and directed to step (c). 12. Processo de acordo com qualquer uma das reivindicapdes 1- -11, caracterizado pelo fato de que a etapa (c) compreende a digestao anae- robia do material hidrolisado na etapa (b), em um reator apresentando con- digoes mesofilicas, com temperatura preferencialmente de 30-40°C, pH de 6,0-8,0, sendo preferencialmente de 6,0-7,0.Process according to any one of claims 1-11, characterized in that step (c) comprises the anaerobic digestion of the hydrolyzed material in step (b) in a reactor having mesophilic conditions with temperature preferably 30-40 ° C, pH 6.0-8.0, preferably 6.0-7.0. 13. Processo de acordo com a reivindicagao 12,caracterizado pelo fato de que ο pH e controlado pela adigao de agentes alcalinizantes, como ureia e hidroxido de sodio, alternativamente com recirculagao do mate- rial contido no reator com ou sem a adição de alcalinizantes.Process according to Claim 12, characterized in that the pH is controlled by the addition of alkalizing agents such as urea and sodium hydroxide, alternatively with recirculation of the material contained in the reactor with or without the addition of alkalinizers. 14. Processo de acordo com qualquer uma das reivindicações 1- 13, caracterizado pelo fato de o processo poder ser realizado sem adição de enzimas industriais.Process according to any one of claims 1-13, characterized in that the process can be carried out without the addition of industrial enzymes. 15. Processo de acordo com qualquer uma das reivindicações 1- 14, caracterizado pelo fato de o processo poder ser realizado com adição de enzimas industriais.Process according to any one of claims 1-14, characterized in that the process can be carried out with the addition of industrial enzymes. 16. Sistema para a realização do processo de produção de bio- gás como definido em qualquer uma das reivindicações 1-15, caracterizado pelo fato de que compreende: (i) um primeiro reator para o pré-tratamento de biomassa vegetal através de explosão a vapor; (ii) um segundo reator para a hidrólise do material tratado na e- tapa (i) por bactérias hidrolíticas; e (iii) um terceiro reator para a digestão anaeróbia do material hi- drolisado na etapa (ii).System for carrying out the bio-gas production process as defined in any one of claims 1-15, characterized in that it comprises: (i) a first reactor for the pretreatment of plant biomass by blast steam; (ii) a second reactor for the hydrolysis of the material treated in step (i) by hydrolytic bacteria; and (iii) a third reactor for anaerobic digestion of hydrolyzed material in step (ii).
BRPI1102153-5A 2011-05-11 2011-05-11 Biogas production process and system from vegetable biomass BRPI1102153A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI1102153-5A BRPI1102153A2 (en) 2011-05-11 2011-05-11 Biogas production process and system from vegetable biomass
PCT/IB2012/001031 WO2012153188A2 (en) 2011-05-11 2012-05-25 Process and system for the production of biogas from vegetal biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BRPI1102153-5A BRPI1102153A2 (en) 2011-05-11 2011-05-11 Biogas production process and system from vegetable biomass

Publications (1)

Publication Number Publication Date
BRPI1102153A2 true BRPI1102153A2 (en) 2013-06-25

Family

ID=46981010

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI1102153-5A BRPI1102153A2 (en) 2011-05-11 2011-05-11 Biogas production process and system from vegetable biomass

Country Status (2)

Country Link
BR (1) BRPI1102153A2 (en)
WO (1) WO2012153188A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132467A (en) * 2014-06-09 2015-12-09 宋安东 Steam-exploded wet-stored corn straw two-phase anaerobic fermentation method
CN107653296B (en) * 2017-11-16 2020-08-11 甘肃省科学院自然能源研究所 Method for producing biogas by two-stage combined anaerobic fermentation of vegetable waste and straw

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080193994A1 (en) 2006-11-27 2008-08-14 Choate Chris E Systems and methods for the co-treatment of solid organic waste and sewage
DE102007000834B4 (en) 2007-03-27 2017-09-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the fermentation of ensiled renewable raw materials
US8057639B2 (en) * 2008-02-28 2011-11-15 Andritz Inc. System and method for preextraction of hemicellulose through using a continuous prehydrolysis and steam explosion pretreatment process
US8246828B2 (en) * 2009-08-04 2012-08-21 Geosynfuels, Llc Methods for selectively producing hydrogen and methane from biomass feedstocks using an anaerobic biological system

Also Published As

Publication number Publication date
WO2012153188A2 (en) 2012-11-15
WO2012153188A3 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
Dhanya et al. Development of sustainable approaches for converting the organic waste to bioenergy
Sindhu et al. Water hyacinth a potential source for value addition: an overview
Elsayed et al. Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production: Comparison of structural properties and energy output
Shah et al. Co-digestion, pretreatment and digester design for enhanced methanogenesis
Cheng et al. Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis+ fermentation and anaerobic digestion
Chen et al. Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge
Ma et al. Enhanced biomethane production from corn straw by a novel anaerobic digestion strategy with mechanochemical pretreatment
You et al. Improving anaerobic codigestion of corn stover using sodium hydroxide pretreatment
Stanley et al. Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion-A review
CN102154381B (en) Method for joint production of ethanol and microbial lipid by using methyl cellulose as raw material
Wang et al. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover
Xie et al. The synergistic effect of rumen cellulolytic bacteria and activated carbon on thermophilic digestion of cornstalk
Ausiello et al. Biohydrogen production by dark fermentation of Arundo donax using a new methodology for selection of H2-producing bacteria
Zheng et al. Renewable biohydrogen production from straw biomass–Recent advances in pretreatment/hydrolysis technologies and future development
WO2012153189A2 (en) Process and system for producing biogas from anaerobic digestion of plant biomass in solid phase
Du et al. High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)
Puligundla et al. Valorization of sugar beet pulp through biotechnological approaches: recent developments
Ghasemzadeh et al. Production of bioalcohol and biomethane
Wang et al. Effects of different microbial pretreatments on the anaerobic digestion of giant grass under anaerobic and microaerobic conditions
Akhand et al. Optimization of NMMO pre-treatment of straw for enhanced biogas production
Wijeyekoon et al. Woody biomass as a potential feedstock for fermentative gaseous biofuel production
Uddin et al. Enhancement of biogas generation in up-flow sludge blanket (UASB) bioreactor from palm oil mill effluent (POME)
Nutongkaew et al. Improved methane production using lignocellulolytic enzymes from Trichoderma koningiopsis TM3 through co-digestion of palm oil mill effluent and oil palm trunk residues
Feng et al. Effect of autoclave pretreatment on biogas production through anaerobic digestion of green algae
Budiyono et al. Effect of pretreatment and C/N ratio in anaerobic digestion on biogas production from coffee grounds and rice husk mixtures

Legal Events

Date Code Title Description
B03A Publication of an application: publication of a patent application or of a certificate of addition of invention
B08F Application fees: dismissal - article 86 of industrial property law

Free format text: REFERENTE A 3A ANUIDADE.

B08K Lapse as no evidence of payment of the annual fee has been furnished to inpi (acc. art. 87)

Free format text: REFERENTE AO DESPACHO 8.6 PUBLICADO NA RPI 2277 DE 26/08/2014.