BR112016007331B1 - use of a particulate carbon material - Google Patents

use of a particulate carbon material Download PDF

Info

Publication number
BR112016007331B1
BR112016007331B1 BR112016007331-2A BR112016007331A BR112016007331B1 BR 112016007331 B1 BR112016007331 B1 BR 112016007331B1 BR 112016007331 A BR112016007331 A BR 112016007331A BR 112016007331 B1 BR112016007331 B1 BR 112016007331B1
Authority
BR
Brazil
Prior art keywords
use according
carbon
fact
carbon material
particulate carbon
Prior art date
Application number
BR112016007331-2A
Other languages
Portuguese (pt)
Other versions
BR112016007331A2 (en
Inventor
Martin Cadek
Original Assignee
Orion Engineered Carbons Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Engineered Carbons Gmbh filed Critical Orion Engineered Carbons Gmbh
Publication of BR112016007331A2 publication Critical patent/BR112016007331A2/en
Publication of BR112016007331B1 publication Critical patent/BR112016007331B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

USO DE UM MATERIAL DE CARBONO DE MICRODOMÍNIO PARA ISOLAMENTO TÉRMICO. A presente invenção refere-se ao uso de um material de carbono particulado que compreende partículas de carbono no formato de discos e cones abertos ocos em aplicações de isolamento térmico.USE OF A MICRODOMINIUM CARBON MATERIAL FOR THERMAL INSULATION. The present invention relates to the use of a particulate carbon material that comprises carbon particles in the shape of discs and hollow open cones in thermal insulation applications.

Description

[0001] A presente invenção se refere ao uso de um material de carbono microestruturado particulado em aplicações de isolamento térmico, preferencialmente como uma carga atérmana.[0001] The present invention relates to the use of a particulate microstructured carbon material in thermal insulation applications, preferably as an athermic charge.

[0002] O isolamento térmico para poupar energia atingiu grande proeminência no contexto de desejo para o desenvolvimento sustentável e o custo crescente de energia. O isolamento térmico vem ganhando cada vez mais importância à luz dos custos crescentes de energia, dos recursos cada vez mais escassos, do desejo de reduzir emissões de CO2, da necessidade de uma redução sustentável da demanda de energia e também dos requisitos cada vez mais exigentes que a proteção contra o calor e frio terá que atender no futuro. Esses requisitos cada vez mais exigentes para otimizar o isolamento térmico se aplicam igualmente em construções, por exemplo, novas construções ou construções existentes, e para isolamento térmico nos setores móveis, logísticos e estacionários.[0002] Thermal insulation to save energy has reached great prominence in the context of the desire for sustainable development and the rising cost of energy. Thermal insulation is gaining more and more importance in the light of rising energy costs, increasingly scarce resources, the desire to reduce CO2 emissions, the need for a sustainable reduction in energy demand and also the increasingly demanding requirements that protection against heat and cold will have to meet in the future. These increasingly demanding requirements for optimizing thermal insulation apply equally to buildings, for example, new buildings or existing buildings, and for thermal insulation in the mobile, logistical and stationary sectors.

[0003] Materiais de construção tais como aço, concreto, alvenaria e vidro, assim como rocha natural, são relativamente bons condutores térmicos de modo que as paredes exteriores de construções produzidas a partir dos mesmos liberem calor muito rapidamente de dentro para fora em clima frio. Portanto, o desenvolvimento visa, primeiramente, aprimorar as propriedades de isolamento aumentando-se a porosidade desses materiais de construção como no caso de, por exemplo, concreto e alvenaria e, em segundo lugar, revestir as paredes externas com materiais de isolamento térmico. Os materiais de isolamento térmico que são mais usados na presente invenção são materiais que têm uma baixa condutividade térmica. Os materiais usados incluem tanto materiais de isolamento orgânicos quanto materiais de isolamento inorgânicos, por exemplo, plásticos espumados tais como o poliestireno e o poliuretano; materiais de fibra de madeira tais como palha de madeira e cortiça; fibras vegetais ou animais tais como cânhamo, linho, lã; lã de vidro e mineral, vidro espumado em forma de chapa; placas de silicato de cálcio e chapas de reboco de gesso. Esses materiais de isolamento térmico são mais usados na forma de moldagens e placas espumadas ou prensadas, sozinhos ou em combinação com outros. Outra forma eficaz de fornecer isolamento térmico é o uso de painéis isolados a vácuo (VIPs) que são à base do princípio de isolamento a vácuo. Esses VIPs compreendem um material de núcleo poroso para sustentar o vácuo e é circundado por um material de cobertura altamente à prova de gás. Os materiais que podem ser empregados para o núcleo incluem espumas de polímero de célula aberta, materiais de microfibra, sílica fumegada e perlita.[0003] Building materials such as steel, concrete, masonry and glass, as well as natural rock, are relatively good thermal conductors so that the exterior walls of buildings produced from them release heat very quickly from the inside out in a cold climate . Therefore, the development aims, first, to improve the insulation properties by increasing the porosity of these construction materials as in the case of, for example, concrete and masonry and, secondly, to coat the external walls with thermal insulation materials. The thermal insulation materials that are most used in the present invention are materials that have a low thermal conductivity. The materials used include both organic and inorganic insulation materials, for example, foamed plastics such as polystyrene and polyurethane; wood fiber materials such as wood straw and cork; vegetable or animal fibers such as hemp, linen, wool; glass and mineral wool, plate-shaped foamed glass; calcium silicate sheets and plasterboard sheets. These thermal insulation materials are mostly used in the form of moldings and foamed or pressed plates, alone or in combination with others. Another effective way of providing thermal insulation is the use of vacuum insulated panels (VIPs) that are based on the vacuum insulation principle. These VIPs comprise a porous core material to support the vacuum and are surrounded by a highly gas-proof cover material. Materials that can be used for the core include open cell polymer foams, microfiber materials, fumed silica and perlite.

[0004] A capacidade de isolamento de cada um dentre os materiais supracitados e as combinações de material/vácuo, respectivamente, pode ser mais aprimorada adicionando-se um material atérmano com capacidade para interagir com radiação infravermelha e, assim, reduzir a transmissão de infravermelho. Por exemplo, materiais atérmanos podem ser usados como cargas em espumas poliméricas termoisolantes e em painéis isolados a vácuo. Polímeros termoplásticos expansíveis e entre esses, em particular, o poliestireno expansível (EPS), são materiais de isolamento convencionais que foram conhecidos e usados por um longo tempo para preparar artigos expandidos que podem ser adotados em várias áreas de aplicação, dentre as quais, uma das mais importantes é o isolamento térmico. As folhas planas de poliestireno expandido são normalmente usadas com uma densidade de cerca de 30 g/l visto que a condutividade térmica do polímero tem um mínimo nesses valores. Não é vantajoso descer abaixo desse limite, mesmo que isso seja tecnicamente possível, visto que isso provoca um aumento drástico da condutividade térmica da folha que deve ser compensada por um aumento em sua espessura. A fim de evitar essa desvantagem, o polímero pode ser preenchido com materiais atérmanos tais como o grafite (por exemplo, em Neopor® disponível na BASF), negro de fumo ou alumínio. Um bom desempenho da carga atérmana e, assim, do isolamento térmico por completo permite uma redução significativa na densidade do artigo expandido ou da espessura do mesmo sem reduzir o valor de resistência térmica por completo.[0004] The insulating capacity of each of the aforementioned materials and the material / vacuum combinations, respectively, can be further improved by adding an athermic material capable of interacting with infrared radiation and, thus, reducing infrared transmission. . For example, athermic materials can be used as fillers in thermo-insulating polymeric foams and vacuum-insulated panels. Expandable thermoplastic polymers and among these, in particular, expandable polystyrene (EPS), are conventional insulation materials that have been known and used for a long time to prepare expanded articles that can be adopted in various areas of application, among which, a of the most important is thermal insulation. The flat sheets of expanded polystyrene are normally used with a density of about 30 g / l since the thermal conductivity of the polymer has a minimum of these values. It is not advantageous to go below this limit, even if this is technically possible, since this causes a drastic increase in the thermal conductivity of the sheet which must be compensated by an increase in its thickness. In order to avoid this disadvantage, the polymer can be filled with athermic materials such as graphite (for example, in Neopor® available from BASF), carbon black or aluminum. A good performance of the thermal load and, thus, of the complete thermal insulation allows a significant reduction in the density of the expanded article or the thickness of it without reducing the value of thermal resistance completely.

[0005] O documento EP 620.246 A descreve um processo para preparar grânulos de poliestireno expansível que contenham um material atérmano, por exemplo, negro de fumo, distribuídos na superfície ou, alternativamente, incorporados no interior da própria partícula.[0005] EP 620.246 A describes a process for preparing expandable polystyrene granules containing an athermic material, for example, carbon black, distributed on the surface or, alternatively, incorporated within the particle itself.

[0006] O uso de negro de fumo tem sido conhecido como uma carga ou pigmento, ou então como um agente de nucleação (consultar, por exemplo, Chem. Abstr., 1987, "Carbon Black Containing poliestireno Beads"). Entre os vários tipos de negro de fumo, os mais importantes são o negro de fumo proveniente de combustão de óleo ("negro de fumo de petróleo"), negro de fumo proveniente de combustão de gás, negro de fumo proveniente de acetileno, negro de fumo de lâmpada, negro de fumo de canal, negro de fumo térmico e negro de fumo eletricamente condutivo. O documento WO 1997/45477 descreve composições com base em poliestireno expansível que compreende um polímero de estireno e de 0,05 a 25% de negro de fumo do tipo negro de fumo de lâmpada.[0006] The use of carbon black has been known as a filler or pigment, or as a nucleating agent (see, for example, Chem. Abstr., 1987, "Carbon Black Containing Polystyrene Beads"). Among the various types of carbon black, the most important are carbon black from oil combustion ("oil carbon black"), carbon black from gas combustion, carbon black from acetylene, carbon black lamp smoke, channel carbon black, thermal carbon black and electrically conductive carbon black. WO 1997/45477 describes compositions based on expandable polystyrene comprising a polymer of styrene and from 0.05 to 25% of carbon black of the lamp carbon black type.

[0007] Dependendo do processo de fabricação, esses negros de fumo têm diâmetros que variam de 10 nm a 1.000 nm aproximadamente, e têm superfícies específicas muito diferentes (de 10 a 2.000 m2/g). Essas diferenças levam a capacidades de bloqueio diferentes dos raios infravermelhos. O documento WO 2006/61571 descreve composições com base em poliestireno expansível que compreende um polímero de estireno e de 0,05 a menos do que 1% de negro de fumo, com uma área de superfície que varia de 550 a 1.600 m2/g.[0007] Depending on the manufacturing process, these carbon blacks have diameters ranging from approximately 10 nm to 1,000 nm, and have very different specific surfaces (from 10 to 2,000 m2 / g). These differences lead to different blocking capabilities than infrared rays. WO 2006/61571 describes compositions based on expandable polystyrene comprising a polymer of styrene and from 0.05 to less than 1% carbon black, with a surface area ranging from 550 to 1,600 m2 / g.

[0008] Sabe-se que o grafite também pode ser usado eficazmente como um corpo negro (conforme descrito, por exemplo, nos documentos JP 63-183941, WO 04/022636, WO 96/34039). O seu uso como agente de atenuação de radiação infravermelha em espumas poliméricas é, entretanto, mais recente. O Pedido de Patente no JP 63183941 está entre os primeiros a propor o uso de alguns aditivos, ativos em bloqueio de raios infravermelhos em comprimentos de onda que variam de 6 a 14 μm e, portanto, a obtenção de resinas termoplásticas de isolamento com capacidade para sustentar permanentemente uma baixa condutividade térmica. Entre todos os aditivos, o grafite é o preferido.[0008] It is known that graphite can also be used effectively as a blackbody (as described, for example, in JP 63-183941, WO 04/022636, WO 96/34039). Its use as an attenuation agent for infrared radiation in polymeric foams is, however, more recent. Patent Application in JP 63183941 is among the first to propose the use of some additives, active in blocking infrared rays at wavelengths ranging from 6 to 14 μm and, therefore, obtaining insulating thermoplastic resins capable of permanently sustain low thermal conductivity. Among all additives, graphite is preferred.

[0009] O documento DE 9305431 U descreve um método para produzir produtos moldados expandidos que têm uma densidade de menos do que 20 kg/m3 e uma condutividade térmica reduzida. Esse resultado é alcançado incorporando-se um material atérmano, tal como grafite e também negro de fumo, na espuma de poliestireno rígida. O Pedido de Patente Internacional no WO 98/51735 descreve particulados de poliestireno expansível que contêm de 0,05 a 25% em peso de partículas de grafite natural ou sintético, homogeneamente distribuídas na matriz de poliestireno. O grafite tem preferencialmente um diâmetro médio que varia de 1 a 50 μm, uma densidade aparente que varia de 100 a 500 g/l e uma área de superfície que varia de 5 a 20 m2/g.[0009] DE 9305431 U describes a method for producing expanded molded products that have a density of less than 20 kg / m3 and a reduced thermal conductivity. This result is achieved by incorporating an athermic material, such as graphite and also carbon black, in the rigid polystyrene foam. The International Patent Application in WO 98/51735 describes expandable polystyrene particulates that contain from 0.05 to 25% by weight of particles of natural or synthetic graphite, homogeneously distributed in the polystyrene matrix. Graphite preferably has an average diameter ranging from 1 to 50 μm, an apparent density ranging from 100 to 500 g / l and a surface area ranging from 5 to 20 m2 / g.

[00010] O documento WO 2011/042800 é direcionado para uma composição polimérica nanocompósita termoplástica expansível, preferencialmente uma composição de poliestireno, que inclui uma carga atérmana que compreende folhas de grafeno em nanoescala que têm uma espessura não superior a 150 μm, uma dimensão média (comprimento, largura ou diâmetro) não superior a 10 μm e uma área de superfície > 50 m2/g.[00010] WO 2011/042800 is directed to an expandable thermoplastic nanocomposite polymeric composition, preferably a polystyrene composition, which includes an athermic filler comprising nanoscale graphene sheets that have a thickness not exceeding 150 μm, an average dimension (length, width or diameter) not exceeding 10 μm and a surface area> 50 m2 / g.

[00011] Há uma necessidade contínua de materiais de isolamento altamente eficazes que tenham baixas exigências de espaço e, assim, permitir campos múltiplos de uso. O problema subjacente à presente invenção é encontrar um material particulado que tenha condutividade radioativa excepcionalmente baixa que possa ser usado em combinação com materiais convencionais para aprimorar o isolamento térmico. Mais particularmente, procura-se por um material de carga atérmana para uso em espumas poliméricas e painéis isolados a vácuo.[00011] There is a continuing need for highly effective insulation materials that have low space requirements and thus allow for multiple fields of use. The problem underlying the present invention is to find a particulate material that has exceptionally low radioactive conductivity that can be used in combination with conventional materials to improve thermal insulation. More particularly, an endogenous filler material is sought for use in polymeric foams and vacuum insulated panels.

[00012] Constatou-se que um material de carbono particulado que compreende partículas de carbono no formato de discos ("discos de carbono") e cones abertos ocos ("cones de carbono") pode ser usado para isolamento térmico.[00012] It has been found that a particulate carbon material comprising disc-shaped carbon particles ("carbon discs") and hollow open cones ("carbon cones") can be used for thermal insulation.

[00013] Os termos "cones de carbono" e "discos de carbono" são usados para designar uma certa classe de estruturas de carbono no microdomínio ou menor (nanodomínio). Essas estruturas podem ser grosseiramente descritas como pilhas de folhas grafíticas com estruturas planas ou cônicas. Os cones de carbono abertos são geralmente ocos, cada um produzido de uma folha contínua de grafite, exceto em suas bordas abertas. Todos os cones são fechados no ápice e existem somente com cinco ângulos de abertura diferentes. Uma folha grafítica composta de hexágonos somente não pode formar uma tampa de cone contínua, mas forma uma chapa ou disco plano. Pentágonos têm que ser adicionados para formar uma ponta curva. Os cones de carbono abertos podem ser moldados como uma folha grafítica envolvida. A fim de ter invólucro sem costura livre de deformação, um setor tem que ser cortado da folha e, subsequentemente, as bordas têm que ser conectadas. Considerando- se a simetria de uma folha de grafite, esse setor deve ter um ângulo ( = declinação total TD) de TD = N x 60°, em que N = 0, 1, 2, 3, 4 ou 5 e corresponde ao número eficaz de pentágonos necessários para produzir a declinação total particular (curvatura). Portanto, os ângulos de abertura α dos cones têm somente certos valores discretos de acordo com a equação α = 2 arcsen (1 - N/6). Uma declinação total de 0° (N = 0) corresponde a uma chapa plana, isto é, os discos de carbono podem ser descritos como folhas de grafite circulares planas que têm estrutura de grafite somente hexagonal. A Figura 1, tomada do Pedido Internacional no WO 98/42621, mostra esquematicamente os ângulos projetados (ângulos de ápice ou de abertura) dos vários cones de carbono possíveis.[00013] The terms "carbon cones" and "carbon disks" are used to designate a certain class of carbon structures in the microdomain or smaller (nanodomain). These structures can be roughly described as stacks of graphical sheets with flat or conical structures. Open carbon cones are generally hollow, each made from a continuous sheet of graphite, except at its open edges. All cones are closed at the apex and only exist with five different opening angles. A graphical sheet composed of hexagons cannot only form a continuous cone cover, but forms a flat plate or disc. Pentagons have to be added to form a curved tip. The open carbon cones can be shaped like a wrapped graph sheet. In order to have seamless deformation-free wrapping, a sector has to be cut from the sheet and subsequently the edges have to be connected. Considering the symmetry of a graphite sheet, this sector must have an angle (= total declination TD) of TD = N x 60 °, where N = 0, 1, 2, 3, 4 or 5 and corresponds to the number pentagons needed to produce the particular total declination (curvature). Therefore, the opening angles α of the cones have only certain discrete values according to the equation α = 2 arcsen (1 - N / 6). A total declination of 0 ° (N = 0) corresponds to a flat plate, that is, the carbon discs can be described as flat circular graphite sheets that have only hexagonal graphite structure. Figure 1, taken from the International Application in WO 98/42621, shows schematically the projected angles (apex or opening angles) of the various possible carbon cones.

[00014] O conceito de declinação e ângulo projetado conforme aplicado aos cones e discos de carbono é melhor entendido em referência ao artigo "Graphitic Cones and the Nucleation of Curved Carbon Surfaces" que aparece na Nature (1997), edição de 31 de julho. Conforme mostrado na Figura 1, os ângulos projetados para cada um dos possíveis cones são 19,2°, 38,9°, 60°, 83,6° e 112,9°, que correspondem às declinações totais de 300° (N = 5), 240° (N = 4), 180° (N = 3), 120° (N = 2) e 60° (N = 1), respectivamente. Além disso, folha grafítica de chapa plana tem um ângulo projetado de 180° e uma declinação total de 0°. Eletromicrografias do material de carbono particulado confirmam a presença de discos e cones que têm pelo menos um dos ângulos de abertura mencionados acima. Os cones de carbono que têm ângulos de abertura diferente dos mencionados não foram observados.[00014] The concept of declination and angle projected as applied to carbon cones and disks is best understood in reference to the article "Graphitic Cones and the Nucleation of Curved Carbon Surfaces" that appears in Nature (1997), July 31st edition. As shown in Figure 1, the projected angles for each of the possible cones are 19.2 °, 38.9 °, 60 °, 83.6 ° and 112.9 °, which correspond to the total declines of 300 ° (N = 5), 240 ° (N = 4), 180 ° (N = 3), 120 ° (N = 2) and 60 ° (N = 1), respectively. In addition, flat sheet graphitic sheet has a projected angle of 180 ° and a total declination of 0 °. Electromicrographs of the particulate carbon material confirm the presence of discs and cones that have at least one of the opening angles mentioned above. Carbon cones that have different opening angles than those mentioned have not been observed.

[00015] O tamanho característico, ou dimensão mais longa, dos cones e discos de carbono é tipicamente menor do que 5 μm, preferencialmente menor do que 4 μm, mais preferencialmente não mais do que 2 μm tal como de 1 a 2 μm ou menor do que 1 μm ou menor do que 800 nm, e a espessura, medida como a espessura de parede de cones de carbono abertos ocos ou a espessura dos discos, é tipicamente menor do que 100 nm, preferencialmente menor do que 80 nm, mais preferencialmente menor do que 50 nm tal como de 20 a 30 nm. As razões de aspecto típicas estão dentro da faixa de 1 a 50 que distingue claramente essas estruturas de microdomínio de nanotubos de carbono que têm razões de aspecto na faixa de 100 a 1.000.[00015] The characteristic size, or longest dimension, of carbon cones and discs is typically less than 5 μm, preferably less than 4 μm, more preferably not more than 2 μm such as 1 to 2 μm or less than 1 μm or less than 800 nm, and the thickness, measured as the wall thickness of hollow open carbon cones or the thickness of the discs, is typically less than 100 nm, preferably less than 80 nm, more preferably less than 50 nm such as 20 to 30 nm. Typical aspect ratios are within the range of 1 to 50 which clearly distinguishes those microdomain structures from carbon nanotubes that have aspect ratios in the range of 100 to 1,000.

[00016] Os discos e cones de carbono são estruturas de microdomínio de carbono que são fortemente dominantes no material de carbono particulado presente. Tipicamente, o material de carbono particulado compreende mais do que 90% em peso de estruturas de microdomínio de carbono e até cerca de 10% em peso de negro de fumo comum. A fração de microdomínio do material particulado compreende normalmente pelo menos 10% em peso de cones de carbono, preferencialmente cerca de 80% em peso de discos de carbono e cerca de 20% em peso de cones de carbono. Estruturas de microdomínio ou nanodomínio adicionais tais como nanotubos e fulerenos também podem estar presentes, mas somente em quantidades diminutas.[00016] Carbon disks and cones are carbon microdomain structures that are strongly dominant in the particulate carbon material present. Typically, the particulate carbon material comprises more than 90% by weight of carbon microdomain structures and up to about 10% by weight of common carbon black. The microdomain fraction of the particulate material normally comprises at least 10% by weight of carbon cones, preferably about 80% by weight of carbon disks and about 20% by weight of carbon cones. Additional microdomain or nanodomain structures such as nanotubes and fullerenes may also be present, but only in minute quantities.

[00017] O material de carbono particulado presente é produzido pelo assim chamado Processo Kvaerner de Negro de Fumo & Hidrogênio, um processo de maçarico de plasma, que é totalmente descrito no documento WO 98/42621. O método de produção pode ser resumido como um processo de pirólise de dois estágios em que uma matéria-prima de hidrocarboneto é primeiro conduzida para uma zona de plasma e desse modo submetida a uma primeira etapa de pirólise suave em que os hidrocarbonetos são decompostos ou craqueados somente parcialmente para formar hidrocarbonetos aromáticos policíclicos (PAHs), antes de inserir os PAHs em uma segunda zona de plasma suficientemente intensa para completar a decomposição dos hidrocarbonetos em hidrogênio e carbono elementares.[00017] The particulate carbon material present is produced by the so-called Carbon Black & Hydrogen Kvaerner Process, a plasma torch process, which is fully described in WO 98/42621. The production method can be summarized as a two-stage pyrolysis process in which a hydrocarbon feedstock is first conducted to a plasma zone and thereby subjected to a first smooth pyrolysis step in which the hydrocarbons are decomposed or cracked only partially to form polycyclic aromatic hydrocarbons (PAHs), before inserting PAHs into a second plasma zone sufficiently intense to complete the decomposition of hydrocarbons into elementary hydrogen and carbon.

[00018] O documento US 6.476.154 é direcionado ao uso do material de carbono de microdomínio particulado presente elastômeros a base de dieno para aprimorar as propriedades mecânicas das composições de borracha. As aplicações das composições de borracha incluem pneus, esteiras e mangueiras. A condutividade radioativa térmica do material de carbono particulado não é mencionada nem de qualquer relevância para as aplicações pretendidas referidas no documento US 6.476.154.[00018] US 6,476,154 addresses the use of the particulate microdomain carbon material present in diene-based elastomers to enhance the mechanical properties of rubber compositions. Applications of rubber compositions include tires, tracks and hoses. The thermal radioactive conductivity of the particulate carbon material is not mentioned or of any relevance to the intended applications referred to in US 6,476,154.

[00019] O documento WO 2006/052142 se refere a um material compósito eletricamente condutivo que compreende um material não condutivo por natureza que se tornou condutivo carregando-se o mesmo com uma carga de condução eletricidade que consiste no presente material de carbono particulado preparado pelo Processo Kvaerner de Negro de Fumo & Hidrogênio. O documento WO 2006/052142 também declara a carga e, consequentemente, o material compósito termicamente condutivo, porém, nenhuma evidência é fornecida.[00019] WO 2006/052142 refers to an electrically conductive composite material that comprises a non-conductive material by nature that has become conductive by carrying it with an electrical conductive charge consisting of the present particulate carbon material prepared by Kvaerner Carbon Black & Hydrogen Process. WO 2006/052142 also declares the charge and, consequently, the thermally conductive composite material, however, no evidence is provided.

[00020] Tendo em vista o ensinamento do documento WO 2006/052142 para adicionar o material de carbono particulado a um material não condutivo para intensificar a condutividade térmica, é totalmente surpreendente que o material de carbono particulado possa ser usado para isolamento térmico. O mérito dos presentes inventores é a constatação de que o material de carbono microestruturado particulado tem um coeficiente de extinção excepcionalmente alto para radiação infravermelha, o que torna o mesmo ideal para aplicações de isolamento térmico.[00020] In view of the teaching of WO 2006/052142 to add particulate carbon material to a non-conductive material to enhance thermal conductivity, it is quite surprising that particulate carbon material can be used for thermal insulation. The merit of the present inventors is the finding that the particulate microstructured carbon material has an exceptionally high extinction coefficient for infrared radiation, which makes it ideal for thermal insulation applications.

[00021] O coeficiente de extinção específica eficaz espectral e*A em um comprimento de onda na faixa de A = 1,4 μm a 35 μm é uma medida para a atenuação da radiação térmica que transmite o material. A extinção inclui tanto processo tanto de absorção quanto de dispersão dentro do material. A influência de dispersão anisotrópica em transferência radiativa pode ser abrangida escalando-se até as estão chamadas quantidades eficazes, marcadas com uma estrela is .. o ,, and u,i. O coeficiente de extinção específica eficaz espectral e*A é determinado pela soma do coeficiente de dispersão específico eficaz espectral S*A ao coeficiente de absorção espectral aA.

Figure img0001
[00021] The specific extinction coefficient effective spectral e * A at a wavelength in the range of A = 1.4 μm to 35 μm is a measure for the attenuation of the thermal radiation that transmits the material. Extinction includes both an absorption and dispersion process within the material. The influence of anisotropic dispersion on radioactive transfer can be covered by scaling up to what are called effective amounts, marked with an is .. o ,, and u, i star. The spectral effective specific extinction coefficient e * A is determined by adding the spectral effective specific dispersion coefficient S * A to the spectral absorption coefficient aA.
Figure img0001

[00022] A recíproca do produto do coeficiente de extinção eficaz espectral e ' •• e a densidade p é o trajeto livre médio L ' de radiação térmica no meio, isto é, o caminho antes de a dispersão ou a absorção ocorrer:

Figure img0002
[00022] The reciprocal of the product of the spectral effective extinction coefficient e '•• and the density p is the average free path L' of thermal radiation in the medium, that is, the path before dispersion or absorption occurs:
Figure img0002

[00023] O albedo eficaz espectral (-'-1 é o quociente entre o coeficiente de dispersão específico eficaz espectral s e o coeficiente de extinção específica eficaz espectral θ

Figure img0003
[00023] The spectral effective albedo (-'- 1 is the quotient between the spectral effective specific dispersion coefficient and the spectral effective specific extinction coefficient θ
Figure img0003

[00024] Os valores do albedo •; podem ser constatados entre 0 e 1 (0 no caso de apenas absorção e 1 no caos de apenas dispersão).[00024] The values of albedo •; between 0 and 1 (0 in the case of absorption only and 1 in the chaos of dispersion only).

[00025] Uma descrição completa das propriedades ópticas- infravermelhas é fornecida tanto pelo coeficiente de extinção como pelo albedo ou pelo coeficiente de dispersão e pelo coeficiente de absorção. Esses quatro valores são conectados através da Eq. (1) e Eq. 3.[00025] A complete description of the optical-infrared properties is provided both by the extinction coefficient and by the albedo or the dispersion coefficient and the absorption coefficient. These four values are connected through Eq. (1) and Eq. 3.

[00026] A fim de descrever o transporte térmico radiativo total através do meio de dispersão e de absorção, o coeficiente de extinção específico eficaz total como uma função de temperatura e*(T) é obtido integrando-se o coeficiente de extinção específica eficaz espectral e*A em todos os comprimentos de banda A na faixa de A = 1,4 μm a 35 μm com o uso da função peso de Rosseland •’ • :

Figure img0004
[00026] In order to describe the total radiative thermal transport through the dispersion and absorption medium, the total specific extinction coefficient as a function of temperature and * (T) is obtained by integrating the spectral effective extinction coefficient and * A in all lengths of band A in the range A = 1.4 μm to 35 μm using the Rosseland weight function • '•:
Figure img0004

[00027] em que a função de Rosseland é o derivado parcial da intensidade espectral '=' vT:' emitida por um corpo negro em um determinado comprimento de onda A e temperatura T em relação à intensidade total ir'Tj na mesma temperatura:

Figure img0005
[00027] where the Rosseland function is the partial derivative of the spectral intensity '=' vT: 'emitted by a blackbody at a given wavelength A and temperature T in relation to the total intensity ir'Tj at the same temperature:
Figure img0005

[00028] A condutividade radiativa pode ser calculada em dependência da espessura de amostra caso o coeficiente de extinção específico eficaz total seja conhecido:

Figure img0006
em que T é a temperatura de amostra média e α = 5,67^10-8 W m-2K-4, a constante de Stefan-Boltzmann.[00028] The radiative conductivity can be calculated depending on the thickness of the sample if the total effective specific extinction coefficient is known:
Figure img0006
where T is the average sample temperature and α = 5.67 ^ 10-8 W m-2K-4, the Stefan-Boltzmann constant.

[00029] Para amostras espessas ópticas 1 e e’-p-d » D, a Eq. (6) é reduzida para:

Figure img0007
: não depende da espessura de amostra.[00029] For thick optical samples 1 and e'-pd »D, Eq. (6) is reduced to:
Figure img0007
: does not depend on the sample thickness.

[00030] Em geral, o coeficiente de extinção específico eficaz total e* para a radiação infravermelha com x = 1,4 μm a 35 μm do presente material de carbono particulado em 26,85 C (300 K) está dentro da faixa a partir de 1.200 a 1.700 m2/kg, tipicamente dentro da faixa a partir de 1.290 a 1.640 m2/kg. Os parâmetros para calcular o coeficiente de extinção eficaz total e* do material de carbono particulado foram obtidos, conforme descritos no exemplo.[00030] In general, the total effective specific extinction coefficient e * for infrared radiation with x = 1.4 μm to 35 μm of the present particulate carbon material at 26.85 C (300 K) is within the range from from 1,200 to 1,700 m2 / kg, typically within the range from 1,290 to 1,640 m2 / kg. The parameters to calculate the total effective extinction coefficient and * of the particulate carbon material were obtained, as described in the example.

[00031] A extinção infravermelha do presente material de carbono microestruturado particulado é, de fato, muito superior àquela de negros de fumo e grafites conhecidos usados como cargas atérmanas até então. É uma vantagem fundamental adicional da presente invenção que o material de carbono particulado específico possa ser produzido em escala industrial aproximadamente nas mesmas magnitudes e custos de produção como negro de fumo comum.[00031] The infrared extinction of the present particulate microstructured carbon material is, in fact, far superior to that of carbon blacks and graphites known to have been used as thermal loads until then. It is a further fundamental advantage of the present invention that the specific particulate carbon material can be produced on an industrial scale at approximately the same magnitudes and production costs as ordinary carbon black.

[00032] Devido a essa característica exclusiva de extinção de IR, o presente material de carbono particulado é útil em qualquer aplicação para isolamento térmico tanto sozinho como, de preferência, em combinação com outro(s) material(ais). Tipicamente, esses materiais são termicamente isolantes e incluem materiais de isolamento térmico tanto orgânicos quanto inorgânicos. A adição do presente material de carbono particulado a um material de isolamento reduz significativamente a condutividade térmica através do compósito e, desse modo, aprimora o efeito isolante. Os materiais de isolamento exemplificativos que podem ser usados em combinação com o presente material de carbono particulado são materiais poliméricos tanto termoplásticos como termofixos; materiais de fibra de madeira, tais como, cortiça e palha de madeira; fibras animais ou vegetais tais como, cânhamo, linho, palha; mineral e lã de vidro, vidro espumado em forma de chapa; chapas de reboco de silicato de cálcio e painéis de gesso; sílica fumegada e misturas de pelo menos dois desses materiais. Os exemplos de materiais poliméricos incluem polímeros de vinila, de preferência, polímeros aromáticos de vinila, tais como, poliestireno, copolímeros de estireno com pelo menos um monômero copolimerizável e polipropileno; assim como poliuretanos. Além disso, podem ser usadas mesclas de vários polímeros. Os materiais poliméricos termicamente isolantes, incluindo aqueles mencionados acima, estão presentes tipicamente na forma de uma célula de espuma tanto aberta quanto fechada. As espumas poliméricas a serem usadas juntamente com o presente material de carbono particulado incluem, por exemplo, poliestireno expandido (EPS), copolímeros expandidos de estireno e pelo menos um monômero copolimerizável, polipropileno expandido, poliestireno extrudado (XPS) e espuma de poliuretano. Em algumas modalidades, a espuma polimérica compreende 1 a 10% em peso, de preferência, 1,5 a 8% em peso, mais preferencialmente, 2 a 6% em peso do presente material de carbono particulado, sendo que cada um tem base no peso do material polimérico.[00032] Due to this unique IR extinguishing feature, the present particulate carbon material is useful in any application for thermal insulation both alone and, preferably, in combination with other material (s). Typically, these materials are thermally insulating and include both organic and inorganic thermal insulation materials. The addition of the present particulate carbon material to an insulation material significantly reduces the thermal conductivity through the composite and thereby enhances the insulating effect. Exemplary insulation materials that can be used in combination with the present particulate carbon material are both thermoplastic and thermoset polymeric materials; wood fiber materials, such as cork and wood straw; animal or vegetable fibers such as hemp, flax, straw; mineral and glass wool, sheet-shaped foamed glass; calcium silicate plaster sheets and plaster panels; fumed silica and mixtures of at least two of these materials. Examples of polymeric materials include vinyl polymers, preferably aromatic vinyl polymers, such as polystyrene, styrene copolymers with at least one copolymerizable monomer and polypropylene; as well as polyurethanes. In addition, mixtures of various polymers can be used. Thermally insulating polymeric materials, including those mentioned above, are typically present in the form of a foam cell both open and closed. The polymeric foams to be used together with the present particulate carbon material include, for example, expanded polystyrene (EPS), expanded styrene copolymers and at least one copolymerizable monomer, expanded polypropylene, extruded polystyrene (XPS) and polyurethane foam. In some embodiments, the polymeric foam comprises 1 to 10% by weight, preferably 1.5 to 8% by weight, more preferably 2 to 6% by weight of the present particulate carbon material, each of which is based on weight of the polymeric material.

[00033] Tipicamente, o presente material de carbono particulado é usado como uma carga atérmana que está incluída/incorporada em um material de matriz que é, de preferência, uma espuma polimérica, conforme mencionado acima. Em algumas modalidades, o material de carbono particulado é usado como uma carga atérmana (por exemplo, em um material de matriz que é, de preferência, uma espuma polimérica, conforme mencionado acima) junto de pelo menos um material de carga adicional que pode ser termicamente isolante ou não. Os exemplos de materiais de carga para uso junto do presente material de carbono particulado incluem sílicas fumegadas, tais como, Aerosil® R 812 (sílica fumegada hidrofóbica pós-tratada com hexametildissilazano e disponível junto à Evonik Industries AG, Alemanha). Uma pessoa versada na técnica sabe bem como incorporar uma carga atérmana em uma espuma polimérica e vários métodos são descritos na literatura, por exemplo, no documento WO 2011/042800 que revela diversos métodos para preparar folhas expandidas e extrudadas expandidas de um polímero termoplástico, de preferência, poliestireno, carregado com uma carga atérmana.[00033] Typically, the present particulate carbon material is used as an endogenous filler that is included / incorporated in a matrix material that is preferably a polymeric foam, as mentioned above. In some embodiments, the particulate carbon material is used as an aerobic filler (for example, in a matrix material that is preferably a polymeric foam, as mentioned above) together with at least one additional filler material that can be used. thermally insulating or not. Examples of filler materials for use with the present particulate carbon material include fumed silicas, such as Aerosil® R 812 (hydrophobic fumed silica post-treated with hexamethyldisilazane and available from Evonik Industries AG, Germany). A person skilled in the art knows well how to incorporate an aerobic charge in a polymeric foam and several methods are described in the literature, for example, in WO 2011/042800 which discloses several methods for preparing expanded and extruded expanded sheets of a thermoplastic polymer, of preferably polystyrene, loaded with an athermic charge.

[00034] Ademais, o presente material de carbono particulado pode ser usado no painel isolado a vácuo (VIPs) para reduzir adicionalmente a condutividade térmica. O mesmo pode ser adicionado ao material usado como o núcleo de suporte, de preferência, pode ser incorporado ao material de núcleo poroso. Os materiais que podem ser empregados para o núcleo em combinação com o presente material de carbono particulado incluem espumas de polímero de célula aberta, tais como, espumas de poliuretano, materiais de microfibra, sílica fumegada e perlita.[00034] In addition, the present particulate carbon material can be used in the vacuum insulated panel (VIPs) to further reduce thermal conductivity. It can be added to the material used as the support core, preferably it can be incorporated into the porous core material. The materials that can be employed for the core in combination with the present particulate carbon material include open cell polymer foams, such as polyurethane foams, microfiber materials, fumed silica and perlite.

[00035] Outra aplicação em que o presente material de carbono particulado pode ser usado sozinho ou em combinação com outro material termicamente isolante é um enchimento para o isolamento de fornos de alta temperatura.[00035] Another application in which the present particulate carbon material can be used alone or in combination with another thermally insulating material is a filler for the insulation of high temperature furnaces.

EXEMPLOSEXAMPLES

[00036] Agora, algumas modalidades da presente invenção serão descritas detalhadamente nos exemplos a seguir.[00036] Now, some embodiments of the present invention will be described in detail in the following examples.

MATERIAIS:MATERIALS:

[00037] Todas os pós de negro de fumo estão disponíveis comercialmente junto a a Orion Engineered Carbons GmbH, Hanau, Alemanha.

Figure img0008
Figure img0009
[00037] All carbon black powders are commercially available from Orion Engineered Carbons GmbH, Hanau, Germany.
Figure img0008
Figure img0009

[00038] O espécime de pó (exemplo da invenção) e as 2 espumas (exemplos da invenção 2 e 3) foram investigados a fim de obter o coeficiente de extinção específico eficaz total e* em temperatura ambiente (26,85 C (300 K)).[00038] The powder specimen (example of the invention) and the 2 foams (examples of the invention 2 and 3) were investigated in order to obtain the total specific extinction coefficient e * at room temperature (26.85 C (300 K )).

MEDIÇÕES:MEASUREMENTS:

[00039] As amostras foram medidas com o uso de um espectrômetro Vertex 70v Bruker Infravermelho por Transformada de Fourier na faixa de comprimento de onda a partir de 1,4 μm a 35 μm que é decisivo para o transporte térmico radiativo em temperatura ambiente. Para medir a transmitância e refletância espectral direcional- hemisférica, filmes finos de espécime de pó foram escolhidos em camadas de PE de suporte, que são transparentes na faixa de comprimento de onda infravermelha. As camadas de pó fino são aspergidas na camada de PE com o uso de manômetro de vácuo. A preparação de filmes finos homogêneos é realizada com o sistema de espalhamento de pó comercial GALAI PD 10. Um forte influxo de ar em uma câmara evacuada transforma o pó em poeira desaglomerada, carregada de maneira parcialmente elétrica, que se assenta lentamente na lâmina de suporte e forma um espécime razoavelmente estável. A Figura 2 retrata o sistema de espalhamento de pó a vácuo GALAI PD 10; grãos de pó colocados dentro da cavidade no topo do recipiente evacuado são sugados na abertura e se assentam na lâmina de PE. A espessura de camada de pó entre 30 μm e 500 μm pode ser alcançada variando-se a quantidade de pó.[00039] The samples were measured using a Vertex 70v Bruker Infrared Fourier Transform spectrometer in the wavelength range from 1.4 μm to 35 μm which is decisive for radiative thermal transport at room temperature. To measure the transmittance and directional-hemispheric spectral reflectance, thin films of dust specimens were chosen in supporting PE layers, which are transparent in the infrared wavelength range. The fine powder layers are sprayed onto the PE layer using a vacuum gauge. The preparation of homogeneous thin films is carried out with the commercial powder spreading system GALAI PD 10. A strong influx of air in an evacuated chamber turns the powder into de-agglomerated, partially electrically charged dust, which settles slowly on the support blade. and forms a reasonably stable specimen. Figure 2 shows the GALAI PD 10 vacuum powder spreading system; powder grains placed inside the cavity at the top of the evacuated container are sucked into the opening and settle on the PE blade. The thickness of the powder layer between 30 μm and 500 μm can be achieved by varying the amount of powder.

[00040] Para medir a transmitância e refletância espectral direcional-hemisférica das espumas, diversas camadas de cada espécime de espuma foram da placa de espuma. O diâmetro das camadas é 16 mm.[00040] To measure the transmittance and spectral directional-hemispheric reflectance of the foams, several layers of each foam specimen were from the foam board. The diameter of the layers is 16 mm.

[00041] Em seguida, as amostras são colocadas na abertura de uma esfera de integração que é acoplada ao espectrômetro. A Figura 3 mostra as configurações da esfera de integração para determinar transmitância direcional-hemisférica Tdh (no lado esquerdo) e a refletância Rdh (no lado direito) à temperatura ambiente normal à superfície. A amostra é irradiada normal à superfície e a radiação refletida no hemisfério de lado frontal ou transmitida no hemisfério de lado traseiro é medida para os espectros de transmitância ou de refletância, respectivamente. Diversas amostras com diferentes espessuras foram medidas a fim de considerar eventuais homogeneidades no espécime e a fim de garantir um valor de medição média suficientemente satisfatório. Para calcular o coeficiente de extinção específica eficaz espectral e ■ , a massa por área m" de cada amostra também foi determinada.[00041] Then, the samples are placed in the opening of an integration sphere that is coupled to the spectrometer. Figure 3 shows the settings of the integration sphere to determine directional-hemispheric transmittance Tdh (on the left side) and the reflectance Rdh (on the right side) at normal room temperature at the surface. The sample is irradiated normal to the surface and the radiation reflected in the front-side hemisphere or transmitted in the rear-side hemisphere is measured for the transmittance or reflectance spectra, respectively. Several samples with different thicknesses were measured in order to consider possible homogeneities in the specimen and in order to guarantee a sufficiently satisfactory average measurement value. To calculate the spectral effective extinction coefficient e ■, the mass per area m "of each sample was also determined.

[00042] A partir da transmitância e refletância espectral direcional- hemisférica, o coeficiente de extinção específica eficaz espectral e • ■ e o albedo eficaz espectral de cada espécime foi calculado com o uso de uma determinada solução da equação de transferência radiativa, a então chamada solução de três fluxos. A solução de três fluxos permite quantificar a transferência radiativa através de meios de dispersão e absorção assim como determinar os coeficientes espectrais de dispersão e de absorção dos espécimes investigados.[00042] From the directional-hemispheric spectral transmittance and reflectance, the specific spectral effective extinction coefficient and • ■ and the spectral effective albedo of each specimen was calculated using a particular solution of the radiative transfer equation, the so-called three flow solution. The three-flow solution allows quantifying the radiative transfer by means of dispersion and absorption as well as determining the spectral dispersion and absorption coefficients of the investigated specimens.

[00043] A Figura 4 mostra o coeficiente de absorção específico espectral aA do material de carbono particulado que compreende discos e cones (IE1) em dependência do comprimento de onda A a partir de 1,4 a 35 μm.[00043] Figure 4 shows the spectral specific absorption coefficient aA of particulate carbon material that comprises discs and cones (IE1) depending on wavelength A from 1.4 to 35 μm.

[00044] A Figura 5 mostra o coeficiente de dispersão específico eficaz espectral s •• do material de carbono particulado que compreende discos e cones (IE1) em dependência do comprimento de onda A a partir de 1,4 a 35 μm.[00044] Figure 5 shows the spectral effective specific dispersion coefficient s •• of the particulate carbon material that comprises discs and cones (IE1) depending on wavelength A from 1.4 to 35 μm.

[00045] A Figura 6 mostra o coeficiente de dispersão específico eficaz espectral e*A do material de carbono particulado que compreende discos e cones (IE1) em dependência do comprimento de onda A a partir de 1,4 a 35 μm.[00045] Figure 6 shows the specific effective dispersion coefficient spectral e * A of the particulate carbon material that comprises discs and cones (IE1) depending on the wavelength A from 1.4 to 35 μm.

[00046] A Figura 7 mostra o coeficiente de absorção espectral específico aA de IE2 (espuma de poliestireno expandido que compreende 3 % em peso de IE1) e IE3 (espuma de poliestireno expandido que compreende 5 % em peso de IE1) em dependência do comprimento de onda A a partir de 1,4 a 35 μm.[00046] Figure 7 shows the specific spectral absorption coefficient aA of IE2 (expanded polystyrene foam comprising 3% by weight of IE1) and IE3 (expanded polystyrene foam comprising 5% by weight of IE1) depending on the length A wave from 1.4 to 35 μm.

[00047] A Figura 8 mostra o coeficiente de dispersão específico eficaz espectral s*A de IE2 (espuma de poliestireno expandido que compreende 3 % em peso de IE1) e de IE3 (espuma de poliestireno expandido que compreende 5 % em peso de IE1) em dependência do comprimento de onda A a partir de 1,4 a 35 μm.[00047] Figure 8 shows the spectral effective dispersion coefficient s * A of IE2 (expanded polystyrene foam comprising 3% by weight of IE1) and IE3 (expanded polystyrene foam comprising 5% by weight of IE1) depending on wavelength A from 1.4 to 35 μm.

[00048] A Figura 9 mostra o coeficiente de extinção específico eficaz espectral e •• de IE2 (espuma de poliestireno expandido que compreende 3 % em peso de IE1) e de IE3 (espuma de poliestireno expandido que compreende 5 % em peso de IE1) em dependência do comprimento de onda A a partir de 1,4 a 35 μm.[00048] Figure 9 shows the spectral and •• effective extinction coefficient of IE2 (expanded polystyrene foam comprising 3% by weight of IE1) and IE3 (expanded polystyrene foam comprising 5% by weight of IE1) depending on wavelength A from 1.4 to 35 μm.

[00049] A partir do coeficiente de extinção específica eficaz espectral e no comprimento de onda range entre 1,4 μm e 35 μm, o coeficiente de extinção específico eficaz total em temperatura ambiente é calculado de acordo com as equações na descrição do presente pedido.[00049] From the spectral effective specific extinction coefficient and in the wavelength range between 1.4 μm and 35 μm, the total effective specific extinction coefficient at room temperature is calculated according to the equations in the description of the present application.

RESULTADOS:RESULTS:

[00050] Na Tabela 1, é relatado o coeficiente de extinção específico eficaz total e*A dos espécimes investigados em uma temperatura de 26,85 C (300 K). O coeficiente de extinção específico eficaz total e*, calculado a partir da Eq. (4), pode ser determinado com uma precisão de cerca de 10% a 15%. TABELA 1 COEFICIENTE DE EXTINÇÃO ESPECÍFICO EFICAZ TOTAL E*

Figure img0010
[00050] In Table 1, the specific total extinction coefficient and * A of the specimens investigated at a temperature of 26.85 C (300 K) are reported. The total effective extinction coefficient e *, calculated from Eq. (4), can be determined with an accuracy of about 10% to 15%. TABLE 1 TOTAL EFFECTIVE SPECIFIC EXTINGUISHING COEFFICIENT AND *
Figure img0010

[00051] Na Tabela 2, são mostrados o coeficiente de extinção específico eficaz total e*, a condutividade radiativa calculada de acordo com a Eq. (7) e a densidade de espuma p das espumas investigadas IE2 e IE3 em uma temperatura T = 26,85 C (300 K). TABELA 2 PROPRIEDADES DAS AMOSTRAS DE ESPUMA

Figure img0011
[00051] Table 2 shows the total specific extinction coefficient e *, the radiative conductivity calculated according to Eq. (7) and the foam density p of the investigated foams IE2 and IE3 at a temperature T = 26 , 85 C (300 K). TABLE 2 PROPERTIES OF FOAM SAMPLES
Figure img0011

[00052] Fica evidente a partir dos resultad os mostrados na Tabela 1 que o material de carbono de microdomínio particulado que compreende discos e cones de carbono (IE1) tem um coeficiente de extinção específico eficaz total significativamente superior e* àquele do grafite usado como cargas atérmanas até então. Adicionalmente, é interessante verificar na Tabela 2 que as espumas de EPS carregadas com o presente material de carbono particulado têm condutividades térmicas excepcionalmente baixas que estão em uma faixa normalmente atingidas com painéis isolados a vácuo. Isso é especialmente notável, visto que essas baixas condutividades são alcançadas na espuma de EPS com densidades relativamente baixas de cerca de 16 kg/m3. As espumas de EPS descarregadas para propósitos de isolamento precisam ter densidades de pelo menos 30 kg/m3 devido ao fato de que densidades inferiores causam um aumento drástico na condutividade térmica.[00052] It is evident from the results shown in Table 1 that the particulate microdomain carbon material comprising carbon discs and cones (IE1) has a specific total effective extinction coefficient significantly greater than * that of graphite used as fillers until then. Additionally, it is interesting to see in Table 2 that EPS foams loaded with the present particulate carbon material have exceptionally low thermal conductivities that are in a range normally achieved with vacuum insulated panels. This is especially noteworthy, since these low conductivities are achieved in EPS foam with relatively low densities of around 16 kg / m3. EPS foam discharged for insulation purposes needs to have densities of at least 30 kg / m3 due to the fact that lower densities cause a drastic increase in thermal conductivity.

Claims (14)

1. Uso de um material de carbono particulado, que compreende partículas de carbono no formato de discos e de cones abertos ocos, caracterizado pelo fato de que é para isolamento térmico.1. Use of a particulate carbon material, which comprises carbon particles in the shape of discs and hollow open cones, characterized by the fact that it is for thermal insulation. 2. Uso, de acordo com a reivindicação 1, caracterizado pelo fato de que os cones de carbono ocos apresentam um ou diversos dentre os seguintes ângulos de abertura: 19,2°, 38,9°, 60°, 83,6° e 112,9°.2. Use according to claim 1, characterized by the fact that the hollow carbon cones have one or several of the following opening angles: 19.2 °, 38.9 °, 60 °, 83.6 ° and 112.9 °. 3. Uso, de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que a espessura dos discos de carbono e a espessura das paredes de cones de carbono abertos ocos são inferiores a 100 nm.3. Use according to claim 1 or 2, characterized by the fact that the thickness of the carbon discs and the thickness of the hollow open carbon cone walls are less than 100 nm. 4. Uso, de acordo com qualquer uma das reivindicações 1 a 3, caracterizado pelo fato de que a dimensão mais longa dos discos de carbono e dos cones de carbono abertos ocos é inferior a 5 μm.4. Use according to any one of claims 1 to 3, characterized in that the longest dimension of the carbon discs and hollow open carbon cones is less than 5 μm. 5. Uso, de acordo com qualquer uma das reivindicações 1 a 4, caracterizado pelo fato de que o material de carbono particulado apresenta um coeficiente de extinção específico eficaz total e* para radiação IR com Δ = 1,4 μm a 35 μm a 26,85°C (300 K), dentro da faixa a partir de 1.200 a 1.700 m2/kg.5. Use according to any one of claims 1 to 4, characterized by the fact that the particulate carbon material has a specific total extinction coefficient and * for IR radiation with Δ = 1.4 μm at 35 μm at 26 , 85 ° C (300 K), within the range from 1,200 to 1,700 m2 / kg. 6. Uso, de acordo com qualquer uma das reivindicações 1 a 5, caracterizado pelo fato de que o material de carbono particulado é usado em combinação com pelo menos um material adicional, de preferência, um material termicamente isolante.Use according to any one of claims 1 to 5, characterized in that the particulate carbon material is used in combination with at least one additional material, preferably a thermally insulating material. 7. Uso, de acordo com a reivindicação 6, caracterizado pelo fato de que o referido material de carbono particulado é usado como uma carga atérmana.7. Use, according to claim 6, characterized by the fact that said particulate carbon material is used as an aerobic charge. 8. Uso, de acordo com a reivindicação 7, caracterizado pelo fato de que o material de carbono particulado é incorporado em um painel isolado a vácuo (VIP).8. Use, according to claim 7, characterized by the fact that the particulate carbon material is incorporated in a vacuum insulated (VIP) panel. 9. Uso, de acordo com a reivindicação 7, caracterizado pelo fato de que o material de carbono particulado é incorporado em uma matriz, que compreende pelo menos um material termicamente isolante adicional, de preferência, um material polimérico.Use according to claim 7, characterized by the fact that the particulate carbon material is incorporated into a matrix, which comprises at least one additional thermally insulating material, preferably a polymeric material. 10. Uso, de acordo com a reivindicação 9, caracterizado pelo fato de que o material termicamente isolante compreende pelo menos um polímero selecionado a partir de polímeros de vinila, especialmente, polímeros aromáticos de vinila, e poliuretanos.10. Use according to claim 9, characterized by the fact that the thermally insulating material comprises at least one polymer selected from vinyl polymers, especially aromatic vinyl polymers, and polyurethanes. 11. Uso, de acordo com a reivindicação 9 ou 10, carac-terizado pelo fato de que o material termicamente isolante compreende uma espuma polimérica.11. Use according to claim 9 or 10, characterized by the fact that the thermally insulating material comprises a polymeric foam. 12. Uso, de acordo com a reivindicação 11, caracterizado pelo fato de que a espuma polimérica compreende um polímero termoplástico ou termofixo.12. Use according to claim 11, characterized in that the polymeric foam comprises a thermoplastic or thermoset polymer. 13. Uso, de acordo com a reivindicação 12, caracterizado pelo fato de que a espuma polimérica compreende pelo menos um dentre poliestireno expandido, um copolímero expandido de estireno e pelo menos um monômero copolimerizável, polipropileno expandido, poliestireno extrudado e espuma de poliuretano.13. Use according to claim 12, characterized in that the polymeric foam comprises at least one of expanded polystyrene, an expanded styrene copolymer and at least one copolymerizable monomer, expanded polypropylene, extruded polystyrene and polyurethane foam. 14. Uso, de acordo com qualquer uma das reivindicações 9 a 13, caracterizado pelo fato de que o material de carbono particulado é usado em conjunto com pelo menos um material de carga adicional, tal como, sílica fumegada.14. Use according to any of claims 9 to 13, characterized in that the particulate carbon material is used in conjunction with at least one additional filler material, such as fumed silica.
BR112016007331-2A 2013-10-04 2013-10-04 use of a particulate carbon material BR112016007331B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/070659 WO2015049008A1 (en) 2013-10-04 2013-10-04 Micro-domain carbon material for thermal insulation

Publications (2)

Publication Number Publication Date
BR112016007331A2 BR112016007331A2 (en) 2017-08-01
BR112016007331B1 true BR112016007331B1 (en) 2021-01-12

Family

ID=49301507

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112016007331-2A BR112016007331B1 (en) 2013-10-04 2013-10-04 use of a particulate carbon material

Country Status (9)

Country Link
US (1) US10107443B2 (en)
EP (1) EP3052851B9 (en)
JP (1) JP6285038B2 (en)
KR (1) KR102201798B1 (en)
CN (1) CN105874259B (en)
BR (1) BR112016007331B1 (en)
ES (1) ES2642363T3 (en)
PL (1) PL3052851T3 (en)
WO (1) WO2015049008A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
WO2015116943A2 (en) 2014-01-31 2015-08-06 Monolith Materials, Inc. Plasma torch design
WO2016126600A1 (en) 2015-02-03 2016-08-11 Monolith Materials, Inc. Regenerative cooling method and apparatus
US11987712B2 (en) 2015-02-03 2024-05-21 Monolith Materials, Inc. Carbon black generating system
CN111601447A (en) 2015-07-29 2020-08-28 巨石材料公司 DC plasma torch power design method and apparatus
CN108290738A (en) * 2015-09-09 2018-07-17 巨石材料公司 Circular multilayer graphene
CA3034212C (en) 2015-09-14 2023-08-01 Monolith Materials, Inc. Carbon black from natural gas
WO2017190015A1 (en) 2016-04-29 2017-11-02 Monolith Materials, Inc. Torch stinger method and apparatus
US11149148B2 (en) 2016-04-29 2021-10-19 Monolith Materials, Inc. Secondary heat addition to particle production process and apparatus
CN110603297A (en) 2017-03-08 2019-12-20 巨石材料公司 System and method for producing carbon particles with heat transfer gas
JP2020517562A (en) 2017-04-20 2020-06-18 モノリス マテリアルズ インコーポレイテッド Particle system and method
CA3116989C (en) 2017-10-24 2024-04-02 Monolith Materials, Inc. Particle systems and methods
JP7310128B2 (en) * 2018-03-19 2023-07-19 株式会社リコー Contact member, printing device, and printing method
CN109129810A (en) * 2018-09-05 2019-01-04 福建农林大学 A kind of vaccum environmental protection insulation core plate and preparation method thereof
CN110610028B (en) * 2019-08-15 2022-12-20 复旦大学 Thermal stealth cloak aiming at thermal radiation
CN115895238A (en) * 2022-12-10 2023-04-04 昆山红苹果塑胶新材料有限公司 High-temperature-resistant TPU (thermoplastic polyurethane) film and preparation process thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183941A (en) 1987-01-27 1988-07-29 Asahi Chem Ind Co Ltd Heat insulating thermoplastic resin foam
DE9305431U1 (en) 1993-04-13 1994-08-11 Algostat Gmbh & Co Kg Molded body made of polystyrene rigid foam
US5679718A (en) 1995-04-27 1997-10-21 The Dow Chemical Company Microcellular foams containing an infrared attenuating agent and a method of using
EP0902804A1 (en) 1996-05-28 1999-03-24 Basf Aktiengesellschaft Expandable styrene polymers containing carbon black
NO313839B1 (en) * 1997-03-25 2002-12-09 Kvaerner Technology & Res Ltd Carbon material comprising a mixture of graphitic microdomains, as well as microconical graphitic material
JP4324250B2 (en) 1997-05-14 2009-09-02 ビーエーエスエフ ソシエタス・ヨーロピア Expandable styrene polymer containing graphite particles
NO307986B1 (en) * 1998-02-06 2000-07-03 Inst Energiteknik Method of storing hydrogen in a carbon material
IN2001CN00559A (en) * 1998-09-25 2010-03-19 Kvaerner Technology & Res Ltd
US6132837A (en) * 1998-09-30 2000-10-17 Cabot Corporation Vacuum insulation panel and method of preparing the same
US6476154B1 (en) * 2000-09-28 2002-11-05 The Goodyear Tire & Rubber Company Use of carbon black in curable rubber compounds
DE10241298A1 (en) 2002-09-04 2004-03-18 Basf Ag Process for the production of polystyrene foam particles with low bulk density
GB2419883A (en) 2004-11-03 2006-05-10 Carbon Cones As Matrix containing carbon cones or disks
WO2006061571A1 (en) 2004-12-06 2006-06-15 Ineos Europe Limited Expandable polystyrene composition
IT1396193B1 (en) * 2009-10-07 2012-11-16 Polimeri Europa Spa EXPANDABLE THERMOPLASTIC NANOCOMPOSITE POLYMER COMPOSITIONS WITH IMPROVED THERMAL INSULATION CAPACITY.
IT1396918B1 (en) * 2009-11-03 2012-12-20 Polimeri Europa Spa PROCEDURE FOR THE PREPARATION OF GRAPHENIC NANOPIASTRINES WITH HIGH LEVELABILITY IN LOW POLARITY POLYMER MATRICES AND THEIR POLYMERIC COMPOSITIONS
DE102011083017A1 (en) * 2011-09-20 2013-03-21 Evonik Industries Ag Composite materials comprising an open-cell polymer matrix and granules embedded therein

Also Published As

Publication number Publication date
CN105874259A (en) 2016-08-17
EP3052851B9 (en) 2017-11-22
JP2016538232A (en) 2016-12-08
EP3052851B1 (en) 2017-08-23
BR112016007331A2 (en) 2017-08-01
KR102201798B1 (en) 2021-01-13
US10107443B2 (en) 2018-10-23
JP6285038B2 (en) 2018-02-28
ES2642363T3 (en) 2017-11-16
WO2015049008A1 (en) 2015-04-09
PL3052851T3 (en) 2018-01-31
CN105874259B (en) 2018-06-29
KR20160078346A (en) 2016-07-04
US20160238187A1 (en) 2016-08-18
EP3052851A1 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
BR112016007331B1 (en) use of a particulate carbon material
Liang et al. Thermal performance and service life of vacuum insulation panels with aerogel composite cores
Buratti et al. Aerogel-based materials for building applications: Influence of granule size on thermal and acoustic performance
Yu et al. Fire‐retardant and thermally insulating phenolic‐silica aerogels
JP6417015B2 (en) Composite insulation containing inorganic airgel and melamine foam
Gong et al. Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams
Dasari et al. Roles of graphite oxide, clay and POSS during the combustion of polyamide 6
Li et al. Fabrication and characterization of low-cost and green vacuum insulation panels with fumed silica/rice husk ash hybrid core material
Obori et al. Parametric model to analyze the components of the thermal conductivity of a cellulose-nanofibril aerogel
Li et al. Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel
US10364932B2 (en) Hybrid high temperature insulation
CA2768554A1 (en) Thermally insulating polymer foam and aerogel composite article
KR101782702B1 (en) Rigid polystyrene foams
Hasanzadeh et al. A review of the state-of-the-art on thermal insulation performance of polymeric foams
Li et al. Thermal insulation performances of carbonized sawdust packed bed for energy saving in buildings
JP2007039644A (en) Method for producing inorganic material-based foamed article
Sekkal et al. Thermal and acoustic insulation properties in nanoporous geopolymer nanocomposite
Qian et al. 3D needle-punched carbon/quartz fabric reinforced nanoporous phenolic composites with co-optimized mechanics, insulation and ablation
Adegun et al. Anisotropic thermally superinsulating boron nitride composite aerogel for building thermal management
Williams et al. Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers
KR20130052484A (en) Expandable polystyrene having good thermal insulation and workability, method for preparing the same and foam thereof
Zhou et al. Novel preparation method and fire performance study of EPS composites based on calcium sulphate hemihydrate
Dzyazko et al. Thermal insulating materials
JP2024066922A (en) A heat insulating material in which a hollow structure is filled with a polyvinyl chloride resin porous body.
Huang Feasibility of using silica aerogel as insulation for buildings

Legal Events

Date Code Title Description
B15K Others concerning applications: alteration of classification

Ipc: F16L 59/00 (2006.01)

B06T Formal requirements before examination
B06A Notification to applicant to reply to the report for non-patentability or inadequacy of the application according art. 36 industrial patent law
B09A Decision: intention to grant
B16A Patent or certificate of addition of invention granted

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 04/10/2013, OBSERVADAS AS CONDICOES LEGAIS.