BR112019014274A2 - sistema de recuperação de dióxido de carbono e sulfeto de hidrogênio usando uma combinação de membranas e processos de separação criogênica de baixa temperatura - Google Patents
sistema de recuperação de dióxido de carbono e sulfeto de hidrogênio usando uma combinação de membranas e processos de separação criogênica de baixa temperatura Download PDFInfo
- Publication number
- BR112019014274A2 BR112019014274A2 BR112019014274A BR112019014274A BR112019014274A2 BR 112019014274 A2 BR112019014274 A2 BR 112019014274A2 BR 112019014274 A BR112019014274 A BR 112019014274A BR 112019014274 A BR112019014274 A BR 112019014274A BR 112019014274 A2 BR112019014274 A2 BR 112019014274A2
- Authority
- BR
- Brazil
- Prior art keywords
- stream
- fractionator
- acid gas
- purification system
- gas purification
- Prior art date
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 67
- 239000012528 membrane Substances 0.000 title claims abstract description 51
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title description 172
- 229910002092 carbon dioxide Inorganic materials 0.000 title description 86
- 239000001569 carbon dioxide Substances 0.000 title description 86
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title description 33
- 229910000037 hydrogen sulfide Inorganic materials 0.000 title description 31
- 238000011084 recovery Methods 0.000 title description 9
- 239000002253 acid Substances 0.000 claims abstract description 68
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 45
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 45
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 30
- 238000000746 purification Methods 0.000 claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 24
- 239000012466 permeate Substances 0.000 claims abstract description 22
- 238000007906 compression Methods 0.000 claims abstract description 17
- 230000006835 compression Effects 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims description 116
- 238000005194 fractionation Methods 0.000 claims description 26
- 238000010992 reflux Methods 0.000 claims description 20
- 238000004821 distillation Methods 0.000 claims description 19
- 239000012465 retentate Substances 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 claims description 2
- 238000000638 solvent extraction Methods 0.000 claims description 2
- 229920005597 polymer membrane Polymers 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 claims 1
- 239000000047 product Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000004064 recycling Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 241001212044 Apura Species 0.000 description 2
- 235000003198 Cynara Nutrition 0.000 description 2
- 241000208947 Cynara Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 235000013844 butane Nutrition 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 235000013849 propane Nutrition 0.000 description 2
- -1 propane and butane Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- SKIIKRJAQOSWFT-UHFFFAOYSA-N 2-[3-[1-(2,2-difluoroethyl)piperidin-4-yl]oxy-4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound FC(CN1CCC(CC1)OC1=NN(C=C1C=1C=NC(=NC=1)NC1CC2=CC=CC=C2C1)CC(=O)N1CC2=C(CC1)NN=N2)F SKIIKRJAQOSWFT-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/52—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/229—Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1462—Removing mixtures of hydrogen sulfide and carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/16—Hydrogen sulfides
- C01B17/167—Separation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G70/00—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G70/00—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
- C10G70/04—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
- C10G70/045—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes using membranes, e.g. selective permeation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/103—Liquid carbonaceous fuels containing additives stabilisation of anti-knock agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/103—Sulfur containing contaminants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/104—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0266—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/067—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D2053/221—Devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/24—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/304—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/207—Acid gases, e.g. H2S, COS, SO2, HCN
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/06—Heat exchange, direct or indirect
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/10—Recycling of a stream within the process or apparatus to reuse elsewhere therein
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/24—Mixing, stirring of fuel components
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/46—Compressors or pumps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/541—Absorption of impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/542—Adsorption of impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/543—Distillation, fractionation or rectification for separating fractions, components or impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/548—Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/30—Processes or apparatus using separation by rectification using a side column in a single pressure column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/20—Processes or apparatus using other separation and/or other processing means using solidification of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/40—Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/50—Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/80—Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/04—Mixing or blending of fluids with the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/62—Ethane or ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/80—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/66—Separating acid gases, e.g. CO2, SO2, H2S or RSH
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/32—Compression of the product stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/20—Integration in an installation for liquefying or solidifying a fluid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/80—Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/40—Control of freezing of components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
um sistema de purificação de gás ácido é aqui descrito que inclui um sistema de membrana primária com um efluente de corrente de permeado enriquecido em co2 e h2s e um efluente de corrente de hidrocarboneto; um primeiro estágio de compressão disposto para receber a corrente de permeado enriquecido com co2 e h2s e produzir uma corrente comprimida; e um sistema de separação criogênico para receber a corrente comprimida, o sistema de separação criogênico incluindo um resfriador seguido por um fracionador, em que o fracionador produz uma corrente líquida de co2 e h2s e uma corrente de gás de hidrocarboneto.
Description
SISTEMA DE RECUPERAÇÃO DE DIÓXIDO DE CARBONO E SULFETO DE HIDROGÊNIO USANDO UMA COMBINAÇÃO DE MEMBRANAS E PROCESSOS DE SEPARAÇÃO CRIOGÊNICA DE BAIXA TEMPERATURA
REFERÊNCIA CRUZADA A PEDIDOS RELACIONADOS [001 ] Este pedido reivindica benefício do Pedido de Patente Provisório dos Estados Unidos Número de Série 62/444.443, depositado em 10 de janeiro de 2017, que é aqui incorporado por referência.
Fundamentos [002] Esta invenção se refere a sistemas e métodos que fazem uso de tecnologia de membrana para remover dióxido de carbono (CO2) e sulfeto de hidrogênio (H2S) de uma corrente de gás.
[003] Remover CO2 e H2S de gás usando membranas é um processo bem conhecido. As membranas tipicamente separam o gás era duas correntes, uma corrente de baixa pressão enriquecida em CO2 e H2S como permeado e uma corrente de alta pressão esgotada em CO2 e H2S como um gás de produto. Tais processos são frequentemente usados para ajudar a purificar gás natural, onde processos de fracionamento criogênico padrão são limitados por formação de azeótropo entre CO2 e etano (CiHó).
[004] FIG. 1 é um diagrama de fluxo esquemático de um sistema de separação de CO2 e H2S convencional. Em um processo de separação de membrana de etapa única, a corrente de permeado de baixa pressão enriquecida com CO2 e H?S contém hidrocarbonetos adicionais que são usualmente perdidos, a menos que a corrente de permeado seja passada através de um sistema de membrana secundário, como na FIG. I. O sistema de membrana secundário requer uma etapa de compressão seguida por outra etapa de membrana para recuperar os hidrocarbonetos e reduzir CO2 e FUS. A corrente de produto do sistema de membrana secundário também precisa de compressão até a pressão do produto do sistema de membrana primário, de modo que os dois possam ser misturados.
[005] De um modo geral, as abordagens de tecnologia de membrana exigem várias membranas e grandes compressores, tornando-as tanto intensivas em capital quanto ineficientes. Cada etapa de membrana sucessiva requer recompressão do permeado desde a última etapa de membrana, juntamente com compressão do produto da etapa de membrana para combinar com o produto de pressão mais alta da última etapa de membrana. Este é ura grande obstáculo à implementação da tecnologia de membrana para aplicações de corrente
Petição 870190064759, de 10/07/2019, pág. 17/36
2/12 de gás. Existe uma necessidade de otimizar o processamento de corrente de membrana primário e reduzir os requisitos de compressão globais e o custo de capital.
[006] US 7.152.430 BI para Parro reduz a quantidade de CO2 em uma corrente de gás de alimentação usando destilação fracionada que fornece uma corrente residual rica, em CO2 e uma corrente aérea de destilação pobre em CO2. A corrente aérea de destilação pobre em CO? é passada, através de uma unidade de membrana para produzir uma corrente rica em CO2 e uma corrente de hidrocarbonetos. A corrente de hidrocarbonetos é resfriada para produzir uma corrente líquida de refluxo e um produto de gás de hidrocarboneto. A corrente rica em CO2 de baixa pressão é ainda comprimida e misturada com o aéreo do tambor de refluxo de fracionamento.
SUMÁRIO [007] Algumas modalidades dos sistemas de purificação de gás ácido aqui descritas incluem ura sistema, de purificação de gás ácido compreendendo um sistema de membrana primário com um efluente de corrente de permeado enriquecida em CO2 e H2S e um efluente de corrente de hidrocarboneto; um primeiro estágio de compressão disposto para receber a corrente de permeado enriquecida em CO2 e H2S e produzir uma corrente comprimida; e um sistema de separação criogênica para receber a corrente comprimida, o sistema de separação criogênica incluindo um condicionador seguido por um fracionador, em que o fracionador produz uma corrente líquida de CO2 e H2S e uma corrente de gás de hidrocarboneto.
[008] Outras modalidades dos sistemas de purificação de gás ácido aqui descritas incluem uma unidade de separação de membrana que produz uma corrente de permeado enriquecida em CO2 e/ou H ?S e uma corrente de retentado de uma corrente de alimentação; um condicionador para reduzir uma temperatura da corrente de permeado; e um fracionador criogênico para separar gases ácidos da corrente de permeado resfriada.
[009] Outras modalidades de sistemas de purificação de gás ácido aqui descritas incluem um sistema de separação de não destilação com um efluente de gás ácido e um efluente de gás de separação, em que o sistema de separação de não destilação é uma separação de etapa única e o efluente de gás ácido é de pelo menos 90% em mol de CO2 e/ou H2S; e um sistema de fracionamento criogênico incluindo um condicionador e um fracionador.
Breve Descrição dos Desenhos
Petição 870190064759, de 10/07/2019, pág. 18/36
3/12 [0010] FIG. 1 é um diagrama de fluxo esquemático de um sistema de remoção de CO2 e H2S do estado da técnica.
[0011] FIG. 2 é um diagrama de fluxo esquemático de um sistema de remoção de gás ácido de acordo com uma modalidade.
[0012] FIG. 3 é um diagrama de fluxo esquemático de um sistema de remoção de gás ácido de acordo com outra modalidade.
[0013] FIG. 4 é um diagrama de fluxo esquemático de um sistema de remoção de gás ácido de acordo com outra modalidade.
[0014] Para facilitar a compreensão, números de referência idênticos foram utilizados, onde possível, para designar elementos idênticos que sejam comuns às figuras. E contemplado que elementos e características de uma modalidade podem ser incorporados beneficamente em outras modalidades sem recitação adicional.
Descrição Detalhada das Modalidades Preferidas [0015] FIG. 2 é um diagrama de fluxo esquemático de um sistema de recuperação de gás ácido 10 de acordo com uma modalidade. O sistema de recuperação de gás ácido 10 combina um sistema de membrana primário 30 com o sistema de separação criogênica de baixa temperatura 50 que inclui um condicionador 51 e uma coluna de fracionamento 61.
[0016] Uma corrente de gás de alimentação 15, que pode ser uma corrente de gás natural, uma corrente de efluente de combustão, uma corrente de fração de ar ou outra corrente de gás contendo CO2 e/ou H2S é carregado para uma unidade de pré-tratamento 20. A unidade de pré-tratamento 20 pode filtrar a corrente de gás de alimentação 15, remover a água, desidratar e condicionar a corrente de gás de alimentação 15 até um ponto de orvalho da. mesma, produzindo uma corrente de gás de alimentação pré-tratada 25. O gás de alimentação é tipicamente de pelo menos 10% em mol de gases ácidos (CO2 e H2S), por exemplo 10-11% em mol de CO2, com o balanço na maioria de hidrocarbonetos leves, tal como metano e etano. Pode haver alguns hidrocarbonetos mais pesados, tal como propano e butano, na corrente de gás de alimentação, ocasionalmente, mas, se presentes, a concentração desses gases é normal mente inferior a. cerca de 0,5% em mol. Era alguns casos, a. concentração de gases ácidos pode ser inferior a 10% em mol, conforme observado abaixo.
[0017] A corrente de gás de alimentação pré-tratada 25 entra num sistema de membrana 30 a alta pressão (até 2.000 psig) onde o sistema de membrana 30 separa a
Petição 870190064759, de 10/07/2019, pág. 19/36
4/12 corrente 25 em uma corrente de baixa pressão enriquecida com CO2 e H2S como permeado 33 (<400 psig) e uma corrente de alta pressão esgotada em CO2 e H2S como um gás de produto 37 (> 1.000 psig). O sistema de membrana 30 inclui um separador de membrana com um elemento de membrana polímérico. Exemplos de sistemas de membranas que podem ser usados incluem os sistemas de membranas CYNARA e APURA disponíveis da unidade de Soluções e Sistemas de Processo da Schlumberger Technology Corporation de Houston, Texas. Outros sistemas de membranas para separação de alta seletividade de gases ácidos, tal como CO2 e H?S de hidrocarbonetos podem ser utilizados. A corrente de permeado 33 é de pelo menos 90% em mol de gases ácidos CO? e H2S. Como o sistema de membrana primária 30 recupera uma quantidade máxima de etano e hidrocarbonetos pesados no gás de produto 37, apenas uma pequena quantidade de etano e hidrocarbonetos pesados é permeada na corrente de permeado de baixa pressão 33. O gás de produto 37 não tem mais que 10% em mol de gases ácidos.
[0018] A corrente de permeado 33 é comprimida até 400-600 psig de pressão num compressor de primeiro estágio 40, que pode ser uma unidade de compressão de múltiplos estágios com manipulação de condensado entre estágios. A corrente comprimida 45 entra no sistema de separação criogênica 50 num condicionador 51 do mesmo e é resfriada no condicionador 51 que inclui uma série de trocadores de calor 53 seguida por resfriamento até -~60°F a -140°F (cerca de -51°C a ~96°C) de temperatura em um resfriador de entrada
55. A corrente resfriada cri ogeni cam ente 60 entra, então, num fracionador 61. Quando é utilizada uma unidade de compressão de múltiplos estágios para o compressor 40, quaisquer líquidos entre estágios que sejam desejados de recuperação podem ser encaminhados para o condicionador 51 para recuperação no fracionador 61.
[0019] O fracionador 61 deve ser capaz de lidar com múltiplas fases de CO2 e H2S sob condições de temperatura variáveis para obter uma separação desejada. O fracionador 61 inclui uma secção de separação do fracionador 61 e uma secção de retificação do fracionador 61 em comunicação de fluido entre si. Entre a seção de separação e a seção de retificação, o fracionador 61 pode ter diferentes características de seção intermediária para manipular mudanças de fases de CO2 e H?S. Por exemplo, a seção intermediária do fracionador 61 pode incluir um espaço para nuclear cristais que, então, caem no topo da seção de retificação e fundem. O fracionador 61 pode também ter um processador lateral na
Petição 870190064759, de 10/07/2019, pág. 20/36
5/12 seção intermediária do fracionador 61 para processar uma corrente lateral da seção de separação e retornar uma corrente condensada para a seção de retificação do fracionador 61.
[0020] O processador lateral pode tratar da formação de sólidos de maneiras diferentes. Por exemplo, o processador lateral pode incluir uma seção vazia para nuclear cristais que caem num líquido mais quente, o qual é, então, devolvido ao fracionador 306 (mostrado nas FIGS. 3 e 4). O processador lateral pode incluir ura condensador que produz um nível de líquido no processador lateral para borbulhar o vapor retirado da seção de separação do fracionador 306 e separar CO2 do vapor.
[0021] Em outras modalidades, o fracionador 61 pode ser de duas ou mais colunas de destilação. Por exemplo, uma primeira coluna de destilação pode ser uma seção de separação do fracionador 61 enquanto uma segunda coluna de destilação é uma seção de retificação do fracionador 61.0 equipamento pode ser fornecido entre as duas colunas para manipular mudanças de fase, conforme necessário. Em tais modalidades, a primeira coluna é por vezes operada a uma pressão inferior à da segunda coluna. Compressão e resfriamento de uma corrente da primeira coluna para alimentação para a segunda coluna podem produzir CO2 sólido o qual pode ser separado, fundido e adicionado ao produto de CO2 da segunda coluna.
[0022] A maior parte de CO2 e H2S da corrente resfriada criogenicamente 60 emerge do fracionador 61 como uma corrente de líquido 65 na seção de fundo/refervedor do fracionador 61. Em uma operação de exemplo a cerca de 500 psig de pressão, a corrente liquida de fundo é refervida a uma temperatura de cerca de 10°C, enquanto o aéreo é condensado a uma temperatura de cerca de -150°C. Se a pressão do fracionador 61 for controlada até um certo alvo, e se a operação do fracionador 61 for controlada para fornecer corrente de CO2 e H2S purificada como uma corrente de fundo, flutuações na composição da corrente resfriada criogenicamente 60 causarão flutuações em temperaturas de operação do fracionador 61. A corrente de fundo de CO2 e H2S 65 contém menos de 10% da quantidade de compostos não CO2 e H?S (na maioria hidrocarbonetos). A corrente de fundo 65 (Ato é, a seção de fundo do fracionador 61) pode estar à pressão de 300-600 psig e pode ainda ser condicionada para aumentar a temperatura até mais alta que 40°F (cerca de 4°C).
[0023] O gás rico em hidrocarboneto 70 é separado na parte aérea do tambor de refluxo do fracionador 61, com uma temperatura mais baixa da parte aérea sendo mantida em todo um condensador. O processo de refluxo/condensação reduz a quantidade total de
Petição 870190064759, de 10/07/2019, pág. 21/36
6/12
CO;· e H2S deixando a parte aérea do tambor de refluxo na corrente de hidrocarboneto 70. A quantidade de CO? e H2S na corrente rica em hidrocarboneto aérea do tambor de refluxo 70 pode ser ajustada para gerenciar a composição da corrente de produto de hidrocarboneto finai 90 que é a mistura do gás de produto da membrana primária 37 e da corrente aérea 70. A corrente aérea 70 pode ser adicionalmente comprimida num compressor de segundo estágio 80 à pressão para formar uma corrente aérea comprimida 85 que coincide em pressão com o gás de produto de membrana primária 37.
[0024] Um número significativo de módulos de membrana/área de superfície e compressão de reciclo pode ser reduzido usando esta nova abordagem. Para um gás de alimentação de 10-11% em moi de CO2 de entrada, a 1.000 psig e 61°F (cerca de 21°C) de condições de entrada, a uma taxa de 840 MMSCFD e produzindo um gás de produto com menos de 2% de CO2 e menos de 2% de perdas de hidrocarbonetos na corrente de permeado, o uso de um sistema de fracionamento criogênico como aqui descrito pode reduzir a necessidade de membranas em 50% ou mais e a necessidade de compressão para acionar as membranas em 30% ou mais.
[0025] A combinação do sistema de membrana primária 30 com o sistema de separação criogênica 50 pode ser aplicada, por exemplo, numa planta de pré-tratamento de gás natural liquefeito onde CO? no gás de alimentação pode variar de 2% a 40% ou mais alto. Nos casos em que CO2 de uma instalação de produção de hidrocarbonetos deve ser reinjetado no reservatório, o sistema 200 pode ajudar a reduzir o custo geral de reinjeção de CO2 e H2S produzindo o gás de reinjeção como um líquido para bombear diretamente para o solo, evitando o custo de comprimir um gás para reinjeção. Isto também evita qualquer requisito de a planta de enxofre gerenciar H?S a jusante. Uma corrente de produto de CO2 líquido também pode ser vantajosa para técnicas de recuperação de óleo intensificada, onde CO2 é às vezes usado como um mobilizador de hidrocarboneto em reservatórios de hidrocarbonetos e onde a compressão de um gás até a pressão do reservatório pode ser evitada. Outros usos de CO2 líquido podem incluir fabricação de metanol, processos semicondutores que utilizam CO2 supercrítico, usos mecânicos de CO2 líquido em garrafas de pressão e vários usos médicos de CO2.
[0026] FIG. 3 é um diagrama de fluxo esquemático de um sistema de remoção de gás ácido 300 de acordo com outra modalidade. O sistema 300 inclui um sistema de separação de não fracionamento seguido por um sistema de separação de fracionamento. O
Petição 870190064759, de 10/07/2019, pág. 22/36
7/12 sistema de separação de não fracionamento realiza uma primeira separação entre gases ácidos e gases de hidrocarbonetos produzir uma corrente de gás ácido 341 com uma concentração de gás (CO2 e/ou H2S) de pelo menos 90% em mol e uma corrente de hidrocarbonetos 343 com teor de gás ácido inferior a 3% em mol. O sistema, de separação de não fracionamento pode incluir um ou mais de um sistema de separação de membrana, um sistema de separação de absorção oscilante de pressão (PSA), um sistema de separação de peneira molecular e um sistema de separação de extração de solvente.
[0027] O uso de uma separação de não fracionamento antes de unia separação de fracionamento evita as barreiras associadas à separação de etano (“C2”) de CO2 por destilação. C2 forma um azeótropo com CO2 que tem aproximadamente 70% em mol de CO2 e 30% em mol de C2 o que impede separação dos dois compostos puramente por destilação. O azeótropo tem um ponto de ebulição a cerca de -6°C e 34 bar. Usando uma separação de não destilação acoplada a uma separação de destilação, um objetivo operacional do sistema pode ser selecionado operando a separação de não destilação para atingir uma composição em cada lado do ponto de azeótropo do CO2/C2. Parte ou a maior parte de C2 é separada do CO2 e H2S na separação de não destilação e uma corrente de alimentação substancialmente concentrada em CO2 e H2S pode ser carregada em um fracionador. Se a corrente de alimentação tiver uma composição de CO2 inferior ao ponto de azeótropo de CO2/C2, o fracionador pode ser operado para purificar aéreo de C2. Se a corrente de alimentação tiver uma composição de CO2 mais alta que o ponto de azeótropo de CO2/C2, o fracionador pode ser operado para maximizar o CO2 no fundo. H2S não forma um azeótropo com qualquer de CO2 ou C2 e é de alta ebulição em relação a ambos, então, H?S geralmente emergirá na seção de fundo do fracionador.
[0028] A corrente de gás ácido 341 é encaminhada para um primeiro compressor 302 que é semelhante ao compressor 40 da FIG. 2. O primeiro compressor 302 é diferente do compressor 40 em que uma corrente de reciclo 311, que é uma corrente de escape retirada da corrente de produto de CO2 a ser descrita mais abaixo, é misturada com a corrente de gás ácido 341 na entrada do primeiro compressor 302. O primeiro compressor 302 é, assim, configurado para manipular um volume maior em relação à taxa da corrente de gás de alimentação 15 e concentração de CO? mais alta que o compressor 40. Assim, o primeiro compressor 302 pode ser operado para comprimir a corrente de gás ácido 341 e a corrente de reciclo 311 combinadas até uma pressão de saída mais baixa que a pressão de saída do
Petição 870190064759, de 10/07/2019, pág. 23/36
8/12 compressor 40, por exemplo, 350 psig a 600 psig, uma vez que o teor de gases mais pesados no compressor 302 é mais alto do que no compressor 40.
[0029] O compressor 302 produz uma corrente comprimida 303 e é encaminhada para um sistema de fracionamento criogênico 301. A corrente comprimida 303 é tratada num condicionador 304 que produz uma corrente resfriada 305, a qual pode ser, ou pode incluir, líquido. O condicionador 304 inclui um ou mais trocadores de calor e pode também incluir um ou mais expansores criogênicos. A corrente resfriada 305 é carregada em um fracionador 306 que pode incluir mais de uma coluna de destilação.
[0030] Na implementação da FIG. 3, uma porção do produto de fundo 307 do fracionador 306 pode ser reciclada para o primeiro compressor 302 numa corrente de reci clo 311, enquanto uma porção é recuperada como uma corrente de produto de fundo 309. A reciclagem de uma porção da corrente de fundo 307 do fracionador 306 pode aumentar a separação de CO2 e H2S de hidrocarboneto no fracionador 306, à custa de consumo de energia elevado para manipular o volume de reciclo. A reciclagem de uma porção da corrente de fundo do fracionador 306 pode ser vantajosa em modalidades em que o teor de CO2 e/ou H2S na corrente de alimentação de gás ácido 15 está abaixo de cerca de 10% em mol, tomando a separação de passagem única mais desafiante.
[0031 ] O fracionador 306 tem um sistema de refluxo 320 com um acumulador aéreo 322, que tem um espaço de vapor e uma porção de liquido. Um nível de líquido pode ser mantido no acumulador aéreo 322. A corrente de vapor 313 do fracionador 306 é resfriada e encaminhada para o acumulador 322, onde algum líquido é condensado. Uma corrente de refluxo 326 retorna o líquido do acumulador 322 ao fracionador 306. Uma porção da corrente de refluxo 326 pode ser encaminhada para o condicionador 304, se desejado, para integração térmica, ou a montante do condicionador 304 para reciclo. Estas correntes opcionais são respectivamente marcadas 328 e 330 na FIG. 3Se uma porção do refluxo for usada apenas para integração térmica, como na corrente 328, o líquido é aquecido por contacto térmico com a corrente comprimida 303, e pode vaporizar parcialmente ou completamente. Uma corrente de retorno 329 pode ser encaminhada de volta para o fracionador 306 em um local apropriado para o estado termodinâmico da corrente de retorno 329. Era casos em que uma porção do refluxo é reciclada, como na corrente 330, a corrente 330 é misturada com a corrente de gás ácido 341 para o compressor 302 para reintrodução no sistema criogênico 301.
Petição 870190064759, de 10/07/2019, pág. 24/36
9/12 [0032] Uma corrente de vapor 324 do acumulador 322 a ser misturada com a corrente de hidrocarbonetos 343 é comprimida pelo compressor 310 antes da mistura. O segundo compressor 310 produz uma corrente de hidrocarboneto comprimida 315, que pode, então, ser combinada com a corrente de hidrocarboneto 341. As temperaturas podem ser equalizadas, se desejado, antes da mistura.
[0033] Em uma modalidade, a corrente de fundo do fracionador 306 é uma corrente de CO2 líquido de alta pureza que pode ser usada para qualquer finalidade adequada. Por exemplo, o CO2 líquido pode ser usado em recuperação de óleo intensificada como uma matéria-prima para produção de etanol biobaseado, como CO2 de grau alimentício, como matéria-prima para certos processos semicondutores, como um refrigerante, ou o CO2 líquido pode ser convenientemente sequestrado no subsolo. Esse sequestro pode ser projetado para permitir recuperação de energia do CO2 líquido por expansão adiabática, se desejado.
[0034] Em uma modalidade em que CO2 líquido de alta pureza é recuperado na corrente de produtos de fundo 309, o fracionador 306 produz uma corrente aérea 313 que é pelo menos cerca de 30% em mol de hidrocarboneto, a maioria do qual é C2, mas que também pode conter pequenas quantidades de hidrocarbonetos mais altos incluindo propanos, butanos e pentanos (incluindo isômeros normais e ramificados). Em uma tal modalidade, a maioria dos hidrocarbonetos altos emergirá com o CO2 (e qualquer H2S presente no sistema) na corrente de produto de fundo 309. Quando a separação de não fracionamento remove a maioria dos hidrocarbonetos do sistema antes da compressão no compressor 302, a taxa de fluxo da corrente aérea 313 é relativamente pequena, por exemplo, cerca de 10% da alimentação para o fracionador 306 dependendo da composição das várias correntes. Em tal modalidade, reciclar uma. porção da corrente de fundo 307 para, o compressor 302 pode aumentar a pureza da corrente de CO? recuperada na corrente de produto de fundo 309.
[0035] Em uma modalidade em que C? é purificado na parte aérea no fracionador 306, o fracionador 306 produz uma corrente de fundo 307 que não é mais que cerca de 70% em mol de CO2 e pelo menos cerca de 30% em mol% de C2 com H?S e hidrocarbonetos mais altos recuperados na corrente de fundo 307. A corrente aérea do fracionador 313 é de pelo menos cerca de 90% em mol de C2 e pode ser mais alta dependendo de como o fracionador 306 é operado. Por exemplo, se uma porção do refluxo for reciclada, impurezas no aéreo da torre serão reduzidas à custa de consumo de energia extra.
Petição 870190064759, de 10/07/2019, pág. 25/36
10/12 [0036] Os modos e as opções de reciclo descritos na FIG. 3 permitem que o sistema de fracionamento criogênico 301 seja operado com base na purificação de CO?, na corrente de produto de fundo 309 ou com base na purificação de C? na corrente de vapor aérea 324. Uma composição alvo da corrente de gás ácido 341 é selecionada com referência ao ponto de azeótropo de CO2/C2 e o sistema de fracionamento criogênico 301 é operado para produzir C2 purificado se a corrente de gás ácido for subazeotrópica ou para produzir CO2 purificado se a corrente de gás ácido for superazeotrópica.
[0037] FIG. 4 é um diagrama de fluxo esquemático de um sistema de remoção de gás ácido 400 de acordo com outra modalidade. O sistema de remoção de gás ácido 400 é semelhante ao sistema de remoção de gás ácido 300, exceto que as correntes de reciclo do fracionador 306 são recicladas para o separador de não fracionamento 340 para processamento adicional. Uma porção da corrente de refluxo 326 pode ser reciclada para o separador de não fracionamento 340 como corrente de reciclo 330, na FIG. 4. Do mesmo modo, a porção 311 da corrente de fundo 307 pode ser reciclada para o separador de não fracionamento 340. Cada corrente é misturada com a corrente de gás pré-tratada 25 para entrar no separador de não fracionamento 340.
[0038] O uso de uma separação de não fracionamento antes do fracionamento permite a separação do hidrocarboneto dos gases ácidos para serem direcionados de acordo com o objetivo do sistema de fracionamento criogênico. Por exemplo, em um caso em que uma corrente de gás de alimentação contém 10% em mol de CO2, 10% em mol de etano e 80% em mol de metano, tomar uma corrente de hidrocarboneto que é 2% em mol de CO2 e uma corrente de gás ácido que é 95% em de CO2 no separador de não fracionamento 340, sem nenhum reciclo de fundo do fracionador 306, resulta numa taxa de alimentação para o fracionador 306 que é de aproximadamente 9% da taxa de fluxo da corrente de gás de alimentação. Se o fracionador 306 for operado para produzir uma corrente de fundo que é de 99% em mol de CO2, sem nenhum reciclo de fundo, a taxa de fluxo de aéreos do fracionador 306 será de aproximadamente 16% da taxa de alimentação para o fracionador 306 e cerca de 1,4% da taxa de fluxo da corrente de gás de alimentação. A corrente de hidrocarboneto resultante misturada do produto do separador de não fracionamento 340 e do aéreo do fracionador 306 será de aproximadamente 93% da corrente de gás de alimentação e terá aproximadamente 3% em mol de CO2. Era casos em que uma ou ambas as correntes do fracionador 306 são recicladas para o separador de não fracionamento 340, a separação do
Petição 870190064759, de 10/07/2019, pág. 26/36
11/12 hidrocarboneto de gases ácidos pode ser melhorada reintroduzindo azeótropo de CO2/C2 para o separador de não fracionamento 340 para posterior separação, resultando em menos azeótropo sendo recuperado no sistema de fracionamento criogênico 301. Em algumas modalidades, o separador de não fracionamento 340 pode ter capacidade variável para manipular diferentes objetivos de separação. Por exemplo, múltiplos módulos de separação, tal como unidades de membrana, podem ser fornecidos com tubulação flexível e válvulas para permitir o uso de número desejado de módulos dependendo do grau de separação de não fracionamento desejado.
[0039] Para separação de membrana, sistemas de membrana CYNARA e/ou APURA podem ser usados disponíveis da unidade de Soluções e Sistemas de Processo da Schlumberger Technology Corporation de Houston, Texas. Outros sistemas de separação de membrana para separação de alta seletividade de gases ácidos, tal como CO2 e H2S de gases de hidrocarbonetos também podem ser usados. Sistemas de membrana podem ser usados para recuperar, de uma corrente de gás que é de 10% em mol de gases ácidos (CO2 e H2S), uma corrente de gás ácido que é de 35-95% em mol de gases ácidos. Tal sistema pode ser usado para direcionar uma corrente de gás ácido que é subazeotrópico ou superazeotrópico em CO2 e C2.
[0040] Em absorção por oscilação de pressão, um adsorvente é escolhido que separa seletivamente gases ácidos de hidrocarbonetos. Em particular, uma separação entre gases ácidos, tal como CO2 e H2S de etano é realizada usando um adsorvente selecionado, que pode ser, ou incluir, estruturas de carvão ativado e metal-orgânicas como exemplos. Comprimentos de leito, condições de ciclagem e número de leitos podem ser otimizadas por pessoas versadas na técnica para produzir a corrente de gás ácido 341 e a corrente de hidrocarboneto 343. Polímeros são às vezes usados e podem ser tratados com carvão ativado ou outro adsorvente ativo para gases ácidos. Aminas também podem ser usadas para esses casos. Tais sistemas podem ser usados para recuperar uma corrente de gás ácido que é até cerca de 95% em mol de gases ácidos de uma corrente de gás que é de 10% em mol de gases ácidos.
[0041] Processos de absorção de solvente físicos podem ser usados para separação de não fracionamento. Solventes físicos utilizáveis para extração de CO2 incluem N-metil pirrolidona, metanol e carbonato de propileno, dentre outros. CO2 é extraído para o solvente, o qual pode, então, ser efetivamente separado por destilação. O CO2 também pode ser
Petição 870190064759, de 10/07/2019, pág. 27/36
12/12 extraído em uma etapa por destilação extrativa. Tais processos são conhecidos na técnica e podem também recuperar uma corrente de gás ácido que é até cerca de 95% em tnol de gases ácidos de uma corrente de gás ácido de 10% em mol.
[0042] Os sistemas de separação de fracionamento acima podem incluir qualquer dos fracionadores descritos acima em relação à Fig. 2.
[0043] Embora o acima exposto seja dirigido a modalidades da presente divulgação, outras e modalidades adicionais da divulgação podem ser concebidas sem se afastar do escopo básico da mesma e o escopo da mesma é determinado pelas reivindicações a seguir.
Claims (20)
1. Sistema de purificação de gás ácido, caracterizado pelo fato de que compreende:
um sistema de membrana primária com um efluente de corrente de permeado enriquecido cora CO2 e H2S e uma corrente de efluente de hidrocarboneto;
um primeiro estágio de compressão disposto para receber a corrente de permeado enriquecido com CO2 e H2S e produzir uma corrente comprimida, e um sistema de separação criogênico para receber o fluxo comprimido, o sistema de separação criogênica incluindo um condicionador seguido por um fracionador, em que o fracionador produz uma corrente liquida de CO2 e H2S e uma corrente de gás de hidrocarboneto.
2. Sistema de purificação de gás ácido, de acordo com a reivindicação 1, caracterizado pelo fato de que o fracionador é um fracionador de CO2 congelado.
3. Sistema de purificação de gás ácido, de acordo com a reivindicação 1, caracterizado pelo fato de que o fracionador produz uma corrente de fundo e uma porção da corrente de fundo é reciclada para o primeiro estágio de compressão.
4. Sistema de purificação, de acordo com a reivindicação 1, caracterizado pelo fato de que o fracionador produz uma corrente aérea e a corrente aérea é comprimida num segundo estágio de compressão e misturada com o efluente da corrente de hidrocarboneto do sistema de membrana primária.
5. Sistema de purificação de gás ácido, de acordo com a reivindicação 1, caracterizado pelo fato de que o fracionador produz uma corrente de refluxo e uma porção da corrente de refluxo é integrada termicamente com a. corrente comprimida.
6. Sistema de purificação de gás ácido, de acordo com a reivindicação 5, caracterizado pelo fato de que o fracionador produz uma corrente aérea e a corrente aérea e a porção da corrente de refluxo são comprimidas num segundo estágio de compressão e misturadas com o efluente da corrente de hidrocarboneto do sistema de membrana primária.
7. Sistema de purificação de gás ácido, de acordo com a reivindicação 6, caracterizado pelo fato de que o fracionador produz uma corrente de fundo e uma porção da corrente de fundo é reciclada para o primeiro estágio de compressão.
Petição 870190064759, de 10/07/2019, pág. 29/36
2/4
8. Sistema de purificação de gás ácido, caracterizado pelo fato de que compreende:
uma unidade de separação de membrana que produz uma corrente de permeado enriquecida em CO2 e/ou H2S e uma corrente de retentado de uma corrente de alimentação, um condicionador para reduzir uma temperatura da corrente de permeado, e um fracionador criogênico para separar gases ácidos da corrente de permeado resfriada.
9. Sistema de purificação de gás ácido, de acordo com a reivindicação 8, caracterizado pelo fato de que o fracionador criogênico é um fracionador de CO2.
10. Sistema, de purificação de gás ácido, de acordo com a. reivindicação 8, caracterizado pelo fato de que a corrente de permeado é de pelo menos 95% em mol de CO2 e/ou H2S.
11. Sistema de purificação de gás ácido, de acordo com a reivindicação 9, caracterizado pelo fato de que o fracionador criogênico produz uma corrente de fundo e uma porção da corrente de fundo é reciclada para o condicionador.
12. Sistema de purificação de gás ácido, de acordo com a reivindicação 9, caracterizado pelo fato de que o fracionador criogênico produz uma corrente de refluxo e uma porção da corrente de refluxo é integrada termicamente no condicionador.
13. Sistema de purificação de gás ácido, de acordo com a reivindicação 9, caracterizado pelo fato de que o fracionador criogênico produz uma corrente aérea que é misturada com a corrente de retentado.
14. Sistema de purificação de gás ácido, de acordo com a reivindicação 9, caracterizado pelo fato de que a unidade de separação de membrana é uma unidade de membrana de polímero.
15. Sistema de purificação de gás ácido, de acordo com a reivindicação 11, caracterizado pelo fato de que o fracionador criogênico produz uma corrente aérea que é misturada com a corrente de retentado e uma corrente de refluxo e uma porção da corrente de refluxo é integrada termicamente com o condicionador.
16. Sistema de purificação de gás ácido, caracterizado pelo fato de que compreende:
um sistema de separação de não destilação com um efluente de gás ácido e um efluente de gás de separação, em que o sistema de separação de não destilação
Petição 870190064759, de 10/07/2019, pág. 30/36 é uma separação de etapa única e o efluente de gás ácido é de pelo menos 90% em mol de CO2 e/ou H?S, e um sistema de fracionamento criogênico incluindo um condicionador e um fracionador.
17. Sistema de purificação de gás ácido, de acordo com a reivindicação 16, caracterizado pelo fato de que o sistema de separação de não destilação é um ou mais de um sistema de membrana, um sistema de adsorção de oscilação de pressão e um sistema de extração de solvente.
18. Sistema de purificação de gás ácido, de acordo com a reivindicação 16, caracterizado pelo fato de que o fracionador é um fracionador de CO2 congelado.
19. Sistema de purificação de gás ácido, de acordo com a reivindicação 18, caracterizado pelo fato de que o fracionador de CO2 congelado produz uma corrente de fundo e uma porção da corrente de fundo é reciclada para o condicionador.
20. Sistema de purificação de gás ácido, de acordo com a reivindicação 18, caracterizado pelo fato de que o fracionador de CO2 congelado produz uma corrente aérea que é misturada com o efluente de gás de separação do sistema de separação de não destilação.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762444443P | 2017-01-10 | 2017-01-10 | |
US62/444,443 | 2017-01-10 | ||
PCT/US2018/012856 WO2018132339A1 (en) | 2017-01-10 | 2018-01-09 | Carbon dioxide and hydrogen sulfide recovery system using a combination of membranes and low temperature cryogenic separation processes |
Publications (2)
Publication Number | Publication Date |
---|---|
BR112019014274A2 true BR112019014274A2 (pt) | 2020-04-28 |
BR112019014274B1 BR112019014274B1 (pt) | 2024-09-17 |
Family
ID=
Also Published As
Publication number | Publication date |
---|---|
MY195493A (en) | 2023-01-26 |
EP3568227A4 (en) | 2020-09-30 |
AU2018208374A1 (en) | 2019-07-18 |
WO2018132339A1 (en) | 2018-07-19 |
AU2018208374B2 (en) | 2023-09-07 |
EP3568227A1 (en) | 2019-11-20 |
CA3049885A1 (en) | 2018-07-19 |
US11883778B2 (en) | 2024-01-30 |
US20190358583A1 (en) | 2019-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2857122C (en) | Method of separating carbon dioxide from liquid acid gas streams | |
CA3054908C (en) | Helium extraction from natural gas | |
BRPI1002205A2 (pt) | remoção de nitrogênio com recuperação de lìquidos de gás natural de refrigeração aberta de isobárica | |
EP2865976B1 (en) | Purification of carbon dioxide | |
US20090288556A1 (en) | Carbon dioxide purification | |
EP2880134B1 (en) | Heavy hydrocarbon removal from a natural gas stream | |
CN108020025A (zh) | 从包含氦、二氧化碳与氮和甲烷至少之一的流回收氦 | |
EP2865979B1 (en) | Purification of carbon dioxide | |
US8471087B2 (en) | Process that utilizes combined distillation and membrane separation in the separation of an acidic contaminant from a light hydrocarbon gas stream | |
AU2018208374B2 (en) | Carbon dioxide and hydrogen sulfide recovery system using a combination of membranes and low temperature cryogenic separation processes | |
US10415879B2 (en) | Process for purifying natural gas and liquefying carbon dioxide | |
BR112019014274B1 (pt) | Sistema de purificação de gás ácido | |
WO2013144671A1 (en) | Cryogenic separation process of a feed gas stream containing carbon dioxide and methane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B350 | Update of information on the portal [chapter 15.35 patent gazette] | ||
B06W | Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette] | ||
B25A | Requested transfer of rights approved |
Owner name: CAMERON INTERNATIONAL CORPORATION (US) |
|
B25A | Requested transfer of rights approved |
Owner name: CAMERON TECHNOLOGIES LIMITED (NL) |
|
B06A | Patent application procedure suspended [chapter 6.1 patent gazette] | ||
B09A | Decision: intention to grant [chapter 9.1 patent gazette] | ||
B16A | Patent or certificate of addition of invention granted [chapter 16.1 patent gazette] |
Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 09/01/2018, OBSERVADAS AS CONDICOES LEGAIS |