BR112017007946B1 - Processos e sistemas para separar dados sísmicos associados com fontes impulsivas e não impulsivas - Google Patents

Processos e sistemas para separar dados sísmicos associados com fontes impulsivas e não impulsivas Download PDF

Info

Publication number
BR112017007946B1
BR112017007946B1 BR112017007946-1A BR112017007946A BR112017007946B1 BR 112017007946 B1 BR112017007946 B1 BR 112017007946B1 BR 112017007946 A BR112017007946 A BR 112017007946A BR 112017007946 B1 BR112017007946 B1 BR 112017007946B1
Authority
BR
Brazil
Prior art keywords
impulsive source
impulsive
source
seismic data
field
Prior art date
Application number
BR112017007946-1A
Other languages
English (en)
Other versions
BR112017007946A2 (pt
Inventor
Nils Lunde
Okwudili Chucks Orji
Mattias Dan Christian Oscarsson
Original Assignee
Pgs Geophysical As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pgs Geophysical As filed Critical Pgs Geophysical As
Publication of BR112017007946A2 publication Critical patent/BR112017007946A2/pt
Publication of BR112017007946B1 publication Critical patent/BR112017007946B1/pt

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • G01V1/366Seismic filtering by correlation of seismic signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3808Seismic data acquisition, e.g. survey design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/121Active source
    • G01V2210/1212Shot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/121Active source
    • G01V2210/1214Continuous
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/127Cooperating multiple sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/20Trace signal pre-filtering to select, remove or transform specific events or signal components, i.e. trace-in/trace-out

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Oceanography (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

processos e sistemas para separar dados sísmicos associados com fontes impulsivas e não impulsivas. a presente invenção refere-se a métodos e sistemas para separar dados sísmicos, associados com fontes impulsiva e não impulsiva. as fontes impulsiva e não impulsiva podem ser rebocadas por um corpo aquoso por embarcações de levantamento separadas. os receptores de uma ou mais bandeirolas, rebocadas pelo corpo aquoso acima de uma formação subterrânea, geram dados sísmicos, que representam um campo de ondas refletido, produzido pela formação subterrânea, em resposta aos campos de ondas de fontes separados, gerados por ativação simultânea da formação subterrânea e da fonte não impulsiva. os métodos e os sistemas incluem a separação dos dados sísmicos em dados sísmicos de fonte impulsiva, associados com a fonte impulsiva, e dados sísmicos de fonte não impulsiva, associados com a fonte não impulsiva.

Description

REMISSÃO RECÍPROCA A UM PEDIDO DE PATENTE RELACIONADO
[001] Este pedido de patente reivindica o benefício do pedido de patente provisório 62/065.882, depositado em 20 de outubro de 2014. ANTECEDENTES
[002] Os levantamentos marinhos, tipicamente, iluminam uma formação subterrânea localizada abaixo de um corpo aquoso, com os sinais acústicos produzidos por uma ou mais fontes impulsivas submersas. Uma fonte impulsiva típica inclui uma disposição de canhões de ar, cada um dos quais é conectado por uma mangueira a um compressor, localizado a bordo de um navio de levantamento, que reboca a fonte impulsiva pelo corpo aquoso. Cada canhão de ar tem uma câmara, que armazena ar ou gás comprimido, a uma pressão de carga selecionada. Uma fonte impulsiva pode ser ativada por disparo eletrônico dos canhões de ar. Quando um canhão de ar é disparado, ar ou gás é forçado por orifícios na água, criando uma bolha primária oscilante de alta pressão, seguida por uma espuma de bolhas secundárias oscilantes menores. O período de oscilação da bolha de uma bolha primária, produzida por um único canhão de ar, pode ser relacionado ao volume da câmara do canhão de ar e à pressão de carga do ar ou gás armazenado na câmara, como se segue:
Figure img0001
em que: T é um período de oscilação da bolha; P é a pressão de carga do ar ou gás do canhão de ar; V é o volume da câmara do canhão de ar; P0 é a pressão atmosférica; p é a densidade da água; g é a aceleração gravitacional terrestre; D é a profundidade do canhão de ar na água; e K é uma constante que depende das unidades de medida dos parâmetros apresentados acima.
[003] A frequência vibracional da oscilação da bolha primária é f = 1/T. Uma bolha primária oscilante cria energia acústica a frequências vibracionais, que permitem que a energia acústica se propague na formação subterrânea.
[004] Os canhões de ar de uma disposição podem ser selecionados com volumes de câmaras particulares e operados a pressões de carga selecionadas, de modo que, quando os canhões de ar são ativados quase que simultaneamente, um sinal acústico desejado é produzido. O sinal acústico vibra a frequências que permitem que a energia acústica se propague na formação subterrânea. De acordo com a equação (1), a oscilação da bolha de frequência mais baixa de uma disposição de canhões de ar, fbaixa, é o inverso do período de oscilação da bolha mais longo, Tlongo, que é produzido pelo canhão de ar com o maior volume de câmara e/ou a maior pressão de carga.
[005] Embora as disposições de canhões de ar sejam amplamente usadas em levantamentos marinhos, as disposições de canhões de ar não são tipicamente configuradas com canhões de ar, que gerem energia acústica em frequências abaixo de cerca de 8 Hz. A equação (1) indica que deve ser teoricamente possível aumentar o período da bolha T (isto é, expandir a extremidade de baixa frequência de um espectro de frequências de disposições de canhões de ar) por simples aumento do volume da câmara dos maiores canhões de ar e/ou por operação de determinados canhões de ar a maiores pressões de carga. Ainda que não seja teoricamente possível construir esses canhões de ar, o tamanho dos canhões de ar, necessário para suportar maiores volumes de câmara, pode ser impraticável e vai requerer um aumento substancial na capacidade de um compressor a bordo usando para encher a câmara. Os canhões de ar também ficam cada vez menos confiáveis quando operados a maiores pressões de carga. Aqueles que trabalham em sismologia marinha continuam a procurar processos e sistemas para expandir a faixa de baixas frequências de sinais acústicos usados para iluminar uma formação subterrânea.
DESCRIÇÃO DOS DESENHOS
[006] As Figuras 1A - 1B mostra vistas em elevação lateral e pelo topo de um sistema de coleta de dados sísmicos exemplificativo.
[007] A Figura 2 mostra uma vista isométrica de uma fonte impulsiva exemplificativa.
[008] A Figura 3A mostra uma vista isométrica de uma fonte não impulsiva exemplificativa, composta de dois elementos de fonte não impulsiva localizados conjuntamente.
[009] A Figura 3B mostra uma vista isométrica de uma fonte não impulsiva exemplificativa, composta de dois elementos de fonte não impulsiva localizados a diferentes profundidades.
[0010] A Figura 4 mostra um exemplo de faixas de frequências operacionais de uma fonte impulsiva e de uma fonte não impulsiva.
[0011] A Figura 5 mostra como uma assinatura de um campo de onda de fonte, gerado por uma fonte, varia com a distância.
[0012] As Figuras 6A - 6B mostram um exemplo de assinaturas de campos próximos e de campos distantes.
[0013] A Figura 7 mostra um exemplo de coordenadas cartesianas de elementos de fontes impulsivas, elementos de fontes impulsivas virtuais e sensores de pressão de uma fonte impulsiva.
[0014] As Figuras 8A - 8B mostram um exemplo de coordenadas cartesianas de elementos de fontes não impulsivas, elementos de fontes não impulsivas virtuais e sensores de pressão de uma fonte não impulsiva.
[0015] A Figura 9 mostra as distâncias entre os elementos de fontes virtuais e os sensores de pressão e entre os elementos de fontes e os sensores de pressão.
[0016] A Figura 10 mostra um ponto localizado nos campos próximos de uma fonte impulsiva e de uma fonte não impulsiva.
[0017] A Figura 11A mostra caminhos de raios exemplificativos de uma fonte impulsiva e de uma fonte não impulsiva.
[0018] A Figura 11B mostra uma operação exemplificativa das fontes impulsiva e não impulsiva mostradas na Figura 11A.
[0019] A Figura 12 mostra uma representação gráfica exemplifi- cativa de uma pequena onda de duração de disparo.
[0020] A Figura 13 mostra uma representação gráfica exemplifi- cativa de um filtro convolvido com uma assinatura de campos próximos impulsivo e não impulsivo combinados.
[0021] A Figura 14 mostra um diagrama de fluxo de um processo para determinar uma resposta de uma formação subterrânea, para ativação de uma fonte impulsiva e de uma fonte não impulsiva.
[0022] A Figura 15 mostra um diagrama de fluxo de controle da rotina "determinar assinaturas de fontes de campos próximos impulsiva e não impulsiva" chamada na Figura 14.
[0023] A Figura 16 mostra um diagrama de fluxo de controle da rotina "separar os dados sísmicos em dados sísmicos de fontes impulsiva e não impulsiva" chamada na Figura 14.
[0024] A Figura 17A mostra um diagrama de fluxo de um processo para fazer um levantamento de uma formação subterrânea.
[0025] A Figura 17B mostra um diagrama de fluxo da rotina "separar os dados sísmicos em dados sísmicos de fontes impulsiva e não impulsiva pela faixa de frequências de sobreposição", chamada na Figura 17A.
[0026] A Figura 18 mostra um exemplo de um sistema computadorizado genérico.
DESCRIÇÃO DETALHADA
[0027] Processos e sistemas para determinar uma resposta subterrânea a campos de ondas de fontes, gerados por uma fonte impulsiva e uma fonte não impulsiva de um levantamento marinho, são descritos. As fontes impulsiva e não impulsiva podem ser rebocadas por embarcações de levantamento separadas por um corpo aquoso acima de uma formação subterrânea. Os receptores de uma ou mais bandeirolas podem ser rebocados por um corpo aquoso acima da formação subterrânea, enquanto a fonte não impulsiva pode ser ativada continuamente, e a fonte impulsiva pode ser ativada com retardos de tempo (por exemplo, periódicos, pseudoaleatórios ou aleatórios). Os receptores geram dados sísmicos, que representam um campo de onda refletido, produzido pela formação subterrânea, em resposta aos campos de ondas separados gerados pela fonte impulsiva e pela fonte não impulsiva. Os processos e os sistemas incluem a separação dos dados sísmicos em dados sísmicos da fonte impulsiva associados com a fonte impulsiva e dados sísmicos da fonte não impulsiva associados com a fonte não impulsiva.
[0028] As Figuras 1A - 1B mostram vistas em elevação lateral e pelo topo, respectivamente, de um sistema de coleta de dados sísmicos exemplificativo, composto de uma primeira embarcação de levantamento 102, rebocando uma fonte impulsiva 104 e seis bandeirolas 106 - 111 separadas, abaixo de uma superfície livre 112 de um corpo aquoso, e uma segunda embarcação de levantamento 114, rebocando uma fonte não impulsiva 116, abaixo da superfície livre 12. O corpo aquoso pode ser, por exemplo, um oceano, um mar, um lago ou um rio, ou qualquer parte deles. Neste exemplo, cada bandeirola é presa em uma extremidade na embarcação de levantamento 102 por meio de um cabo de transmissão de dados de bandeirolas. As bandeirolas 106 - 111 ilustradas formam uma superfície de coleta de dados horizontal plana com relação à superfície livre 112. No entanto, na prática, a superfície de coleta de dados pode ser variável uniformemente, devido às correntes marinhas ativas e às condições do tempo. Em outras palavras, embora as bandeirolas 106 - 111 sejam ilustradas nas Figuras 1A e 1B e nas figuras subsequentes como retos e substancialmente paralelos à superfície livre 112, na prática, as bandeirolas rebocadas podem ondular em consequência das condições dinâmicas do corpo aquoso no qual estão submersas as bandeirolas. Uma superfície de coleta de dados não é limitada a ter uma orientação horizontal plana com relação à superfície livre 112. As bandeirolas podem ser rebocadas a profundidades que angulam a superfície de coleta de dados com relação à superfície livre 112, ou uma ou mais das bandeirolas podem ser rebocadas a diferentes profundidades. Uma superfície de coleta de dados não é limitada a seis bandeirolas, como mostrado na Figura 1B. Na prática, o número de bandeirolas usadas para formar uma superfície de coleta de dados pode variar de poucas como uma bandeirola a muitas como 20 ou mais bandeirolas. Deve-se também notar que o número de fontes impulsivas não é limitado a uma única fonte impulsiva. Na prática, o número de fontes impulsivas, selecionado para gerar energia acústica, pode variar de poucas como uma fonte impulsiva a três ou mais fontes, e as fontes podem ser rebocadas em grupos por uma ou mais embarcações. Em outras implementações, a fonte impulsiva 104 pode ser rebocada por uma embarcação de levantamento e as bandeirolas podem ser rebocadas por uma embarcação de levantamento diferente.
[0029] A Figura 1A inclui um plano xz 118 e a Figura 1B inclui um plano xy 120 do mesmo sistema de coordenadas cartesianas, tendo três eixos de coordenadas espaciais, ortogonais marcados x, y e z. O sistema de coordenadas é usado para especificar as orientações e os locais das coordenadas dentro do corpo aquoso. A direção x especifica a posição de um ponto em uma direção paralela ao comprimento das bandeirolas (ou uma parte específica delas, quando o comprimento das bandeirolas é curvo), e é referida como a direção "em linha". A direção y especifica a posição de um ponto em uma direção perpendicular ao eixo x e substancialmente paralela à superfície livre 112, e é referida como a direção em "linha cruzada". A direção z especifica a posição de um ponto perpendicular ao plano xy (isto é, perpendicular à superfície livre 112), com a direção z positiva apontando para longe da superfície livre 112. As bandeirolas 106 - 111 são cabos longos contendo linhas de transmissão de energia e dados, que conectam os receptores representados por retângulos sombreados, tal como um receptor 122, espaçados entre eles ao longo do comprimento de cada bandeirola, para um equipamento de processamento de dados e registro e dispositivos de armazenamento de dados localizados a bordo da embarcação de levantamento 102.
[0030] A profundidade das bandeirolas abaixo da superfície livre 112 pode ser estimada em vários locais ao longo das bandeirolas (por exemplo, usando dispositivos de medida de profundidade presos nas bandeirolas). Por exemplo, os dispositivos de medida de profundidade podem medir a pressão hidrostática ou utilizar medidas de distâncias acústicas. Os dispositivos de medida de profundidade podem ser integrados com controladores de profundidade e controladores de posição lateral, que controlam e mantêm a profundidade e a posição das bandeirolas, na medida em que as bandeirolas são rebocadas pelo corpo aquoso. Os dispositivos de medida de profundidade são tipicamente colocados a intervalos (por exemplo, intervalos de cerca de 300 metros em algumas implementações) ao longo de todas as bandeirolas. Notar que em outras implementações, boias podem ser presas nas bandeirolas e usadas para manter a orientação e a profundidade das bandeirolas abaixo da superfície livre 112.
[0031] A Figura 1A mostra uma vista em seção transversal da embarcação de levantamento 102, rebocando a fonte impulsiva 104, e a embarcação de levantamento 114, rebocando a fonte não impulsiva 116, acima da formação subterrânea 124. A curva 126, a superfície de formação, representa uma superfície de topo da formação subterrânea 124, localizada no fundo do corpo aquoso. A formação subterrânea 124 pode ser composta de várias camadas subterrâneas de sedimento e rocha. As curvas 128, 130 e 132 representam interfaces entre as camadas subterrâneas de diferentes composições. Uma região sombreada 134, ligada à parte de topo por uma curva 138 e à parte de fundo por uma curva 136, representa um depósito subterrâneo de hidrocarbonetos, cujas coordenadas de posição e a profundidade podem ser estimadas, pelo menos em parte, por análise dos dados sísmicos coletados durante um levantamento marinho. Na medida em que as embarcações de levantamento 102 e 114 se movimentam pela formação subterrânea 124, a fonte impulsiva 104 pode ser ativada para produzir um campo de onda de fonte impulsiva, a intervalos espaciais e/ou temporais, e a fonte não impulsiva 116 pode ser ativada para produzir um campo de onda de fonte não impulsiva acústica. A ativação da fonte impulsiva 104 é frequência chamada um "disparo". A natureza e a localização do depósito subterrâneo de hidrocarbonetos 134 podem ser mais bem entendidas por determinação da resposta da formação subterrânea 124 à fonte impulsiva 104 e à fonte não impulsiva 116.
[0032] Os semicírculos 140 de raios crescentes representam um campo de onda de fonte impulsiva se expandindo para fora da fonte impulsiva 104, e os semicírculos 142 de raios crescentes representam um campo de onda de fonte não impulsiva. As fontes de onda 140 e 142 se expandindo para fora das fontes 104 e 116 podem ser tridimensionais (por exemplo, esféricas), mas são mostrados em uma seção transversal em plano vertical na Figura 1A. A parte se expandindo para fora e para baixo dos campos de onda das fontes impulsiva e não impulsiva 140 e 142 e as partes dos campos de ondas das fontes 140 e 142, refletidas da superfície livre 112, atingem eventualmente a superfície de formação 126, em cujo ponto os campos de ondas podem ser refletidos parcialmente da formação subterrânea 126 e parcialmente refratados para baixo na formação subterrânea 124, se tornando ondas elásticas dentro da formação subterrânea 124. Em outras palavras, no corpo aquoso, o campo de onda de fonte impulsiva 140 e o campo de onda de fonte não impulsiva 142 são compostos basicamente de ondas de pressão compressiva, ou ondas P, enquanto que na formação subterrânea 124, as ondas incluem ambas as ondas P e as ondas transversais, ou ondas S. Dentro da formação subterrânea 124, em cada interface entre diferentes tipos de materiais ou em descontinui- dades em densidade, ou em uma ou mais de outras características físicas ou parâmetros, as ondas de propagação descendentes podem ser parcialmente refletidas e parcialmente refratadas. Por conseguinte, cada ponto da superfície de formação 126 e cada ponto das interfaces 128, 130 e 132 podem ser um refletor, que se torna uma fonte de ponto secundário potencial, do qual as energias das ondas acústica e elástica, respectivamente, podem emanar para cima para cima na direção dos receptores 122, em resposta aos campos de ondas das fontes 140 e 142, gerados pelas fontes 104 e 116. Como mostrado na Figura 1A, os campos de ondas de amplitude significativa podem ser geralmente refletidos na ou próximos da superfície de formação 126, tal como o ponto 144, e dos pontos nas ou muito próximos das interfaces na formação subterrânea 124, tais como os pontos 146 e 148. As ondas se expandindo para cima, refletidas da formação subterrânea 124, são chamadas coletivamente "campo de ondas refletido".
[0033] As ondas que compõem o campo de ondas refletido podem ser geralmente refletidas em diferentes tempos dentro de uma gama de tempos seguintes à ativação da fonte impulsiva 104 e da fonte não impulsiva 116. Uma perturbação de pressão do campo de ondas da fonte impulsiva 140 atinge um ponto na formação subterrânea 126, tal como o ponto 144, mais rapidamente do que um ponto dentro da formação subterrânea 124, tal como o ponto 148. De modo similar, uma perturbação de pressão do campo de ondas da fonte impulsiva 140 atinge um ponto na superfície de formação 126, localizada diretamente abaixo da fonte impulsiva 104 mais cedo do que um ponto situado mais distante na formação subterrânea 126. Desse modo, os tempos, nos quais as ondas de ordem secundárias ou de ordem maior são refletidas de vários pontos dentro da formação subterrânea 124, podem ser relacionados à distância, no espaço tridimensional, dos pontos a partir da fonte ativada.
[0034] Cada receptor 122 pode ser um sensor de pressão que detecta as variações na pressão da água com o tempo, ou um sensor de movimento de partículas que detecta o deslocamento, as velocidades ou acelerações de partículas com o tempo. Cada receptor 122 pode ser também um sensor multicomponente, composto de um ou mais sensores de movimento de partículas, localizado conjuntamente com um sensor de pressão. As bandeirolas 106 - 111 e as embarcações de levantamento 102 e 114 podem incluir componentes eletrônicos, e a embarcação de levantamento 102 pode incluir instalações de processamento de dados, que permitem que os dados sísmicos, gerados pelos receptores, sejam correlacionados com o tempo no qual a fonte impulsiva 104 e a fonte não impulsiva 116 estão ativadas, as posições absolutas na superfície livre 112, e/ou as posições tridimensionais absolutas com relação a um sistema de coordenadas tridimensional arbitrário. Os dados de pressão e os dados de movimento de partículas podem ser armazenados no receptor, e/ou podem ser enviados, ao longo das bandeirolas e dos cabos de transmissão de dados, à embarcação de levantamento 102, na qual os dados podem ser armazenados eletrônica ou magneticamente nos dispositivos de armazenamento de dados localizados a bordo da embarcação de levantamento 102.
[0035] A fonte impulsiva 104, rebocada na parte detrás da embarcação de levantamento 102, pode consistir de vários elementos de fonte impulsiva. A Figura 2 mostra uma vista isométrica de uma fonte impulsiva 200 exemplificativa, composta de quatro subdisposições 201 - 204, cada uma delas tendo vários elementos de fonte impulsiva 208. Neste exemplo, as subdisposições 201 - 204 têm os mesmos componentes. Por exemplo, a subdisposição 203 inclui uma haste semirrígida 205, suspensa de um flutuador 206 por amarras de profundidade 207. Sete elementos de fonte impulsiva, tal como o elemento de fonte impulsiva 208, são suspensos da haste semirrígida 205. Os exemplos de elementos de fonte impulsiva incluem canhões de ar ou canhões de água. A subdisposição 203 também inclui sete sensores de pressão, tal como o sensor de pressão 209, espaçados entre eles ao longo da haste semirrígida 205. Cada sensor de pressão é localizado ao longo da haste semirrígida 205 bem próximo de um elemento de fonte impulsiva, para medir uma perturbação de pressão criada pelo elemento de fonte impulsiva, na medida em que a fonte impulsiva 200 se movimenta na direção representada pela seta direcional 210. Por exemplo, o sensor de pressão 209 é localizado bem próximo (por exemplo, a aproximadamente 1 m, a menos de 10 m, etc.) do elemento de fonte impulsiva 208, para medir uma perturbação de pressão criara pelo elemento de fonte impulsiva 208, quando ativado. Por exemplo, os sensores de pressão podem ser hidrofones. Cada subdisposição é conectada a um cabo, tal como o cabo 211, que é, por sua vez, conectado à embarcação de levantamento. O cabo pode incluir fios elétricos, que transmitem sinais de ativação elétrica a cada elemento de fonte impulsiva, e transmitem sinais elétricos, gerados por cada superfície livre de volta à embarcação de levantamento, e pode incluir uma mangueira de ar, que conduz ar comprimido da embarcação de levantamento para cada elemento de fonte impulsiva. As subdisposições 201 - 204 são conectadas pelos cabos 212 - 214, e cada subdisposição inclui um dispositivo de condução, tal como uma asas, que pode ser usada para conduzir e controlar separadamente a direção dos deslocamentos de subdisposições, enquanto estas estão sendo rebocadas pelo corpo aquoso. Por exemplo, a subdisposição 203 inclui uma asa 215, que pode ser usada para controlar a direção lateral da subdisposição 203.
[0036] Notar que as fontes impulsivas não são tencionadas para serem limitadas aos vinte e oito elementos de fonte impulsiva exemplificativos, mostrados na Figura 2. Por exemplo, uma fonte impulsiva pode ter até 80 ou mais elementos de fonte impulsiva. Uma fonte impulsiva típica pode incluir um ou mais flutuadores, e cada flutuador pode ter um número qualquer de elementos de fonte suspensos do flutuador. Uma fonte impulsiva pode incluir um receptor de satélite de sistema de posicionamento global ("GPS"), preso em um ou mais dos flutuadores. O GPS permite a determinação da posição geodésica da fonte impulsiva, e, portanto, a posição geodésica de cada sensor de pressão e a de cada elemento de fonte podem ser determinadas a qualquer momento no tempo, porque as suas localizações de coordenadas relativas, com relação à localização do GPS, são conhecidas. Os sinais do GPS podem ser comunicados ao sistema de registro, localizado a bordo de uma embarcação de levantamento. A fonte impulsiva 200 pode também incluir um sistema de posicionamento acústico (não mostrado), por exemplo, preso em uma ou mais das hastes semirrígidas 205. O sistema de posicionamento acústico pode gerar um sinal acústico, que pode ser usado para determinar a posição da fonte impulsiva.
[0037] Uma fonte impulsiva pode ter um efeito direcional na transmissão do sinal acústico. Em outras palavras, a amplitude em relação ao tempo de um campo de ondas de fonte impulsiva pode variar com a direção. Esta é uma consequência da fonte impulsiva tendo dimensões que não são pequenas com relação aos comprimentos de onda do campo de ondas da fonte impulsiva. Comparativamente, os elementos de fontes impulsivas individuais são normalmente muito pequenos em comparação com relação aos comprimentos de onda do campo de onda da fonte impulsiva, e, portanto, se comportam individualmente como fontes pontuais de ondas de pressão. Em outras palavras, uma única onda de pressão criada por um elemento de fonte impulsiva pode ter simetria esférica, e pode ser essencialmente da mesma forma em todas as direções.
[0038] Por outro lado, a fonte não impulsiva 116, rebocada pela embarcação de levantamento 114, pode consistir de um ou mais elementos de fonte não impulsiva. A Figura 3A mostra uma vista isométrica de uma fonte não impulsiva 300 exemplificativa, composta de dois elementos de fonte não impulsiva 302 e 304 operados eletronicamente, suportados por um chassi 306. A fonte não impulsiva 300 inclui dois sensores de pressão 308 e 310, localizados bem próximos (por exemplo, a aproximadamente 1 m, a menos de cerca de 2 m) dos elementos de fonte não impulsiva 302 e 304 correspondentes, e inclui um dispositivo de determinação de posição 312. Por exemplo, o dispositivo de determinação de posição 312 pode ser um detector de amplitude acústica, que detecta sinais acústicos transmitidos de vários diferentes locais (por exemplo, da embarcação de levantamento 114), de modo que a localização geodésica da fonte não impulsiva 300 e as localizações relativas dos elementos de fonte não impulsiva 302 e 304 podem ser determinadas a qualquer momento no tempo. Um cabo 314, que conecta a fonte não impulsiva 300 a uma embarcação de levantamento, propicia a transmissão de sinais elétricos, para operar separadamente os elementos de fonte não impulsiva 302 e 304 e transmitir os dados gerados pelos sensores de pressão 308 e 310 e pelo dispositivo de determinação de posição 312 à embarcação de levantamento.
[0039] Em uma implementação alternativa, uma fonte não impulsiva pode ser composta de elementos de fonte não impulsiva, rebocados a diferentes profundidades abaixo da superfície livre. A Figura 3B mostra uma vista isométrica de uma fonte não impulsiva 302 exemplificativa, composta de dois elementos de fonte não impulsiva 322 e 324 operados eletronicamente separados, cada um deles suportado por um diferente chassi 326 e 328, respectivamente. A fonte não impulsiva 320 inclui um sensor de pressão 330, localizado bem próximo (por exemplo, a aproximadamente 1 m, a menos de cerca de 2 m) do elemento de fonte não impulsiva 322 correspondente, e um sensor de pressão 332, localizado bem próximo (por exemplo, a aproximadamente 1 m, a menos de cerca de 2 m) do elemento de fonte não impulsiva 324 correspondente. Os cabos separados 334 e 336 conectam os elementos de fonte não impulsiva 322 e 324 correspondentes a uma embarcação de levantamento. Os elementos de fonte não impulsiva 322 e 324 têm um dispositivo de determinação de posição 338 e 340 associado. Neste exemplo, os elementos de fonte não impulsiva 322 e 324 são rebocados a diferentes profundidades, como indicado por uma linha tracejada 342, que representa a distância vertical entre os centros dos elementos de fonte não impulsiva 322 e 324.
[0040] Notar que as fontes não impulsivas não são tencionadas para serem limitadas a dois elementos de fonte não impulsiva. Na prática, uma fonte não impulsiva pode ser composta de poucos como um elemento de fonte não impulsiva a mais de dois elementos de fonte não impulsiva. Os exemplos de elementos de fonte não impulsiva incluem um vibrador marinho e um transdutor supereteródino. Uma fonte não impulsiva pode ser configurada com flutuadores e/ou paravanes, para controlar a profundidade e a posição da fonte não impulsiva, enquanto é rebocada por um corpo aquoso, como mostrado no exemplo da Figura 1A.
[0041] Cada elemento de fonte impulsiva de uma fonte impulsiva gera energia acústica por uma faixa estreita de frequências, com base no volume da câmara e na pressão de carga, nos quais o elemento de fonte é operado. Por conseguinte, uma fonte impulsiva pode ter vários elementos de fonte impulsiva selecionados com diferentes volumes de câmara e operados com diferentes pressões de carga, para gerar um campo de ondas de fonte impulsiva de faixa ampla. No entanto, a energia acústica de faixa ampla típica, gerada por uma fonte impulsiva, tem um limite de baixa frequência, fbaixa. Por exemplo, a frequência mais baixa que uma disposição típica de canhões de ar é capaz de produzir é cerca de 8 Hz. Por outro lado, uma fonte não impulsiva pode gerar energia acústica pode uma faixa de frequências, que se estende abaixo desse limite de baixa frequência. Por exemplo, os vibradores marinhos podem gerar energia acústica dentro de uma faixa de frequências inferiores a cerca de 8 Hz. Uma fonte não impulsiva pode ser usada em combinação com uma fonte impulsiva, para iluminar uma formação subterrânea com energia acústica por uma maior faixa de frequências, que pode ser obtida por qualquer fonte impulsiva ou fonte não impulsiva sozinha.
[0042] A Figura 4 mostra um exemplo de faixas operacionais de frequência de uma fonte impulsiva e dois elementos de fonte não impulsiva de uma fonte não impulsiva. A seta direcional 402 representa um eixo de frequência acústica. O segmento linear 404 representa uma faixa de frequências de fonte impulsiva de um campo de ondas de fonte impulsiva, gerado por uma fonte impulsiva. A faixa de frequências de fonte impulsiva 404 é indicada por
Figure img0002
em que
Figure img0003
é a frequência angular de uma frequência vibracional f. Por outro lado, o segmento linear 406 representa uma faixa de frequências associada com um primeiro elemento de fonte não impulsiva, e o segmento linear 408 representa uma faixa de frequências associada com um segundo elemento de fonte não impulsiva. Os campos de ondas de fonte não impulsiva, gerados pelos primeiro e segundo elementos de fonte não impulsiva, tem uma faixa de frequências de fonte não impulsiva combinada 410 indicada por
Figure img0004
Neste exemplo, a faixa de frequências de fonte não impulsiva 410 se sobrepõe à faixa de frequências de fonte impulsiva 404, para produzir uma faixa de high frequências de sobreposição 412, indicada por
Figure img0005
A faixa de frequências global, que ilumina a formação subterrânea, é indicada por
Figure img0006
[0043] A amplitude variável com o tempo de uma onda de pressão, gerada por um elemento de fonte impulsiva ou não impulsiva, ou de um campo de ondas de fonte, gerada por uma fonte impulsiva ou não impulsiva, é chamada uma "assinatura". A assinatura de uma onda de pressão varia com relação ao tipo de elemento de fonte, a como os elementos de fonte são combinados para formar uma fonte, e a uma distância dos elementos de fonte e da fonte.
[0044] A Figura 5 mostra como uma assinatura de um campo de ondas de fonte, gerada por uma fonte (por exemplo, uma fonte impulsiva ou não impulsiva), varia com a distância. O bloco 502 representa uma fonte, tal como uma fonte impulsiva ou uma fonte não impulsiva, localizada abaixo da superfície livre 504 de um corpo aquoso. Em qualquer determinada direção, tal como a direção representada pelas setas direcionais 506 e 508, a assinatura do campo de ondas da fonte é composta de ondas de pressão geradas pelos elementos de fonte, compreendendo a fonte, e varia com o aumento da distância da fonte 502, até uma distância suficientemente grande, indicada pelo limite nocional 510, a assinatura do campo de ondas da fonte se estabiliza a uma forma estável (por exemplo, uma forma simétrica esfericamente). Em distâncias maiores, a assinatura se mantém substancialmente igual (por exemplo, uma forma simétrica esfericamente), ainda que a amplitude da assinatura diminua inversamente com relação à distância. O limite nocional 510 separa as regiões 512 e 514. As regiões 512 e 514 podem ser tridimensionais (por exemplo, esféricas), mas são mostradas em uma seção transversal de plano vertical na Figura 5. A região interna 514 é chamada o "campo próximo", que representa uma região próxima da fonte 502, na qual a assinatura do campo de ondas da fonte varia devido à sobreposição das assinaturas das ondas de pressão, geradas separadamente pelos elementos de fonte. Comparativamente, a região externa 512 é chamada o "campo distante", que representa uma região longe da fonte 502, na qual a assinatura do campo de ondas da fonte não muda significativamente com a distância da fonte 502. O campo distante 512 tipicamente começa 2d2/Â em distâncias superiores a cerca de do centro da fonte 502, em que d é uma dimensão do comprimento da fonte 502, e □ é o comprimento de onda do comprimento de onda da fonte gerado pela fonte.
[0045] Voltando à Figura 2, os sensores de pressão são localizados dentro do campo próximo dos elementos de fonte impulsiva associados. Por exemplo, o sensor de pressão 209 é localizado dentro do campo próximo do elemento de fonte impulsiva 208. Igualmente, nas Figuras 3A - 3B, os sensores de pressão são também localizados dentro do campo próximo dos elementos de fonte não impulsiva associados. Por exemplo, o sensor de pressão 308 é localizado dentro do campo próximo do elemento de fonte não impulsiva 302.
[0046] As Figuras 6A - 6B mostram um exemplo de como as assinaturas de elementos de fonte impulsiva mudam na medida em que os campos de ondas se propagam do campo próximo para o campo distante. A Figura 6A mostra uma representação gráfica exemplificativa de uma assinatura de campo próximo de uma fonte impulsiva. O eixo horizontal 601 representa o tempo e o eixo vertical 602 representa a pressão. A curva 604 representa a variação na pressão motriz de uma bolha primária oscilante (isto é, uma assinatura de campo próximo) liberada por uma fonte impulsiva. O primeiro pico 605 representa um acúmulo e a liberação iniciais de uma bolha da fonte impulsiva no fluido, e os picos 606 - 608 subsequentes representam uma diminuição na amplitude com o aumento do tempo. A assinatura de campo próximo revela que a pressão, após atingir um pico, cai a valores abaixo da pressão hidrostática, PH. A amplitude de oscilação da bolha diminui na medida em que o tempo passa, e o período de oscilação da bolha não é constante de um ciclo ao seguinte. Por exemplo, quanto maior o volume da câmara de um canhão de ar, maiores as amplitudes de pico e mais longos os períodos de bolha. Por outro lado, quando uma disposição de canhões de ar é disparada quase que simultaneamente, as ondas de pressão se combinam para formar um campo de ondas da fonte, tal como o campo de ondas da fonte impulsiva 140, descrita acima com referência à Figura 1A. As fontes impulsivas podem ser selecionadas com diferentes volumes de câmara, um diferente espaçamento de elementos de fonte impulsiva e diferentes posições de elementos de fonte impulsiva dentro da disposição, para amplificar determinadas posições das assinaturas de campos próximos e cancelar outras.
[0047] A Figura 6B mostra uma representação gráfica exemplifi- cativa de uma assinatura de campo distante 610 de um campo de ondas da fonte transferida de uma disposição de elementos de fonte impulsiva. O eixo horizontal 611 representa o tempo e o eixo vertical representa a pressão 612. A assinatura do campo distante 610 tem um pico primário 613, que é uma superposição da pressão inicial liberada dos elementos de fonte impulsiva. Em virtude da superfície livre de um corpo aquoso servir como um receptor acústico praticamente perfeito, uma parte da onda de pressão transferida de cada elemento de fonte impulsiva se expande para cima e é refletida da superfície livre e é chamada "uma reflexão-fantasma da superfície". Um segundo pico 614 é uma superposição das reflexões de onda de pressão da superfície livre e é chamado um "pico-fantasma", que se segue em um tempo atrás do pico primário 613. No campo distante, cerca de metade da energia no campo de ondas da fonte de propagação se origina das reflexões-fantasmas da superfície livre, representadas pelo pico-fantasma 614. A reflexão- fantasma da superfície é cerca de 180 graus fora de fase com a parte do campo de ondas da fonte, que se desloca diretamente para baixo da fonte impulsiva.
[0048] Os processos descritos no presente relatório descritivo incluem o cálculo da assinatura de campo distante de uma fonte impulsiva e a assinatura de campo distante de uma fonte não impulsiva, com base em assinaturas de campos próximos medidas dos elementos de fonte individuais. A assinatura de campo próximo de um elemento de fonte impulsiva ou não impulsiva é medida por um sensor de pressão bem próximo. Por exemplo, na Figura 2, cada elemento de fonte impulsiva tem um sensor de pressão associado, tal como um elemento de fonte impulsiva 208 e um sensor de pressão bem próximo 216. O sensor de pressão 216 mede a variação de amplitude da onda de pressão (isto é, uma assinatura de campo próximo) gerada pelo elemento de fonte impulsiva 208. Por exemplo, na Figura 3A, os sensores de pressão 308 e 310 medem as assinaturas de campos próximos das ondas de pressão geradas pelos elementos de fontes não impulsivas 302 e 304 correspondentes.
[0049] No entanto, quando os elementos de fonte (isto é, elementos de fonte impulsiva ou não impulsiva) são ativados simultaneamente ou em tempos próximos, a assinatura da onda de pressão, gerada por um elemento de fonte, é afetada pelas ondas de pressão produzidas por outros elementos de fonte. Considerar, por exemplo, que a ativação de um único elemento de fonte impulsiva, que cria uma bolha oscilante. A bolha oscilante cria, por sua vez, uma onda de pressão, que oscila a frequências sísmicas (isto é, frequências vibracionais que penetram na formação subterrânea). A amplitude da onda de pressão gerada pela bolha oscilante é proporcional à distância, r, e é dada por:
Figure img0007
em que: c é a velocidade do som na água; e p(.) é o campo de ondas de pressão da bolha primária mostrada na Figura 6A.
[0050] O comportamento da bolha oscilante pode ser caracterizado por:
Figure img0008
em que: PH é a pressão hidrostática constante da água circundando a bolha; P(t) é a pressão interna da bolha; e Pd(t) é a pressão motriz da bolha. Quando Pd(t) > 0 a bolha se expande e quando Pd(t) < 0 a bolha é decomposta.
[0051] Por outro lado, quando N elementos de fonte impulsiva injetam ar na água circundante em tempos próximos, tal como quando da ativação de uma disposição de canhões de ar, a pressão hidrostática circundando uma bolha oscilante é afetada pelas ondas de pressão produzidas pelas outras (N - 1) bolhas oscilantes. Se não houver nenhuma dessas interações, a assinatura de campo distante da fonte impulsiva pode ser calculada por simples superposição das assinaturas de campos próximos medidas dos elementos de fonte impulsiva individuais, e, igualmente, a assinatura de campo distante da fonte não impulsiva pode ser calculada por simples superposição das assinaturas de campos próximos medidas dos elementos de fonte não impulsiva individuais. No entanto, essas assinaturas de campos distantes calculadas não iguais às assinaturas de campos distantes medidas. Por conseguinte, a lei da superposição não se aplica dessa maneira. Para calcular uma assinatura de campo distante de uma fonte impulsiva ou de uma fonte não impulsiva, as mudanças na pressão hidrostática devido à ativação de outros elementos de fonte, podem ser consideradas. Em particular, a pressão hidrostática circundando uma ia bolha, na presença de (N - 1) bolhas oscilantes, é representada por:
Figure img0009
em que: PHi é a pressão hidrostática circundando a ia bolha; mi(t) é a pressão de modulação produzida pelas outras bolhas; e PHi(t) é a pressão hidrostática variando com o tempo circundando a ia bolha.
[0052] O pressão motriz na bolha produzida pelo i° elemento de fonte impulsiva é dada por:
Figure img0010
em que os primos (') indicam a mudança em comportamento devido às interações.
[0053] As dinâmicas da ia bolha são afetadas pelas mudanças na pressão da água. Portanto, a assinatura da onda de pressão gerada pela ia bolha, indicada por Pi(t), é diferente da assinatura da onda de pressão P(t), gerada por uma bolha isolada com a pressão motriz, representada pela equação (3). A combinação das equações (4) e (5) gera:
Figure img0011
[0054] A equação (6) é análoga à equação (3) pelo fato de que a bolha modificada se comporta como se a bolha modificada fosse produzida por um elemento de fonte impulsiva isolado, oscilando na água com uma pressão hidrostática PHi constante e pressão interna P'i(t) - mi(t) com a assinatura da onda de pressão P'i(t). A equação (6) demonstra que as bolhas interagindo são equivalentes às bolhas "nocionais" independente com a pressão interna P'i(t) - mi(t). A assinatura da onda de pressão, P'i(t), é chamada a "assinatura nocional", que inclui as influências das ondas de pressão produzidas pelas bolhas geradas por outros elementos de fonte impulsiva.
[0055] Embora as assinaturas nocionais sejam descritas acima com referência às ondas de pressão geradas pelos canhões de ar, as assinaturas nocionais também existem para uma onda de pressão gerada por outros tipos de elementos de fonte impulsiva, tais como os canhões de água. Os elementos de fonte não impulsiva de uma fonte não impulsiva têm também assinaturas nocionais associadas.
[0056] As assinaturas nocionais de elementos de fonte são desconhecidas, sendo determinadas por solução de sistemas das equações lineares (9) e (10). Mas, a localização de um sensor de pressão bem próximo de cada elemento de fonte, tal como um sensor de pressão localizado próximo de elementos de fontes impulsiva e não impulsiva, como mostrado nas Figuras 2 e 3, as assinaturas nocionais dos elementos de fonte podem ser determinadas das pressões de campo próximo medidas pelos sensores de pressão bem próximos.
[0057] Quando um elemento de fonte é disparado, a onda de pressão irradia para fora do elemento de fonte com uma simetria essencialmente esférica. Por conseguinte, o sensor de pressão, localizado mais próximo do elemento de fonte, não apenas mede a onda de pressão, criada pelo elemento de sensor mais próximo, mas também mede a onda de pressão gerada pelos outros elementos de fonte. Os sensores de pressão também medem cada reflexão-fantasma de onda de pressão da superfície livre. Cada reflexão-fantasma parece ter sido gerada por um elemento de fonte virtual, localizada a uma mesma distância acima da superfície livre, pois o elemento de fonte é localizado abaixo da superfície livre.
[0058] As assinaturas nocionais dos elementos de fonte podem ser determinadas dos locais de coordenadas dos elementos de fonte, sensores de pressão e elemento de fonte virtual. Na descrição apresentada a seguir, coordenadas cartesianas são usadas para representar as coordenadas de elementos de fonte, elementos de fonte virtuais e sensores de pressão. As coordenadas cartesianas dos elementos de fontes impulsiva e não impulsiva podem ser determinados com relação à origem de um sistemas de coordenadas cartesianas, usado em todo o sistema de coleta de dados sísmicos, ou com relação aos centros das fontes impulsiva e não impulsiva correspondentes.
[0059] A Figura 7 mostra um exemplo de coordenadas cartesianas atribuídas a elementos de fonte impulsiva, elementos de fonte impulsiva virtuais e sensores de pressão para a subdisposição 203 da fonte impulsiva 200, mostrada na Figura 2. No exemplo da Figura 7, os elementos de fonte impulsiva reais e os sensores de pressão são desenhados com linhas sólidas, e os elementos de fonte impulsiva virtuais são desenhados com linhas tracejadas. Por exemplo, o cilindro 702 representa um elemento de fonte impulsiva real, localizado a uma distância 704 abaixo da superfície livre 706, e o cilindro de linha tracejada 708 representa um elemento de fonte impulsiva virtual, que corresponde ao elemento de fonte impulsiva 702 e é localizado a uma mesma distância 710 acima da superfície livre 706. As coordenadas cartesianas de elementos de fonte impulsiva, tal como o elemento de fonte impulsiva 702, são indicadas por (xvi, yvi, zvi), em que xvi e yvi representam as coordenadas em linha e em linha transversal e zvi representa a profundidade do elemento de fonte impulsiva abaixo da superfície livre 706. As coordenadas cartesianas dos sensores de pressão, tal como o sensor de pressão 712, são indicadas por (xhi, yhi, zhi), em que xhi e yhi representam as coordenadas em linha e em linha transversal e zhi representa a profundidade do elemento de fonte impulsiva abaixo da superfície livre 706. As coordenadas cartesianas de elementos de fonte impulsiva virtuais, tal como o elemento de fonte impulsiva virtual 708, são indicadas por (xvi, yvi, -zvi), em que -zvi representa a profundidade do sensor de pressão abaixo da superfície livre 706.
[0060] A Figura 8A mostra um exemplo de coordenadas cartesianas atribuídas a elementos de fonte impulsiva, elementos de fonte impulsiva virtuais e sensores de pressão da fonte impulsiva 300, mostrada na Figura 2. Os elementos de fonte não impulsiva real e os sensores de pressão são desenhados com linhas sólidas, e os elementos de fonte impulsiva virtuais são desenhados com linhas tracejadas. As coordenadas cartesianas do centro geométrico dos elementos de fonte não impulsiva, tal como o centro geométrico 802 do elemento de fonte não impulsiva 304, são indicadas por (xvi, yvi, zvi), em que xvi e yvi representam as coordenadas em linha e em linha transversal e zvi representa a profundidade do elemento de fonte impulsiva abaixo da superfície livre 804. As coordenadas cartesianas dos sensores de pressão, tal como o sensor de pressão 310, são indicadas por (xhi, yhi, zhi), em que xhi e yhi representam as coordenadas em linha e em linha transversal e zhi representa a profundidade do elemento de fonte impulsiva abaixo da superfície livre 706. As coordenadas cartesianas de elementos de fonte impulsiva virtuais, tal como o elemento de fonte impulsiva virtual 708, são indicadas por (xvi, yvi, -zvi), em que -zvi representa a profundidade do sensor de pressão abaixo da superfície livre 804. A Figura 8A também mostra elementos de fonte não impulsiva virtuais 806 e 808, que correspondem aos elementos de fonte não impulsiva 302, e 304, respectivamente. As coordenadas cartesianas do centro geométrico dos elementos de fonte não impulsiva virtuais, tal como o centro geométrico 810 do elemento de fonte não impulsiva virtual 808, são indicadas por (xvi, yvi, -zvi), em que -zvi representa a altura do elemento de fonte não impulsiva virtual acima da superfície livre 804.
[0061] As coordenadas cartesianas podem ser igualmente atribuídas a fontes não impulsivas com elementos de fonte não impulsiva separados. A Figura 8B mostra um exemplo de coordenadas cartesianas atribuídas a elementos de fonte não impulsiva, elementos de fonte não impulsiva virtuais e sensores de pressão da fonte não impulsiva 302, mostrada na Figura 3. A Figura 8B mostra elementos de fonte não impulsiva virtuais 812 e 814, que correspondem aos elementos de fonte não impulsiva 322 e 324, respectivamente. As coordenadas cartesianas são também atribuídas ao centro geométrico dos elementos de fonte não impulsiva e dos elementos de fonte não impulsiva virtuais com a superfície livre 816, correspondendo à elevação zero em uma maneira similar na qual as coordenadas cartesianas são atribuídas na Figura 8A.
[0062] As equações matemáticas usadas para representar as assinaturas de fontes nocionais dependem das distâncias entre os elementos de fonte e os sensores de pressão e das distâncias entre os elementos de fonte virtuais e os sensores de pressão. A Figura 9 mostra as distâncias entre os elementos de fonte virtuais e os sensores de pressão e entre os elementos de fonte e os sensores de pressão. A linha 902 representa uma superfície livre de um corpo aquoso, e os blocos 904 e 906 representam sensores de pressão localizados abaixo da superfície livre. Os blocos 908 e 910 representam dois elementos de fonte impulsiva ou não impulsiva. Os blocos de linhas tracejadas 912 e 914 representam as contrapartes virtuais dos elementos de fonte 908 e 910. Os elementos de fonte 908 e 910 são localizados a uma profundidade D abaixo da superfície livre 902, e os elementos de fonte virtuais 912 e 914 são localizados a uma distância -D acima da superfície livre 902. As linhas conectando os blocos representam as distâncias nas quais i é um índice de elemento de fonte e de elemento de fonte virtual correspondente, e j é um índice de sensor de pressão. As distâncias entre os elementos de fonte 908 e 910 e os sensores de pressão 904 e 906 são dadas por:
Figure img0012
[0063] As distâncias entre os elementos de fonte virtuais 912 e 914 e os sensores de pressão 904 e 906 são dadas por:
Figure img0013
[0064] Notar que embora a dependência do tempo não seja representada nas equações (7) e (8), as distâncias computadas nas equações (7) e (8) são realmente dependentes do tempo. Em virtude das embarcações de levantamento, que rebocam a fonte impulsiva e a fonte não impulsiva por um corpo aquoso, estarem em movimentação, como descrito acima com referência às Figuras 1A - 1B, as localizações das coordenadas dos elementos de fonte reais, os elementos de fonte virtuais e sensores de pressão podem variar com o tempo.
[0065] A assinatura de campo próximo, transferida pelo j° sensor de pressão de uma fonte impulsiva, pode ser representada como a superposição das assinaturas nocionais dos elementos de fonte impulsiva, como se segue:
Figure img0014
em que: J7: e a assinatura nocional do i° elemento de fonte impulsiva; R e a refletividade da superfície livre; e N e o número de elementos de fonte impulsiva.
[0066] Quando a fonte impulsiva consiste de N sensores de pressão e N elementos de fonte impulsiva, há N equações independentes na forma da equação (9). As N equações independentes formam um sistema de N equações com N assinaturas nocionais desconhecidas IS/ .i . As N equações independentes podem ser solucionadas matemati-camente para as N assinaturas nocionais desconhecidas .' . Quando a fonte impulsiva consiste de mais de N sensores de pressão, os sensores de pressão adicionais podem ser usados para checar a qualidade da solução e dos erros estimados.
[0067] A assinatura de campo próximo transferida pelo j° sensor de pressão de uma fonte não impulsiva tambem pode ser representada como a superposição das assinaturas nocionais de elementos de fonte não impulsiva, como se segue:
Figure img0015
em que e a assinatura nocional do i° elemento de fonte não impulsiva; e M é o número de elementos de fonte não impulsiva.
[0068] Quando a fonte não impulsiva consiste de M sensores de pressão e M elementos de fonte não impulsiva, há M equações independentes na forma da equação (10). As assinaturas nocionais NISI Pi podem ser determinadas da mesma maneira que as assinaturas ncinais da equação (9).
[0069] A distância entre cada sensor de pressão e um elemento de fonte impulsiva ou elemento de fonte não impulsiva correspondente das fontes impulsiva e não impulsiva, respectivamente, está dentro do campo próximo do elemento de fonte impulsiva ou não impulsiva. Por exemplo, a distância entre um sensor de pressão e um elemento de fonte impulsiva ou um elemento de fonte não impulsiva é cerca de 1 metro. Por exemplo, na Figura 9, o sensor de pressão 904 pode ser localizado cerca de 1 metro do elemento de fonte 908 correspondente (isto é,
Figure img0016
m enquanto que
Figure img0017
m), e o sensor de pressão 906 pode ser localizado a cerca de 1 metro do elemento de fonte 910 correspondente (isto é
Figure img0018
m enquanto que
Figure img0019
m).
[0070] Os sensores de pressão podem ser calibrados por amplitude. Quando os sensores de pressão não são calibrados, as sensibilidades relativas dos sensores de pressão podem ser determi-nadas, com erros de saída que dependem da geometria determinada por experimentos separados. Em uma disposição de canhões de ar, as bolhas primárias se movimentam relativamente aos sensores de pressão, porque o sistema de coleta está se movimentando na água, e esse movimento pode ser incluído na calibração.
[0071] Após as N assinaturas nocionais de a fonte impulsiva terem sido determinadas, a assinatura de campo distante da fonte impulsiva, em um ponto no campo distante da fonte impulsiva, pode ser obtida por superposição das assinaturas nocionais dos elementos de fonte impulsiva. Igualmente, após as M assinaturas nocionais da fonte não impulsiva terem sido determinadas, a assinatura de campo distante da fonte não impulsiva, em um ponto no campo distante da fonte não impulsiva, pode ser obtida por superposição das assinaturas nocionais dos elementos de fonte não impulsiva.
[0072] A Figura 10 mostra um ponto P, localizado no campo distante da fonte impulsiva 104 e no campo distante da fonte não impulsiva 116. A curva tracejada 1001 representa o limite nocional da fonte impulsiva 104, e o círculo tracejado 1002 representa o limite nocional da fonte não impulsiva 116. Os limites nocionais 1001 e 1002 da fonte impulsiva 104 e da fonte não impulsiva 116 são de formas praticamente esféricas, mas são mostradas em uma seção transversal vertical. As coordenadas cartesianas do ponto P são indicadas por (xp, yp, zp). O ponto P é localizado no campo distante de ambas as fontes. A assinatura de campo distante da fonte impulsiva do campo de ondas de fonte, produzido pela fonte impulsiva no ponto P, pode ser calculada seguinte maneira:
Figure img0020
em que:
Figure img0021
do iº elemento de fonte impulsiva ao ponto P; e
Figure img0022
do i° elemento de fonte impulsiva virtual ao ponto P. Igualmente, a assinatura de campo distante da fonte não impulsiva do campo de ondas da fonte não impulsiva, produzido pela fonte não impulsiva no ponto P, pode ser calculada como se segue:
Figure img0023
[0073] Quando a fonte não impulsiva é composta de um único elemento de fonte não impulsiva, tal como um vibrador marinho ou um transdutor supereteródino, a assinatura de campo distante de fonte não impulsiva é dada por:
Figure img0024
em que: é é a distância do ponto P ao centro da fonte não impulsiva; é!a é a distância do ponto P ao centro de uma fonte não impulsiva virtual; e
Figure img0025
é é a assinatura de campo próximo da pressão medida pelo sensor de pressão localizado bem próximo da fonte não impulsiva.
[0074] Deve-se notar que, em virtude da fonte não impulsiva ser localizada fora do campo próximo de fonte impulsiva (por exemplo, quando as duas fontes são rebocadas por embarcações de levantamento separadas), o cálculo da assinatura de campo distante de fonte impulsiva sIS(t), representado pela equação (11), não inclui as contribuições do campo próximo da fonte não impulsiva; Igualmente, em virtude de a fonte impulsiva estar localizada fora do campo próximo da fonte não impulsiva, o cálculo da assinatura de campo distante de fonte s"'5(ü), não impulsiva representado pelas equações (12a) - (12b), não inclui as contribuições de campo próximo da fonte impulsiva.
[0075] Uma assinatura de campo próximo combinada dos campos de ondas de fontes impulsiva e não impulsiva no ponto P, mostrada na Figura 10, pode ser representada por:
Figure img0026
[0076] A equação (13) mantém para o ponto P genérico no campo distante de ambas a fonte impulsiva 104 e a fonte não impulsiva 116, como mostrado na Figura 10. Desse modo, a equação (13) pode ser também usada para representar a assinatura de campo distante combinada dos campos de ondas das fontes impulsiva e não impulsiva, medidas em cada um dos receptores das bandeirolas.
[0077] Uma fase efetiva e medida do campo de ondas de fonte impulsiva e de campo de ondas de fonte não impulsiva, em cada receptor, pode ser representada por:
Figure img0027
em que: i é a unidade imaginária
Figure img0028
és é a distância relativa entre a fonte impulsiva e o receptor; éés é a distância relativa entre a fonte não impulsiva e o receptor; Φ-’s é a fase característica das assinaturas de fonte impulsiva; Φ-v-’s é a fase característica das assinaturas de fonte não impulsiva; k é o número de ondas do campo de ondas; S?sG,J) é o campo de ondas de fonte impulsiva de S‘5W transformada do domínio de tempo no domínio de frequência; é o campo de ondas de fonte não impulsiva de transformada do domínio de tempo no domínio de frequência; A é uma amplitude medida de campos de ondas de fontes impulsiva e não impulsiva combinados no receptor; e Q contém a fase efetiva dos campos de ondas de fontes impulsiva e não impulsiva no receptor.
[0078] As quantidades h'én and h'são são retardos de fases de propagação dos campos de ondas de fontes impulsiva e não impulsiva correspondentes.
[0079] A Figura 11A mostra uma distância relativa entre a fonte impulsiva 104 e o receptor 122, localizados na bandeirola 108, e uma distância relativa entre a fonte não impulsiva 116 e o mesmo receptor 122. A linha tracejada 1102 representa a distância relativa rIS entre o receptor 122 e a fonte impulsiva 104, e a linha tracejada 1104 representa a distância relativa rNIS entre o receptor 122 e a fonte não impulsiva 116.
[0080] Como explicado acima com referência ao exemplo da Figura 4, a faixa de frequências da amplitude de campo de ondas de fonte não impulsiva
Figure img0029
varia de
Figure img0030
e a faixa de frequências da amplitude de campo de ondas de fonte impulsiva
Figure img0031
varia de
Figure img0032
Os campos de ondas de fontes impulsiva e não impulsiva podem se sobrepor em uma faixa de frequências de sobreposição. A transformação da assinatura de campo próximo combinada da equação (13) do domínio de tempo para o domínio de frequência, usando uma transformação rápida de Fourier ("FFT") ou uma transformação distinta de Fourier ("DFT") dá:
Figure img0033
[0081] A equação (14) pode ser reescrita da seguinte maneira:
Figure img0034
[0082] Na faixa de frequências de sobreposição “ quando um receptor é localizado a distâncias aproximadamente iguais rIS ~ rNIS entre as fontes impulsiva e não impulsiva (isto é,
Figure img0035
, e considerando que as amplitudes de campos de ondas de fontes impulsiva e não impulsiva são aproximadamente iguais (isto é,
Figure img0036
a equação (16) se reduz a:
Figure img0037
em que:
Figure img0038
é uma amplitude dependente de frequência do campo de ondas gerada pela fonte adotada para ser a mesma para as fontes impulsiva e não impulsiva; e éé' é um retardo de fase devido à propagação do campo de ondas.
[0083] As quantidades exponenciais
Figure img0039
da equação (17) são a fase de campo de ondas de fonte impulsiva e a fase de campo de ondas de fonte não impulsiva, respectivamente. Quando a fonte impulsiva 104 e a fonte não impulsiva 116 são rebocadas a distâncias aproximadamente iguais r de um receptor, a fase efetiva da equação (17) pode ser escrita como
Figure img0040
[0084] Desse modo, a quantidade é a diferença de fase entre os campos de ondas de fontes impulsiva e não impulsiva no receptor. Quando = ocorre uma interferência destrutiva máxima no receptor. Por outro lado, quando = θ-’5, ocorre uma interferência construtiva máxima no receptor.
[0085] Na faixa de frequências de sobreposição, em virtude das Φis ΦNIS fases características ‘ and ‘ poderem ser tratadas como quantidades fixas dos campos de ondas de fontes impulsiva e não krNIS impulsiva, respectivamente, o retardo de fase da fase de campo θfjjs de ondas de fonte não impulsiva ' pode ser usado para obter @NIS ~ IS ‘ ‘ (isto é, uma interferência construtiva próxima da máxima) por ^rNIS ajuste da distância rNis. Alternativamente, o retardo de fase da fase θ]$ de campo de ondas de fonte impulsiva ‘ pode ser também usado para @NIS ~ ^IS obter 1 por ajuste da distância ris. Φis
[0086] Em virtude da fase característica ‘ do campo de ondas de ΦNIS fonte impulsiva e da fase característica ‘ do campo de ondas de fonte não impulsiva poderem ser deslocadas ou defasadas por ajuste das distâncias relativas rIS e rNIS correspondentes, as distâncias relativas rIS e rNIS podem ser ajustadas para obter uma interferência construtiva @N1S ~ ^IS máxima (isto é, ‘' ‘ ) em um ou mais locais de receptores ao longo das bandeirolas. Por conseguinte, os locais de receptores ao longo das bandeirolas podem experimentar uma redução no nível de interferência destrutiva e um aumento no nível de interferência construtiva.
[0087] Por exemplo, na Figura 11A, em virtude da primeira embarcação de levantamento rebocar a fonte impulsiva 104 a uma distância relativa fica em frente dos receptores, tal como uma distância relativa fixa rIS em frente do receptor 122, a distância relativa entre a fonte não impulsiva e os receptores, rnis, pode ser ajustada para regular θ]$ a fase de campo de ondas de fonte impulsiva ‘ e a fase de campo de θ^ijs ondas de fonte não impulsiva 1 , para criar uma interferência @NIS ~ @IS construtiva máxima (isto é, ‘ ‘ ) em um ou mais locais de receptores.
[0088] Em uma execução alternativa de um levantamento marinho, a fonte impulsiva 104 e a fonte não impulsiva 116 podem ser trocadas. Como mostrado na Figura 11B, a primeira embarcação de levantamento 102 reboca a fonte não impulsiva 116 e as seis bandeirolas 106 - 111 separadas, e a segunda embarcação de levantamento 114 reboca a fonte impulsiva 104. No exemplo da Figura 11B, em virtude da primeira embarcação de levantamento rebocar a fonte não impulsiva 116 por uma distância relativa fixa em frente dos receptores, tal como uma distância relativa fixa rnis em frente do receptor 122, a distância relativa entre a fonte impulsiva 104 e os receptores, rIS, pode ser ajustada para θ is regular a fase de campo de ondas de fonte impulsiva ‘ e a fase de θtf/s campo de ondas de fonte não impulsiva ‘ , para criar uma θjijIS ~ IS interferência construtiva máxima (isto é, ‘ ‘ ) em um ou mais locais de receptores.
[0089] Na faixa de frequências de sobreposição, quando a fonte não impulsiva 116 é rebocada atrás das bandeirolas, como mostrado na Figura 11A com rNIS >> Ris, a equação (16) se reduz a:
Figure img0041
em que:
Figure img0042
Figure img0043
na medida em que a distância relativa aumenta.
[0090] Em outras palavras, a equação (13) se torna
Figure img0044
Figure img0045
e na medida em que a distância relativa aumenta. Desse modo, a assinatura de campo distante combinada pode ser computada da equação (11).
[0091] Por outro lado, quando a fonte impulsiva 104 é rebocada atrás das bandeirolas, como mostrado na Figura 11B com
Figure img0046
a equação (16) se reduz a:
Figure img0047
em que
Figure img0048
[0092] Em outras palavras, a equação (13) se torna
Figure img0049
Figure img0050
na medida em que a distância relativa aumenta. Desse modo, a assinatura de campo distante combinada pode ser computada da equação (12a) ou equação (12b).
[0093] As bandeirolas podem ter comprimentos que variam de tão longos como aproximadamente igual ou superior a 20 km, ou tão curtos como aproximadamente igual ou inferior a 5 km. Em particular, as bandeirolas podem ter comprimentos de 10 km ou 5 km. Por conseguin-te, a distância entre a fonte impulsiva 104 e a fonte não impulsiva 116 pode ser maior que os comprimentos das bandeirolas, e as intensidades dos campos de ondas de fontes impulsiva e não impulsiva, que iluminam a formação subterrânea 124, podem não ser uniformes. A fonte impulsiva 104 e a fonte não impulsiva 116 podem ser ativadas simultaneamente para iluminar a formação subterrânea 124. Em outras palavras, a fonte impulsiva 104 e a fonte não impulsiva 116 podem ser ativadas sem retardo de tempo. Em particular, a fonte não impulsiva 116 pode ser ajustada continuamente durante um levantamento marinho, e a fonte impulsiva pode ser ativada com retardos de tempo aleatórios. Como usado no presente relatório descritivo, "ativadas continuamente", "ativando continuamente" ou "continuamente ativadas" indicam que a fonte não impulsiva é energizada por um período de tempo, que é significativamente (por exemplo, tanto quanto pelo menos 5 vezes) mais longo que o período típico para ativação e detecção de um sinal primário de uma fonte impulsiva (também referido como "tempo de disparo"). Desse modo, uma fonte não impulsiva pode ser "ativada continuamente" por ser energizada durante partes do levantamento marinho, enquanto não sendo energizada durante outras partes (por exemplo, durante manobra da embarcação de levantamento).
[0094] Cada receptor gera dados sísmicos, que representam o campo de ondas refletido emitido da formação subterrânea, em resposta ao campo de ondas de fonte impulsiva e ao campo de ondas de fonte não impulsiva, e incluir o campo de ondas de fonte impulsiva e o campo de ondas de fonte não impulsiva, que se deslocam diretamente das fontes impulsiva e não impulsiva para os receptores. Os dados sísmicos gerados por um receptor, em resposta à iluminação da formação subterrânea com a energia acústica produzida por ativação de ambas a fonte impulsiva e a fonte não impulsiva, são representados pela expressão:
Figure img0051
em que: “*” denota operação de convolução; éé) é a resposta sísmica da formação subterrânea para a energia acústica (isto é, os campos de ondas de fontes impulsiva e não impulsiva combinados), produzida por ambas a fonte impulsiva e a fonte não impulsiva; e ” W é ruído.
[0095] Os dados sísmicos x(t) podem ser dados de pressão, gerados por um sensor de pressão, ou dados de movimento de partículas (por exemplo, dados de deslocamento de partículas, dados de velocidade de partículas ou dados de aceleração de partículas), gerados por um sensor de movimento de partículas. Os dados sísmicos x(t) podem ser amostrados em relação ao tempo e armazenados em um ou mais dispositivos de armazenamento de dados, tal como um ou mais dispositivos de armazenamento de dados localizados a bordo da primeira embarcação de levantamento 102.
[0096] Os dados sísmicos x(t) podem ser transformados do domínio de tempo no domínio de frequência, usando uma FFT ou uma DFT para obter dados sísmicos no domínio de frequência, determinados por:
Figure img0052
em que: A (ÚJ) é o espectro de amplitude dos dados sísmicos gerados pelo receptor no domínio de frequência; A(ÚJ) é a resposta sísmica da formação subterrânea à energia acústica no domínio de frequência; e A(ÚJ) é o ruído no domínio de frequência.
[0097] De acordo com a equação (15), a equação (22) pode ser expandida pelas faixas de frequências associadas com as fontes impulsiva e não impulsiva, como se segue:
Figure img0053
em que: tr.v.5Í>J) é a resposta sísmica da formação subterrânea à energia acústica gerada pela fonte não impulsiva; e és(^) é a resposta sísmica da formação subterrânea à energia acústica gerada pela fonte impulsiva.
[0098] A fonte impulsiva pode ser rebocada em frente das bandeirolas e operada com um retardo de tempo aleatório, enquanto que ativando, simultânea ou continuamente, a fonte não impulsiva rebocada atrás das bandeirolas. Uma técnica de correlação cruzada pode ser aplicada em janelas de tempo dos dados sísmicos na equação (22b), usando a assinatura de fonte de campo distante não impulsiva SNlS(t) (isto é,
Figure img0054
), para separar os dados sísmicos em dados sísmicos de fonte não impulsiva e dados sísmicos de fonte impulsiva. No domínio de frequência, os dados sísmicos de fonte não impulsiva na faixa de , .IS tNiS OJlow — M — ^high frequências de sobreposição,
Figure img0055
são determinados por:
Figure img0056
E os dados sísmicos de fonte impulsiva na faixa de frequências de sobreposição são determinados por:
Figure img0057
em que é o ruído associado com a separação.
[0099] A fonte não impulsiva pode ser rebocada em frente das bandeirolas e ativada continuamente, enquanto a fonte impulsiva é operada com um retardo de tempo aleatório, rebocada atrás das bandeirolas. Uma técnica de correlação cruzada pode ser aplicada em janelas de tempo dos dados sísmicos na equação (22b), usando a assinatura de fonte de campo distante não impulsiva (isto é, s ’^W), para obter os mesmos resultados determinados pelas equações (23) e (24). A técnica de correlação cruzada pode ser uma técnica de separação simultânea de fontes ("SSS"), tal como as técnicas SSS descritas na patente U.S. 6.906.981 e na patente U.S. 9.075.162 publicada. Em outras palavras, os dados sísmicos no domínio de frequência podem ser separados na faixa de frequências de IS < < NIS sobreposição
Figure img0058
como se segue:
Figure img0059
[00100] Os resultados nas equações (22b) e (23) podem ser combinados para gerar os dados sísmicos de fonte não impulsiva no domínio de frequência pela faixa de frequências de fonte não impulsiva integral,
Figure img0060
, que são determinados por:
Figure img0061
[00101] A deconvolução de \v?sGíJ) por gera a resposta sísmica da formação subterrânea para a energia acústica gerada pela fonte não impulsiva, 6A’.’S(ÜJ), mais ruído. As equações (26) podem ser transformadas do domínio de frequência em domínio de tempo usando uma FFT inversa ou uma DFT inversa, para determinar os dados sísmicos de fonte não impulsiva, -v*5 W no domínio de tempo.
[00102] Os resultados das equações (22b) e (24) podem ser combinados para determinar os dados sísmicos de fonte impulsiva no domínio de frequência pela faixa de frequências de fonte impulsiva integral,
Figure img0062
que são determinados por:
Figure img0063
[00103] A deconvolução de ' po^(°J) gera a resposta sísmica da formação subterrânea para a energia acústica gerada pela fonte impulsiva, 6.’s(tíJ), mais ruído. As equações (27) podem ser transformadas do domínio de frequência no domínio de tempo usando uma FFT inversa ou uma DFT inversa, para determinar os dados sísmicos de fonte não impulsiva, ?■ , no domínio de tempo.
[00104] Em virtude da fonte não impulsiva poder ser ativada continu-amente ou por intervalos de tempo mais longos que a fonte impulsiva, a sw/s(t) assinatura de campo distante de fonte não impulsiva tem, tipicamente, uma longa duração. Um modo de diminuir ou comprimir a sNZS(t) duração da assinatura de campo distante de fonte não impulsiva é aplicar um filtro de compressão de tempo f(t), que comprime por tempo a assinatura de campo distante de fonte não impulsiva a uma pequena onda de curta duração d(t), representada por:
Figure img0064
[00105] A Figura 1 mostra uma representação gráfica exemplifi- cativa de uma pequena onda de curta duração d(t. O eixo horizontal 1202 representa tempo, e a curva 1204 é uma representação de pequena onda de curta duração d(t. O filtro de compressão de tempo f(t pode ser computado como descrito abaixo.
[00106] A Figura 13 mostra uma representação gráfica exemplifi- cativa de um filtro de compressão de tempo f(t convolvido com a sW7S(t) assinatura de campo distante de fonte não impulsiva . O eixo horizontal 1302 representa tempo, e a curva 1304 é o filtro de compressão de tempo f(t convolvido com a assinatura de campo sNIS(t) f(t) * sNIS(t) distante de fonte não impulsiva . Na Figura 13, is uma pequena onda centraliza a um tempo aproximadamente de zero.
[00107] O filtro de compressão de tempo f(t pode ser convolvido com xNIS(t) os dados sísmicos de fonte não impulsiva no domínio de tempo para obter:
Figure img0065
[00108] A equação (29) propicia os dados sísmicos de domínio de frequência comprimidos no tempo no domínio de tempo. A longa duração da assinatura de campo distante de fonte não impulsiva s é substituída por uma pequena onda de curta duração d(t).
[00109] O filtro de compressão de tempo f(t) pode ser computado como apresentado a seguir. Considerar um filtro f(t), que minimiza uma diferença entre a pequena onda de curta duração d(t) e o filtro de compressão de tempo f(t), convolvido com a assinatura de campo .s"'OO distante de fonte não impulsiva , como se segue:
Figure img0066
[00110] O filtro de compressão de tempo ft pode ser composto de (K + 1) coeficientes de filtro representados por uma matriz de linhas:
Figure img0067
em que: T é transposição; e é um coeficente de filtro com índice f = O-1- .
[00111] Os componentes de HO podem ser representados por:
Figure img0068
em que: é é 0,1,... é é o índice de amostra de tempo; e J é o número de amostras de tempo.
[00112] Uma energia de erro entre a pequena onda de curta duração d(t) e o filtro de compressão de tempo f(t), aplicada à assinatura de campo distante de fonte não impulsiva s 00, é determinada por:
Figure img0069
[00113] Os coeficientes do filtro de compressão de tempo minimizam o erro por ajuste:
Figure img0070
para - 0,1,....\ O rearranjo da equação (35) proporciona:
Figure img0071
[00114] A equação (36) pode ser reescrita em forma de matriz para obter:
Figure img0072
em que: é uma matriz de colunas de correlação cruzada (A - 0 x 1 da assinatura de campo distante de fonte não impulsiva ÇA//SCí') — I — x _ X • com os elementos da matriz
Figure img0073
[00115] e é uma matriz de autocorrelação - 1) x (A - 1) da assinatura de campo distante de fonte não impulsiva com os elementos da matriz
Figure img0074
[00116] Os coeficientes do filtro de compressão de tempo são computados por multiplicação da equação da matriz na equação (37a) pelo inverso da matriz de autocorrelação
Figure img0075
em que é o inverso da matriz de autocorrelação Uss proporcionado pela matriz de autocorrelação, que é inversivo.
[00117] A Figura 14 mostra um diagrama de fluxo de um processo para separar os dados sísmicos associados com as fontes impulsiva e não impulsiva. No bloco 1401, os dados sísmicos gerados por um ou mais receptores, em resposta a um campo de ondas de fonte impulsiva, gerado por uma fonte impulsiva, e um campo de ondas de fonte impulsiva, gerado por uma fonte não impulsiva, são recebidos. A fonte impulsiva pode ser ativada com retardos de tempo aleatórios, enquanto a fonte não impulsiva pode ser ativada continuamente. No bloco 1402, as assinaturas de campos distantes de cada elemento de fonte impulsiva de uma fonte impulsiva são recebidas dos sensores de pressão, localizados dentro do campo próximo de cada elemento de fonte impulsiva, e assinaturas de campos próximos de cada elemento de fonte não impulsiva da fonte não impulsiva são recebidas de sensores de pressão, localizados dentro do campo próximo de cada elemento de fonte não impulsiva. No bloco 1403, uma rotina "determinar as assinaturas de campos distantes de fontes impulsiva e não impulsiva" é chamada para computar as assinaturas de campos distantes de fontes impulsiva e não impulsiva para cada receptor, com base nas assinaturas de campos próximos da fonte impulsiva e da fonte não impulsiva. No bloco 1404, uma rotina "separar os dados sísmicos em dados sísmicos de fontes impulsiva e não impulsiva" é chamada para computar dados sísmicos de fontes impulsiva e não impulsiva separados.
[00118] A Figura 15 mostra um diagrama de fluxo de controle da rotina "determinar as assinaturas de campos distantes de fonte não impulsiva", chamada no bloco 1403 da Figura 14. Um início de loop FOR no bloco 1501 repete as operações representadas pelos blocos 1502 - 1505 para cada local de receptor. No bloco 1502, as assinaturas nocionais da fonte impulsiva são computadas como descrito acima com referência à equação (9). No bloco 1503, uma assinatura de campo distante de fonte impulsiva é computada como descrito acima com referência à equação (11), com base nas assinaturas nocionais computadas no bloco 1502. No bloco 1504, as assinaturas nocionais da fonte não impulsiva são computadas como descrito acima com referência à equação (10). NO bloco 1504, uma assinatura de campo distante de fonte não impulsiva é computada como descrito acima com referência à equação (12a) ou (12b), com base nas assinaturas nocionais computadas no bloco 1503. No bloco de decisão 1506, as operações representadas pelos blocos 1502 - 1505 são repetidas para outro local de receptor.
[00119] A Figura 16 mostra um diagrama de fluxo de controle da rotina "separar os dados sísmicos em dados sísmicos de fontes impulsiva e não impulsiva", chamada no bloco 1404 da Figura 14. No bloco 1601, uma faixa de frequências de sobreposição, entre uma faixa de frequências de fonte impulsiva e uma faixa de frequência de fonte não impulsiva, é determinada como descrito acima com referência à Figura 4. Um início de loop FOR no bloco 1602 repete as operações representadas pelos blocos 1606 para cada receptor. No bloco 1603, separação simultânea de fontes é uma técnica que pode ser usada para separar os dados sísmicos nos dados sísmicos de fonte impulsiva, na faixa de frequências de sobreposição, e os dados sísmicos de fonte não impulsiva, na faixa de frequências de sobreposição. No bloco 1604, os dados sísmicos de fonte impulsiva, na faixa de frequências de sobreposição, são combinados com os dados sísmicos de fonte impulsiva fora da faixa de frequências de sobreposição, como descrito acima com referência à equação 27. No bloco 1605, os dados sísmicos de fonte não impulsiva, na faixa de frequências de sobreposição, são combinados com os dados sísmicos de fonte não impulsiva, fora da faixa de frequências de sobreposição, como descrito acima com referência à equação 26. NO bloco de decisão 1606, as operações dos blocos 1603 - 1605 são repetidas para outro receptor.
[00120] A Figura 17A mostra um diagrama de fluxo de um processo para fazer um levantamento de uma formação subterrânea. No bloco 1701, uma fonte impulsiva é ativada acima da formação subterrânea, para gerar um campo de ondas de fonte impulsiva, que tem uma faixa de frequências de fonte impulsiva. No bloco 1702, uma fonte não impulsiva é ativada simultaneamente acima da formação subterrânea, para gerar um campo de ondas de fonte não impulsiva. A faixa de frequências de fonte não impulsiva e a faixa de frequências de fonte impulsiva têm uma faixa de frequências de sobreposição. No bloco 1703, os dados sísmicos, gerados por um ou mais receptores, são registrados. Os dados sísmicos representam a resposta da formação subterrânea aos campos de ondas de fontes impulsiva e não impulsiva. No bloco 1704, uma rotina "separar os dados sísmicos em dados sísmicos de fontes impulsiva e não impulsiva pela faixa de frequências de sobreposição" é chamada.
[00121] A Figura 17B mostra um diagrama de fluxo da rotina "separar os dados sísmicos em dados sísmicos de fontes impulsiva e não impulsiva pela faixa de frequências de sobreposição", chamada no bloco 1704 da Figura 17A. No bloco 1706, a rotina "determinar as assinaturas de campos distantes de fonte não impulsiva", descrita acima com referência à Figura 15, é chamada para computar as assinaturas de campos distantes de fontes impulsiva e não impulsiva para cada receptor, com base nas assinaturas de campos próximos de fonte impulsiva e de fonte não impulsiva. No bloco 1707, a rotina "separar os dados sísmicos em dados sísmicos de fontes impulsiva e não impulsiva", descrita acima com referência à Figura 16, é chamada para computar os dados sísmicos em dados sísmicos de fontes impulsiva e não impulsiva separados.
[00122] A Figura 18 mostra um exemplo de um sistema de computação de uso geral, que executa processos eficientes para determinar uma resposta de uma formação subterrânea, para ativação de uma fonte impulsiva e uma fonte não impulsiva. Os componentes internos de muitos sistemas de computação de tamanhos pequeno, médio e grande, bem como sistemas de armazenamento com base em processadores especializados, podem ser descritos com relação à arquitetura de uso geral, embora cada sistema possa incluir outros componentes e subsistemas, além de sistemas paralelos, similares com arquiteturas similares a essa arquitetura de uso geral. O sistema computadorizado contém uma ou múltiplas unidades de processamento central ("CPUs") 1802 - 1805, uma ou mais memórias eletrônicas 1808 interligadas com as CPUs por meio de um barramento de CPU/memória-subsistema 1810 ou de múltiplos barramentos, uma primeira ponte 1812, que interliga o barramento de CPU/memória-subsistema 1810 com os barramentos adicionais 1814 e 1816, ou outros tipos de meios de interligação de alta velocidade, incluindo múltiplas conexões seriais de alta velocidade. Os barramentos ou as conexões seriais, por sua vez, conectam as CPUs e a memória com processadores especializados, tal como um processador gráfico 1818, e com uma ou mais pontes 1820 adicionais, que são interligadas com ligações seriais de alta velocidade ou com múltiplos controladores 1822 - 1827, tal como um controlador 1827, que proporcionam acesso a vários diferentes tipos de meios legíveis por computador, tal como o meio legível por computador 1828, monitores eletrônicos, dispositivos de entrada e outros desses componentes, subcomponentes e recursos computacionais. Os monitores eletrônicos, incluindo uma tela de exibição visual, alto- falantes e outras interfaces de saída, e os dispositivos de entrada, incluindo mouses, teclados, telas de toque e outras interfaces de entrada, constituem, conjuntamente as interfaces de entrada e saída, que permitem que o sistema de computação interaja com usuários humanos. O meio legível por computador 1828 é um dispositivo de armazenamento de dados não transitório, incluindo memória eletrônica, unidade de disco magnético ou óptico, unidade USB, memória instantânea e outro desses dispositivos de armazenamento de dados. O meio legível por computador 1828 pode ser usado para armazenar instruções legíveis por computador e as rotinas, que codificam os processos computacionais, descritos acima, em instruções legíveis por computador, e que pode ser usado para armazenar dados sísmicos codificados, durante as operações de armazenamento, e do qual os dados sísmicos codificados podem ser recuperados, durante as operações de leitura, por sistemas de computação, sistemas de armazenamento de dados e dispositivos periféricos.
[00123] Os processos e sistemas, descritos no presente relatório descritivo, formam um produto de dados geofísicos, indicativos de determinadas propriedades de uma formação subterrânea. O produto de dados geofísicos podem incluir dados geofísicos, tais como dados de campo de ondas de fonte impulsiva, dados de campo de ondas de fonte não impulsiva, dados sísmicos gerados por um receptor, dados de pressão, dados de movimento de partículas, dados de GPS, dados sísmicos de fonte impulsiva, dados sísmicos de fonte não impulsiva, assinatura de campo próximo de um elemento de fonte impulsiva, assinatura de campo próximo de um elemento de fonte não impulsiva, assinatura de campo distante de fonte impulsiva, assinatura de campo distante de fonte não impulsiva e dados geofísicos processados, e o produto de dados geofísicos pode ser armazenado em um meio legível por computador não transitório, como descrito acima. O produto de dados geofísicos pode ser produzido em alto-mar (isto é, por equipamento na embarcação de levantamento 102) ou em terra (isto é, em uma instalação de computação em terra), dentro dos Estados Unidos ou outro país. Quando o produto de dados geofísicos é produzido fora da costa ou em outro país, pode ser importado próximo ao litoral por uma instalação de armazenamento de dados nos Estados Unidos. Uma vez em terra nos Estados Unidos, a análise geofísica pode ser executada no produto de dados geofísicos.
[00124] Embora a invenção apresentada acima tenha sido mostrada em termos de implementações particulares, não se tenciona que a invenção seja limitada a essas implementações. As modificações dentro do espírito desta invenção vão ser evidentes àqueles versados na técnica. Por exemplo, qualquer uma de várias diferentes implementações pode ser obtida por variação de qualquer dos muitos diferentes parâmetros de projeto e desenvolvimento, incluindo linguagem de programação, sistema operacional associado, organização modular, estruturas de controle, estruturas de dados e outros parâmetros de projeto e desenvolvimento. Desse modo, a presente invenção não é tencionada para ser limitada às implementações apresentadas no presente relatório descritivo, mas deve estar de acordo com um âmbito mais abrangente, consistente com os princípios e novas características descritos no presente relatório descritivo.

Claims (15)

1. Método para separar dados sísmicos, associados com fontes impulsiva e não impulsiva, o método caracterizada pelo fato de que compreende: receber dados sísmicos gerados por um receptor, que representam um campo de ondas refletido produzido por uma formação subterrânea, em resposta a: um campo de ondas de fonte impulsiva gerado por uma fonte impulsiva; e um campo de ondas de fonte não impulsiva gerado por uma fonte não impulsiva; receber uma assinatura de campo próximo de cada elemento de fonte impulsiva da fonte impulsiva e uma assinatura de campo próximo de cada elemento de fonte não impulsiva da fonte não impulsiva; determinar uma assinatura de campo distante de fonte impulsiva da fonte impulsiva em um local do receptor, com base nas assinaturas de campos próximos dos elementos de fonte impulsiva, e uma assinatura de campo distante de fonte não impulsiva da fonte não impulsiva no local do receptor, com base nas assinaturas de campos próximos dos elementos de fonte não impulsiva; e separar os dados sísmicos em dados sísmicos de fonte impulsiva e dados sísmicos de fonte não impulsiva, com base na assinatura de campo distante de fonte impulsiva e na assinatura de campo distante de fonte não impulsiva.
2. Método, de acordo com a reivindicação 1, caracterizada pelo fato de que a assinatura de campo distante de cada elemento de fonte impulsiva da fonte impulsiva compreende ainda um campo de ondas de pressão, medido por um sensor de pressão, localizado dentro do campo próximo de cada elemento de fonte impulsiva da fonte impulsiva.
3. Método, de acordo com qualquer uma das reivindicações precedentes, caracterizada pelo fato de que a assinatura de campo distante de cada elemento de fonte não impulsiva da fonte não impulsiva compreende ainda um campo de ondas de pressão, medido por um sensor de pressão, localizado dentro do campo próximo de cada elemento de fonte não impulsiva da fonte não impulsiva.
4. Método, de acordo com qualquer uma das reivindicações precedentes, caracterizada pelo fato de que determinar as assinaturas de campos distantes de fontes impulsiva e não impulsiva compreende ainda: computar uma assinatura nocional para cada elemento de fonte impulsiva da fonte impulsiva, com base nas assinaturas de campos próximos dos elementos de fonte impulsiva; computar uma assinatura de campo distante de fonte impulsiva da fonte impulsiva, com base nas assinaturas nocionais de cada elemento de fonte impulsiva; computar uma assinatura nocional para cada elemento de fonte não impulsiva da fonte não impulsiva, com base nas assinaturas de campos próximos dos elementos de fonte não impulsiva; e computar uma assinatura de campo distante de fonte não impulsiva da fonte não impulsiva, com base nas assinaturas nocionais de cada elemento de fonte não impulsiva.
5. Método, de acordo com qualquer uma das reivindicações precedentes, caracterizada pelo fato de que separar os dados sísmicos em dados sísmicos de fonte impulsiva e dados sísmicos de fonte não impulsiva compreende ainda: determinar uma faixa de frequências de sobreposição entre uma faixa de frequências de fonte impulsiva e uma faixa de frequências de fonte não impulsiva; e aplicar uma separação de fontes simultânea, para separar os dados sísmicos nos dados sísmicos de fonte impulsiva e nos dados sísmicos de fonte não impulsiva, na faixa de frequências de sobreposição; combinar os dados sísmicos de fonte impulsiva, na faixa de frequências de sobreposição, com os dados sísmicos de fonte impulsiva, fora da faixa de frequências de sobreposição, para gerar os dados sísmicos de fonte impulsiva pela faixa de frequências de fonte impulsiva; e combinar os dados sísmicos de fonte não impulsiva, na faixa de frequências de sobreposição, com os dados sísmicos de fonte não impulsiva, fora da faixa de frequências de sobreposição, para gerar os dados sísmicos de fonte não impulsiva pela faixa de frequências de fonte não impulsiva.
6. Método para fazer um levantamento em uma formação subterrânea, o método caracterizada pelo fato de que compreende: ativar uma fonte impulsiva acima da formação subterrânea, para gerar um campo de ondas de fonte impulsiva tendo uma faixa de frequências de fonte impulsiva; ativar simultaneamente uma fonte não impulsiva acima da formação subterrânea, para gerar um campo de ondas de fonte não impulsiva tendo uma faixa de frequências de fonte não impulsiva, que se sobrepõe à faixa de frequências de fonte impulsiva; registrar os dados sísmicos gerados por um receptor, os dados sísmicos representando a resposta da formação subterrânea aos campos de ondas de fontes impulsiva e não impulsiva; e separar os dados sísmicos em dados sísmicos de fonte impulsiva e dados sísmicos de fonte não impulsiva pela faixa de frequências de sobreposição.
7. Método, de acordo com a reivindicação 6, caracterizada pelo fato de que separar os dados sísmicos compreende ainda: registrar uma assinatura de campo próximo de cada elemento de fonte impulsiva da fonte impulsiva e uma assinatura de campo próximo de cada elemento de fonte não impulsiva da fonte não impulsiva; determinar uma assinatura de campo distante de fonte impulsiva da fonte impulsiva em um local do receptor, com base nas assinaturas de campos próximos dos elementos de fonte impulsiva, e uma assinatura de campo distante de fonte não impulsiva da fonte não impulsiva no local do receptor, com base nas assinaturas de campos próximos dos elementos de fonte não impulsiva; e separar os dados sísmicos em dados sísmicos de fonte impulsiva e dados sísmicos de fonte não impulsiva, com base na assinatura de campo distante de fonte impulsiva e na assinatura de campo distante de fonte não impulsiva.
8. Método, de acordo com a reivindicação 7, caracterizada pelo fato de que determinar as assinaturas de campos distantes de fontes impulsiva e não impulsiva compreende ainda: computar uma assinatura nocional para cada elemento de fonte impulsiva da fonte impulsiva, com base nas assinaturas de campos próximos dos elementos de fonte impulsiva; computar uma assinatura de campo distante de fonte impulsiva da fonte impulsiva, com base nas assinaturas nocionais de cada elemento de fonte impulsiva; computar uma assinatura nocional para cada elemento de fonte não impulsiva da fonte não impulsiva, com base nas assinaturas de campos próximos dos elementos de fonte não impulsiva; e computar uma assinatura de campo distante de fonte não impulsiva da fonte não impulsiva, com base nas assinaturas nocionais de cada elemento de fonte não impulsiva.
9. Método, de acordo com qualquer uma das reivindicações 7 a 8, caracterizada pelo fato de que separar os dados sísmicos de fonte impulsiva e dados sísmicos de fonte não impulsiva compreende ainda separar os dados sísmicos em uma faixa de frequências de sobreposição, entre uma faixa de frequências de fonte impulsiva e uma faixa de frequências de fonte não impulsiva.
10. Método, de acordo com qualquer uma das reivindicações 6 a 9, caracterizada pelo fato de que ativar na fonte impulsiva compreende ainda ativar a fonte impulsiva com um retardo de tempo aleatório entre as ativações.
11. Sistema de computação, compreendendo: um ou mais processadores; um ou mais dispositivos de armazenamento de dados; e instruções legíveis por máquina, armazenadas em um ou mais dos dispositivos de armazenamento de dados que quando executadas por um ou mais processadores, caracterizado pelo fato de que realizam as etapas : receber os dados sísmicos gerados por um receptor, que representam uma resposta de uma formação subterrânea a um campo de ondas de fonte impulsiva, gerado por uma fonte impulsiva, e um campo de ondas de fonte não impulsiva, gerado por uma fonte não impulsiva; receber uma assinatura de campo próximo de cada elemento de fonte impulsiva da fonte impulsiva e uma assinatura de campo próximo de cada elemento de fonte não impulsiva da fonte não impulsiva; determinar uma assinatura de campo distante de fonte impulsiva da fonte impulsiva em um local do receptor, com base nas assinaturas de campos próximos dos elementos de fonte impulsiva, e uma assinatura de campo distante de fonte não impulsiva da fonte não impulsiva no local do receptor, com base nas assinaturas de campos próximos dos elementos de fonte não impulsiva; e separar os dados sísmicos em dados sísmicos de fonte impulsiva e dados sísmicos de fonte não impulsiva, com base na assinatura de campo distante de fonte impulsiva e na assinatura de campo distante de fonte não impulsiva.
12. Sistema de computação, de acordo com a reivindicação 11, caracterizada pelo fato de que a assinatura de campo distante de cada elemento de fonte impulsiva da fonte impulsiva compreende ainda um campo de ondas de pressão, medido por um sensor de pressão, localizado dentro do campo próximo de cada elemento de fonte impulsiva da fonte impulsiva.
13. Sistema de computação, de acordo com qualquer uma das reivindicações 11 a 12, caracterizada pelo fato de que a assinatura de campo distante de cada elemento de fonte não impulsiva da fonte não impulsiva compreende ainda um campo de ondas de pressão, medido por um sensor de pressão, localizado dentro do campo próximo de cada elemento de fonte não impulsiva da fonte não impulsiva.
14. Sistema de computação, de acordo com qualquer uma das reivindicações 11 a 13, caracterizada pelo fato de que determinar as assinaturas de campos distantes de fontes impulsiva e não impulsiva compreende ainda: computar uma assinatura nocional para cada elemento de fonte impulsiva da fonte impulsiva, com base nas assinaturas de campos próximos dos elementos de fonte impulsiva; computar uma assinatura de campo distante de fonte impulsiva da fonte impulsiva, com base nas assinaturas nocionais de cada elemento de fonte impulsiva; computar uma assinatura nocional para cada elemento de fonte não impulsiva da fonte não impulsiva, com base nas assinaturas de campos próximos dos elementos de fonte não impulsiva; e computar uma assinatura de campo distante de fonte não impulsiva da fonte não impulsiva, com base nas assinaturas nocionais de cada elemento de fonte não impulsiva.
15. Sistema de computação, de acordo com qualquer uma das reivindicações 11 a 14, caracterizada pelo fato de que separar os dados sísmicos em dados sísmicos de fonte impulsiva e dados sísmicos de fonte não impulsiva compreende ainda: determinar uma faixa de frequências de sobreposição entre uma faixa de frequências de fonte impulsiva e uma faixa de frequências de fonte não impulsiva; e aplicar uma separação de fontes simultânea, para separar os dados sísmicos nos dados sísmicos de fonte impulsiva e nos dados sísmicos de fonte não impulsiva, na faixa de frequências de sobreposição; combinar os dados sísmicos de fonte impulsiva, na faixa de frequências de sobreposição, com os dados sísmicos de fonte impulsiva, fora da faixa de frequências de sobreposição, para gerar os dados sísmicos de fonte impulsiva pela faixa de frequências de fonte impulsiva; e combinar os dados sísmicos de fonte não impulsiva, na faixa de frequências de sobreposição, com os dados sísmicos de fonte não impulsiva, fora da faixa de frequências de sobreposição, para gerar os dados sísmicos de fonte não impulsiva pela faixa de frequências de fonte não impulsiva.
BR112017007946-1A 2014-10-20 2015-10-20 Processos e sistemas para separar dados sísmicos associados com fontes impulsivas e não impulsivas BR112017007946B1 (pt)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462065882P 2014-10-20 2014-10-20
US62/065,882 2014-10-20
US14/816,561 2015-08-03
US14/816,561 US10101480B2 (en) 2014-10-20 2015-08-03 Methods and systems to separate seismic data associated with impulsive and non-impulsive sources
PCT/EP2015/074248 WO2016062710A1 (en) 2014-10-20 2015-10-20 Methods and systems to separate seismic data associated with impulsive and non-impulsive sources

Publications (2)

Publication Number Publication Date
BR112017007946A2 BR112017007946A2 (pt) 2018-02-27
BR112017007946B1 true BR112017007946B1 (pt) 2022-06-14

Family

ID=55748904

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112017007946-1A BR112017007946B1 (pt) 2014-10-20 2015-10-20 Processos e sistemas para separar dados sísmicos associados com fontes impulsivas e não impulsivas

Country Status (10)

Country Link
US (2) US10101480B2 (pt)
EP (1) EP3210051B1 (pt)
CN (1) CN107430203B (pt)
AU (1) AU2015335017B2 (pt)
BR (1) BR112017007946B1 (pt)
CA (1) CA2964425C (pt)
EA (1) EA201790669A1 (pt)
MX (2) MX364839B (pt)
MY (1) MY191355A (pt)
WO (1) WO2016062710A1 (pt)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170276774A1 (en) * 2014-10-07 2017-09-28 Cgg Services Sas Method and device for boosting low-frequencies for a marine seismic survey
US10101480B2 (en) * 2014-10-20 2018-10-16 Pgs Geophysical As Methods and systems to separate seismic data associated with impulsive and non-impulsive sources
US10996356B2 (en) 2017-02-23 2021-05-04 Pgs Geophysical As Sweep signal for combination of a marine non-impulsive source output with a marine impulsive source output
US11899151B2 (en) * 2017-12-18 2024-02-13 Pgs Geophysical As Surveying techniques using multiple different types of sources
GB2576736A (en) * 2018-08-29 2020-03-04 Equinor Energy As Seismic data acquisition system
CN111443386B (zh) * 2019-01-16 2022-04-22 中国石油化工股份有限公司 一种海洋地震的立体震源的宽频采集方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351899A (en) 1966-06-27 1967-11-07 Teledyne Ind Programmed multiple shot source system and method
GB1233027A (pt) 1968-09-13 1971-05-26
US3744021A (en) 1971-07-13 1973-07-03 Texaco Inc Offshore seismic exploration method
US4170002A (en) 1976-10-22 1979-10-02 Western Geophysical Co. Of America Seismic system using a combination of generically different sources
DE2731044C2 (de) 1977-07-08 1985-09-26 Mobil Oil Corp., New York, N.Y. Vorrichtung zur seismischen Erforschung des Meeresgrundes
US4346461A (en) 1980-02-01 1982-08-24 Chevron Research Company Seismic exploration using vibratory sources, sign-bit recording, and processing that maximizes the obtained subsurface information
DE3171812D1 (en) * 1980-08-29 1985-09-19 British National Oil Corp Improvements in or relating to determination of far field signatures, for instance of seismic sources
US4458339A (en) 1980-10-06 1984-07-03 Texas Instruments Incorporated Seismic prospecting using a continuous shooting and continuous recording system
EP0066423B1 (en) * 1981-05-29 1988-01-13 Britoil Plc Method of determining the signatures of arrays of marine seismic sources, and of accumulating data for use in such methods
US4472794A (en) 1981-06-01 1984-09-18 Bolt Technology Corporation Sleeve shuttle air gun
US4658384A (en) 1985-01-07 1987-04-14 Western Geophysical Co. Of America Method for determining the far-field signature of an air gun array
US4709361A (en) 1986-10-30 1987-11-24 Allied Corporation Flexural disk transducer
FR2622022B1 (fr) 1987-10-20 1990-03-09 Geophysique Cie Gle Procede d'acquisition de donnees sismiques et dispositif de mise en oeuvre du procede
US4908801A (en) 1989-05-30 1990-03-13 Teledyne Exploration Real-time simulation of the far-field signature of a seismic sound source array
RU1805414C (ru) 1990-02-28 1993-03-30 Киевское геофизическое отделение Украинского научно-исследовательского геологоразведочного института Способ сейсмической разведки
NO301354B1 (no) 1994-11-02 1997-10-13 Petroleum Geo Services As Akustisk kildeanordning
FR2774775B1 (fr) 1998-02-09 2000-04-07 Inst Francais Du Petrole Dispositif d'emission sismique immergeable et methode pour sa mise en oeuvre
GB9920593D0 (en) 1999-09-02 1999-11-03 Geco Prakla Uk Ltd A method of seismic surveying, a marine vibrator arrangement, and a method of calculating the depths of seismic sources
US6885918B2 (en) 2000-06-15 2005-04-26 Geo-X Systems, Ltd. Seismic monitoring and control method
US6990045B2 (en) 2002-03-28 2006-01-24 Baker Hughes Incorporated Methods for acquiring seismic data while tripping
US6906981B2 (en) 2002-07-17 2005-06-14 Pgs Americas, Inc. Method and system for acquiring marine seismic data using multiple seismic sources
US7239577B2 (en) 2002-08-30 2007-07-03 Pgs Americas, Inc. Apparatus and methods for multicomponent marine geophysical data gathering
US7376045B2 (en) 2005-10-21 2008-05-20 Pgs Geophysical As System and method for determining positions of towed marine seismic streamers
CA2639947C (en) 2006-02-14 2016-12-20 Exxonmobil Upstream Research Company Source monitoring for electromagnetic surveying
US7457193B2 (en) 2006-07-21 2008-11-25 Pgs Geophysical As Seismic source and source array having depth-control and steering capability
US7907474B2 (en) 2007-10-02 2011-03-15 Geokinetics Acquisition Company Superheterodyne seismic vibrator and method
US8811113B2 (en) 2008-08-01 2014-08-19 Pgs Geophysical As Method of summing dual-sensor towed streamer signals using seismic reflection velocities
US7616523B1 (en) 2008-10-22 2009-11-10 Pgs Geophysical As Method for combining pressure and motion seismic signals from streamers where sensors are not at a common depth
WO2011068620A1 (en) * 2009-12-02 2011-06-09 Conocophillips Company Extraction of discrete records from continuous seismic recordings
US20110139537A1 (en) 2009-12-15 2011-06-16 Pgs Onshore, Inc. Magnetic mass-lift impulsive seismic energy source including repelling electromagnets and reaction mass damping
US8427901B2 (en) * 2009-12-21 2013-04-23 Pgs Geophysical As Combined impulsive and non-impulsive seismic sources
JP5683281B2 (ja) 2010-02-02 2015-03-11 キヤノン株式会社 ドラムユニット
US8818730B2 (en) 2010-07-19 2014-08-26 Conocophillips Company Unique composite relatively adjusted pulse
US8958267B2 (en) * 2011-05-13 2015-02-17 Conocophillips Company Seismic true estimated wavelet
US8902698B2 (en) 2011-05-31 2014-12-02 Pgs Geophysical As Methods and apparatus for seismic exploration using pressure changes caused by sea-surface variations
US9075162B2 (en) 2011-11-10 2015-07-07 Pgs Geophysical As Method and system for separating seismic sources in marine simultaneous shooting acquisition
US9329292B2 (en) * 2013-02-28 2016-05-03 Bp Corporation North America Inc. System and method for preventing cavitation in controlled-frequency marine seismic source arrays
US20140249757A1 (en) 2013-03-04 2014-09-04 Bruno Gratacos Apparatus and method for determination of far-field signature from variable-depth seismic data
US10288753B2 (en) 2013-07-23 2019-05-14 Cgg Services Sas Method for designature of seismic data acquired using moving source
US10557955B2 (en) * 2014-03-20 2020-02-11 Westerngeco L.L.C. Reconstructing impulsive source seismic data from time distributed firing airgun array data
US10101480B2 (en) * 2014-10-20 2018-10-16 Pgs Geophysical As Methods and systems to separate seismic data associated with impulsive and non-impulsive sources
US11899151B2 (en) * 2017-12-18 2024-02-13 Pgs Geophysical As Surveying techniques using multiple different types of sources

Also Published As

Publication number Publication date
MX2017005066A (es) 2018-01-16
US10101480B2 (en) 2018-10-16
MX2019000464A (es) 2022-01-27
CN107430203A (zh) 2017-12-01
EP3210051A1 (en) 2017-08-30
EP3210051B1 (en) 2023-04-05
MY191355A (en) 2022-06-18
CA2964425C (en) 2021-06-01
BR112017007946A2 (pt) 2018-02-27
AU2015335017B2 (en) 2020-11-26
EA201790669A1 (ru) 2017-10-31
US20160109598A1 (en) 2016-04-21
US11378706B2 (en) 2022-07-05
US20190018158A1 (en) 2019-01-17
CA2964425A1 (en) 2016-04-28
CN107430203B (zh) 2020-06-19
WO2016062710A1 (en) 2016-04-28
AU2015335017A1 (en) 2017-05-04
MX364839B (es) 2019-05-07

Similar Documents

Publication Publication Date Title
BR112017007946B1 (pt) Processos e sistemas para separar dados sísmicos associados com fontes impulsivas e não impulsivas
US10317547B2 (en) Noise model estimation in multimeasurement data
US20130322208A1 (en) Methods and systems for imaging subterranean formations with primary and multiple reflections
CA2832278C (en) Determining an indication of wavefield velocity
BRPI1004965B1 (pt) Método para exploração sísmica de formações de rocha de subsuperfícies
US11327195B2 (en) Correction of source motion effects in seismic data recorded in a marine survey using a moving source
US10459097B2 (en) Methods and systems for extrapolating wavefields
US20210103065A1 (en) Determining properties of a subterranean formation using an acoustic wave equation with a reflectivity parameterization
EP2669715B1 (en) Methods and Systems for Computing Notional Source Signatures From Near-Field Measurements and Modeled Notional Signatures
US11105945B2 (en) Processes and systems that attenuate source signatures and free-surface effects in recorded seismic data
EP3136130B1 (en) Wavefield interpolation and regularization in imaging of multiple reflection energy
BR102015026269B1 (pt) Método para gerar uma imagem de uma formação subterrânea usando técnicas sísmicas marinhas, sistema de computador que atenua o ruído em dados sísmicos e meio legível por computador não transitório
US20210063593A1 (en) Seismic imaging with source deconvolution for marine vibrators with random source signatures
US10132946B2 (en) Methods and systems that combine wavefields associated with generalized source activation times and near-continuously recorded seismic data
BR102013004900A2 (pt) Métodos e sistemas para desmistificar campos de onda sísmica marinhos usando minimização de custo funcional
US10234578B2 (en) Methods and systems to operate marine sources to avoid air in water effects
US20140283615A1 (en) Determining a seismic vibrator signature
US20230305176A1 (en) Determining properties of a subterranean formation using an acoustic wave equation with a reflectivity parameterization
GB2555909A (en) Marine vibrator source acceleration and pressure
US20210270984A1 (en) Geometrical Distribution for Non-Impulsive Sources
GB2530399A (en) Methods and systems to operate marine sources to avoid air in water effects

Legal Events

Date Code Title Description
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 20/10/2015, OBSERVADAS AS CONDICOES LEGAIS