BR112022005437A2 - Método implementado por computador e sistema para segmentação de hipersensibilidades da substância branca presentes nas imagens cerebrais decorrentes da ressonância magnética - Google Patents

Método implementado por computador e sistema para segmentação de hipersensibilidades da substância branca presentes nas imagens cerebrais decorrentes da ressonância magnética

Info

Publication number
BR112022005437A2
BR112022005437A2 BR112022005437A BR112022005437A BR112022005437A2 BR 112022005437 A2 BR112022005437 A2 BR 112022005437A2 BR 112022005437 A BR112022005437 A BR 112022005437A BR 112022005437 A BR112022005437 A BR 112022005437A BR 112022005437 A2 BR112022005437 A2 BR 112022005437A2
Authority
BR
Brazil
Prior art keywords
present
hypersensitivities
white matter
computer
magnetic resonance
Prior art date
Application number
BR112022005437A
Other languages
English (en)
Inventor
María Jiménez Pastor Ana
Biarnes Durán Carles
Camacho Ramos Eduardo
García Castro Fabio
Puig Alcántara Josep
Martí Bonmatí Luis
Pedraza Gutiérrez Salvador
Alberich Bayarri Ángel
Original Assignee
Quibim S L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quibim S L filed Critical Quibim S L
Publication of BR112022005437A2 publication Critical patent/BR112022005437A2/pt

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0455Auto-encoder networks; Encoder-decoder networks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

método implementado por computador e sistema para segmentação de hipersensibilidades da substância branca presentes nas imagens cerebrais decorrentes da ressonância magnética. a presente invenção se refere a um método e um sistema para a segmentação de hipersensibilidades da substância branca (wmhs) presentes na imagens cerebrais da ressonância magnética, compreendendo: provisão de uma matriz de redes neurais convolucionais (cnns) treinadas com uma imagem cerebral da ressonância magnética; determinação, para cada uma das cnns e para cada voxel, da probabilidade de que o determinado voxel corresponda a uma hipersensibilidade patológica; cálculo da média de todas as probabilidades determinadas para cada voxel; comparação das probabilidades médias para cada voxel com um limiar; geração de uma imagem máscara com os voxels que excedem o limiar.
BR112022005437A 2019-09-23 2020-01-30 Método implementado por computador e sistema para segmentação de hipersensibilidades da substância branca presentes nas imagens cerebrais decorrentes da ressonância magnética BR112022005437A2 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201930818A ES2813777B2 (es) 2019-09-23 2019-09-23 Metodo y sistema para la segmentacion automatica de hiperintensidades de sustancia blanca en imagenes de resonancia magnetica cerebral
PCT/ES2020/070069 WO2021058843A1 (es) 2019-09-23 2020-01-30 Método y sistema para la segmentación automática de hiperintensidades de sustancia blanca en imágenes de resonancia magnética cerebral

Publications (1)

Publication Number Publication Date
BR112022005437A2 true BR112022005437A2 (pt) 2022-06-21

Family

ID=75109007

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112022005437A BR112022005437A2 (pt) 2019-09-23 2020-01-30 Método implementado por computador e sistema para segmentação de hipersensibilidades da substância branca presentes nas imagens cerebrais decorrentes da ressonância magnética

Country Status (7)

Country Link
US (1) US20220343142A1 (pt)
EP (1) EP4020322A4 (pt)
JP (1) JP7462055B2 (pt)
AU (1) AU2020352676A1 (pt)
BR (1) BR112022005437A2 (pt)
ES (1) ES2813777B2 (pt)
WO (1) WO2021058843A1 (pt)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495353B2 (en) 2018-05-10 2022-11-08 Mohamed Anver Jameel Method, apparatus, and computer readible media for artificial intelligence-based treatment guidance for the neurologically impaired patient who may need neurosurgery
ES2828728A1 (es) * 2019-11-27 2021-05-27 Fundacion Para La Investigacion Del Hospital Univ La Fe De La Comunidad Valenciana Metodo para obtener un biomarcador de imagen que cuantifica la calidad de la estructura trabecular de los huesos
CN113159147B (zh) * 2021-04-08 2023-09-26 平安科技(深圳)有限公司 基于神经网络的图像识别方法、装置、电子设备
CN113096142B (zh) * 2021-04-30 2022-12-30 北京理工大学 基于联合嵌入空间的白质神经束自动分割方法
CN114419066B (zh) * 2022-01-14 2022-12-13 深圳市铱硙医疗科技有限公司 脑白质高信号分割方法、装置、设备及存储介质
CN115514343B (zh) * 2022-05-13 2023-08-11 浙江腾腾电气有限公司 电网波形滤波系统及其滤波方法
CN115115628B (zh) * 2022-08-29 2022-11-22 山东第一医科大学附属省立医院(山东省立医院) 一种基于三维精细化残差网络的腔隙性脑梗死识别系统
CN117556715B (zh) * 2024-01-12 2024-03-26 湖南大学 基于信息融合的典型环境下智能电表退化分析方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10210246B2 (en) * 2014-09-26 2019-02-19 Oracle International Corporation Techniques for similarity analysis and data enrichment using knowledge sources
EP3573520A4 (en) * 2017-01-27 2020-11-04 Arterys Inc. AUTOMATED SEGMENTATION USING FULLY CONVOLUTIVE NETWORKS
US11357398B2 (en) * 2017-01-31 2022-06-14 Nidek Co., Ltd. Image processing device and non-transitory computer-readable recording medium
US10366491B2 (en) * 2017-03-08 2019-07-30 Siemens Healthcare Gmbh Deep image-to-image recurrent network with shape basis for automatic vertebra labeling in large-scale 3D CT volumes
GB201709672D0 (en) * 2017-06-16 2017-08-02 Ucl Business Plc A system and computer-implemented method for segmenting an image
US10223610B1 (en) * 2017-10-15 2019-03-05 International Business Machines Corporation System and method for detection and classification of findings in images
CN109886992A (zh) * 2017-12-06 2019-06-14 深圳博脑医疗科技有限公司 用于分割mri图像中异常信号区的全卷积网络模型训练方法
CN108171711A (zh) * 2018-01-17 2018-06-15 深圳市唯特视科技有限公司 一种基于完全卷积网络的婴幼儿脑部磁共振图像分割方法
CN109410167B (zh) * 2018-08-31 2021-11-09 深圳大学 一种3d乳腺图像的分析方法及系统、介质
CN109872328B (zh) * 2019-01-25 2021-05-07 腾讯科技(深圳)有限公司 一种脑部图像分割方法、装置和存储介质
CN109886273B (zh) * 2019-02-26 2022-12-16 四川大学华西医院 一种cmr图像分割分类系统
CN109993809B (zh) * 2019-03-18 2023-04-07 杭州电子科技大学 基于残差U-net卷积神经网络的快速磁共振成像方法
CN109993735A (zh) * 2019-03-29 2019-07-09 成都信息工程大学 基于级联卷积的图像分割方法
CN110189334B (zh) * 2019-05-28 2022-08-09 南京邮电大学 基于注意力机制的残差型全卷积神经网络的医学图像分割方法

Also Published As

Publication number Publication date
EP4020322A1 (en) 2022-06-29
US20220343142A1 (en) 2022-10-27
ES2813777B2 (es) 2023-10-27
WO2021058843A1 (es) 2021-04-01
EP4020322A4 (en) 2023-10-25
JP2023514964A (ja) 2023-04-12
AU2020352676A1 (en) 2022-04-21
ES2813777A1 (es) 2021-03-24
JP7462055B2 (ja) 2024-04-04

Similar Documents

Publication Publication Date Title
BR112022005437A2 (pt) Método implementado por computador e sistema para segmentação de hipersensibilidades da substância branca presentes nas imagens cerebrais decorrentes da ressonância magnética
Serra-Blasco et al. Effects of illness duration and treatment resistance on grey matter abnormalities in majordepression
Aghajani et al. Altered white-matter architecture in treatment-naive adolescents with clinical depression
Weier et al. Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)—Implementation and application of the patch‐based label‐fusion technique with a template library to segment the human cerebellum
Schuh et al. A deformable model for the reconstruction of the neonatal cortex
Sarro et al. Structural brain changes associated with tardive dyskinesia in schizophrenia
Al-Amin et al. Adult vitamin D deficiency disrupts hippocampal-dependent learning and structural brain connectivity in BALB/c mice
Firbank et al. Diffusion tensor imaging in Alzheimer's disease and dementia with Lewy bodies
Rheault et al. Bundle-specific fornix reconstruction for dual-tracer PET-tractometry
Zhu et al. Research on postpartum depression and experiential avoidance of parturient
Courtney et al. 3014 Segmenting epilepsy surgery resection cavities on brain MRI: a comparison of four automated methods to manual segmentation
Vaz et al. Oropharyngeal neuroglial choristoma with extension into the parapharyngeal space
ZHANG et al. Comparative study of two different methods for automatic segmentation of organs at risk in head and neck region
Luo et al. CT texture features in differential diagnosis of inVasion of ground pulmonary adenocarcinoma manifesting glass density nodule
Jiao et al. The relationship between the level of hope and personality, care of burden in the primary caregivers of advanced cancer patients
HU The susceptibility of allergic disorders on respiratory system based mucosal immune abnormality in the early life
Gao et al. Study of metal artifacts reduction method of CT image
Artul et al. Motion artefact in multidetector CT in a child with severe chest injury resembling serious pathology
Khurana et al. Posterior reversible encephalopathy syndrome: A rare entity.
Zhen et al. Application of personalized contrast injection method in coronary angiography
Jian et al. The grouping process and method of diagnosis related groups, Beijing version (BJ-DRGs)
Yang et al. Evaluation of the therapeutic efficacy for methamphetamine dependence through visual digital neural molecular imaging techniques
Deng et al. Influence of psychological education on the resourcefulness of perioperative breast cancer patients
Xie et al. Clinical features, radiological characteristics, and pathological changes in 42 patients with cerebral sparganosis
Zhang et al. The influence of gender, age, smoking on the levels of serum total IgE of healthy people in two hospitals in Yantai and Weihai areas