BR112023019150A2 - Técnica de compressão para ponderações de rede neural profunda - Google Patents
Técnica de compressão para ponderações de rede neural profundaInfo
- Publication number
- BR112023019150A2 BR112023019150A2 BR112023019150A BR112023019150A BR112023019150A2 BR 112023019150 A2 BR112023019150 A2 BR 112023019150A2 BR 112023019150 A BR112023019150 A BR 112023019150A BR 112023019150 A BR112023019150 A BR 112023019150A BR 112023019150 A2 BR112023019150 A2 BR 112023019150A2
- Authority
- BR
- Brazil
- Prior art keywords
- weighting
- frame
- compressed
- data
- weighting data
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract 3
- 238000013528 artificial neural network Methods 0.000 title abstract 2
- 238000007906 compression Methods 0.000 title abstract 2
- 230000006835 compression Effects 0.000 title abstract 2
- 238000013144 data compression Methods 0.000 abstract 1
- 238000010606 normalization Methods 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/70—Type of the data to be coded, other than image and sound
- H03M7/702—Software
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/46—Conversion to or from run-length codes, i.e. by representing the number of consecutive digits, or groups of digits, of the same kind by a code word and a digit indicative of that kind
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Neurology (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
técnica de compressão para ponderações de rede neural profunda. várias modalidades incluem métodos e dispositivos para compressão e descompressão de conjuntos de dados de ponderação. algumas modalidades podem incluir compressão de dados de ponderação recebendo um conjunto de dados de ponderação de números binários que representam valores de ponderação, gerar uma carga útil de quadro incluindo um primeiro quadro comprimido de um primeiro subconjunto dos valores de ponderação no conjunto de dados de ponderação, e gerar um bloco de dados de ponderação comprimidos tendo a carga útil de quadro. algumas modalidades podem incluir descompressão de dados de ponderação recuperando um bloco de dados de ponderação comprimidos, em que o bloco de dados de ponderação comprimidos inclui um cabeçalho de quadro associado a uma carga útil de quadro, em que o cabeçalho de quadro inclui um indicador de fator de normalização, e em que a carga útil de quadro inclui valores de ponderação comprimidos, e gerar um primeiro quadro descomprimido compreendendo valores de ponderação descomprimidos dos valores de ponderação comprimidos da carga útil de quadro.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/220,620 US11757469B2 (en) | 2021-04-01 | 2021-04-01 | Compression technique for deep neural network weights |
PCT/US2022/022497 WO2022212467A1 (en) | 2021-04-01 | 2022-03-30 | Compression technique for deep neural network weights |
Publications (1)
Publication Number | Publication Date |
---|---|
BR112023019150A2 true BR112023019150A2 (pt) | 2023-10-17 |
Family
ID=81308565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR112023019150A BR112023019150A2 (pt) | 2021-04-01 | 2022-03-30 | Técnica de compressão para ponderações de rede neural profunda |
Country Status (7)
Country | Link |
---|---|
US (1) | US11757469B2 (pt) |
EP (1) | EP4315175A1 (pt) |
JP (1) | JP2024514448A (pt) |
KR (1) | KR20230162778A (pt) |
CN (1) | CN117099109A (pt) |
BR (1) | BR112023019150A2 (pt) |
WO (1) | WO2022212467A1 (pt) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12224774B2 (en) * | 2022-11-16 | 2025-02-11 | Samsung Electronics Co., Ltd. | Runtime reconfigurable compression format conversion |
US20240223785A1 (en) * | 2022-12-29 | 2024-07-04 | Samsung Electronics Co., Ltd. | Electronic device and method with image encoding and decoding |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101498063B1 (ko) * | 2008-03-04 | 2015-03-03 | 엘지전자 주식회사 | 디지털 방송 시스템 및 데이터 처리 방법 |
US8489961B2 (en) * | 2009-10-19 | 2013-07-16 | Lg Electronics Inc. | Transmitting system and method of processing digital broadcast signal in transmitting system, receiving system and method of receiving digital broadcast signal in receiving system |
WO2012003602A1 (zh) * | 2010-07-09 | 2012-01-12 | 西安交通大学 | 一种电子喉语音重建方法及其系统 |
US10608664B2 (en) | 2018-05-09 | 2020-03-31 | Samsung Electronics Co., Ltd. | Electronic apparatus for compression and decompression of data and compression method thereof |
US11625245B2 (en) * | 2018-09-28 | 2023-04-11 | Intel Corporation | Compute-in-memory systems and methods |
CN111178490B (zh) * | 2019-12-31 | 2021-08-24 | 北京百度网讯科技有限公司 | 数据输出方法、获取方法、装置和电子设备 |
US11925128B2 (en) * | 2020-08-26 | 2024-03-05 | Robert Bosch Gmbh | Differential ionic electronic transistors |
US12314859B2 (en) * | 2020-10-08 | 2025-05-27 | Samsung Electronics Co., Ltd. | Electronic apparatus for decompressing a compressed artificial intelligence model and control method therefor |
-
2021
- 2021-04-01 US US17/220,620 patent/US11757469B2/en active Active
-
2022
- 2022-03-30 WO PCT/US2022/022497 patent/WO2022212467A1/en active Application Filing
- 2022-03-30 KR KR1020237030725A patent/KR20230162778A/ko active Pending
- 2022-03-30 EP EP22716792.1A patent/EP4315175A1/en active Pending
- 2022-03-30 BR BR112023019150A patent/BR112023019150A2/pt unknown
- 2022-03-30 CN CN202280024671.4A patent/CN117099109A/zh active Pending
- 2022-03-30 JP JP2023558595A patent/JP2024514448A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2024514448A (ja) | 2024-04-02 |
WO2022212467A1 (en) | 2022-10-06 |
KR20230162778A (ko) | 2023-11-28 |
US11757469B2 (en) | 2023-09-12 |
US20220321143A1 (en) | 2022-10-06 |
EP4315175A1 (en) | 2024-02-07 |
CN117099109A (zh) | 2023-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BR112023019150A2 (pt) | Técnica de compressão para ponderações de rede neural profunda | |
EP3716158A3 (en) | Compressing weight updates for decoder-side neural networks | |
WO2006056974A3 (en) | Xml parser | |
PH12019550191A1 (en) | Neural network processor using compression and decompression of activation data to reduce memory bandwidth utilization | |
US20100106269A1 (en) | Method and apparatus for signal processing using transform-domain log-companding | |
EP2424117A2 (en) | Sparse data compression | |
EP1628290A3 (en) | Generation of a filterbank for audio compression | |
IN2014DE02379A (pt) | ||
MY204413A (en) | Method and apparatus for storing data, and computer device and storage medium thereof | |
US10978091B2 (en) | System and methods for suppression by selecting wavelets for feature compression in distributed speech recognition | |
EP4280604A3 (en) | Guaranteed data compression | |
Jiang et al. | Speech slytherin: Examining the performance and efficiency of mamba for speech separation, recognition, and synthesis | |
US10417287B2 (en) | Compressing short text messages | |
Shukla et al. | Audio compression algorithm using discrete cosine transform (DCT) and Lempel-Ziv-Welch (LZW) encoding method | |
CN113178191B (zh) | 基于联邦学习的语音表征模型训练方法、装置、设备及介质 | |
Ferragina et al. | The engineering of a compression boosting library: Theory vs practice in BWT compression | |
EP1768104A1 (en) | Signal encoding device and method, and signal decoding device and method | |
Aji et al. | Neural machine translation with 4-bit precision and beyond | |
Beirami et al. | Memory-assisted universal source coding | |
WO2023030557A3 (zh) | 数据压缩、解压缩方法及装置 | |
Perić et al. | Design of fixed and adaptive companding quantizer with variable-length codeword for memoryless Gaussian source | |
Firouzeh et al. | Improved recovery of compressive sensed speech | |
Axelsson et al. | File fragment analysis using normalized compression distance | |
Kumar et al. | A compressive sensing codec architecture for ECG signals with adaptive quantization and stream entropy coding | |
Reynolds | Model compression for GMM based speaker recognition systems. |