BRPI0803008A2 - hepatitis b virus (hbsag) surface gene expression vectors and chimeric hbv-hcv plasmids against hepatitis b and hepatitis c - Google Patents

hepatitis b virus (hbsag) surface gene expression vectors and chimeric hbv-hcv plasmids against hepatitis b and hepatitis c Download PDF

Info

Publication number
BRPI0803008A2
BRPI0803008A2 BRPI0803008A BRPI0803008A2 BR PI0803008 A2 BRPI0803008 A2 BR PI0803008A2 BR PI0803008 A BRPI0803008 A BR PI0803008A BR PI0803008 A2 BRPI0803008 A2 BR PI0803008A2
Authority
BR
Brazil
Prior art keywords
hepatitis
hcv
hbsag
hbv
virus
Prior art date
Application number
Other languages
Portuguese (pt)
Inventor
Selma De Andrade Gomes
Marcia Paschoal Do Espirito Santo
Araujo Natalia Motta De
Elisabeth Lampe
Original Assignee
Fundacao Oswaldo Cruz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacao Oswaldo Cruz filed Critical Fundacao Oswaldo Cruz
Priority to BRPI0803008 priority Critical patent/BRPI0803008A2/en
Publication of BRPI0803008A2 publication Critical patent/BRPI0803008A2/en

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Vetores de express&o do gene de superfície do vírus da hepatite E (HBsAg) e plasmídeos quiméricos HBV-HCV contra hepatite B e hepatite C. A presente invenção se refere a vetores HBsAg (pSAaVMl e pSAa-VM2) que permitem obter um alto rendimento de HBsAg para expressão do HBsAg em células de mamíferos. A invenção contempla ainda a obtenção e uso de plasmídeos quiméricos HBV-HCV contra hepatite B e hepatite C.Expression vectors of the hepatitis E virus surface gene (HBsAg) and chimeric HBV-HCV plasmids against hepatitis B and hepatitis C. The present invention relates to HBsAg vectors (pSAaVMl and pSAa-VM2) that allow a high yield of HBsAg for expression of HBsAg in mammalian cells. The invention also contemplates obtaining and using HBV-HCV chimeric plasmids against hepatitis B and hepatitis C.

Description

"Vetores de expressão do gene de superfície do vírus dahepatite B (HBsAg) e plasmideos quiméricos HBV-HCV contrahepatite B e hepatite C""Dahepatitis B virus surface gene (HBsAg) expression vectors and chimeric HBV-HCV counterhepatitis B and hepatitis C plasmids"

Campo da InvençãoField of the Invention

A presente invenção se refere a vetores HBsAg (pSAa-VMl e pSAa-VM2) que permitem obter iam alto rendimento deHBsAg para expressão do HBsAg em células de mamíferos. Ainvenção contempla ainda a obtenção e uso de plasmideosquiméricos HBV-HCV contra hepatite B e hepatite C.The present invention relates to HBsAg vectors (pSAa-VM1 and pSAa-VM2) which yield high yields of HBsAg for HBsAg expression in mammalian cells. The invention further contemplates obtaining and using HBV-HCV chimeric plasmids against hepatitis B and hepatitis C.

Fundamentos da InvençãoBackground of the Invention

A Organização Mundial de Saúde (OMS) calcula que maisde 350 milhões de indivíduos no mundo sejam portadorescrônicos do vírus da hepatite B (HBV) e mais de 10% destespacientes têm risco de desenvolver cirrose e carcinomahepatocelular (Jin et al. 2002).The World Health Organization (WHO) estimates that more than 350 million people worldwide are chronic carriers of hepatitis B virus (HBV) and more than 10% of these patients are at risk for cirrhosis and hepatocellular carcinoma (Jin et al. 2002).

As variantes do HBV estão classifiçadas atualmente emoito genótipos (A-H) através da comparação de seqüênciasnucleotídicas do gene pré-S/S ou do genoma completo(Magnius & Norder, 1995, Arauz-Ruiz, 2002 e Stuyver, 2000).HBV variants are currently classified into genotype (A-H) by comparing nucleotide sequences of the pre-S / S gene or the complete genome (Magnius & Norder, 1995, Arauz-Ruiz, 2002 and Stuyver, 2000).

Os genótipos do HBV não estão uniformemente distribuídospela população mundial. Sendo assim, o genótipo A épandêmico e o seu genoma possui 3.221 nucleotídeos; osgenótipos BeC são encontrados nas populações indígenas,na Ásia e no Pacífico e os seus genomas possuem 3.215nucleotídeos; o genótipo D é encontrado no Mediterrâneo,possuindo 3.182 nucleotídeos no seu genoma, o genótipo Esomente é encontrado na África com um genoma de 3.212nucleotídeos; o genótipo F é encontrado entre os ameríndiose na Polinésia com um genoma de 3.215 nucleotídeos,enquanto que o genótipo G é encontrado nos Estados Unidos ena Europa, possuindo um genoma de 3.248 nucleotideos.Apresentando grande semelhança com o genótipo F, o genótipoH foi encontrado em duas amostras: uma da Nicarágua e umada Califórnia e estaria relacionado às populaçõesameríndias. No Brasil, devido à miscigenação da população,três genótipos majoritários (A, DeF) são encontrados.Recentemente foi demonstrado que a maioria dos isolados quecirculam no Brasil são do genótipo A, subgenótipo Aa (ouAl) com origem provavelmente africana (Araújo et al.,2004).HBV genotypes are not evenly distributed among the world population. Thus, the epandemic genotype A and its genome have 3,221 nucleotides; BeC genotypes are found in indigenous populations in Asia and the Pacific and their genomes have 3,215 nucleotides; genotype D is found in the Mediterranean, having 3,182 nucleotides in its genome; genome Esomente is found in Africa with a genome of 3,212 nucleotides; genotype F is found among Amerindians in Polynesia with a genome of 3,215 nucleotides, while genotype G is found in the United States and Europe, having a genome of 3,248 nucleotides. Having a strong resemblance to genotype F, genotype H was found in two samples: one from Nicaragua and one from California and would be related to the Amerindian populations. In Brazil, due to the miscegenation of the population, three major genotypes (A, DeF) are found. It has recently been shown that most isolates that circulate in Brazil are genotype A, subgenotype Aa (orAl) with probably African origin (Araújo et al. , 2004).

O HBV apresenta um mecanismo único entre os vírus queinfectam o homem, o qual permite a produção de diferentestipos de partículas virais. Em preparações para amicroscopia eletrônica de soro de indivíduos infectados,três formas de partículas são observadas: partículascompletas infecciosas (42 nm) , partículas incompletas nãoinfecciosas esféricas (22 nm) e partículas incompletas nãoinfecciosas filamentosas (22 nm).HBV has a unique mechanism among viruses that infect humans, which allows the production of different types of viral particles. In preparations for electron microscopy of serum from infected individuals, three particle forms are observed: infectious complete particles (42 nm), spherical noninfectious incomplete particles (22 nm) and filamentous noninfectious incomplete particles (22 nm).

O genoma do HBV é um dos menores entre os vírus queinfectam o homem, abrangendo aproximadamente 3.200 pares debases (pb) . É composto por uma molécula de DNA circularparcialmente fita dupla. A fita maior é complementar aosRNAs virais e por convenção possui polaridade negativa(fita negativa). O genoma do HBV é totalmente codificante eapresenta quatro fases de leitura aberta designadas de pre-S/S, pre-C/C, P e X. Através de um engenhoso sistema quesobrepõe as fases de leitura aberta, todos os genes dovírus estão intimamente ligados e o HBV pode produziraproximadamente 50% mais proteínas do que o esperado para otamanho do seu genoma (Ganem & Varmus 1987).The HBV genome is one of the smallest among viruses that infect humans, spanning approximately 3,200 base pairs (bp). It consists of a partially double stranded circular DNA molecule. The larger ribbon is complementary to viral RNAs and by convention has negative polarity (negative ribbon). The HBV genome is fully coding and has four open reading stages called pre-S / S, pre-C / C, P and X. Through an ingenious system that overlaps open reading stages, all virus genes are closely linked. and HBV can produce approximately 50% more protein than expected for the size of its genome (Ganem & Varmus 1987).

A região genômica pre-S/S codifica as proteínas desuperfície viral que compõem o HBsAg; pre-C/C é responsávelpela síntese do antígeno do core (HBcAg) e do antígeno e(HBeAg); o gene P codifica a polimerase viral; a região Xsintetiza uma proteína regulatória, chamada de proteína X.The pre-S / S genomic region encodes the viral surface proteins that make up HBsAg; pre-C / C is responsible for the synthesis of core antigen (HBcAg) and antigen e (HBeAg); the P gene encodes viral polymerase; the X region synthesizes a regulatory protein called protein X.

A região pre-S/S, inclui as regiões pre-Sl, pre-S2 eS, com três códons de iniciação na mesma fase de leitura. Aproteína de maior tamanho, L "large" (368 aa), é codificadaa partir do códon de iniciação localizado no começo daregião pre-Sl, e a síntese desta proteína se estende pelasregiões pre-Sl, pre-S2 e S. A proteína de tamanhointermediário, M "middle" (281 aa) , é codificada pelasregiões pre-S2 e S, enquanto a proteína de menor tamanho, S"small" (226 aa) é sintetizada a partir do terceiro códonde iniciação localizado no início da região S. Todas estasproteínas possuem o mesmo códon de terminação localizado nofinal da região S. Estas proteínas são encontradas nasformas glicosiladas e não glicosiladas, sendo que aproteína M pode se apresentar diglicosilada (Seeger & Mason2000).The pre-S / S region includes the pre-Sl, pre-S2 and S regions with three initiation codons in the same reading phase. The largest protein, L "large" (368 aa), is encoded from the initiation codon located at the beginning of the pre-Sl region, and the synthesis of this protein extends through the pre-Sl, pre-S2, and S regions. intermediate size, M middle (281 aa), is encoded by the pre-S2 and S regions, while the smaller protein S "small" (226 aa) is synthesized from the third initiation codon located at the beginning of the S region. All of these proteins have the same terminus codon located in the S-end region. These proteins are found in glycosylated and unglycosylated forms, and protein M may be diglycosylated (Seeger & Mason2000).

Os três tipos de proteínas não são distribuídosuniformemente entre as diferentes formas de partículasvirais (Heermann et al. 1984). Partículas subvirais de 22nm são compostas predominantemente por proteínas S,apresentando quantidades variáveis de proteína M e poucasou nenhuma cadeia L. Entretanto, as partículas completas(vírions) são enriquecidas de proteínas L. Uma vez quesabe-se que as proteínas L contém os sitios de ligação doHBV aos receptores específicos nos hepatócitos (Neurath etal. 1986, Klingmuller & Schaller 1993), este enriquecimentode proteínas L poderia prevenir as partículas subvirais,que são mais numerosas, de competir com os vírions pelosreceptores presentes na superfície celular (Ganem 1996).The three types of proteins are not evenly distributed among the different viral particle forms (Heermann et al. 1984). 22nm subviral particles are predominantly composed of S proteins, with varying amounts of M protein and few or no L chains. However, the virion particles are enriched with L proteins. Since L proteins are known to contain the sites of HBV binding to specific receptors on hepatocytes (Neurath et al. 1986, Klingmuller & Schaller 1993), this L protein enrichment could prevent the more numerous subviral particles from competing with virions for cell surface receptors (Ganem 1996).

A proteína S, que é a principal proteína que forma oHBsAg, é capaz de induzir resposta imunológia protetora(anti-HBs) contra o HBV, e é o antígeno utilizado naformulação de vacinas (Grob 1998). Cada partícula de HBsAgé composta por 100 a 150 sub-unidades da proteína S.Mutações em epítopos específicos, ocorrendo dentro do geneS, podem interferir na proteção vacinai, na análise deresultados sorológicos, bem como prejudicar a terapiabaseada na utilização de anticorpos específicos parasuprimir a infecção em indivíduos transplantados (Blum1993, Wallace & Carman 1994).Protein S, which is the major protein that forms HBsAg, is capable of inducing protective immune response (anti-HBs) against HBV, and is the antigen used in vaccine formulation (Grob 1998). Each HBsAgé particle comprised of 100 to 150 S-protein subunits. Mutations in specific epitopes occurring within the geneS may interfere with vaccine protection, serological results analysis, and impair therapy based on the use of specific antibodies to suppress infection. in transplanted individuals (Blum1993, Wallace & Carman 1994).

A vacina para o HBV foi a primeira e é ainda hoje aúnica vacina recombinante licenciada (Koff 2002). Aprimeira vacina contra o HBV foi liberada em 1981 e eraderivada de plasma humano de portadores crônicos do HBV(Heptavax-B, Merck & Co) . Entretanto, o risco detransmissão de outros agentes infecciosos presentes noplasma, impulsionou o desenvolvimento de vacinasrecombinantes compostas de HBsAg produzido por engenhariagenética (Engerix-B, SmithKline e Recombivax, Merck & Co).Para a produção destas vacinas, utiliza-se a tecnologia doDNA recombinante para expressão do HBsAg em leveduras(Assad & Francis 2000). A vacina apresenta uma boaimunogenicidade contra o HBV, cerca de 90% dos indivíduosimunocompetentes, quando vacinados, desenvolvem umaadequada resposta de anticorpos. Além disso, a vacina temum potencial para reduzir as taxas de incidência emortalidade do hepatocarcinoma celular. Entretanto, o altocusto, a existência de cepas mutantes de escape à vacina ea baixa resposta em neonatos, são problemas aindaexistentes (Thanavala, 1996; Yu et al. 2006). Além disso,as vacinas atuais não incluem os antígenos do genotipo Fque é o mais prevalente na América do Sul e está ausentenos outros continentes (Magnius & Norder 1995). 0 genotipoF é também o mais divergente apresentando diversas mutaçõesno gene de superfície (Naumann et al. 1993). Não existemrelatos na literatura a respeito da proteção das vacinaslicenciadas contra a infecção por este genotipo.The HBV vaccine was the first and is still the only licensed recombinant vaccine (Koff 2002). The first HBV vaccine was released in 1981 and was derived from human plasma from chronic HBV carriers (Heptavax-B, Merck & Co). However, the risk of transmission of other infectious agents present in the plasma has driven the development of recombinant vaccines composed of genetically engineered HBsAg (Engerix-B, SmithKline and Recombivax, Merck & Co). For the production of these vaccines, recombinant DNA technology is used. for HBsAg expression in yeast (Assad & Francis 2000). The vaccine has good immunogenicity against HBV, about 90% of immunocompetent individuals, when vaccinated, develop an adequate antibody response. In addition, the vaccine has the potential to reduce cellular hepatocellular carcinoma incidence and mortality rates. However, the high cost, the existence of mutant strains of vaccine escape and the low response in neonates are still existing problems (Thanavala, 1996; Yu et al. 2006). In addition, current vaccines do not include F genotype antigens which is the most prevalent in South America and is absent from other continents (Magnius & Norder 1995). The F genotype is also the most divergent with several surface gene mutations (Naumann et al. 1993). There are no reports in the literature regarding the protection of licensed vaccines against infection by this genotype.

O esquema atualmente recomendado com as vacinasrecombinantes disponíveis é de 3 doses por viaintramuscular, no músculo deltóide, com intervalos de 1 mês(entre 1a e 2a dose) e de 5 meses (entre 2a e 3a dose) -esquema 0,1,6 meses (Assad & Francis 2000). No nosso país,a vacina está disponível nas unidades básicas de saúde e emalgumas maternidades. A recomendação do Ministério da Saúde(Programa Nacional de Imunizações - PNI) é de vacinar todosos recém-nascidos, de preferência nas primeiras doze horasde vida ou na ocasião da vacina BCG-ID. Em todo o país, avacina está disponível para os grupos de risco (indivíduosque se expõem ao contato direto com sangue humano, seusderivados ou secreções humanas) desde a década de 90 e,mais recentemente, foi estendida a indivíduos com idadeinferior ou igual a 20 anos (FUNASA 2001). A eficáciaprotetora da vacina é diretamente relacionada ao nivel deanticorpos anti-HBs produzidos, sendo consideradonecessário para proteção titulo igual ou maior que 10 UI/L(CDC 1991) .The currently recommended regimen with available recombinant vaccines is 3 intramuscular doses in the deltoid muscle at 1 month intervals (between 1st and 2nd dose) and 5 months (between 2nd and 3rd dose) - schedule 0.1.6 months. (Assad & Francis 2000). In our country, the vaccine is available in basic health units and in some maternity hospitals. The recommendation of the Ministry of Health (National Immunization Program - PNI) is to vaccinate all newborns, preferably within the first twelve hours of life or on the occasion of the BCG-ID vaccine. Throughout the country, avacin has been available to at-risk groups (individuals who are exposed to direct contact with human blood, its derivatives or human secretions) since the 1990s and more recently has been extended to individuals under the age of 20 years. (FUNASA 2001). The protective efficacy of the vaccine is directly related to the level of anti-HBs antibodies produced and is considered necessary for protection titre equal to or greater than 10 IU / L (CDC 1991).

A infecção pelo virus da hepatite C (HCV) atinge cercade 2 a 3% da população mundial. Mais de 70% das infecçõespelo HCV se tornam crônicas, sendo que destas, 5 a 20%progride para cirrose e carcinoma hepatocelular (Jin et al.2002) . Sendo um virus identificado apenas em 1989 (Choo etal. 1989), acredita-se que um considerável número deindivíduos ainda desconheça o seu estado de portadorcrônico para esta infecção. Não há disponível uma vacinacontra o HCV.Hepatitis C virus (HCV) infection affects about 2-3% of the world's population. More than 70% of HCV infections become chronic, of which 5 to 20% progress to cirrhosis and hepatocellular carcinoma (Jin et al.2002). Being a virus identified only in 1989 (Choo et al. 1989), it is believed that a considerable number of individuals are still unaware of their chronic carrier status for this infection. There is no vaccine available against HCV.

O HCV é um vírus que apresenta semelhanças em relaçãoà sua estrutura e organização genômica, com os pestivírus eflavivírus, sendo classificado como um novo gêneroHepacivirus, dentro da família Flaviviridae (Robertson etal. 1998). .HCV is a virus that resembles its structure and genomic organization with the pestiviruses eflaviviruses and is classified as a new genus Hepacivirus within the Flaviviridae family (Robertson etal. 1998). .

O HCV é entre os vírus de importância clínica queinfectam o homem, um dos que possuem a maior taxa demutação, existindo dentro de um indivíduo comoquasiespecies (Martell et al. 1992). Atualmente o HCV édividido em seis genotipos (1 a 6) e múltiplos subtipos, osquais apresentam diferenças significativas com relação àprevalência global, alguns com distribuição mundial, outrosmais restritos à certas áreas (Bukh et al. 1997). NoBrasil, os poucos estudos realizados nesta área têmdemonstrado uma maior prevalência para os genotipos 1, 2 e3, principalmente entre pacientes em programas terapêuticos(Bassit et al. 2000).HCV is among the clinically important viruses that infect humans, one of those with the highest rate of demutation, existing within an individual as some species (Martell et al. 1992). HCV is currently divided into six genotypes (1 to 6) and multiple subtypes, which show significant differences with respect to global prevalence, some with worldwide distribution, others more restricted to certain areas (Bukh et al. 1997). In Brazil, the few studies conducted in this area have shown a higher prevalence for genotypes 1, 2 and 3, especially among patients in therapeutic programs (Bassit et al. 2000).

O HCV é um virus envelopado cujo genoma é formado porum filamento simples de RNA de polaridade positiva,contendo aproximadamente 9.400 nucleotideos. 0 RNA viralpossui uma longa fase de leitura aberta que codifica parauma poliproteina precursora de cerca de 3.000 aminoácidos(Choo et al. 1991). Mais de 10 proteínas diferentes sãocodificadas a partir do genoma do HCV, como resultado doprocessamento proteolítico co- e pós-traducional dapoliproteina precursora. Este processamento depende deenzimas codificadas pelo genoma viral (proteinases NS3 eNS2-NS3) e da célula hospedeira (signalase ou peptidase-sinal). As proteínas estruturais - proteína do capsídeo oucore (C) , glicoproteínas do envelope 1 (El) e envelope 2(E2) - estão localizadas na extremidade amino-terminal, eas proteínas não-estruturais - NS2, NS3, NS4a, NS4b, NS5a eNS5b - estão localizadas na extremidade carboxi-terminal dapoliproteina (Grakoui et al. 1993).HCV is an enveloped virus whose genome is formed by a single strand of positive polarity RNA containing approximately 9,400 nucleotides. Viral RNA has a long open reading frame that encodes a precursor polyprotein of about 3,000 amino acids (Choo et al. 1991). More than 10 different proteins are codified from the HCV genome as a result of co- and post-translational proteolytic processing of precursor polyprotein. This processing depends on enzymes encoded by the viral genome (NS3 and NS2-NS3 proteinases) and the host cell (signalase or signal peptidase). The structural proteins - oucore capsid protein (C), envelope 1 (E1) and envelope 2 (E2) glycoproteins - are located at the amino-terminal end, and non-structural proteins - NS2, NS3, NS4a, NS4b, NS5a and NS5b - are located at the carboxy terminal end of polyprotein (Grakoui et al. 1993).

As glicoproteínas do envelope (El e E2) apresentamdomínios altamente variáveis em suas seqüências quandocomparados entre diferentes isolados de HCV. Na extremidadeN-terminal da proteína E2 há uma região caracterizada porum elevado grau de variabilidade chamada regiãohipervariável 1 (HVRl), importante na neutralização do HCV(Bukh et al. 1997; Drazan 2000). Contudo, a altavariabilidade deste fragmento antigênico desempenha umpapel fundamental no mecanismo de escape viral da respostaimune do hospedeiro e representa o maior obstáculo nodesenvolvimento de uma vacina contra o HCV (Forns et al.2002) .Envelope glycoproteins (E1 and E2) have highly variable domains in their sequences when compared between different HCV isolates. At the N-terminal end of protein E2 there is a region characterized by a high degree of variability called hypervariable region 1 (HVR1), important in neutralizing HCV (Bukh et al. 1997; Drazan 2000). However, the high variability of this antigen fragment plays a key role in the viral escape mechanism of the host immune response and represents the major obstacle in the development of an HCV vaccine (Forns et al.2002).

As vacinas disponíveis atualmente contra os maisdiferentes agentes infecciosos, podem ser divididas em doistipos: "vivas" ou "mortas". As vacinas "vivas" possuem oagente infeccioso atenuado, com uma baixa patogenicidade emantendo a sua imunogenicidade. As vacinas "mortas" podemser formadas pelo agente infeccioso inteiro não mais viávelou por subunidades do mesmo. A natureza da vacina determinao tipo de resposta imune gerada pelo hospedeiro. As vacinas"mortas" não são eficientes no estímulo da resposta imunevia MHC de classe I, gerando nenhuma ou muito poucaresposta celular. As vacinas "vivas" induzem tanto umareposta imune humoral como celular, porém estas vacinasapresentam certo risco para mulheres grávidas e indivíduosimunodeprimidos e podem ainda sofrer alteração e setornarem patogênicas (Henke 2002).The vaccines currently available against the most different infectious agents can be divided into two types: "alive" or "dead". "Live" vaccines have attenuated infectious agent, with low pathogenicity and maintaining their immunogenicity. "Dead" vaccines may be formed by the entire infectious agent no longer viable or subunits thereof. The nature of the vaccine determines the type of immune response generated by the host. "Dead" vaccines are not effective in stimulating the MHC class I immune response, generating little or very little cellular response. "Live" vaccines induce both a humoral and cellular immune response, but these vaccines pose a certain risk to pregnant women and immune depressed individuals and may still change and become pathogenic (Henke 2002).

Uma nova alternativa para proteger indivíduossuscetíveis é a administração de DNA plasmidial porinoculação direta com o intuito de induzir uma respostaimune contra a(s) proteína(s) codificada(s) por este vetor.O desenvolvimento desta nova área de vacina se iniciou como experimento de Wolff e colaboradores (1990), o qualmostrou que uma simples inoculação intramuscular de DNAplasmidial contendo o gene da proteína β-galactosidade, eracapaz de induzir a expressão desta proteína in vivo. Osvetores utilizados para a vacinação de DNA freqüentementepossuem o promotor de citomegalovírus (CMV) para que aexpressão do gene seja mais eficiente em células demamíferos. Junto ao promotor tem-se o gene da proteína aser sintetizada, seguido por um sinal de poliadenilação(poli-A) o qual é importante para que a terminação do mRNAseja correta. Esta seqüência poli-A pode ser derivada dohormônio de crescimento bovino ou do vírus SV40.A new alternative to protect susceptible individuals is the administration of plasmid DNA by direct inoculation in order to induce an immune response against the protein (s) encoded by this vector. Wolff et al. (1990), who showed that a simple intramuscular inoculation of plasmid DNA containing the β-galactosity protein gene was able to induce its expression in vivo. Vectors used for DNA vaccination often have the cytomegalovirus (CMV) promoter to make gene expression more efficient in mammalian cells. Next to the promoter is the synthesized aser protein gene, followed by a polyadenylation signal (poly-A) which is important for proper mRNA termination. This poly-A sequence may be derived from bovine growth hormone or the SV40 virus.

A maioria dos estudos de vacinas de DNA tem utilizadoas vias de imunização intramuscular (i.m.) e intradérmica(i.d.), entretanto outras vias como a intravenosa,intraperitonial (Fynan et al. 1993), oral (Chen et al.1998), intranasal (Klavinskis et al.1997) e vaginal(Livingston et al. 1998) têm sido avaliadas. Na inoculaçãointramuscular o DNA é capturado por células apresentadorasde antígeno (APC) com subseqüente expressão do antígeno viamoléculas de MHC classe I. Os antígenos secretados sãoingeridos por macrófagos e apresentados pela via MHC classeII, induzindo a síntese de anticorpos e a ativação decélulas T CD4+. Com a utilização do sistema "gene-gun",onde o DNA plasmidial é inserido com partículas de ouro napele via aceleração de gás hélio, foi demonstrado que o DNAé encaminhado diretamente para células de Langerhans. Estascélulas transfectadas migram para os linfonodos locaisapresentando o antígeno ao sistema imune. Em geral, o tipode resposta imune estimulada pelo DNA é influenciada pelotipo de via e método de inoculação. A inoculaçãointramuscular induz resposta imune principalmente atravésde células Thl (Raz et al. 1996). Uma possível explicaçãopara esta resposta imune é a intensa síntese de interferon-γ (IFN-γ) observada logo de início, a qual é estimuladaprovavelmente por seqüências de nucleotídeos no DNAplasmidial não metiladas, denominadas CpG (cytidine-phosphate-guanosine). Estes motivos CpG consistem deseqüências de DNA, tais como AACGTT. De fato, umaestimulação imune mais eficiente tem sido associada com apresença de tais motivos CpG no DNA plasmidial inoculado,agindo da mesma forma que os adjuvantes em outras vacinas(Henke 2002). Por um outro lado, o método de "gene-gun"requer uma quantidade muito menor de DNA se comparada aométodo de inoculação intramuscular, e induz respostasimunes para ambos os tipos celulares Thl e Th2 (Feltquateet al. 1997).Most DNA vaccine studies have used intramuscular (im) and intradermal (id) immunization pathways, however other routes such as intravenous, intraperitoneal (Fynan et al. 1993), oral (Chen et al.1998), intranasal ( Klavinskis et al.1997) and vaginal (Livingston et al. 1998) have been evaluated. In intramuscular inoculation DNA is captured by antigen presenting cells (APC) with subsequent expression of the MHC class I antigen viamolecules. The secreted antigens are tinged by macrophages and presented by MHC class II pathway, inducing antibody synthesis and CD4 + T cell activation. Using the gene-gun system, where plasmid DNA is inserted with gold particles into it via helium gas acceleration, it has been shown that DNA is routed directly to Langerhans cells. These transfected cells migrate to local lymph nodes presenting the antigen to the immune system. In general, the type of DNA-stimulated immune response is influenced by the pathway type and inoculation method. Intramuscular inoculation induces immune response mainly through Thl cells (Raz et al. 1996). One possible explanation for this immune response is the intense synthesis of interferon-γ (IFN-γ) observed early on, which is probably stimulated by unmethylated plasmid DNA nucleotide sequences called CpG (cytidine phosphate-guanosine). These CpG motifs consist of DNA sequences such as AACGTT. Indeed, more efficient immune stimulation has been associated with the presence of such CpG motifs in the inoculated plasmid DNA, acting in the same way as adjuvants in other vaccines (Henke 2002). On the other hand, the gene-gun method requires a much smaller amount of DNA compared to the intramuscular inoculation method, and induces immune responses for both Thl and Th2 cell types (Feltquateet al. 1997).

As principais vantagens da imunização por DNAcomparada às vacinas atuais são: A produção deste tipo devacina pode ser feita em grande quantidade, com um altonivel de pureza e com um baixo custo; a estabilidade do DNAàs variações de temperatura permite uma manutenção, umtransporte e uma distribuição mais fáceis; possibilidade deuma imunização contra diferentes patógenos com uma únicaadministração de uma combinação de plasmídeos; o vetorplasmidial não apresenta nenhuma patogenicidade; há muitopouca ou nenhuma reação imune ao vetor. Além disso, asvacinas de DNA mimetizam uma infecção viral natural,induzindo tanto uma resposta imune humoral como celular,mesmo na presença de anticorpos pré-existentes nohospedeiro, os quais interferem na eficácia das vacinas comvirus atenuados. Soma-se também que a imunização com DNAinduz uma resposta imune de longa duração (Henke 2002).Diante destas características, o desenvolvimento de vacinasde DNA contra o HIV, malária, tuberculose e o HCV é umaárea bastante promissora e fundamental.The main advantages of DNA immunization compared to current vaccines are: The production of this type of vaccine can be done in large quantities, with a high purity and low cost; DNA stability at varying temperatures allows for easier maintenance, transport and distribution; possibility of immunization against different pathogens with a single administration of a combination of plasmids; the plasmid vector has no pathogenicity; There is little or no immune reaction to the vector. In addition, DNA vaccines mimic a natural viral infection, inducing both a humoral and cellular immune response, even in the presence of pre-existing host antibodies, which interfere with the efficacy of attenuated comvirus vaccines. In addition, DNA immunization induces a long-lasting immune response (Henke 2002). Given these characteristics, the development of DNA vaccines against HIV, malaria, tuberculosis and HCV is a very promising and fundamental area.

Partículas híbridas de HBsAg, também denominadasquimeras, têm-se revelado em diferentes experimentos deimunização como proteínas bastante eficientes naapresentação de epítopos virais (Delpeyroux et al. 1986;Geissler et al. 1997). Em estudos com o HCV, mostrou-se quea apresentação de epítopos da região do core (Major et al.1995; Geissler et al. 1998) e do envelope E2 (Netter et al.2001; Jin et al. 2002) é muito mais eficiente quando estasse encontram fusionadas ao HBsAg. Em Geissler ecolaboradores (1998), as taxas de soroconversão e ostítulos de anticorpos foram mais reduzidas com plasmídeosexpressando apenas o gene do core do HCV, enquanto que comutilização de plasmídeos quiméricos, um aumento de 1 Iog notítulo de anticorpos pôde ser observado.Hybrid HBsAg particles, also called chimeras, have been found in different immunization experiments to be very efficient proteins for presenting viral epitopes (Delpeyroux et al. 1986; Geissler et al. 1997). In studies with HCV, it has been shown that the presentation of core region epitopes (Major et al.1995; Geissler et al. 1998) and the E2 envelope (Netter et al.2001; Jin et al. 2002) is much longer. efficient when found to be fused to HBsAg. In Geissler and co-workers (1998), seroconversion rates and antibody titers were lower with plasmids expressing only the HCV core gene, whereas with the use of chimeric plasmids, an increase of 1 Ig notiter of antibodies could be observed.

Breve Descrição das FigurasBrief Description of the Figures

A Figura 1 mostra a seqüência do SAahis+, onde osublinhado representa o sítio EcoNI.Figure 1 shows the sequence of SAahis +, where the underline represents the EcoNI site.

A Figura 2 mostra a quimera HBV/HCV: SAaHCVHis+3, ondeem negrito são mostrados os oligonucleotideos paraamplificar HCV, em sublinhado continuo encontra-se o sítioEcoNI tratado com klenow e em pontilhado encontra-se aseqüência HCV.Figure 2 shows the HBV / HCV: SAaHCVHis + 3 chimera, where bolded oligonucleotides are shown to amplify HCV, in continuous underlining is the klenow-treated EcNI site and the HCV sequence is dotted.

A Figura 3 mostra a localização dos sitio de restriçãona quimera SAaHCVHis+3 para liberação e orientação doinserto, digestão XbaI e HindIII. Em negrito são mostradosos oligonucleotideos para amplificar HCV, em sublinhadocontinuo é mostrado o sítio EcoNI tratado com kleriow, e empontilhado encontra-se a seqüência peptidica codificadapelo inserto de HCV do plasmideo quimérico SAaHCVHis+3.Figure 3 shows the location of the SAaHCVHis + 3 chimera restriction site for release and orientation of the insert, XbaI and HindIII digestion. In bold, oligonucleotides are shown to amplify HCV, underline is shown the kleriow-treated EcoNI site, and stacked is the HCV insert encoded by the SAaHCVHis + 3 chimeric plasmid insert.

A Figura 4 mostra a seqüência do recombinante pCI-HBswt, onde em sublinhado continuo é mostrado o inserto dogenótipo D do HBsAg.Figure 4 shows the sequence of the recombinant pCI-HBswt, where continuous underlining shows the dogenotype D insert of HBsAg.

A Figura 5 mostra a eletroforese em gel de agarose dadigestão com XbaI para liberação do HBV e do inserto deHBV/HCV.Figure 5 shows XbaI digestion agarose gel electrophoresis for HBV and HBV / HCV insert release.

A Figura 6 mostra a digestão enzimática dos plasmideospcDNA3.I-SAaHCV, pSAaHCV-VMl, pcDNA3.I-SAa e pSAa-VMl com aenzima XbaI e dos plasmideos pSAaHCV-VM2 e pSAa-VM2 com asenzimas NotI e XhoI.Figure 6 shows the enzymatic digestion of plasmidspcDNA3.I-SAaHCV, pSAaHCV-VM1, pcDNA3.I-SAa and pSAa-VM1 with the XbaI enzyme and plasmids pSAaHCV-VM2 and pSAa-VM2 with NotI and XhoI asenzymes.

As Figuras 7A, 7B, 7C e 7D mostram a construção dosplasmideos da presente invenção.Figures 7A, 7B, 7C and 7D show the construction of the plasmids of the present invention.

Descrição detalhada da InvençãoDetailed Description of the Invention

Obtenção de recombinantes HBV/HCV no pcDNA3.1 Aseqüência do gene S a ser clonada foi selecionado apóssequenciamento por possuir um sitio único de inserção. Estaseqüência era oriunda de um isolado brasileiro dosubgenótipo Aa do HBV com a característica de possuir umsítio único para EcoNI na posição 128 da proteína S,posição esta que se encontra dentro do principaldeterminante antigênico do HBV, o determinante "a" doHBsAg.Obtaining HBV / HCV recombinants in pcDNA3.1 The sequence of the S gene to be cloned was selected after sequencing as having a unique insertion site. This sequence was derived from a Brazilian isolate of HBV A subgenotype with the characteristic of having a unique site for EcoNI at position 128 of protein S, which position is within the main antigenic determinant of HBV, the determinant "a" of HBsAg.

Após a clonagem direcionada do produto de PCR daregião S do HBV deste isolado no vetor de expressãopcDNA3.1 (Directional TOPO expression kit, Invitrogen, SanDiego, CA.) foram obtidos dois plasmideos recombinantes, umplasmideo contendo a região S fusionado a uma cauda depoli-histidina (pcDNA3.I-SAaHis+) e outro plasmideo semesta cauda (pcDNA3.I-SAaHis-). A construção das quimerasHBV/HCV foram realizadas com os plasmideos pcDNA3.1-SAaHis+.Following targeted cloning of the HBV S-region PCR product of this isolate into the opcDNA3.1 expression vector (Directional TOPO expression kit, Invitrogen, SanDiego, CA.) two recombinant plasmids, a plasmid containing the S region fused to a depolytic tail, were obtained. histidine (pcDNA3.I-SAaHis +) and another tailless plasmid (pcDNA3.I-SAaHis-). Construction of HBV / HCV chimeras was performed with the pcDNA3.1-SAaHis + plasmids.

Os plasmideos quiméricos obtidos foram denominadospcDNA3.I-SAaHCVHis+. Dois plasmideos com o tamanhocompatível da fusão HBsAg-HCV foram selecionados parasequenciamento, o pcDNA3.l-SAaHCVHis+3 e pcDNA3.1-SAaHCVHis+5. A liberação do inserto de HBV do vetorpcDNA3.I-SAaHis+ e do inserto quimérico HBV-HCV dos clonespcDNA3.l-SAaHCVHis+3 e pcDNA3.l-SAaHCVHis+5 . pela digestãocom a enzima de restrição XbaI é mostrada na Figura 5. Osplasmideos recombinantes obtidos com o vetor pcDNA3.1(pcDNA3.I-SAaHis+, pcDNA3.I-SAaHis-, e pcDNA3.1-SAaHCVHis+), foram transfectados em cultura de células CHOdurante 6 dias. 0 meio de cultura e o extrato celular foramavaliados quanto a presença de proteína recombinanteproduzida ou retida pelas células, através da análise dosníveis de HBsAg por ELISA. Os resultados mostraram-seinsatisfatórios neste vetor.The chimeric plasmids obtained were named pcDNA3.I-SAaHCVHis +. Two plasmids with the compatible HBsAg-HCV fusion size were selected for sequencing, pcDNA3.1-SAaHCVHis + 3 and pcDNA3.1-SAaHCVHis + 5. The release of the HBV insert from vectorpcDNA3.I-SAaHis + and chimeric insert HBV-HCV from clonespcDNA3.1-SAaHCVHis + 3 and pcDNA3.l-SAaHCVHis + 5. by digestion with restriction enzyme XbaI is shown in Figure 5. Recombinant plasmids obtained with the pcDNA3.1 (pcDNA3.I-SAaHis +, pcDNA3.I-SAaHis-, and pcDNA3.1-SAaHCVHis +) vectors were transfected into cell culture CHOther 6 days. Culture medium and cell extract were evaluated for the presence of recombinant protein produced or retained by cells by analysis of HBsAg levels by ELISA. The results were unsatisfactory in this vector.

Ensaios de transfecção e testes imunoenzimáticos foramrealizados e em todos os casos os níveis de HBsAg foramnegativos ou muito baixos. Os resultados estão mostrados naTabela 1.Tabela 1: Resultados do teste imunoenzimático realizado como meio de cultura e extrato celular das célulastransfectadas com os plasmideos recombinantes e quiméricos.Transfection assays and immunoenzymatic assays were performed and in all cases HBsAg levels were negative or very low. The results are shown in Table 1. Table 1: Results of the enzyme-linked immunosorbent assay performed as a culture medium and cell extract of cells transfected with recombinant and chimeric plasmids.

<table>table see original document page 15</column></row><table><table> table see original document page 15 </column> </row> <table>

* resultados de HBsAg positivos* HBsAg positive results

** resultados de HBsAg negativos** negative HBsAg results

"Cassete exchange" dos recombinantes em pCDNA3.1 paraoutros vetores de expressão:Recombinant cassette exchange in pCDNA3.1 for other expression vectors:

Devido à negatividade na produção de proteínasrecombinantes evidenciada pelos testes imunoenzimáticosrealizados no extrato celular e no meio de cultura dascélulas transfectadas por todas as construções com opcDNA3.1, novos plasmideos recombinantes e quiméricos foramconstruídos por cassete exchange nos vetores de expressãoem células eucarióticas, pcDNA3 (Invitrogen) e o pCI-HBswt(Figura 4) . Dessa forma, as regiões gênicas clonadas,inicialmente, no vetor pcDNA3.1 foram transferidas a partirde digestões enzimáticas para os vetores pcDNA3 e pCI-HBswt, sendo construídos quatro novos plasmideos. Osdetalhes destas construções estão mostrados nas Figuras 7A-7D. As seqüências de HBsAg dos novos plasmideos foramobtidas a partir do pcDNA3.I-SAaHis-. Dois plasmideos parainserção de genes exógenos foram construídos, pSAa-VMl epSAa-VM2. 0 primeiro por cassete exchange do fragmentoHindIII-EcoRV no pCDNA3, originando o pcDNA3-SAa, renomeadopara pSAa-VMl (Figura 7A) e o segundo por cassete exchangedo fragmento XbaI e NotI no pCI-HBswt, originando pCI-Aa,que foi renomeado para pSAa-VM2 (Figura 7B) . Dois outrosplasmideos contendo o gene S fusionado com o E2 do HCVforam construídos. Nestes casos o vetor pcDNA3.I-SAaHis+foi utilizado como doador da seqüência quimérica HBV/HCV. Oplasmideo quimérico pCDNA3-SAaHCV foi construído porcassete exchange do fragmento Kpnl-Van91 no pSAa-VMl. Oplasmideo quimérico foi renomeado para pSAaHCV-VMl (Figura7C). O segundo plasmideo quimérico foi construído porcassete exchange do fragmento XbaI e NotI do pSAaHCV-VMl nopCI-HBswt, originando pCI-AaHCV, que foi renomeado parapSAaHCV-VM2 (Figura 7D). Uma digestão enzimática liberandoos insertos dos plasmideos obtidos pode ser visualizada naFigura 6. As Figuras 1 e 2 mostram a seqüência deaminoácidos dos insertos SAaHis+ e SAaHCVHis+3. Os novosplasmideos construídos (pSAa-VMl, pSAa-VM2, pSAaHCV-VMl epSAaHCV-VM2) foram submetidos a ensaios de transfecçãotransitória em cultura de células CHO e os níveis de HBsAgdo extrato celular e do meio de cultura foram avaliados portestes imunoenzimáticos (ELISA). 0 HBsAg produzido porcélulas transfectadas com os plasmideos usando o pcDNA3.1foram muito baixos ou indetectáveis, observado pelo valorda relação DO/CO (densidade óptica/cut-off) . Porém, o meiode cultura e o extrato celular das transfecções realizadascom o pSAa-VMl e o pSAa-VM2 mostraram-se positivos quanto apresença desta proteína, e os níveis de HBsAg detectadosnos ensaios com o pCI foram significativamente maiores queos apresentados para as construções com o pcDNA3. Como podeser observado na tabela 1, os valores da relação DO/COforam de 4,04 para o pSAa-VMl e de 11,68 para o pSAa-VM2 nomeio de cultura, o que corresponde a um aumento deaproximadamente 3 vezes na expressão e liberação do HBsAg.As construções moleculares das quimeras HBsAg-HCV, como vetor pCI apresentaram níveis de HBsAg significativamentemaiores que as com o pcDNA3, com um aumento deaproximadamente 2 vezes na expressão da proteínarecombinante. Portanto, em todos os ensaios realizados, asconstruções feitas com o vetor de expressão pCIapresentaram os maiores valores de HBsAg detectados.Due to the negativity in recombinant protein production evidenced by the immunoenzymatic tests performed on the cell extract and culture medium of cells transfected by all opcDNA3.1 constructs, new recombinant and chimeric plasmids were constructed by cassette exchange in expression vectors in eukaryotic cells, pcDNA3 (Invitrogen). and pCI-HBswt (Figure 4). Thus, the gene regions initially cloned into the pcDNA3.1 vector were transferred from enzymatic digestions to the pcDNA3 and pCI-HBswt vectors, and four new plasmids were constructed. Details of these constructs are shown in Figures 7A-7D. HBsAg sequences from the new plasmids were obtained from pcDNA3.I-SAaHis-. Two plasmids for insertion of exogenous genes were constructed, pSAa-VM1 and pSAa-VM2. The first by cassette exchange of the HindIII-EcoRV fragment in pCDNA3, yielding pcDNA3-SAa, renamed to pSAa-VM1 (Figure 7A) and the second by cassette exchanged fragment XbaI and NotI into pCI-HBswt, which was renamed pCI-Aa. pSAa-VM2 (Figure 7B). Two other plasmids containing the HCV E2-fused S gene were constructed. In these cases the pcDNA3.I-SAaHis + vector was used as donor of the chimeric HBV / HCV sequence. The pCDNA3-SAaHCV chimeric plasmid was constructed by exchanging the Kpnl-Van91 fragment on pSAa-VMl. Chimeric plasmid was renamed pSAaHCV-VMl (Figure 7C). The second chimeric plasmid was constructed by exchanging the XbaI and NotI fragment of pSAaHCV-VM1 nopCI-HBswt, resulting in pCI-AaHCV, which was renamed to pSAaHCV-VM2 (Figure 7D). An enzymatic digestion releasing the plasmid inserts obtained can be seen in Figure 6. Figures 1 and 2 show the amino acid sequence of the SAaHis + and SAaHCVHis + 3 inserts. The newly constructed plasmids (pSAa-VMl, pSAa-VM2, pSAaHCV-VMl and pSAaHCV-VM2) were subjected to transient transfection assays in CHO cell culture and the levels of HBsAg from cell extract and culture media were evaluated by ELISA. HBsAg produced by plasmid transfected cells using pcDNA3.1 were very low or undetectable, as observed by the strong OD / CO ratio (optical density / cut-off). However, the culture medium and cell extract of the transfections performed with pSAa-VM1 and pSAa-VM2 were positive for the presence of this protein, and the HBsAg levels detected in the pCI assays were significantly higher than those presented for the constructs with pSAa-VM1. pcDNA3. As can be seen from Table 1, the DO / CO ratio values were 4.04 for pSAa-VM1 and 11.68 for culture name pSAa-VM2, which corresponds to an approximately 3-fold increase in expression and release. The molecular constructs of HBsAg-HCV chimeras as pCI vector showed significantly higher levels of HBsAg than those with pcDNA3, with an approximately 2-fold increase in protein-recombinant expression. Therefore, in all assays performed, the constructs made with the pCI expression vector presented the highest HBsAg values detected.

0 exemplo seguinte é ilustrativo da invenção erepresenta a modalidade preferida da invenção, aqueleshabilitados no estado da arte sabem ou são capazes deencontrar, usando nada mais que experimentação rotineira,como empregar outros materiais e técnicas apropriadas.The following example is illustrative of the invention and represents the preferred embodiment of the invention, those skilled in the art know or are able to find, using nothing more than routine experimentation, as employing other appropriate materials and techniques.

ExemploExample

Amostragem:Sampling:

Foram selecionados amostras de soro com um alto títulode HBsAg, previamente testadas por ensaios imunoenzimáticos(ELISA) (Hepanostika Uni-form, Organon Teknika B.V.,Boxtel, Holanda) provenientes de um projeto de pesquisaaprovado no comitê de ética de pesquisa (CONEP)HBsAg high-titre serum samples previously tested by enzyme-linked immunosorbent assay (ELISA) (Hepanostika Uni-form, Organon Teknika B.V., Boxtel, The Netherlands) from a research project approved by the Research Ethics Committee (CONEP) were selected.

Extração do DNA viral:Viral DNA Extraction:

Para a extração do DNA das amostras de soro, a 250 μΐde soro foram adicionados 80 μΐ de solução de Iise contendo2 mg/ml de proteinase K, 0,1 mg/ml de t-RNA e 1% dodecilsulfato de sódio (SDS) , em 700 mM de NaCl, 0,36 mM deCaCl2, 200 mM de Tris-HCL pH 9.0 e 20 mM de EDTA. A misturafoi incubada por 4 horas a 37 °C. 0 DNA foi extraído porfenol/clorofórmio e precipitado em etanol (2 volumes)durante a noite. 0 material foi centrifugado por 30minutos, o precipitado foi lavado com álcool a 70% e emseguida, foi seco e ressuspenso em 30 μΐ de água destilada,conforme metodologia padronizada no laboratório (Niel etal., 1994).For DNA extraction from serum samples, to 250 μΐ of serum were added 80 μΐ of Iise solution containing 2 mg / ml proteinase K, 0.1 mg / ml t-RNA and 1% sodium dodecyl sulfate (SDS), in 700 mM NaCl, 0.36 mM CaCl 2, 200 mM Tris-HCL pH 9.0 and 20 mM EDTA. The mixture was incubated for 4 hours at 37 ° C. DNA was extracted by phenol / chloroform and precipitated in ethanol (2 volumes) overnight. The material was centrifuged for 30 minutes, the precipitate was washed with 70% alcohol and then dried and resuspended in 30 μΐ of distilled water according to standard laboratory methodology (Niel etal., 1994).

Ensaios de PCR e genotipagem do HBV:HBV PCR and genotyping assays:

A região S do HBV (aproximadamente 680 pb) foiamplificada utilizando oligonucleotideos especialmentedesenhados para este trabalho. Para amplificar isolados deHBV do genotipos A sem códon de terminação ao final da fasede leitura aberta do gene S foi utilizado o par deoligonucleotideos S12 (senso; 5' CACCAT GGAGAACAT CACAT CAG3'; nt 155 a 173) e S13AD (reverso 5'AATGTATACCCAGAGACAAAAGAA 3'; nt 811 a 834).The HBV S region (approximately 680 bp) was amplified using specially designed oligonucleotides for this work. To amplify HBV isolates of genotype A without a stop codon at the end of the open reading frame of gene S, the pair of polynucleotides S12 (sense; 5 'CACCAT GGAGAACAT CACAT CAG3'; nt 155 to 173) and S13AD (reverse 5'AATGTATACCCAGAGACAAAAAA 3) were used. 811 to 834).

Além disso, ensaios de PCR foram realizados tendo comosenso o primer S12 e como antisenso o S13ADSTOP (reverso;5' TTAAATGTATACCCAGAGACAAAAGAA 3'; nt 811 a 837) que possuio códon de terminação ao final da fase S.In addition, PCR assays were performed using S12 primer and S13ADSTOP (reverse; 5 'TTAAATGTATACCCAGAGACAAAAGAA 3'; nt 811 to 837) which had a stop codon at the end of the S phase.

Os ensaios de PCR foram realizados com 1 μΐ do DNAressuspenso em água destilada, nas seguintes condições: 30ciclos (94 0C - 20seg, 55°C - 20seg, 74°C - Imin), seguidosde uma elongação final de 7 minutos a 74 °C, em um volumefinal de 50 μΐ de solução de amplificação (20 mM de Tris-HCl pH 8.4, 50 mM de KCl, 3 mM de MgCl2, 0,2 mM de dNTPs,10 pmol de cada oligonucleotideo) e 2,5 unidades de Tli DNApolimerase (Promega, Madison, WI) que possui atividade dereparo ("proofreading"), necessária para a estratégia declonagem utilizada. Os produtos amplificados por PCR foramanalisados por corrida eletroforética em tampão TBE (89 mMde Tris, 89 mM de ácido bórico e 2,5 mM de EDTA, pH 7,5-7,8), utilizando-se géis de agarose a 2%, corados porbrometo de etidio a 10 mg/ml e visualizado com luzultravioleta. A genotipagem dos produtos de PCR foramrealizadas com as enzimas de restrição BamHI, EcoRI e StuI,através do método de genotipagem previamente padronizado emnosso laboratório [Araújo et al., 2004]PCR assays were performed with 1 μΐ of the suspended DNA in distilled water under the following conditions: 30 cycles (94 0C - 20sec, 55 ° C - 20sec, 74 ° C - Imin), followed by a 7 minute final elongation at 74 ° C , in a 50 μ volume of amplification solution (20 mM Tris-HCl pH 8.4, 50 mM KCl, 3 mM MgCl2, 0.2 mM dNTPs, 10 pmol of each oligonucleotide) and 2.5 units of Tli DNA Polymerase (Promega, Madison, WI) which has proofreading activity required for the decon strategy used. PCR amplified products were analyzed by electrophoretic run in TBE buffer (89 mM Tris, 89 mM boric acid and 2.5 mM EDTA, pH 7.5-7.8) using 2% agarose gels. stained with 10 mg / ml ethidium bromide and visualized with luminultraviolet. Genotyping of PCR products was performed with restriction enzymes BamHI, EcoRI and StuI by the previously standardized genotyping method in our laboratory [Araújo et al., 2004].

Clonagem molecular da região S do HBV e seguenciamento:HBV S-region molecular cloning and tracking:

Os produtos de PCR da região S do HBV (aproximadamente680pb), com perfis de restrição correspondentes aosubgenótipo Aaf foram clonados no sentido da transcrição,no vetor pcDNA3.1 utilizando-se ensaios comerciais paraeste fim (Directional TOPO expression kit, Invitrogen, SanDiego, CA. ). A clonagem dos insertos é feita de formadirecionada, uma vez que o oligonucleotideo de sentidosenso é iniciado por uma seqüência Kozak (CACC) antes docódon ATG de iniciação. A ponta do vetor (GTGG) écomplementar a esta seqüência e no momento da ligação doinserto ao vetor, esta ponta invade o inserto e se liga àseqüência Kozak, através da ação de uma topoisomeraseassociada ao vetor. Cepas de Escherichia coli Top 10 foramtransformadas pelo método químico de CaCl2 e cultivadas emmeio sólido LB ágar. Os clones recombinantes foramselecionados por marcadores de resistência à ampicilina. Apurificação dos plasmídeos foi realizada por colunas depurificação plasmidial por métodos comerciais (High purityplasmid midiprep system, QIAGEN, Hiden, Alemanha). Umtotal de 250 ng de DNA foi seqüenciado por reação usando-seBigDye Terminator mix em seqüenciador automático de 4 8capilares, modelo ABI3730 (Applied Biosystems, Foster City,CA, seqüenciador multiusuario da plataforma da Fiocruz).Foram utilizados oligonucleotideos complementares àsseqüências dos promotores T7 e SP6 que flanqueiam a regiãode múltiplos sítios do vetor pcDNA3.1.HBV S-region PCR products (approximately 680 bp) with restriction profiles corresponding to the Aaf subgenotype were cloned transcriptionally into the pcDNA3.1 vector using commercial assay for this purpose (Directional TOPO expression kit, Invitrogen, SanDiego, CA). .). The cloning of the inserts is done in a targeted manner, since the sense-sense oligonucleotide is initiated by a Kozak sequence (CACC) before the ATG initiation codon. The vector tip (GTGG) is complementary to this sequence and at the time of insertion of the vector to the insert, this tip invades the insert and binds to the Kozak sequence through the action of a vector-associated topoisomer. Escherichia coli Top 10 strains were transformed by CaCl2 chemical method and grown on solid LB agar. Recombinant clones were selected by ampicillin resistance markers. Plasmid purification was performed by plasmid purification columns by commercial methods (High purityplasmid midiprep system, QIAGEN, Hiden, Germany). A total of 250 ng of DNA was sequenced by reaction using BigDye Terminator mix in 48-capillary automatic sequencer, model ABI3730 (Applied Biosystems, Foster City, CA, Fiocruz platform multi-user sequencer). Complementary oligonucleotides were used following T7 and T7 promoters. SP6 flanking the multiple site region of the pcDNA3.1 vector.

Construção dos plasmídios de expressão HBsAg que permiteminserção de proteínas estrangeiras:Construction of HBsAg expression plasmids that allow insertion of foreign proteins:

O sítio único EcoNI sítio de restrição foi selecionadocomo sítio de inserção para o inserto de HCV. Após aclonagem da região S do HBV de genótipo A no pcDNA3.1, 5 ugde um plasmídeo isolado, e fusionado com a cauda dehistidina (pcDNA3.I-SAaHis+) foi digeridos com EcoNI,inativado por 30 min a 60°C. Após visualização da digestãoem gel de agarose, o recombinante foi tratado com a enzimaKlenow (Invitrogen), para transformar em extremidade cegaas extremidades dos plasmídeos digeridos. Cerca de 2ugforam purificadas do gel na concentração de 15ng/uL emvolume final de 50UL. 0 recombinante linearizado(600ng/40uL) foi tratado com 1 unidade de fosfatase pararetirar os fosfatos. 0 produto foi inativado a 68°C por 15minutos e purificado em coluna SV wizard da Promega. 0material foi eluido em volume final de 30uLExtração de BNA do HCV:The unique EcoNI restriction site was selected as the insertion site for the HCV insert. After cloning of genotype A HBV S region into pcDNA3.1, 5 µg of an isolated plasmid, and fused to the dehistidine tail (pcDNA3.I-SAaHis +) was digested with EcoNI, inactivated for 30 min at 60 ° C. After visualization of agarose gel digestion, the recombinant was treated with the enzyme Klenow (Invitrogen) to blind end the digested plasmids. About 2ug were purified from the gel at a concentration of 15ng / µl in a final volume of 50ul. The linearized recombinant (600ng / 40uL) was treated with 1 phosphatase unit to remove phosphates. The product was inactivated at 68 ° C for 15 minutes and purified on Promega SV wizard column. The material was eluted in a final volume of 30uL HCV BNA extraction:

A extração de RNA foi realizada a partir de amostrasde soro com QIAamp Viral RNA Mini Kit (Qiagen) . Seguindoprotocolo do fabricante, utilizando-se 140 pL de soro depacientes positivos para o HCV, e ressuspendeno o RNA em 50μι de tampão AVE, o RNA armazenado imediatamente em gelo.Síntese do cDNA do HCV:RNA extraction was performed from serum samples with QIAamp Viral RNA Mini Kit (Qiagen). Following the manufacturer's protocol, using 140 µl HCV-positive serum, and resuspending the RNA in 50 µL of AVE buffer, the RNA stored immediately on ice. HCV cDNA synthesis:

Antes da transcrição reversa, o RNA extraído foisubmetido a uma temperatura de 65°C por 10 minutos. Para asreações de transcrição reversa foi preparada uma mistura(mix) contendo: 20 pmol do primer reverso E245G1R1 (2431-2452)- GTACARGTAYTGYACGTCCAC) e 200U de transcriptasereversa (SuperScript RNase H- Reverse Transcriptase) . 0cDNA foi mantido em gelo e em seguida submetido a novaincubação a 65°C por 15 minutos.PCRl do HCV:Prior to reverse transcription, the extracted RNA was subjected to a temperature of 65 ° C for 10 minutes. For reverse transcription reactions a mix was prepared containing: 20 pmol of reverse primer E245G1R1 (2431-2452) - GTACARGTAYTGYACGTCCAC) and 200U of reverse transcript (SuperScript RNase H-Reverse Transcriptase). The cDNA was kept on ice and then incubated again at 65 ° C for 15 minutes. HCV CRP1:

A primeira amplificação por PCR foi senso E12F1 (5'-ATGGCWTGGGAYATGATGATGA - 3') (1293 - 1315), e antisensoE24G1R2 (5'- CACGATGTTCTGRTGGAGRTGGAT - 3') (2408 - 2431);com 0,6 de Platinum Taq DNA Polymerase 500 U para umvolume final de 25 μΙ* e 5 μ]^ do cDNA. As temperaturasutilizadas neste primeiro estágio (round) começavam com94°C por 3 minutos, seguidos de 30 ciclos de: 94°C por 30segundos, 65°C por 30 segundos, 72°C por 1 minuto e meio euma extensão final de 72°C por 7 minutos.Nested-PCR do HCV e clonagem do HCV no pcDNA 3.1:The first PCR amplification was sense E12F1 (5'-ATGGCWTGGGAYATGATGATGA - 3 ') (1293 - 1315), and antisense E24G1R2 (5'-CACGATGTTCTGRTGGAGRTGGAT - 3') (with 2408 - 2431); U for a final volume of 25 μΙ * and 5 μ] ^ of cDNA. Temperatures used in this first round began at 94 ° C for 3 minutes, followed by 30 cycles of: 94 ° C for 30 seconds, 65 ° C for 30 seconds, 72 ° C for 1 minute and a half and a final extension of 72 ° C. for 7 minutes.Nested-PCR of HCV and cloning of HCV in pcDNA 3.1:

Para a nested-PCR foi utilzado o primer sensoo E14G1F2(5'- caccATGGWGGGGAACTGGGCKAA - 3') (1427-1450), eantisenso E24G1R2 (5'- CACGATGTTCTGRTGGAGRTGGAT - 3')(2408-2431). Este segundo estágio (round) foi realizado nasseguintes condições: 94°C por 3 minutos, seguidos de 30ciclos de 94°C por 30 segundos, 67°C por 30 segundos, 74°Cpor 1 minuto, e mais 15 minutos de extensão a 74°C.For nested-PCR we used the primer E14G1F2 (5'-caccATGGWGGGGAACTGGGCKAA - 3 ') (1427-1450), and E24G1R2 (5'-CACGATGTTCTGRTGGAGRTGGAT - 3') (2408-24)). This second round was performed under the following conditions: 94 ° C for 3 minutes, followed by 30 cycles of 94 ° C for 30 seconds, 67 ° C for 30 seconds, 74 ° C for 1 minute, and a further 15 minutes at 74 ° C. ° C.

O produto da nested-PCR (1004pb) foi ligado ao vetorde expressão pcDNA 3.1 Directional TOPO Expression Kit(Invitrogen). Após transformação, purificação dosplasmideos e sequenciamento, os insertos na fase de leituracorreta do HCV foram diluídos de 1:10 e submetidos a PCRpara a formação das quimera que segue abaixo.Construção das quimeras HBV-HCV em pCDNA3.1:The nested-PCR product (1004bp) was ligated into the pcDNA 3.1 Directional TOPO Expression Kit (Invitrogen) expression vector. Following transformation, plasmid purification and sequencing, the HCV correct-reading phase inserts were diluted 1:10 and subjected to PCR for the formation of the following chimera.Construction of HBV-HCV chimeras in pCDNA3.1:

Seqüências de HCV dos clones de três pacientesconsideradas como representativas e consenso brasileiro dogenótipo Ib foram selecionadas.HCV sequences of the clones of three patients considered representative and Brazilian consensus dogenotype Ib were selected.

A região HVRl do envelope E2 nt 1461 -1588 (fragmento127 bp) foi amplificada por PCR com o primer, senso 1461F(5'- GTGAAGCTTCTCTTYGCCGGCGTT - 3') (1461-1484), contendoum sítio Hind III e antisenso 1588R (5'-GTGTTTAYAAGCTGGATTTTCTG -3')·The HVR1 region of envelope E2 nt 1461-1588 (fragment127 bp) was PCR amplified with primer, sense 1461F (5'-GTGAAGCTTCTCTTYGCCGGCGTT - 3 ') (1461-1484), containing a Hind III and antisense 1588R (5'- GTGTTTAYAAGCTGGATTTTCTG -3 ') ·

A amplificação foi com Tli DNA Polymerase (Taq DNApolymerase de alta fidelidade) , e 4 μ]^ dos plasmídeos(diluídos a 1:10) para um volume final de 100 μΕ.Inicialmente havia aquecimento de 95°C por 3 minutos,seguidos de 35 ciclos de 94°C por 20 segundos, 46°C por 20segundos, 7 4°C por 1 minuto e 10 segundos, e mais 15minutos de extensão a 74°C.Amplification was with Tli DNA Polymerase (high fidelity Taq DNApolymerase), and 4 μ] ^ of the plasmids (diluted 1:10) to a final volume of 100 μΕ. Initially there was heating of 95 ° C for 3 minutes, followed by 35 cycles of 94 ° C for 20 seconds, 46 ° C for 20 seconds, 74 ° C for 1 minute and 10 seconds, and an additional 15 minutes at 74 ° C.

O vetor de HBV linearizado por EcoNI e tratado comklenow seguido de fosfatase (IOOng) foi ligado ao produtode 127 pb de amplificação por PCR do HCV (15ng). A ligaçãofoi realizada com 4 U de T4 DNA ligase a 15°C por 15 horas.A Figura 3 mostra a seqüência quimérica obtida(SAaHCVHis+3), indicando os oligonucleotídeos utilizadospara amplificar o inserto do HCV, o sítio para EcoNItratado com Klenow, bem como a seqüência pepetídica doinserto de HCV.Seleção de quimeras HBV-HCV:The EcoNI linearized and klenow-treated HBV vector followed by phosphatase (100ng) was ligated to the 127 bp HCV PCR amplification product (15ng). Ligation was performed with 4 U T4 DNA ligase at 15 ° C for 15 hours. Figure 3 shows the chimeric sequence obtained (SAaHCVHis + 3), indicating the oligonucleotides used to amplify the HCV insert, the Klenow-treated EcoNI site, as well as as the peptide sequence of the HCV insert. HBV-HCV chimera selection:

Os clones recombinantes foram selecionados apósextração do DNA plasmidial e digestão com XbaI.Orientação dos clones:Recombinant clones were selected after plasmid DNA extraction and XbaI digestion.

A orientação dos insertos do HCV dentro do HBsAg, foirealizada por digestão com HindIII.The orientation of HCV inserts within HBsAg was performed by HindIII digestion.

Construção dos novos plasmídeos recombinantes e quiméricos:Construction of new recombinant and chimeric plasmids:

Dois outros plasmideos de expressão em célulaseucarióticas foram utilizados. 0 vetor pcDNA3 (Invitrogen)e o vetor pCI (pCI-neo Mammalian Expression Vector,Promega) contendo uma construção molecular do gene S do HBVde um isolado do genótipo D, chamado de pCI-HBswt,. 0inserto do genotipo D foi clonado neste vetor através dadigestão do pCI com as enzimas XhoI e SmaI (blunt end) edigestão dos insertos com as enzimas XhoI e StuI (blunt end).Two other eukaryotic cell expression plasmids were used. The pcDNA3 vector (Invitrogen) and the pCI vector (pCI-neo Mammalian Expression Vector, Promega) containing a molecular construct of the HBV S gene from an isolate of genotype D called pCI-HBswt. Genotype D insertion was cloned into this vector by pCI digestion with the XhoI and SmaI (blunt end) enzymes and insert digestion with the XhoI and StuI (blunt end) enzymes.

0 segmento de HBsAg clonado no pcDNA3.1 (pcDNA3.1-SAaHis-) foi excisado deste vetor a partir de uma digestãoenzimática com HindIII e EcoRV, as quais contêm sítios derestrição localizados no polylinker do vetor, e introduzidono pCDNA3, digerido com as mesmas enzimas (Figura 7A). Amesma seqüência do gene S do HBV foi transferida dopcDNA3.1 para o pCI-HBs através da digestão com as enzimasXbaI e NotI, em ambos os plasmídeos. 0 vetor pCI-HBscontinha uma seqüência do gene S do HBV previamente clonadae a enzima XbaI corta o início desta região, por isso, oplasmídeo recombinante pSAa-VM2 contém os primeirosnucleotideos da seqüência HBs original (Figura 7B) . Paratransferir a quimera HBV/HCV para os outros dois plasmídeos(pcDNA3 e pCI) utilizou-se uma estratégia diferente pois osegmento quimérico clonado no pcDNA3.1 (pcDNA3.1-SAaHCVHis+) não possui o códon de parada de tradução doHBsAg, permitindo a fusão com a cauda de histidina dovetor. 0 segmento quimérico foi clonado no pcDNA3utilizando-se as enzimas de restrição Kpnl e Van911. Foinecessário a utilização de um recombinante pSAa-VMl, o qualcontinha um segmento de "small" S do genótipo A, para serecuperar o códon de parada de tradução do HBsAg, perdidona seqüência quimérica. A enzima Van911 tem um sitio derestrição no final da seqüência do HBsAg e, portanto,quando o segmento quimérico é clonado no pcDNA3 ele sefunde ao códon de parada da sua seqüência prévia (Figura7C). O segmento HBV/HCV foi clonado no pCI através dadigestão enzimática com XbaI e NotI, a partir da construçãoquimérica feita no pcDNA3-SAaHCV (Figura 7D) . Os novosclones recombinantes obtidos, denominados pSAa-VMl,pSAaHCV-VMl, pSAa-VM2 e pSAaHCV-VM2, foram utilizados paratransfectar transitoriamente cultura de células CHO e osníveis de HBsAg, do meio de cultura e extratos celularesforam avaliados por ELISA, utilizando, para isso, as mesmascondições que os ensaios realizados para as construções como pcDNA3.1.The pcDNA3.1 cloned HBsAg segment (pcDNA3.1-SAaHis-) was excised from this vector from an enzymatic digestion with HindIII and EcoRV, which contain restriction sites located on the vector polylinker, and introduced into pCDNA3, digested with them. enzymes (Figure 7A). The same HBV gene sequence was transferred from dopcDNA3.1 to pCI-HBs by digestion with the enzymes XbaI and NotI in both plasmids. The pCI-HBc vector contains a previously cloned HBV S gene sequence and the XbaI enzyme cuts the beginning of this region, so the recombinant pSAa-VM2 plasmid contains the first nucleotides of the original HBs sequence (Figure 7B). In order to transfer the HBV / HCV chimera to the other two plasmids (pcDNA3 and pCI) a different strategy was used because the chimeric segment cloned into pcDNA3.1 (pcDNA3.1-SAaHCVHis +) does not have the HBsAg translation stop codon allowing fusion with the dovector histidine tail. The chimeric segment was cloned into pcDNA3 using restriction enzymes Kpn1 and Van911. It was necessary to use a recombinant pSAa-VM1, which contained a "small" S segment of genotype A, to recover the HBsAg translation stop codon, lost in the chimeric sequence. The Van911 enzyme has a restriction site at the end of the HBsAg sequence and, therefore, when the chimeric segment is cloned into pcDNA3 it merges with the stop codon of its previous sequence (Figure 7C). The HBV / HCV segment was cloned into pCI by enzymatic digestion with XbaI and NotI from the chemical construct made on pcDNA3-SAaHCV (Figure 7D). Recombinant new clones obtained, called pSAa-VM1, pSAaHCV-VM1, pSAa-VM2 and pSAaHCV-VM2, were used to transiently transfect CHO cell culture and HBsAg levels, culture medium and cell extracts were evaluated by ELISA. , the same conditions as tests carried out for constructions as pcDNA3.1.

Transfecções:Transfections:

Os plasmídeos recombinantes e quiméricos foramutilizados para transfectar transitoriamente cultura decélulas CHO, seguindo o protocolo de transfecção por Fugene6 Transfection Reagent (Roche).Ensaios Imunoenzimáticos:Recombinant and chimeric plasmids were used to transiently transfect CHO cell culture following the Fugene6 Transfection Reagent (Roche) transfection protocol. Immunoenzymatic Assays:

A produção de proteínas recombinantes pelas célulastransfectadas foram avaliadas por testes imunoenzimáticos(ELISA), específico para a detecção do antígeno desuperfície do vírus da hepatite B (HBsAg) (Bioelisa HBsAgcolour, Biokit, Barcelona, Espanha).The production of recombinant proteins by the transfected cells were evaluated by enzyme-linked immunosorbent assays (ELISA) specific for the detection of hepatitis B virus surface antigen (HBsAg) (Bioelisa HBsAgcolour, Biokit, Barcelona, Spain).

Purificação do DNA recombinante para inoculação em animaisPurification of recombinant DNA for animal inoculation

Os plasmídeos construídos para expressar HBsAgrecombinante e quimérico com os vetores pcDNA3 (pcDNA3-SAa,pcDNA3-SAaHCV) e pCI (pCI-SAa, pCI-SAaHCV) forampurificados com o EndoFree Plasmid Mega Kit (QIAGEN, Hiden,Alemanha) de acordo as instruções do fabricante.Brevemente, a partir de 500mL da cultura bacteriana deE.coli transformada com os plasmídeos supracitados, apurificação foi realizada com um rendimento final deaproximadamente 2mg de DNA plasmidial.Plasmids constructed to express chromopombinant and chimeric HBsA with the pcDNA3 (pcDNA3-SAa, pcDNA3-SAaHCV) and pCI (pCI-SAa, pCI-SAaHCV) vectors were purified with the EndoFree Plasmid Mega Kit (QIAGEN, Hiden, Germany) according to the instructions. From 500mL of the E.coli bacterial culture transformed with the above-mentioned plasmids, purification was performed with a final yield of approximately 2mg of plasmid DNA.

Inoculaçao do DNA desnudo em camundongos:Inoculation of naked DNA in mice:

Para a imunização, foram utilizados camundongosBalb/c, machos, com 7 semanas de idade. Grupos de quatroanimais foram inoculados com IOOug de DNA plasmidial emvolume final 50pL de tampão TE [Tris-Cl IOmM, EDTA ImM]) decada plamídeo (pcDNA3-SAa, pcDNA3-SAaHCV, pCI-SAa, pCI-SAaHCV). A inoculação foi realizada pela via intra-esplênica. Antes da inoculação, foi recolhida uma amostrade sangue através do plexo retro-orbital.For immunization, 7-week-old male Balb / c mice were used. Groups of four animals were inoculated with 100 µg of plasmid DNA in final volume 50 pL TE buffer (Tris-Cl 10mM, EDTA ImM]) each plasmid (pcDNA3-SAa, pcDNA3-SAaHCV, pCI-SAa, pCI-SAaHCV). Inoculation was performed intrasplenically. Prior to inoculation, a blood sample was taken from the retroorbital plexus.

Trinta dias após a inoculação, amostras de sangue doscamundongos foram retiradas, também pela via retro-orbital,para posteriores ensaios de avaliação da resposta imune dosanimais frente ao DNA plasmidial inoculado. Uma segundacoleta de sangue foi feita no dia 60 pós-inoculação. Destavez, foi realizada a sangria total dos animais, por punçãocardíaca, com a utilização de anestésico alguns minutosantes da coleta.Thirty days after inoculation, mouse blood samples were taken, also retro-orbitally, for further assays to evaluate the animal immune response against the inoculated plasmid DNA. A second blood slide was taken on day 60 post-inoculation. Thus, the animals were completely bleed by cardiac puncture using anesthetic a few minutes before collection.

As amostras de sangue coletadas pré e pós-imunizaçãoforam submetidas a ensaios de ELISA para a verificação daprodução de anticorpos contra o antígeno de superfície doHBV (anticorpos anti-HBs) pelos camundongos estudados.Utilizou-se o ensaio comercial Bioelisa anti-HBs (Biokit,Barcelona, Espanha), de acordo com as instruções dofabricante. Anticorpos anti-HBs foram detectados na amostrade soro coletada 60 após a administração do DNA plasmidialem camundongos imunizados com as construções, utilizando opCI como vetor de expressão, i.e. pCI-SAa, pCI-SAaHCV.Blood samples collected before and after immunization were subjected to ELISA to verify antibody production against HBV surface antigen (anti-HBs antibodies) by the mice studied. The commercial Bioelisa anti-HBs assay (Biokit, Barcelona, Spain) according to the manufacturer's instructions. Anti-HBs antibodies were detected in the serum sample collected after administration of plasmid DNA in mice immunized with the constructs using opCI as an expression vector, i.e. pCI-SAa, pCI-SAaHCV.

Desta forma, a invenção mostra os plasmídeos deexpressão construídos de acordo com a presente invenção,com um sítio de inserção natural localizado dentro ou emtorno do determinante a da proteína HBsAg. Os exemplos dainvenção mostram ainda que os segmentos de HCV, abrangendoa região HVR1, foram inseridos com sucesso no plasmídeo S-AHis+.Accordingly, the invention shows expression plasmids constructed in accordance with the present invention, with a natural insertion site located within or around the determinant of the HBsAg protein. Examples of the invention further show that HCV segments encompassing the HVR1 region were successfully inserted into plasmid S-AHis +.

A invenção aqui descrita, assim como os aspectosabordados devem ser considerados como uma das possíveisconcretizações. Deve, entretanto ficar claro que a invençãonão está limitada a essas concretizações e, aqueles comhabilidade na técnica irão perceber que, qualquercaracterística particular nela introduzida, deve serentendida apenas como algo que foi descrito para facilitara compreensão e não podem ser feitas sem se afastar doconceito inventivo descrito. As características limitantesdo objeto da presente invenção estão relacionadas àsreivindicações que fazem parte do presente relatório.The invention described herein as well as the aspects discussed should be considered as one of the possible embodiments. It should, however, be clear that the invention is not limited to such embodiments, and those skilled in the art will appreciate that any particular feature introduced therein should be understood solely as something that has been described for ease of understanding and cannot be made without departing from the inventive concept described. . The limiting features of the object of the present invention are related to the claims that are part of this report.

REFERÊNCIAS:REFERENCES:

(1) Araújo NM, Mello FC, Yoshida CF, Niel C, Gomes SA.2004. High proportion of subgroup A' (genotype A) amongBrazilian isolates of Hepatitis B virus. Arch Virol149:1383-1395.(1) Araújo NM, Mello FC, Yoshida CF, Niel C, Gomes SA.2004. High proportion of subgroup A '(genotype A) among Brazilian isolates of Hepatitis B virus. Arch Virol149: 1383-1395.

(2) Arauz-Ruiz P, Norder H, Robertson BH, Magnius LO 2002.Genotype H: a new Ameridian genotype of hepatitis B virusrevealed in Central America. J Gen Virol 83:2059-2073.(2) Arauz-Ruiz P, Norder H, Robertson BH, Magnius LO 2002. Genotype H: A new Ameridian genotype of hepatitis B virus revealed in Central America. J Gen Virol 83: 2059-2073.

(3) Assad S, Francis A 2000. Over a decade of experiencewith a yeast recombinant hepatitis B vaccine. Vaccine18:57-67.(3) Assad S, Francis A 2000. Over a decade of experiencewith a yeast recombinant hepatitis B vaccine. Vaccine18: 57-67.

(4) Bassit L, Silva LC da, Ribeiro-dos-Santos G, MaertensG, Carrilho FL, Fonseca LEP, et al. 2000. Chronic hepatitisC virus infections in Brazilian patients: association withgenotypes, clinicai parameters and response to Iong termalpha interferon therapy. Newslab. 8:136-151.(4) Bassit L, Silva LC da, Ribeiro-dos-Santos G, MaertensG, Carrilho FL, Fonseca LEP, et al. 2000. Chronic hepatitis C virus infections in Brazilian patients: association with genotypes, clinical parameters and response to Long term interferon therapy. Newslab 8: 136-151.

(5) Blum HE 1993. Hepatitis B virus: significance ofnaturally occurring mutants. Intervirology 35:40-50.(5) Blum HE 1993. Hepatitis B virus: significance of naturally occurring mutants. Intervirology 35: 40-50.

(6) Bukh J, Emerson SU, Purcell RH. 1997. Geneticheterogeneity of hepatitis C virus and related viruses. In:Rizzeto M, Purcell RH, Gerin JL, Verme G. Viral hepatitisand liver disease. Turin: Minerva Médica; p.167-175.(6) Bukh J, Emerson SU, Purcell RH. 1997. Geneticheterogeneity of hepatitis C virus and related viruses. In: Rizzeto M, Purcell RH, Gerin JL, Worm G. Viral hepatitis and liver disease. Turin: Medical Minerva; p.167-175.

(7) CDC 1991. Hepatitis B Virus: A Comprehensive Strategyfor Eliminating Transmission in the United States ThroughUniversal Childhood Vaccination: Recommendations of theImmunization Practices Advisory Committee (ACIP). MMWR40:1-19.(7) CDC 1991. Hepatitis B Virus: A Comprehensive Strategy for Eliminating Transmission in the United States Through Universal Childhood Vaccination: Recommendations of the Immunization Practices Advisory Committee (ACIP). MMWR40: 1-19.

(8) Chen SC, Jones DH, Fynan EF, Farrar GH et al. 1998.Protective immunity induced by oral immunization with arotavirus DNA vaccine encapsulated in microparticles. JVirol 72:5757-5761.(8) Chen SC, Jones DH, Fynan EF, Farrar GH et al. 1998.Protective immunity induced by oral immunization with arotavirus DNA vaccine encapsulated in microparticles. Virol 72: 5757-5761.

(9) Choo Q-L, Kuo G, Weiner AJ, Overby LR, Bradley DW,Houghton M. 1989. Isolation of a clone derived from a blod-borne non-A, non-B viral hepatitis genome. Science.244:359-362.(9) Choo Q-L, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. 1989. Isolation of a clone derived from a non-A, non-B viral hepatitis genome. Science 244: 359-362.

(10) Choo Q-L, Riehman KH, Han JH, Berger K, Lee C, Dong Cet al. 1991. Genetie organization and diversity of thehepatitis C virus. Proc Natl Acad Sci USA 88:2451-2455.(10) Choo Q-L, Riehman KH, Han JH, Berger K, Lee C, Dong Cet al. 1991. Genetie organization and diversity of thehepatitis C virus. Proc Natl Acad Sci USA 88: 2451-2455.

(11) Da Silva e Mouta S, Jr., Otávio Alves Vianna C, EnnesI, de Andrade Gomes S, da Silva Freire M, Domingos da SilvaE, Giovanni De Simone S, Terezinha Baroni de Moraes M.2003. Simple immunoaffinity method to purify recombinanthepatitis B surface antigen secreted by transfectedmammalian cells. J Chromatogr B Analyt Teehnol Biomed LifeSei 787 (2) :303-311(11) Da Silva and Mouta S, Jr., Otavio Alves Vianna C, EnnesI, by Andrade Gomes S, da Silva Freire M, Domingos da SilvaE, Giovanni De Simone S, Terezinha Baroni de Moraes M.2003. Simple immunoaffinity method to purify recombinanthepatitis B surface antigen secreted by transfectedmammalian cells. J Chromatogr B Analyte Teehnol Biomed LifeSei 787 (2): 303-311

(12) Delpeyroux F, Chenciner N, Lim A, Malpieee Y, BlondelB, Crainie R et al. 1986. A poliovirus neutralizing epitopeexpressed on hybrid hepatitis B surface antigen particles.Science 233:472-475.(12) Delpeyroux F, Chenciner N, Lim A, Malpieee Y, Blondel B, Crainie R et al. 1986. A poliovirus neutralizing epitope expressed on hybrid hepatitis B surface antigen particles.Science 233: 472-475.

(13) Drazan KE. 2000. Molecular biology of hepatitis Cinfeetion. Liver Transpl 6:396-406.(13) Drazan KE. 2000. Molecular biology of hepatitis Cinfeetion. Liver Transpl 6: 396-406.

(14) Feltquate DM, Heaney S, Webster RG, Robinson HL. 1997.Different T helper cell types and antibody isotypesgenerated by saline and gene gun DNA immunization. JImmunol 158 : 2278-2284 .(14) Feltquate DM, Heaney S. Webster RG, Robinson HL. 1997.Different T helper cell types and antibody isotypesgenerated by saline and gene gun DNA immunization. Immunol 158: 2278-2284.

(15) Forns X, Bukh J, Purcell RH. 2002. The challenge ofdeveloping a vaccine against hepatitis C virus. J Hepatol.37:684-695.(15) Forns X, Bukh J, Purcell RH. 2002. The challenge of developing a vaccine against hepatitis C virus. J Hepatol.37: 684-695.

(16) Fried MW, Sambrook J. 1995. Therapy of hepatitis C.Semin Liver Dis. 15:82-91.(16) Fried MW, Sambrook J. 1995. Therapy of hepatitis C.Semin Liver Dis. 15: 82-91.

(17) FUNASA 2001. Manual dos Centros de Referência deImunologicos Especiais 59-63.(17) FUNASA 2001. Handbook of Reference Centers for Special Immunologists 59-63.

(18) Fynan EF, Webster RG, Fuller DH, Haynes JR, SantoroJC, Robinson HL. 1993. DNA vaccines: protectiveimmunizations by parenteral, mucosal and gene-guninoculations. Proc Natl Acad Sci USA 90:11478-11482.(18) Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. 1993. DNA vaccines: protectiveimmunizations by parenteral, mucosal and gene-guninoculations. Proc Natl Acad Sci USA 90: 11478-11482.

(19) Ganem D 1996. Hepadnaviridae and their replication.In: Fields BN, Knipe DM, Howley PM. Fields Virology.Philadelphia: Lippincott - Raven 2703 -2737.(19) Ganem D 1996. Hepadnaviridae and their replication. In: Fields BN, Knipe DM, Howley PM. Fields Virology.Philadelphia: Lippincott - Raven 2703-2737.

(20) Ganem D, Varmus HE. 1987. The molecular biology ofhepatitis B viruses. Ann Rev Biochem 56:651-693.(20) Ganem D, Varmus HE. 1987. The molecular biology ofhepatitis B viruses. Ann Rev Biochem 56: 651-693.

(21) Geissler M, Gesein A, Tokushige K, Wands JR- 1997.Enhancement of cellular and humoral immune responses tohepatitis C virus core protein using DNA-based vaccinesaugmentd with cytokine-expressing plasmids. J Immunol158:1231-1237.(21) Geissler M, Gesein A, Tokushige K, Wands JR-1997. Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines with cytokine-expressing plasmids. J Immunol158: 1231-1237.

(22) Geissler M, Tokushige K, Wakita T, Zurawski VR, WandsJR. 1998. Differential cellular and humoral responses toHCV core and HBV envelope proteins after geneticimmunizations using chimeric constructs. Vaccine. 16:857-867.(23) Grakoui Α, Wychowski C, Lin C, Feinstone SM, Rice CM.1993. Expression and identification of hepatitis C viruspolyprotein cleavage products. J Virol. 67:1385-1395.(22) Geissler M, Tokushige K, Wakita T, Zurawski VR, Wands JR. 1998. Differential cellular and humoral responses to HCV core and HBV envelope proteins after geneticimmunizations using chimeric constructs. Vaccine. 16: 857-867. (23) Grakoui, Wychowski C, Lin C, Feinstone SM, Rice CM.1993. Expression and identification of hepatitis C viruspolyprotein cleavage products. J Virol. 67: 1385-1395.

(24) Grob PJ 1998. Hepatitis B: virus, pathogenesis andtreatment. Vaccine 16: S11-S16.(24) Grob PJ 1998. Hepatitis B: virus, pathogenesis and treatment. Vaccine 16: S11-S16.

(25) Heermann KH, Goldmann U, Schwartz W, Seyffarth T,Baumgarten H, Gerlieh WH. 1984. Large surface proteins ofhepatitis B virus eontaining the pre-S sequence. J Virol52:396-402.(25) Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, Gerlieh WH. 1984. Large surface proteins of hepatitis B virus and the pre-S sequence. J Virol 52: 396-402.

(26) Henke A. 2002. DNA immunization - a new chance invaccine research? MedMicrobiol Immunol 191:187-190.(26) Henke A. 2002. DNA immunization - a new chance invaccine research? MedMicrobiol Immunol 191: 187-190.

(27) Jin J, Yang JY, Liu J, Kong YY, Wang Y, Li GD. 2002.DNA immunization with fusion genes encoding differentregions of hepatitis C virus E2 fused to the gene forhepatitis B surface antigen elicits immune responses toboth HCV and HBV. World J Gastroenterol 8 (3):505-510.(27) Jin J, Yang JY, Liu J, Kong YY, Wang Y, Li GD. 2002.DNA immunization with fusion genes encoding differentregions of hepatitis C virus E2 fused to the forhepatitis B gene surface antigen elicits immune responses toboth HCV and HBV. World J Gastroenterol 8 (3): 505-510.

(28) Jin J, Yang JY, Liu J, Kong YY, Wang Y, Li GD. 2002.DNA immunization with fusion genes encoding differentregions of hepatitis C virus E2 fused to the gene forhepatitis B surface antigen elicits immune responses toboth HCV and HBV. World J Gastroenterol. 8: 505-510.(29) Klavinskis LS, Gao L, Barnfield C, Lehner T, Parker S.1997. Mucosal immunization with DNA-Iiposome complexes.Vaccine 15:818-820.(28) Jin J, Yang JY, Liu J, Kong YY, Wang Y, Li GD. 2002.DNA immunization with fusion genes encoding differentregions of hepatitis C virus E2 fused to the forhepatitis B gene surface antigen elicits immune responses toboth HCV and HBV. World J Gastroenterol. 8: 505-510 (29) Klavinskis LS, Gao L, Barnfield C, Lehner T, Parker S.1997. Mucosal immunization with DNA-Iiposome complexes. Vaccine 15: 818-820.

(30) Klingmuller U, Schaller H 1993. Hepadnavirus infectionrequires interaction between the viral pre-S domain and aspecific hepatocellular receptor. J Virol 67:7414-7422.(31) Koff RS. 2002. Immunogenicity of hepatitis B vaccines:implications of irtvmune memory. Vaccine 1; 20 (31-32): 3695-701.(30) Klingmuller U, Schaller H 1993. Hepadnavirus infection requires interaction between the viral pre-S domain and specific hepatocellular receptor. J Virol 67: 7414-7422 (31) Koff RS. 2002. Immunogenicity of hepatitis B vaccines: implications of immune memory. Vaccine 1; 20 (31-32): 3695-701.

(32) Livingston JB, Lu S, Robinson H, Anderson DJ. 1998.Immunization of the female genital tract with a DNA-basedvacine. Infect Immun 66:322-329.(32) Livingston JB, Lu S, Robinson H. Anderson Anderson. 1998. Immunization of the female genital tract with a DNA-based vaccine. Infect Immun 66: 322-329.

(33) Magnius LO, Norder H 1995. Subtypes, genotypes andmolecular epidemiology of the hepatitis B virus asreflected by sequence variability of the S-gene.Intervirology 38:24-34.(33) Magnius LO, Norder H 1995. Subtypes, genotypes andmolecular epidemiology of hepatitis B virus asreflected by sequence variability of the S-gene. Intervirology 38: 24-34.

(34) Major MM, Vivitski L, Mink MA, Schleef M, Whalen RG,Trepo C et al. 1995. DNA-based immunization with chimericvectors for the inductionof iramune responses against thehepatitis C virus nucleocapsid. J Virol 69:5798-5805.(34) Major MM, Vivitski L, Mink MA, Schleef M, Whalen RG, Trepo C et al. 1995. DNA-based immunization with chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid. J Virol 69: 5798-5805.

(35) Martell M, Esteban JI, Quer J, Genesca J, Weiner A,Esteban R, et al. 1992. Hepatitis C virus (HCV) circulatesas a population of different but closely related genomes:quasispecies nature of HCV genome distribution. J Virol66:3225-29.(35) Martell M, Esteban JI, Either J, Genesca J, Weiner A, Esteban R, et al. 1992. Circulating hepatitis C virus (HCV) a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol66: 3225-29.

(36) Naumann H, Schaefer S, Yoshida CF, Gaspar AM, Repp R,Gerlieh WH. 1993. Identification of a new hepatitis B virus(HBV) genotype from Brazil that expresses HBV surfaceantigen subtype adw4. J Gen Virol 74:1627-1632.(36) Naumann H, Schaefer S, Yoshida CF, Gaspar AM, Rep R, Gerlieh WH. 1993. Identification of a new hepatitis B virus (HBV) genotype from Brazil that expresses HBV surfaceantigen subtype adw4. J Gen Virol 74: 1627-1632.

(37) Netter HJ, Macnaughton TB, Woo W, Tindle R, Gowans E.2001. Antigenicity and immunogenicity of novel chimerichepatitis B surface antigen particles with exposedhepatitis C virus epitopes. J Virol 75:2130-2141.(37) Netter HJ, Macnaughton TB, Woo W, Tindle R, Gowans E.2001. Antigenicity and immunogenicity of novel chimerichepatitis B surface antigen particles with exposedhepatitis C virus epitopes. J Virol 75: 2130-2141.

(38) Neurath AR, Kent SBH, Strick N, Parker K. 1986.Identification and chemical synthesis of a host cellreceptor binding site on hepatitis B virus. Cell 46:429-436.(38) Neurath AR, Kent SBH, Strick N, Parker K. 1986. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell 46: 429-436.

(39) Niel C, Moraes MT, Gaspar AM, Yoshida CF, Gomes SA.1994. Genetic diversity of hepatitis B virus strainsisolated in Rio de Janeiro, Brazil. J Med Virol 44(2):180-186.(39) Niel C, Moraes MT, Gaspar AM, Yoshida CF, Gomes SA.1994. Genetic diversity of hepatitis B virus strainsisolated in Rio de Janeiro, Brazil. J Med Virol 44 (2): 180-186.

(40) Raz E, Tighe H, Sato Y, Corr M, et al. 1996.Preferential induction of a Thl immune response andinhibition of specific IgE antibody formation by plasmidDNA immunization.(40) Raz E, Tighe H, Sato Y, Corr M, et al. 1996.Preferential induction of a Thl immune response and inhibition of specific IgE antibody formation by plasmidDNA immunization.

(41) Robertson B, Myers G, Howard C, Brettin T, Bukh J,Gaschen B, et al. 1998. Classification, nomenclature, anddatabase development for hepatitis C virus (HCV) andrelated viruses: proposals for standartization. Arch Virol143:2493-2503.(41) Robertson B, Myers G, Howard C, Brettin T, Bukh J, Gaschen B, et al. 1998. Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. Arch Virol143: 2493-2503.

(42) Seeger C, Mason W. 2000. Hepatitis B virus biology.Microbiol Mol Biol Rev 64:51-68.(42) Seeger C, Mason W. 2000. Hepatitis B virus biology.Microbiol Mol Biol Rev 64: 51-68.

(43) Stuyver L, De Gendt S, Van Geyt C, Zoulim F, Fried M,Schinazi RF, Rossau R 2000. A new genotype of hepatitis Bvirus: complete genome and phylogenetic relatedness. J GenVirol 81:67-74.(43) Stuyver L, Gendt S, Van Geyt C, Zoulim F, Fried M, Schinazi RF, Rossau R 2000. A new genotype of hepatitis Bvirus: complete genome and phylogenetic relatedness. J GenVirol 81: 67-74.

(44) Thanavala Y. 1996. Novel approaches to vaccinedevelopment against HBV. J Biotechnol 44:67-73.(44) Thanavala Y. 1996. Novel approaches to vaccinedevelopment against HBV. J Biotechnol 44: 67-73.

(45) Wallace LA, Carman WF 1994. Clinicai implications ofhepatitis B virus envelope protein variation. Int J ClinLab Res 24:80-85.(45) Wallace LA, Carman WF 1994. Clinical implications of hepatitis B virus envelope protein variation. Int J ClinLab Res 24: 80-85.

(46) Wolff JA, Malone RW, Williams P, Chong W, Acsadi G,Jani A, Felgner PL. 1990. Direct gene transfer into mousemuscle in vivo. Science 247:1465-1468.(47) Yu AS, Cheung RC, Keeffe EB. 2006. Hepatitis Bvaccines. Infect Dis Clin North Am 20(l):27-45.(46) Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. 1990. Direct gene transfer into mousemuscle in vivo. Science 247: 1465-1468. (47) Yu AS, Cheung RC, Keeffe EB. 2006. Hepatitis Bvaccines. Infect Dis Clin North America 20 (1): 27-45.

Claims (3)

1. Plasmideo pSAaHCV-VMl caracterizado por conter umfragmento de 127 pb da região HVRl do gene E2 do HCVfusionado ao HBsAg pela inserção no sitio único EcoNI.1. Plasmid pSAaHCV-VM1, characterized in that it contains a 127 bp fragment of the HVR1 region of the HBsAg-fused HCV E2 gene by insertion into the unique EcoNI site. 2. Plasmideo pSAaHCV-VM2 caracterizado por conter umfragmento de 127 pb da região HVRl do gene E2 do HCVfusionado ao HBsAg pela inserção no sitio único EcoNI.Plasmid pSAaHCV-VM2, characterized in that it contains a 127 bp fragment of the HVR1 region of the HBsAg-fused HCV E2 gene by insertion into the unique EcoNI site. 3. Quimera HBV/HCV SAaHCVHis+3 conforme representadana Figura 2.3. Chimeric HBV / HCV SAaHCVHis + 3 as depicted in Figure 2.
BRPI0803008 2008-07-04 2008-07-04 hepatitis b virus (hbsag) surface gene expression vectors and chimeric hbv-hcv plasmids against hepatitis b and hepatitis c BRPI0803008A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BRPI0803008 BRPI0803008A2 (en) 2008-07-04 2008-07-04 hepatitis b virus (hbsag) surface gene expression vectors and chimeric hbv-hcv plasmids against hepatitis b and hepatitis c

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BRPI0803008 BRPI0803008A2 (en) 2008-07-04 2008-07-04 hepatitis b virus (hbsag) surface gene expression vectors and chimeric hbv-hcv plasmids against hepatitis b and hepatitis c

Publications (1)

Publication Number Publication Date
BRPI0803008A2 true BRPI0803008A2 (en) 2011-03-22

Family

ID=43754809

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0803008 BRPI0803008A2 (en) 2008-07-04 2008-07-04 hepatitis b virus (hbsag) surface gene expression vectors and chimeric hbv-hcv plasmids against hepatitis b and hepatitis c

Country Status (1)

Country Link
BR (1) BRPI0803008A2 (en)

Similar Documents

Publication Publication Date Title
JP6914950B2 (en) Vaccine against hepatitis B virus
Blum Hepatitis B virus: significance of naturally occurring mutants
Kamili et al. Efficacy of hepatitis B vaccine against antiviral drug‐resistant hepatitis B virus mutants in the chimpanzee model
Sominskaya et al. Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes
US8071561B2 (en) Immunogen platform
François et al. Mutant hepatitis B viruses: a matter of academic interest only or a problem with far-reaching implications?
Chen et al. Recombinant hepatitis B core antigen carrying preS1 epitopes induce immune response against chronic HBV infection
Zingaretti et al. Why is it so difficult to develop a hepatitis C virus preventive vaccine?
KR101144642B1 (en) A hepatitis c virus codon optimized non-structural ns3/4a fusion gene
Bellier et al. Virus-like particle-based vaccines against hepatitis C virus infection
Yang et al. Fusion of C3d molecule with neutralization epitope (s) of hepatitis E virus enhances antibody avidity maturation and neutralizing activity following DNA immunization
Yim et al. Poliovirus recombinants expressing hepatitis B virus antigens elicited a humoral immune response in susceptible mice
Alexopoulou et al. Core mutations in patients with acute episodes of chronic HBV infection are associated with the emergence of new immune recognition sites and the development of high IgM anti‐HBc index values
BRPI0803008A2 (en) hepatitis b virus (hbsag) surface gene expression vectors and chimeric hbv-hcv plasmids against hepatitis b and hepatitis c
EP0789563B1 (en) Hepatitis virus b and c vaccines
RU2189254C2 (en) Vaccines against hepatitis viruses
US20070032444A1 (en) Genetic immunization with nonstructural proteins of hepatitis C virus
Madalinski Recent advances in hepatitis B vaccination.
US9247720B2 (en) Primate model from the family cercopithecidae infected by a HBV strain of human genotype
Argentini et al. A pre-S/S CHO-derived hepatitis B virus vaccine protects woodchucks from WHV productive infection
KR0120928B1 (en) Novel hcv gene which is separated in korea
Schodel Hepatitis B virus vaccines
Chen Improving immunogenicity of hepatitis B and C viral proteins for vaccine design
Crowther Molecular characterisation of Hepatitis B virus vaccine escape mutants in South Africa
Mihailova et al. Is vaccine against HCV possible?

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]
B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B07D Technical examination (opinion) related to article 229 of industrial property law [chapter 7.4 patent gazette]
B07E Notification of approval relating to section 229 industrial property law [chapter 7.5 patent gazette]
B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B11E Dismissal acc. art. 34 of ipl - requirements for examination incomplete
B11T Dismissal of application maintained [chapter 11.20 patent gazette]