BR112022017493A2 - Método e sistema de treinamento universal para modelos de inteligência artificial - Google Patents
Método e sistema de treinamento universal para modelos de inteligência artificialInfo
- Publication number
- BR112022017493A2 BR112022017493A2 BR112022017493A BR112022017493A BR112022017493A2 BR 112022017493 A2 BR112022017493 A2 BR 112022017493A2 BR 112022017493 A BR112022017493 A BR 112022017493A BR 112022017493 A BR112022017493 A BR 112022017493A BR 112022017493 A2 BR112022017493 A2 BR 112022017493A2
- Authority
- BR
- Brazil
- Prior art keywords
- artificial intelligence
- training
- mirror image
- model
- intelligence model
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/3331—Query processing
- G06F16/334—Query execution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Image Analysis (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
MÉTODO E SISTEMA DE TREINAMENTO UNIVERSAL PARA MODELOS DE INTELIGÊNCIA ARTIFICIAL. Um método e sistema de treinamento universal para modelos de inteligência artificial, relacionados com o campo da inteligência artificial. O método compreende: armazenar o código-fonte de um modelo de inteligência artificial a ser treinado e os dados de amostra necessários para o treinamento em um repositório de código de modelo (S1); de acordo com as características de gradiente do código-fonte, combinar, a partir de um repositório de imagens espelhadas, uma imagem espelhada de treinamento correspondente ao modelo de inteligência artificial (S2); de acordo com a imagem espelhada de treinamento combinada, combinar, a partir de um agrupamento de recursos de computação, um nó de computação correspondente à imagem espelhada de treinamento (S3); e começar a treinar o modelo de inteligência artificial no nó de computação combinado e, durante o treinamento, ajustar dinamicamente o nó de computação necessário de acordo com as características do modelo de inteligência artificial para concluir o treinamento do modelo de inteligência artificial (S4). O método descrito pode melhorar a eficiência no treinamento de modelos de inteligência artificial e reduzir efetivamente os custos de treinamento.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010387700.6A CN113626179B (zh) | 2020-05-09 | 2020-05-09 | 一种通用的人工智能模型训练方法及系统 |
PCT/CN2020/110175 WO2021227293A1 (zh) | 2020-05-09 | 2020-08-20 | 一种通用的人工智能模型训练方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
BR112022017493A2 true BR112022017493A2 (pt) | 2022-11-29 |
Family
ID=78377497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR112022017493A BR112022017493A2 (pt) | 2020-05-09 | 2020-08-20 | Método e sistema de treinamento universal para modelos de inteligência artificial |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN113626179B (pt) |
BR (1) | BR112022017493A2 (pt) |
WO (1) | WO2021227293A1 (pt) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118012468B (zh) * | 2024-04-08 | 2024-07-09 | 浙江深象智能科技有限公司 | 模型处理方法、系统及设备 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2477141B1 (en) * | 2011-01-12 | 2013-07-03 | Fujitsu Limited | Processor node, artificial neural network and method of operation of an artificial neural network |
CN104463324A (zh) * | 2014-11-21 | 2015-03-25 | 长沙马沙电子科技有限公司 | 一种基于大规模高性能集群的卷积神经网络并行处理方法 |
CN107885762B (zh) * | 2017-09-19 | 2021-06-11 | 北京百度网讯科技有限公司 | 智能大数据系统、提供智能大数据服务的方法和设备 |
CN108647785A (zh) * | 2018-05-17 | 2018-10-12 | 普强信息技术(北京)有限公司 | 一种神经网络自动建模方法、装置及存储介质 |
CN109635918A (zh) * | 2018-10-30 | 2019-04-16 | 银河水滴科技(北京)有限公司 | 基于云平台和预设模型的神经网络自动训练方法和装置 |
CN109508238A (zh) * | 2019-01-05 | 2019-03-22 | 咪付(广西)网络技术有限公司 | 一种用于深度学习的资源管理系统及方法 |
CN110413294B (zh) * | 2019-08-06 | 2023-09-12 | 中国工商银行股份有限公司 | 服务发布系统、方法、装置和设备 |
CN111124634A (zh) * | 2019-12-06 | 2020-05-08 | 广东浪潮大数据研究有限公司 | 一种训练方法、装置及电子设备和存储介质 |
CN111026436B (zh) * | 2019-12-09 | 2021-04-02 | 支付宝(杭州)信息技术有限公司 | 模型联合训练方法及装置 |
-
2020
- 2020-05-09 CN CN202010387700.6A patent/CN113626179B/zh active Active
- 2020-08-20 BR BR112022017493A patent/BR112022017493A2/pt unknown
- 2020-08-20 WO PCT/CN2020/110175 patent/WO2021227293A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN113626179A (zh) | 2021-11-09 |
CN113626179B (zh) | 2023-08-22 |
WO2021227293A1 (zh) | 2021-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gan et al. | Towards robustness of text-to-SQL models against synonym substitution | |
Wang et al. | Cross-lingual BERT transformation for zero-shot dependency parsing | |
Song et al. | Mpnet: Masked and permuted pre-training for language understanding | |
CN107563498B (zh) | 基于视觉与语义注意力相结合策略的图像描述方法及系统 | |
Lee et al. | Emergent translation in multi-agent communication | |
Liu et al. | Qaner: Prompting question answering models for few-shot named entity recognition | |
Mohammadshahi et al. | SMaLL-100: Introducing shallow multilingual machine translation model for low-resource languages | |
Stevenson | Science, computational science, and computer science: At a crossroads | |
CN112214608A (zh) | 基于知识推理的文本生成方法、介质、装置和计算设备 | |
BR112022017493A2 (pt) | Método e sistema de treinamento universal para modelos de inteligência artificial | |
CN114091466A (zh) | 一种基于Transformer和多任务学习的多模态情感分析方法及系统 | |
Chang et al. | Time-aware ancient Chinese text translation and inference | |
Li et al. | Semi-supervised domain adaptation for dependency parsing via improved contextualized word representations | |
Li et al. | Explicit connection distillation | |
Assem et al. | QASAR: self-supervised learning framework for extractive question answering | |
Gao et al. | UNISON: Unpaired cross-lingual image captioning | |
Wang et al. | LLMs in the Imaginarium: tool learning through simulated trial and error | |
Yu et al. | Boost transformer-based language models with gpu-friendly sparsity and quantization | |
Zhu et al. | Chain-of-questions training with latent answers for robust multistep question answering | |
Kim et al. | Embeddistill: A geometric knowledge distillation for information retrieval | |
CN117251555A (zh) | 一种语言生成模型训练方法和装置 | |
Dong et al. | Understand what llm needs: Dual preference alignment for retrieval-augmented generation | |
Bowman et al. | Collecting entailment data for pretraining: New protocols and negative results | |
Madaan et al. | Improving neural model performance through natural language feedback on their explanations | |
CN116910217A (zh) | 基于小语言模型集群的自然语言问答方法、装置及介质 |