BRPI0702904A2 - device and method for manufacturing a three-dimensional object - Google Patents
device and method for manufacturing a three-dimensional object Download PDFInfo
- Publication number
- BRPI0702904A2 BRPI0702904A2 BRPI0702904-7A BRPI0702904A BRPI0702904A2 BR PI0702904 A2 BRPI0702904 A2 BR PI0702904A2 BR PI0702904 A BRPI0702904 A BR PI0702904A BR PI0702904 A2 BRPI0702904 A2 BR PI0702904A2
- Authority
- BR
- Brazil
- Prior art keywords
- powder
- application
- approximately
- laser
- layer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/214—Doctor blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
Abstract
DISPOSITIVO E MéTODO PARA FABRICAR UM OBJETO TRIDIMENSIONAL. A invenção descreve um método no qual um objeto tridimensional é produzido compactando sucessivamente camadas componente em pó nos pontos correspondentes à seção transversal do objeto na camada respectiva sob o efeito de um laser ou outra fonte de energia. O componente em pó usado no dito método é um material contendo pó velho deixado como pó não compactado a partir da produção de um ou vários objetos criados anteriormente como também algum pó novo nunca usado antes durante um processo de produção. O método inventivo é caracterizado pelo fato de que o componente em pó é compactado mecanicamente quando uma camada é aplicada.DEVICE AND METHOD FOR MANUFACTURING A THREE-DIMENSIONAL OBJECT. The invention describes a method in which a three-dimensional object is produced by successively compacting powder component layers at points corresponding to the object's cross section in the respective layer under the effect of a laser or other energy source. The powder component used in said method is a material containing old powder left as uncompacted powder from the production of one or more objects created previously as well as some new powder never used before during a production process. The inventive method is characterized by the fact that the powder component is mechanically compacted when a layer is applied.
Description
"DISPOSITIVO E MÉTODO PARA FABRICAR UM OBJETOTRIDIMENSIONAL""DEVICE AND METHOD FOR MANUFACTURING A METHOD"
A invenção se refere a um dispositivo e um método parafabricação em camada de um objeto tridimensional a partir de um material emforma de pó. Em particular, a invenção é referente a um método parasinterização de laser seletivo, a seguir, brevemente chamado de método desinterização de laser, e a um dispositivo de sinterização de laser.The invention relates to a device and method for the fabrication of a three-dimensional object from a powder-shaped material. In particular, the invention relates to a selective laser parasintering method, hereinafter briefly called the laser deintering method, and to a laser sintering device.
Um método de sinterização a laser e um dispositivo desinterização a laser de acordo com o preâmbulo das reivindicações 1 e 5,respectivamente, são por exemplo, conhecidos a partir DE 101 05 404 Al. Nométodo, é usado particularmente, um pó plástico tal como poliamida.A laser sintering method and a laser sintering device according to the preamble of claims 1 and 5, respectively, are known from DE 101 05 404 A1. In particular, a plastic powder such as polyamide is used. .
No método conhecido para cada processo de construção éusada uma quantidade de pó velho especificado, i.e., pó, o que permanece apartir de um ou vários processos de construção prévios. Entretanto, o pó velhoestá sujeito a um processo de envelhecimento.In the known method for each construction process a specified amount of old dust, i.e. dust, is used, which remains from one or more previous construction processes. However, the old dust is subject to an aging process.
Por exemplo, o pó velho é termicamente e/ou termooxidantemente danificado e, portanto, tem outras propriedades de material epor esta razão também outros parâmetros de procedimentos diferentes do pónovo. Então ele pode ser adicionado ao novo pó apenas em proporçõesdefinidas a fim de não colocar em risco o processo de construção e aqualidade da parte. A chamada taxa de regeneração é o valor do percentual depó novo na mistura quantidade / percentual do pó velho na quantidademisturada (e.g. 50/50) que é usada para um processo de construção. Esta taxade regeneração será tão pequena quanto possível, porque assim os custos como novo pó podem ser economizados.For example, the old powder is thermally and / or thermo-oxidatively damaged and therefore has other material properties and for this reason also other procedural parameters other than ponovo. Then it can be added to the new powder only in defined proportions so as not to endanger the construction process and the part's quality. The so-called regeneration rate is the value of the percentage of new powder in the quantity / percentage mixture of old powder in the mixed quantity (e.g. 50/50) that is used for a construction process. This regeneration tax will be as small as possible, so that costs like new dust can be saved.
Na DE 101 05 504 Al é proposto pré processar o pó velho oua mistura do pó velho e do pó novo antes da solidificação, por exemplo,fluidificando, a fim de reduzir o efeito de mudanças na redução de qualidadereferente ao envelhecimento, tal que mais pó velho pode ser adicionado.Entretanto, por tal pré-tratamento, geralmente, nem todas asmudanças na redução de qualidade referente ao envelhecimento do pó podemser eliminadas. Em particular, uma proporção alta demais de pó velho dáorigem a uma qualidade de superfície insatisfatória das paredes externas daparte devido a posições de imersão, as quais também são chamadas "marcasde pia" ou "casca de laranja".In DE 101 05 504 Al it is proposed to preprocess the old powder or the mixture of the old powder and the new powder before solidification, for example by fluidizing, in order to reduce the effect of changes in aging-related quality reduction such that more powder However, because of such pretreatment, generally not all changes in quality reduction regarding the aging of the powder can be eliminated. In particular, too high a proportion of old dust results in unsatisfactory surface quality of the outer walls of the part due to dipping positions, which are also called "sink marks" or "orange peel".
A partir do WO 2005/097475 um método de sinterização alaser e um pó de sinterização a laser para tal método é conhecido, em que étentado resolver o problema das posições de imersão usando algum materialque tem uma estabilidade aumentada no processo de sinterização de laserportanto tem menos danos relativos ao envelhecimento, quando é usado comopó velho. Entretanto, neste caso o usuário é dependente do uso deste póespecífico o qual em troca tem propriedades deferentes do pó familiar usadoaté agora e que possivelmente não supriu todas as demandas.From WO 2005/097475 an alaser sintering method and a laser sintering powder for such a method is known, in which an attempt is made to solve the immersion position problem using some material which has increased stability in the laser sintering process so it has less damage related to aging when used with old dust. However, in this case the user is dependent on the use of this specific powder which in turn has deferent properties of the familiar powder used so far and which possibly has not met all the demands.
Além do mais, a partir da US 4 938 816 é conhecidocompactar pó em sinterização a laser gerando um campo eletromagnéticodurante ou antes da solidificação com o laser.Moreover, from US 4,938,816 it is known to compact laser sintering powder by generating an electromagnetic field during or before solidification with the laser.
A partir de EP 1 058 675 Bl é conhecido compactar umacamada de pó aplicada por meio de um rolo na camada de sinterização de umpó de cerâmicas. Assim, o tempo será reduzido, o que é exigido nasinterização na fase sólida do pó de cerâmicas.From EP 1 058 675 B1 it is known to compact a powder layer applied by means of a roller in the sintering layer of a ceramic powder. Thus the time will be reduced, which is required in the solid phase sintering of the ceramic powder.
A partir de DE 195 14 740 Cl um dispositivo para sinterizaçãoa laser, em particular de pó de metal, é conhecido, no qual o pó é aplicado pormeio de uma lâmina de aplicação. A lâmina tem na borda de aplicação umaborda chanfrada tendo um ângulo entre 30° e 90°. Uma face chanfrada, a qualtem um ângulo entre Io e 60° é provida também na borda lisa oposta. A bordalisa alisa uma camada já solidificada.From DE 195 14 740 Cl a device for laser sintering, in particular of metal powder, is known, in which the powder is applied by means of an application blade. The blade has a beveled edge on the application edge having an angle between 30 ° and 90 °. A chamfered face which has an angle between 1 ° and 60 ° is also provided on the opposite smooth edge. The border smoothes an already solidified layer.
E objetivo da invenção, prover um método e um dispositivopara produzir um objeto tridimensional, em particular um método desinterização a laser e um dispositivo de sinterização a laser, pelos quais, a taxade regeneração pode ser reduzida e pelos quais os custos do processo podemser reduzidos.It is an object of the invention to provide a method and apparatus for producing a three-dimensional object, in particular a laser deinterpretation method and a laser sintering device, whereby the regeneration rate may be reduced and the process costs may be reduced.
O objetivo é alcançado por um dispositivo de acordo comreivindicação 1 e um método de acordo com reivindicações 7,8 ou 13.Desenvolvimentos adicionais da invenção são descritos nas reivindicaçõesdependentes.The object is achieved by a device according to claim 1 and a method according to claims 7,8 or 13. Further developments of the invention are described in the dependent claims.
O método tem a vantagem de que pó convencional parasinterização a laser tal como poliamida ou outras famílias, em particular,poliarileteretercetona (PEEK), em cada caso, com e sem adições comopartículas de vidro, fibras reforçadas, adições metálicas como e.g. poliamidacarregada com alumínio e outros, podem ser usados, as propriedades dosquais são suficientemente conhecidas. Além do mais, pelo método edispositivo, a taxa de regeneração pode ser reduzida até 0% de pó novo(0/100).The method has the advantage that conventional laser powder for laserinterintering such as polyamide or other families, in particular polyaryletheretherketone (PEEK), in each case, with and without additions with glass particles, reinforced fibers, metallic additions such as polyamide-charged aluminum and others may be used, the properties of which are sufficiently known. In addition, by the method of regeneration, the regeneration rate can be reduced to 0% of new dust (0/100).
Características e utilidades adicionais da invenção surgem dadescrição das configurações baseadas nas figuras, nas quais:Additional features and utilities of the invention arise from the description of the figure-based configurations in which:
Fig. 1 mostra uma representação esquemática de umdispositivo de sinterização a laser; eFig. 1 shows a schematic representation of a laser sintering device; and
Fig. 2 mostra uma visão lateral de perspectiva esquemática daaplicação do pó por meio de um dispositivo de aplicação no dispositivo desinterização a laser;Fig. 2 shows a schematic perspective side view of the application of the powder by means of an application device in the laser deintering device;
Fig. 3 mostra uma representação esquemática da seçãotransversal da lâmina de aplicação do dispositivo de aplicação; eFig. 3 shows a schematic representation of the cross section of the application blade of the delivery device; and
Fig. 4 mostra uma visão em perspectiva seccional transversalparcial esquemática de como o dispositivo de aplicação aplica pó na camadajá sinterizada.Fig. 4 shows a schematic partial cross-sectional perspective view of how the application device applies powder to the already sintered layer.
O dispositivo de sinterização a laser mostrado na Fig. 1 incluium recipiente 1, o qual é aberto para o topo e tem aí um suporte 2 que podeser movido em uma direção vertical, apóia o objeto 3 a ser formado e define ocampo de construção. O suporte 2 é ajustado na direção vertical tal que arespectiva camada do objeto, cuja camada deve ser solidificada, se estende emum plano de trabalho 4. Adicionalmente, é provido um dispositivo deaplicação 5 para aplicar o material de construção em forma de pó, o qual deveser solidificado por meio de radiação magnética. O feixe de laser 7 que temsido gerado pelo laser 6 é direcionado sobre uma janela acoplada 9 por meiode um dispositivo de deflexão 8, o qual deixa o feixe de laser 7 passar nacâmara de processo IOe foca o feixe para um determinado ponto no plano detrabalho 4.The laser sintering device shown in Fig. 1 includes the container 1, which is open to the top and therein has a support 2 that can be moved in a vertical direction, supports the object 3 to be formed and defines the construction field. The support 2 is adjusted in the vertical direction such that the respective layer of the object, the layer of which must be solidified, extends in a working plane 4. In addition, an application device 5 is provided for applying the powdery building material which must be solidified by magnetic radiation. The laser beam 7 that has been generated by laser 6 is directed over a docked window 9 by means of a deflection device 8, which allows the laser beam 7 to pass through the process chamber 10 and focuses the beam to a particular point in the working plane 4 .
Além do mais, uma unidade de controle 11 é provida atravésda qual os componentes do dispositivo são controlados em uma maneiracoordenada a fim de executar o processo de construção.Moreover, a control unit 11 is provided whereby the device components are controlled in an orderly manner in order to carry out the construction process.
Como é visto na Fig. 2, o dispositivo de aplicação inclui duasgarras 51, 52 que são colocadas a uma distância uma da outra e a umadistância acima do plano de trabalho, em que o suprimento de pó 20 estálocalizado entre essas duas garras 51, 52. As garras 51, 52 se estendematravés de toda a largura do campo de trabalho. Nos lados interiores dasgarras, as quais estão defronte uma da outra, lâminas 60, 61 são providas, asquais também se estendem através de toda a largura do campo de construção eas quais se salientam na garra para baixo em direção ao plano de trabalho. Olado do fundo da lâmina tem uma distância d a partir de superfície de suporteou a camada que foi solidificada por último, em que a distância d correspondeà espessura da camada da camada desejada. Na Fig. 2 a presente direção domovimento do dispositivo de aplicação 5, o qual é mostrado, é indicado por B.As seen in Fig. 2, the applicator device includes two jaws 51, 52 which are placed at a distance from each other and at a distance above the working plane, wherein the powder supply 20 is located between these two jaws 51, 52. Claws 51, 52 extend across the entire width of the work field. On the inner sides of the jaws, which are opposite each other, blades 60, 61 are provided, which also extend across the entire width of the construction field and which protrude downwardly toward the work plane. The bottom edge of the blade has a distance d from the support surface or the last solidified layer, wherein the distance d corresponds to the layer thickness of the desired layer. In Fig. 2 the present moving direction of delivery device 5, which is shown, is indicated by B.
Como pode ser visto na Fig. 3, a lâmina tem uma espessura Dna direção do movimento B e tem duas superfícies 60a, 60b, que sãoestendidas substancialmente perpendiculares ao plano de trabalho 4 e sãoalinhadas substancialmente em paralelo uma à outra, as quais se estendemtransversalmente através do campo de construção. No seu lado do fundodefronte do plano de trabalho a lâmina tem uma superfície que se inclina 60c,em que a lâmina é posicionada no dispositivo de aplicação tal que a superfícieque se inclina 60c ascende na direção da aplicação Β. A superfície que seinclina forma uma superfície de aplicação. Juntamente com uma superfície Eque está em paralelo ao plano de trabalho 4 e a superfície de suporte,respectivamente, inclui um ângulo agudo, o qual se estende entre um valormaior do que O0 e aproximadamente 5o, preferivelmente em aproximadamente2o. A borda mais baixa 60d entre a superfície perpendicular 60b e a superfíciede lâmina inclinada 60c está em uma altura χ referente ao plano E. Quando alâmina tem uma espessura D de aproximadamente 6 mm, a altura χ é maiordo que 0,03 e menor do que aproximadamente 0,5 mm. A espessura da lâminapode ser entre 1 mm e 20 mm. Assim o dispositivo de aplicação tem apenasum ângulo de incidência da superfície c na direção de aplicação B.As can be seen from Fig. 3, the blade has a thickness D in the direction of movement B and has two surfaces 60a, 60b which are extended substantially perpendicular to the working plane 4 and are aligned substantially parallel to each other, which extend transversely across of the building field. On its side of the bottom facing the working plane the blade has a sloping surface 60c, wherein the blade is positioned in the application device such that the sloping surface 60c rises in the direction of application Β. The matching surface forms an application surface. Together with a surface which is parallel to the working plane 4 and the support surface respectively includes an acute angle which extends between a value greater than about 0 ° and about 5 °, preferably about 2 °. The lower edge 60d between the perpendicular surface 60b and the inclined blade surface 60c is at a height χ relative to the E plane. When the blade has a thickness D of approximately 6 mm, the height χ is greater than 0.03 and less than about 0.5 mm. The thickness of the blade may be between 1 mm and 20 mm. Thus the application device has only an angle of incidence of surface c in the application direction B.
A segunda lâmina de aplicação 61 é colocada no lado interiorda segunda garra 52 e é formado tal que é espelho-simétrico da primeiralâmina de aplicação 61. Assim, a superfície chanfrada 61c da segunda lâminade aplicação 61 tem um ângulo de incidência oposto à direção de aplicação B,na qual a primeira lâmina de aplicação 60 executa a operação de aplicação.The second application blade 61 is placed on the interlocking side of the second jaw 52 and is formed such that it is mirror-symmetrical of the first application blade 61. Thus, the chamfered surface 61c of the second application blade 61 has an angle of incidence opposite to the direction of application. B, wherein the first application blade 60 performs the application operation.
Assim, é possível aplicar uma nova camada de pó por meio do dispositivo deaplicação durante o movimento para frente e do movimento para trás,respectivamente, e para respectivamente tomar ao longo do suprimento de póe caso necessário suplementá-lo.Thus, it is possible to apply a new layer of dust by means of the application device during the forward and backward movement respectively and to respectively take along the powder supply and if necessary supplement it.
Na operação preferivelmente um pó plástico, por exemplo, umpó de polímero tal como poliamida, em particular poliamida 12, ou um pó deoutra família tal como PEEK, em cada caso com ou sem adições, é usadocomo pó. Antes da operação de aplicação do pó velho, o qual permanececomo pó não sintetizado, a partir de um ou vários processos de construçãoprévios, é misturado com pó novo. Por exemplo, para poliamida nãocarregada, a taxa de regeneração é 50%-30% de pó novo (taxa de regeneração50/50 para 30/70) e para poliamida carregada a taxa de regeneração é 100%-70% de pó novo (taxa de regeneração (100/0 a 70/30). O termo "pó novo"descreve um pó que não foi usado em nenhuma etapa de fabricação prévia. Otermo "pó velho" descreve um pó consistindo de aproximadamente 90% depó, o qual é co-inserido no bolo de pó e é armazenado sob uma altatemperatura por toda a duração do processo de construção, eaproximadamente 10% de pó, o qual tem sido trocado em recipientes detransbordamento durante a aplicação de camada.In operation preferably a plastic powder, for example, a polymer powder such as polyamide, in particular polyamide 12, or a powder of another family such as PEEK, in each case with or without additions, is used as a powder. Prior to the old dust application operation, which remains as unsynthesized dust from one or more previous construction processes, it is mixed with new dust. For example, for unloaded polyamide, the regeneration rate is 50% -30% new dust (50/50 to 30/70 regeneration rate) and for charged polyamide the regeneration rate is 100% -70% new dust regeneration (100/0 to 70/30). The term "new powder" describes a powder that has not been used in any previous manufacturing step. The term "old powder" describes a powder consisting of approximately 90% of powder, which is It is co-inserted into the powder cake and is stored at a high temperature for the duration of the construction process, and approximately 10% of dust, which has been exchanged in overflowing containers during layer application.
A mistura pode acontecer fora ou dentro do dispositivo desinterização. Antes de cada operação de aplicação o pó é adicionado aodispositivo de aplicação 5 em uma quantidade que seja suficiente para aplicaruma camada de pó.Mixing can happen outside or inside the deintering device. Prior to each application operation the powder is added to application device 5 in an amount sufficient to apply a layer of powder.
Em seguida o dispositivo de aplicação 5 se move através docampo de construção, em que a lâmina de aplicação 60 aplica uma camada 21tendo a espessura pré-determinada d. Como a superfície 60c é inclinada emrelação à direção da aplicação B, uma força atua no pó a ser expandido, cujopó é posicionado na coluna localizada em frente à coluna da lâmina deaplicação 60, em que a força é direcionada para o plano de trabalho. Assim, opó 20 é comprimido durante a aplicação da camada.Thereafter the application device 5 moves through the construction field, wherein the application blade 60 applies a layer 21 having the predetermined thickness d. Since surface 60c is inclined relative to the direction of application B, a force acts on the powder to be expanded, which is positioned on the column located in front of the application blade column 60, where the force is directed to the work plane. Thus, powder 20 is compressed during application of the layer.
Em seguida a seção transversal do objeto 3 no respectivo laseré irradiado com o feixe de laser e assim o pó é solidificado. Depois odispositivo de aplicação 5 é cheio outra vez com pó e movido em uma direçãooposta à direção B mostrada nas Figs. 2 e 3. Assim a segunda lâmina deaplicação 62, a qual é formada simetricamente-espelho à primeira lâmina deaplicação 60, atua como dispositivo de aplicação e aplica uma nova camadana última camada solidificada e no pó rodeando a região solidificada,respectivamente.Fig. 4 explica esquematicamente a operação da lâmina deacordo com a invenção. O objeto 3 inclui uma pluralidade de camadas jásolidificadas 21 e pó não sinterizado 22 rodeando essas camadas. A últimacamada aplicada e solidificada inclui uma porção já solidificada 23 a e pó nãosinterizado 23b. Como a densidade aumenta durante a solidificação, a regiãojá solidificada 23a é levemente abaixada em relação ao nível do pó nãosolidificado 23b. Assim, bordas 24 são formadas entre a porção já solidificada23 a e a região não solidificada 23 b.Then the cross-section of the object 3 in the respective laser is irradiated with the laser beam and thus the powder is solidified. After application device 5 is refilled with dust and moved in a direction opposite to direction B shown in Figs. 2 and 3. Thus the second application blade 62, which is mirror-formed symmetrically to the first application blade 60, acts as an application device and applies a new layer to the last solidified layer and to the powder surrounding the solidified region, respectively. 4 schematically explains the operation of the blade according to the invention. Object 3 includes a plurality of already solidified layers 21 and non-sintered powder 22 surrounding these layers. The last applied and solidified layer includes an already solidified portion 23a and uninterintered powder 23b. As the density increases during solidification, the already solidified region 23a is slightly lowered relative to the level of non-solidified powder 23b. Thus, edges 24 are formed between the already solidified portion 23a and the non-solidified region 23b.
Quando a lâmina 60 de acordo com a invenção é usada, foiobservado com surpresa que uma pressão de compressão atua nas partículasna camada e há posições marginais ou nenhuma posição de imersão na partecompleta.When the blade 60 according to the invention is used, it has been surprisingly observed that a compressive pressure acts on the particles in the layer and there are marginal positions or no immersion positions in the complete part.
Aumentando a densidade de leito de pó, não é possível apenasreduzir a taxa de regeneração, mas também usar um pó, o qual até agora nãoera ou era apenas adequado para uma extensão limitada no processo desinterização a laser.By increasing the density of the dustbed, it is not only possible to reduce the rate of regeneration, but also to use a powder, which until now had not been or was only suitable for a limited extent in the laser deintering process.
A densidade de leito de pó é medida como se segue: uma partesinterizada a laser moldada em bloco cercado-fino- oco- fechado é exposto talque o volume contido durante a exposição tem um valor de 100 mm χ 10 mmχ 15 mm nas direções xyz. O volume que rodeia a parte tem que serdimensionado correspondentemente. Sobras de pó aderentes são removidas dolado de fora da parte então fabricada e a parte assim fabricada é pesada.Depois disso a parte é cortada aberta e o pó dentro é drenado e a parte vazia épesada novamente. A diferença entre as massas corresponde à massa dovolume de pó anexado. Como o volume de pó é conhecido, a densidade deleito de pó pode ser calculada a partir disso.Dust bed density is measured as follows: a fenced-thin-closed-enclosed block-shaped laserinterintered part is exposed such that the volume contained during exposure has a value of 100 mm χ 10 mmχ 15 mm in xyz directions. The volume surrounding the part must be sized accordingly. Adherent leftover dust is removed from outside the then manufactured part and the thus manufactured part is weighed. Thereafter the part is cut open and the dust inside is drained and the empty part is weighed again. The difference between the masses corresponds to the mass of the attached powder volume. As the volume of dust is known, the delighted dust density can be calculated from this.
A tabela seguinte mostra um resultado do dispositivo deacordo com a invenção e o método comparado com a técnica anterior.The following table shows a result of the device according to the invention and the method compared to the prior art.
Poliamida 12 a qual pode ser obtida sob o nome de mercado PA 2200 ( pósinterizador do requerente para a máquina EOSINT P) foi usada como pósinterizador a laser. A densidade da camada aplicada foi de 0,15mm:Polyamide 12 which can be obtained under market name PA 2200 (applicant's postinterinter for the EOSINT P machine) was used as a laser postinterinter. The applied layer density was 0.15mm:
<table>table see original document page 9</column></row><table><table> table see original document page 9 </column> </row> <table>
A viscosidade da solução do pó foi determinada de acordocom ISO 307, a densidade de leito de pó foi determinada de acordo com ométodo descrito acima.The viscosity of the powder solution was determined according to ISO 307, the powder bed density was determined according to the method described above.
Pelo método e pelo dispositivo, respectivamente, a proporçãoexigida do pó novo pode ser reduzida. Em um caso excepcional é mesmopossível trabalhar com quantidade perto de 100% de pó velho. Além do mais,a tabela mostra que a viscosidade da solução, a qual é medida para aviscosidade de massa fundida de material, aumenta com a proporção do póvelho. Portanto, pelo método de acordo com a invenção é também possívelsinterizar também materiais em pó que tenham uma viscosidade de massafundida alta correspondentemente e que não possam ser processados pelosmétodos e dispositivos existentes até então. Poliamida (PA), em particular PA12, é vantajosamente adequada para o dispositivo e o método, porque ela podeser fabricada por um processo de precipitação e, portanto, tem uma superfícieparticularmente lisa comparada a um pó moído. Portanto, processos desedimentação podem vantajosamente ter lugar durante a aplicação.By the method and the device, respectively, the required proportion of the new powder may be reduced. In an exceptional case it is even possible to work with close to 100% of old dust. Moreover, the table shows that the viscosity of the solution, which is measured for material melt hazardousness, increases with the proportion of pobileho. Therefore, by the method according to the invention it is also possible to also sinter powder materials which have a correspondingly high melt viscosity and which cannot be processed by the methods and devices existing hitherto. Polyamide (PA), in particular PA12, is advantageously suitable for the device and method because it can be manufactured by a precipitation process and therefore has a particularly smooth surface compared to a ground powder. Therefore, de-settling processes may advantageously take place during application.
A geometria do dispositivo de aplicação não é limitada àconfiguração especificamente mostrada. Por exemplo, as superfícies 60 a, 60b precisam não estar em paralelo e superfícies moldadas também não estãoexcluídas.The geometry of the application device is not limited to the configuration specifically shown. For example, surfaces 60a, 60b need not be parallel, and molded surfaces are not excluded either.
A inclinação ascendente da superfície da aplicação precisa nãoser constante, mas pode também ascender de forma diferente, e. g. pode serescalada ou ter uma forma diferente.The upward slope of the application surface must not be constant, but may also rise differently, e.g. g. can be scaled or have a different shape.
Ao invés de um laser, também uma fonte de energia diferente,a qual seja adequada para a solidificação de um material em forma de pó talcomo uma fonte de feixe de elétron pode ser usada. Outras formas de umaentrada de energia também são possíveis, tal como sinterizar com máscara,sinterizando com inibição ou uma entrada de energia moldada em linha ouuma entrada de energia via uma ordem.Instead of a laser, also a different power source which is suitable for solidifying a powdery material such as an electron beam source can be used. Other forms of an energy input are also possible, such as mask sintering, inhibit sintering, or an inline molded energy input or an energy input via an order.
Claims (17)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006023484A DE102006023484A1 (en) | 2006-05-18 | 2006-05-18 | Apparatus and method for layering a three-dimensional object from a powdery building material |
DE102006023484.7 | 2006-05-18 | ||
PCT/EP2007/003641 WO2007134688A1 (en) | 2006-05-18 | 2007-04-25 | Device and method for the layered production of a three-dimensional object from a powdered constituent |
Publications (1)
Publication Number | Publication Date |
---|---|
BRPI0702904A2 true BRPI0702904A2 (en) | 2011-03-15 |
Family
ID=38308750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BRPI0702904-7A BRPI0702904A2 (en) | 2006-05-18 | 2007-04-25 | device and method for manufacturing a three-dimensional object |
Country Status (9)
Country | Link |
---|---|
US (3) | US20090045553A1 (en) |
EP (1) | EP2026952B2 (en) |
JP (1) | JP4742148B2 (en) |
CN (1) | CN101351325B (en) |
BR (1) | BRPI0702904A2 (en) |
DE (2) | DE102006023484A1 (en) |
HK (1) | HK1124284A1 (en) |
RU (1) | RU2370367C1 (en) |
WO (1) | WO2007134688A1 (en) |
Families Citing this family (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006023485A1 (en) * | 2006-05-18 | 2007-11-22 | Eos Gmbh Electro Optical Systems | Device and method for producing a three-dimensional object |
US20100310404A1 (en) * | 2007-12-06 | 2010-12-09 | Ulf Ackelid | Apparataus and method for producing a three-dimensional object |
US8992816B2 (en) * | 2008-01-03 | 2015-03-31 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
DE102008022946B4 (en) | 2008-05-09 | 2014-02-13 | Fit Fruth Innovative Technologien Gmbh | Apparatus and method for applying powders or pastes |
DE102008024465A1 (en) | 2008-05-21 | 2009-11-26 | Eos Gmbh Electro Optical Systems | Method and device for producing in layers a three-dimensional object made of a powdery material |
EP2191922B1 (en) | 2008-11-27 | 2011-01-05 | MTT Technologies GmbH | Carrier and powder application device for a system to manufacture workpieces by applying powder layers with electromagnetic radiation or particle radiation |
DE102008060046A1 (en) | 2008-12-02 | 2010-06-10 | Eos Gmbh Electro Optical Systems | A method of providing an identifiable amount of powder and method of making an object |
US8308466B2 (en) * | 2009-02-18 | 2012-11-13 | Arcam Ab | Apparatus for producing a three-dimensional object |
WO2011008143A1 (en) | 2009-07-15 | 2011-01-20 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
ES2386602T3 (en) * | 2009-08-25 | 2012-08-23 | Bego Medical Gmbh | Device and procedure for generative continuous production |
DE102009043317A1 (en) * | 2009-09-28 | 2011-03-31 | Eos Gmbh Electro Optical Systems | Method and device for the generative production of a three-dimensional object with a three-dimensional coded character |
GB0917936D0 (en) | 2009-10-13 | 2009-11-25 | 3D Printer Aps | Three-dimensional printer |
DE102010004035A1 (en) * | 2010-01-05 | 2011-07-07 | EOS GmbH Electro Optical Systems, 82152 | Device for the generative production of a three-dimensional object with an insulated construction field |
DE102010020416A1 (en) * | 2010-05-12 | 2011-11-17 | Eos Gmbh Electro Optical Systems | Construction space changing device and a device for producing a three-dimensional object with a construction space changing device |
PL219312B1 (en) * | 2010-05-21 | 2015-04-30 | Jankowski Piotr Mbm Technology Spółka Cywilna | Method and apparatus for smoothing elements produced using SLS incremental technology |
FR2962061B1 (en) * | 2010-07-01 | 2013-02-22 | Snecma | METHOD FOR MANUFACTURING A METAL PIECE BY SELECTIVE FUSION OF A POWDER |
US9587107B2 (en) | 2010-09-27 | 2017-03-07 | Arkema Inc. | Heat treated polymer powders |
RU2468920C2 (en) * | 2010-12-16 | 2012-12-10 | Государственное общеобразовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" | Method of layer-by-layer fabrication of reinforced 3d articles |
KR101820553B1 (en) | 2011-01-28 | 2018-01-19 | 아르켐 에이비 | Method for production of a three-dimensional body |
ITVI20110099A1 (en) * | 2011-04-20 | 2012-10-21 | Dws Srl | METHOD FOR THE PRODUCTION OF A THREE-DIMENSIONAL OBJECT AND A STEREOLITHOGRAPHIC MACHINE USING THIS METHOD |
US8883064B2 (en) | 2011-06-02 | 2014-11-11 | A. Raymond & Cie | Method of making printed fastener |
WO2012166552A1 (en) | 2011-06-02 | 2012-12-06 | A. Raymond Et Cie | Fasteners manufactured by three-dimensional printing |
US8916085B2 (en) | 2011-06-02 | 2014-12-23 | A. Raymond Et Cie | Process of making a component with a passageway |
EP2797707B1 (en) | 2011-12-28 | 2021-02-24 | Arcam Ab | Method and apparatus for manufacturing porous three-dimensional articles |
WO2013098054A1 (en) | 2011-12-28 | 2013-07-04 | Arcam Ab | Method and apparatus for detecting defects in freeform fabrication |
US9079248B2 (en) | 2011-12-28 | 2015-07-14 | Arcam Ab | Method and apparatus for increasing the resolution in additively manufactured three-dimensional articles |
BR112014019408A8 (en) | 2012-02-29 | 2017-07-11 | Styron Europe Gmbh | PROCESS FOR PRODUCING A DIENE POLYMER, POLYMER AND PRODUCT |
WO2013167194A1 (en) | 2012-05-11 | 2013-11-14 | Arcam Ab | Powder distribution in additive manufacturing |
US9561542B2 (en) | 2012-11-06 | 2017-02-07 | Arcam Ab | Powder pre-processing for additive manufacturing |
US9718129B2 (en) | 2012-12-17 | 2017-08-01 | Arcam Ab | Additive manufacturing method and apparatus |
WO2014095208A1 (en) | 2012-12-17 | 2014-06-26 | Arcam Ab | Method and apparatus for additive manufacturing |
CN105579218B (en) | 2013-03-15 | 2018-09-18 | 3D系统公司 | Improved powder for laser sintering system distributes |
CN103171151B (en) * | 2013-03-24 | 2015-12-09 | 广州市文搏智能科技有限公司 | A kind of 3D printing-forming method and 3D printing-forming device |
US9550207B2 (en) | 2013-04-18 | 2017-01-24 | Arcam Ab | Method and apparatus for additive manufacturing |
US9676031B2 (en) | 2013-04-23 | 2017-06-13 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
US9415443B2 (en) | 2013-05-23 | 2016-08-16 | Arcam Ab | Method and apparatus for additive manufacturing |
US9468973B2 (en) | 2013-06-28 | 2016-10-18 | Arcam Ab | Method and apparatus for additive manufacturing |
US9505057B2 (en) | 2013-09-06 | 2016-11-29 | Arcam Ab | Powder distribution in additive manufacturing of three-dimensional articles |
US9676032B2 (en) | 2013-09-20 | 2017-06-13 | Arcam Ab | Method for additive manufacturing |
DE102013019716A1 (en) * | 2013-11-27 | 2015-05-28 | Voxeljet Ag | 3D printing process with slip |
US10434572B2 (en) | 2013-12-19 | 2019-10-08 | Arcam Ab | Method for additive manufacturing |
US9802253B2 (en) | 2013-12-16 | 2017-10-31 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10130993B2 (en) | 2013-12-18 | 2018-11-20 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US9789563B2 (en) | 2013-12-20 | 2017-10-17 | Arcam Ab | Method for additive manufacturing |
US9789541B2 (en) | 2014-03-07 | 2017-10-17 | Arcam Ab | Method for additive manufacturing of three-dimensional articles |
US20150283613A1 (en) | 2014-04-02 | 2015-10-08 | Arcam Ab | Method for fusing a workpiece |
US9399256B2 (en) | 2014-06-20 | 2016-07-26 | Velo3D, Inc. | Apparatuses, systems and methods for three-dimensional printing |
US9341467B2 (en) | 2014-08-20 | 2016-05-17 | Arcam Ab | Energy beam position verification |
BR112017003142B1 (en) * | 2014-08-20 | 2022-03-29 | Etxe-Tar, S.A. | Method and system for producing an object by additive manufacturing |
US9999924B2 (en) | 2014-08-22 | 2018-06-19 | Sigma Labs, Inc. | Method and system for monitoring additive manufacturing processes |
DE102014112469A1 (en) * | 2014-08-29 | 2016-03-03 | Exone Gmbh | COATING ARRANGEMENT FOR A 3D PRINTER |
DE102014112454A1 (en) * | 2014-08-29 | 2016-03-03 | Exone Gmbh | Coater arrangement for a 3D printer |
US10786948B2 (en) | 2014-11-18 | 2020-09-29 | Sigma Labs, Inc. | Multi-sensor quality inference and control for additive manufacturing processes |
US10786865B2 (en) | 2014-12-15 | 2020-09-29 | Arcam Ab | Method for additive manufacturing |
CH710543A2 (en) * | 2014-12-19 | 2016-06-30 | Omega Sa | Process for producing a decorated element of a timepiece or jewelery, and element produced by the method. |
US10226817B2 (en) | 2015-01-13 | 2019-03-12 | Sigma Labs, Inc. | Material qualification system and methodology |
CN107428081B (en) | 2015-01-13 | 2020-07-07 | 西格马实验室公司 | Material identification system and method |
US9721755B2 (en) | 2015-01-21 | 2017-08-01 | Arcam Ab | Method and device for characterizing an electron beam |
US10028841B2 (en) | 2015-01-27 | 2018-07-24 | K2M, Inc. | Interbody spacer |
US10660763B2 (en) | 2015-01-27 | 2020-05-26 | K2M, Inc. | Spinal implant |
US11014161B2 (en) | 2015-04-21 | 2021-05-25 | Arcam Ab | Method for additive manufacturing |
US11478983B2 (en) | 2015-06-19 | 2022-10-25 | General Electric Company | Additive manufacturing apparatus and method for large components |
US10449606B2 (en) * | 2015-06-19 | 2019-10-22 | General Electric Company | Additive manufacturing apparatus and method for large components |
DE102015213103A1 (en) * | 2015-07-13 | 2017-01-19 | Eos Gmbh Electro Optical Systems | Method and device for producing a three-dimensional object |
DE102015011790A1 (en) * | 2015-09-16 | 2017-03-16 | Voxeljet Ag | Device and method for producing three-dimensional molded parts |
US10807187B2 (en) | 2015-09-24 | 2020-10-20 | Arcam Ab | X-ray calibration standard object |
US10207489B2 (en) | 2015-09-30 | 2019-02-19 | Sigma Labs, Inc. | Systems and methods for additive manufacturing operations |
US11571748B2 (en) | 2015-10-15 | 2023-02-07 | Arcam Ab | Method and apparatus for producing a three-dimensional article |
US10065270B2 (en) | 2015-11-06 | 2018-09-04 | Velo3D, Inc. | Three-dimensional printing in real time |
US10525531B2 (en) | 2015-11-17 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10610930B2 (en) | 2015-11-18 | 2020-04-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10286603B2 (en) | 2015-12-10 | 2019-05-14 | Velo3D, Inc. | Skillful three-dimensional printing |
WO2017143077A1 (en) | 2016-02-18 | 2017-08-24 | Velo3D, Inc. | Accurate three-dimensional printing |
US11247274B2 (en) | 2016-03-11 | 2022-02-15 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
EP3228441A1 (en) | 2016-04-05 | 2017-10-11 | Siemens Aktiengesellschaft | Control system and method for additive manufacturing |
US10549348B2 (en) | 2016-05-24 | 2020-02-04 | Arcam Ab | Method for additive manufacturing |
US11325191B2 (en) | 2016-05-24 | 2022-05-10 | Arcam Ab | Method for additive manufacturing |
US10525547B2 (en) | 2016-06-01 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11691343B2 (en) | 2016-06-29 | 2023-07-04 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
EP3263316B1 (en) | 2016-06-29 | 2019-02-13 | VELO3D, Inc. | Three-dimensional printing and three-dimensional printers |
US10895858B2 (en) * | 2016-09-06 | 2021-01-19 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
DE102016219968A1 (en) | 2016-09-28 | 2018-03-29 | Eos Gmbh Electro Optical Systems | A method of determining a relative powder bed density in a device for generatively producing a three-dimensional object |
US20180093418A1 (en) | 2016-09-30 | 2018-04-05 | Velo3D, Inc. | Three-dimensional objects and their formation |
US10792757B2 (en) | 2016-10-25 | 2020-10-06 | Arcam Ab | Method and apparatus for additive manufacturing |
US20180126462A1 (en) | 2016-11-07 | 2018-05-10 | Velo3D, Inc. | Gas flow in three-dimensional printing |
US10987752B2 (en) | 2016-12-21 | 2021-04-27 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US20180186080A1 (en) | 2017-01-05 | 2018-07-05 | Velo3D, Inc. | Optics in three-dimensional printing |
JP6958217B2 (en) * | 2017-01-12 | 2021-11-02 | 株式会社リコー | Manufacturing method of resin powder for three-dimensional modeling and three-dimensional modeling |
RU173439U1 (en) * | 2017-01-19 | 2017-08-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" | Device for the manufacture of three-dimensional prototypes using polymer solutions |
US20180250744A1 (en) | 2017-03-02 | 2018-09-06 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10730240B2 (en) | 2017-03-09 | 2020-08-04 | Applied Materials, Inc. | Additive manufacturing with energy delivery system having rotating polygon |
US20180281284A1 (en) | 2017-03-28 | 2018-10-04 | Velo3D, Inc. | Material manipulation in three-dimensional printing |
US11059123B2 (en) | 2017-04-28 | 2021-07-13 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10959855B2 (en) | 2017-05-25 | 2021-03-30 | Stryker European Holdings I, Llc | Fusion cage with integrated fixation and insertion features |
US10981323B2 (en) | 2017-05-26 | 2021-04-20 | Applied Materials, Inc. | Energy delivery with rotating polygon and multiple light beams on same path for additive manufacturing |
US10940641B2 (en) | 2017-05-26 | 2021-03-09 | Applied Materials, Inc. | Multi-light beam energy delivery with rotating polygon for additive manufacturing |
US11292062B2 (en) | 2017-05-30 | 2022-04-05 | Arcam Ab | Method and device for producing three-dimensional objects |
US11084097B2 (en) | 2017-06-23 | 2021-08-10 | Applied Materials, Inc. | Additive manufacturing with cell processing recipes |
US11065689B2 (en) | 2017-06-23 | 2021-07-20 | Applied Materials, Inc. | Additive manufacturing with polygon and galvo mirror scanners |
US11006981B2 (en) | 2017-07-07 | 2021-05-18 | K2M, Inc. | Surgical implant and methods of additive manufacturing |
GB2564710A (en) * | 2017-07-21 | 2019-01-23 | Lpw Technology Ltd | Measuring density of a powder bed and detecting a defect in an additively manufactured article |
US20190099809A1 (en) | 2017-09-29 | 2019-04-04 | Arcam Ab | Method and apparatus for additive manufacturing |
WO2019078882A1 (en) * | 2017-10-20 | 2019-04-25 | Hewlett-Packard Development Company, L.P. | Additive manufacturing layering |
US10529070B2 (en) | 2017-11-10 | 2020-01-07 | Arcam Ab | Method and apparatus for detecting electron beam source filament wear |
US11331855B2 (en) | 2017-11-13 | 2022-05-17 | Applied Materials, Inc. | Additive manufacturing with dithering scan path |
US10821721B2 (en) | 2017-11-27 | 2020-11-03 | Arcam Ab | Method for analysing a build layer |
US11072117B2 (en) | 2017-11-27 | 2021-07-27 | Arcam Ab | Platform device |
CN108115933A (en) * | 2017-12-20 | 2018-06-05 | 北京卫星环境工程研究所 | Particulate matter forming method based on light radiation fusion technology |
US11517975B2 (en) | 2017-12-22 | 2022-12-06 | Arcam Ab | Enhanced electron beam generation |
US10272525B1 (en) | 2017-12-27 | 2019-04-30 | Velo3D, Inc. | Three-dimensional printing systems and methods of their use |
US10144176B1 (en) | 2018-01-15 | 2018-12-04 | Velo3D, Inc. | Three-dimensional printing systems and methods of their use |
US20190242865A1 (en) * | 2018-02-02 | 2019-08-08 | United Technologies Corporation | Process equivalent powder reuse capsule for additive manufacturing |
US11267051B2 (en) | 2018-02-27 | 2022-03-08 | Arcam Ab | Build tank for an additive manufacturing apparatus |
US11458682B2 (en) | 2018-02-27 | 2022-10-04 | Arcam Ab | Compact build tank for an additive manufacturing apparatus |
US11400519B2 (en) | 2018-03-29 | 2022-08-02 | Arcam Ab | Method and device for distributing powder material |
EP3778193A4 (en) * | 2018-03-30 | 2022-01-19 | Cmet Inc. | Blade, three-dimensional laminate shaping device, method for controlling three-dimensional laminte shaping device, and program for controlling three-dimensional laminate shaping device |
WO2019217690A1 (en) | 2018-05-09 | 2019-11-14 | Applied Materials, Inc. | Additive manufacturing with a polygon scanner |
US11179888B2 (en) * | 2019-01-25 | 2021-11-23 | Delavan Inc. | Recoaters with gas flow management |
CA3148849A1 (en) | 2019-07-26 | 2021-02-04 | Velo3D, Inc. | Quality assurance in formation of three-dimensional objects |
DE102019007480A1 (en) | 2019-10-26 | 2021-04-29 | Laempe Mössner Sinto Gmbh | Arrangement and method for producing a layer of a particulate building material in a 3D printer |
US11633799B2 (en) * | 2020-10-01 | 2023-04-25 | Hamilton Sundstrand Corporation | Control assembly fabrication via brazing |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US653186A (en) | 1898-12-31 | 1900-07-03 | Clarence W Smith | Circulating apparatus for rotary digesters, & c. |
US4863538A (en) * | 1986-10-17 | 1989-09-05 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
AU4504089A (en) * | 1988-10-05 | 1990-05-01 | Michael Feygin | An improved apparatus and method for forming an integral object from laminations |
US5626919A (en) * | 1990-03-01 | 1997-05-06 | E. I. Du Pont De Nemours And Company | Solid imaging apparatus and method with coating station |
US5385780A (en) * | 1990-12-05 | 1995-01-31 | The B. F. Goodrich Company | Sinterable mass of polymer powder having resistance to caking and method of preparing the mass |
US5648450A (en) | 1992-11-23 | 1997-07-15 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therein |
US5304329A (en) | 1992-11-23 | 1994-04-19 | The B. F. Goodrich Company | Method of recovering recyclable unsintered powder from the part bed of a selective laser-sintering machine |
DE4319142A1 (en) * | 1993-06-09 | 1994-12-15 | Huels Chemische Werke Ag | Process for the production of composite articles from polyamides and elastomers |
DE4325573C2 (en) | 1993-07-30 | 1998-09-03 | Stephan Herrmann | Process for the production of moldings by successive build-up of powder layers and device for its implementation |
DE19514740C1 (en) * | 1995-04-21 | 1996-04-11 | Eos Electro Optical Syst | Appts. for producing three-dimensional objects by laser sintering |
US5817206A (en) * | 1996-02-07 | 1998-10-06 | Dtm Corporation | Selective laser sintering of polymer powder of controlled particle size distribution |
SE509088C2 (en) * | 1997-04-30 | 1998-12-07 | Ralf Larsson | Methods and apparatus for the production of volume bodies |
FR2774931B1 (en) | 1998-02-19 | 2000-04-28 | Arnaud Hory | METHOD OF RAPID PROTOTYPING BY LASER POWDER SINTERING AND ASSOCIATED DEVICE |
US6294644B1 (en) | 1998-03-06 | 2001-09-25 | Ube Industries, Ltd. | Nylon 12, nylon composition, method for producing nylon 12, and tubular molded product using nylon 12 |
JP3551838B2 (en) * | 1999-05-26 | 2004-08-11 | 松下電工株式会社 | Manufacturing method of three-dimensional shaped object |
DE19928245B4 (en) | 1999-06-21 | 2006-02-09 | Eos Gmbh Electro Optical Systems | Device for supplying powder for a laser sintering device |
DE19937260B4 (en) * | 1999-08-06 | 2006-07-27 | Eos Gmbh Electro Optical Systems | Method and device for producing a three-dimensional object |
US6589471B1 (en) * | 1999-10-26 | 2003-07-08 | University Of Southern California | Selective inhibition of bonding of power particles for layered fabrication of 3-D objects |
FR2802128B1 (en) * | 1999-12-10 | 2002-02-08 | Ecole Nale Sup Artes Metiers | DEVICE FOR DEPOSITING THIN LAYERS OF POWDER OR POWDER MATERIAL AND METHOD THEREOF |
RU2217265C2 (en) | 2000-01-28 | 2003-11-27 | Физический институт им. П.Н. Лебедева РАН | Method for making three-dimensional articles of powder compositions |
SG106041A1 (en) * | 2000-03-21 | 2004-09-30 | Nanyang Polytechnic | Plastic components with improved surface appearance and method of making the same |
DE10105504A1 (en) | 2001-02-07 | 2002-08-14 | Eos Electro Optical Syst | Powder treatment device for a device for producing a three-dimensional object, device for producing a three-dimensional object and method for producing a three-dimensional object |
DE10117875C1 (en) * | 2001-04-10 | 2003-01-30 | Generis Gmbh | Method, device for applying fluids and use of such a device |
DE10216013B4 (en) * | 2002-04-11 | 2006-12-28 | Generis Gmbh | Method and device for applying fluids |
US7316748B2 (en) * | 2002-04-24 | 2008-01-08 | Wisconsin Alumni Research Foundation | Apparatus and method of dispensing small-scale powders |
EP1413594A2 (en) * | 2002-10-17 | 2004-04-28 | Degussa AG | Laser-sintering powder with better recycling properties, process for its preparation and use thereof. |
DE10256097A1 (en) * | 2002-12-02 | 2004-06-17 | Eos Gmbh Electro Optical Systems | Plastic powder for laser sintering |
DE10300959C5 (en) | 2003-01-14 | 2013-10-02 | Cl Schutzrechtsverwaltungs Gmbh | Coater device for a building device for producing molded parts from building material |
DE10310385B4 (en) * | 2003-03-07 | 2006-09-21 | Daimlerchrysler Ag | Method for the production of three-dimensional bodies by means of powder-based layer-building methods |
FR2856614B1 (en) | 2003-06-30 | 2006-08-11 | Phenix Systems | DEVICE FOR PRODUCING THIN LAYERS OF POWDER, PARTICULARLY AT HIGH TEMPERATURES, IN A PROCESS BASED ON THE ACTION OF A LASER ON THE MATERIAL |
WO2005097475A1 (en) | 2004-03-30 | 2005-10-20 | Valspar Sourcing, Inc. | Selective laser sintering process and polymers used therein |
DE102004024440B4 (en) | 2004-05-14 | 2020-06-25 | Evonik Operations Gmbh | Polymer powder with polyamide, use in a shaping process and molded body made from this polymer powder |
DE102004047876A1 (en) * | 2004-10-01 | 2006-04-06 | Degussa Ag | Powder with improved recycling properties, process for its preparation and use of the powder in a process for producing three-dimensional objects |
DE102005002930A1 (en) * | 2005-01-21 | 2006-07-27 | Degussa Ag | Polymer powder with polyamide, use in a molding process and molding, made from this polymer powder |
-
2006
- 2006-05-18 DE DE102006023484A patent/DE102006023484A1/en not_active Ceased
-
2007
- 2007-04-25 US US11/994,285 patent/US20090045553A1/en not_active Abandoned
- 2007-04-25 DE DE502007005213T patent/DE502007005213D1/en active Active
- 2007-04-25 RU RU2008106928/12A patent/RU2370367C1/en active
- 2007-04-25 EP EP07724571.0A patent/EP2026952B2/en active Active
- 2007-04-25 JP JP2008537123A patent/JP4742148B2/en not_active Expired - Fee Related
- 2007-04-25 BR BRPI0702904-7A patent/BRPI0702904A2/en not_active Application Discontinuation
- 2007-04-25 WO PCT/EP2007/003641 patent/WO2007134688A1/en active Application Filing
- 2007-04-25 CN CN2007800010001A patent/CN101351325B/en active Active
-
2009
- 2009-03-03 HK HK09102037.2A patent/HK1124284A1/en not_active IP Right Cessation
-
2011
- 2011-02-14 US US13/027,001 patent/US8658078B2/en active Active
-
2014
- 2014-01-09 US US14/150,993 patent/US8967990B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101351325A (en) | 2009-01-21 |
US20140127339A1 (en) | 2014-05-08 |
US20110133367A1 (en) | 2011-06-09 |
RU2008106928A (en) | 2009-08-27 |
HK1124284A1 (en) | 2009-07-10 |
RU2370367C1 (en) | 2009-10-20 |
JP2009512579A (en) | 2009-03-26 |
CN101351325B (en) | 2012-06-13 |
US8967990B2 (en) | 2015-03-03 |
EP2026952B2 (en) | 2015-09-23 |
US20090045553A1 (en) | 2009-02-19 |
US8658078B2 (en) | 2014-02-25 |
DE102006023484A1 (en) | 2007-11-22 |
EP2026952B1 (en) | 2010-09-29 |
DE502007005213D1 (en) | 2010-11-11 |
WO2007134688A1 (en) | 2007-11-29 |
EP2026952A1 (en) | 2009-02-25 |
JP4742148B2 (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0702904A2 (en) | device and method for manufacturing a three-dimensional object | |
US12083738B2 (en) | Method, device, and recoating module for producing a three-dimensional object | |
US11273600B2 (en) | Method and device for a generative manufacturing of a three-dimensional object | |
US8845319B2 (en) | Means for modifying a building space and device for manufacturing a three-dimensional object having means for modifying a building space | |
CN107835739B (en) | Method and device for dispensing building material in a generative manufacturing method | |
US11173658B2 (en) | Recoating unit and device for producing a three-dimensional object | |
US10780636B2 (en) | Recoating unit, recoating method, device and method for additive manufacturing of a three-dimensional object | |
US10183332B2 (en) | Sintering and shaping method | |
RU2548919C2 (en) | Paek-powder for application in process of layer-by-layer obtaining of three-dimensional object and method of layer-by-layer obtaining of three-dimensional object from powder-like material | |
EP3702120B1 (en) | Method of producing manufactured object | |
EP2612746B1 (en) | Device for the layered production of three-dimensional objects by means of rotating application | |
US9238310B2 (en) | Component properties through beam shaping in the laser sintering process | |
US20160311024A1 (en) | Method and Device for Producing a Three-Dimensional Object | |
CN108357096A (en) | Method for producing three-dimension object and stereo lithography machine | |
DE102015212569A1 (en) | Method for producing a three-dimensional object | |
DE102012216515A1 (en) | Process for the layered production of low-distortion three-dimensional objects by means of cooling elements | |
Salehi et al. | Inkjet based 3D additive manufacturing of metals | |
JP2002166481A (en) | Three-dimensional shaping simulating apparatus and three-dimensional shaping apparatus | |
RU2491151C1 (en) | Method of producing articles from composite powders | |
Dewidar | Direct and indirect laser sintering of metals | |
RU2491152C1 (en) | Method of producing articles from composite powders | |
US20190358896A1 (en) | Apparatus for additively manufacturing three-dimensional objects | |
WO2020032945A1 (en) | Build material compaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B07A | Application suspended after technical examination (opinion) [chapter 7.1 patent gazette] | ||
B09B | Patent application refused [chapter 9.2 patent gazette] | ||
B09B | Patent application refused [chapter 9.2 patent gazette] |