BR102014007198A2 - niobium carbide synthesis through ammonium oxalate precursor - Google Patents
niobium carbide synthesis through ammonium oxalate precursor Download PDFInfo
- Publication number
- BR102014007198A2 BR102014007198A2 BR102014007198A BR102014007198A BR102014007198A2 BR 102014007198 A2 BR102014007198 A2 BR 102014007198A2 BR 102014007198 A BR102014007198 A BR 102014007198A BR 102014007198 A BR102014007198 A BR 102014007198A BR 102014007198 A2 BR102014007198 A2 BR 102014007198A2
- Authority
- BR
- Brazil
- Prior art keywords
- precursor
- copper
- carbide
- niobium
- synthesis
- Prior art date
Links
- 239000002243 precursor Substances 0.000 title claims abstract description 23
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 13
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 12
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 title claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 239000010949 copper Substances 0.000 claims abstract description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- SSVXYFSOYQLZDW-UHFFFAOYSA-N C(C(=O)[O-])(=O)[O-].C(C(=O)[O-])(=O)[O-].C(C(=O)[O-])(=O)[O-].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+] Chemical compound C(C(=O)[O-])(=O)[O-].C(C(=O)[O-])(=O)[O-].C(C(=O)[O-])(=O)[O-].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+] SSVXYFSOYQLZDW-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000035484 reaction time Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 9
- 238000001308 synthesis method Methods 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 15
- 239000010955 niobium Substances 0.000 abstract description 11
- 229910052758 niobium Inorganic materials 0.000 abstract description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 abstract description 6
- 230000004927 fusion Effects 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract description 4
- 239000000243 solution Substances 0.000 abstract description 4
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 abstract description 2
- 235000006408 oxalic acid Nutrition 0.000 abstract description 2
- 238000004090 dissolution Methods 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- -1 oxalate ions Chemical class 0.000 description 6
- 239000007789 gas Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 3
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910000484 niobium oxide Inorganic materials 0.000 description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001868 water Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- AJGPQPPJQDDCDA-UHFFFAOYSA-N azanium;hydron;oxalate Chemical compound N.OC(=O)C(O)=O AJGPQPPJQDDCDA-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- IIQVQTNFAKVVCM-UHFFFAOYSA-N copper niobium Chemical compound [Cu][Nb][Nb] IIQVQTNFAKVVCM-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002803 maceration Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- MAKKVCWGJXNRMD-UHFFFAOYSA-N niobium(5+);oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] MAKKVCWGJXNRMD-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- KAQHZJVQFBJKCK-UHFFFAOYSA-L potassium pyrosulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OS([O-])(=O)=O KAQHZJVQFBJKCK-UHFFFAOYSA-L 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
síntese de carbeto de nióbio e cobre atrvés do precursor oxalato de amônia. a patente está relacionada com a produção do carbeto de nióbio, onde foi inicialmente foi sintetizado o precursor tris(oxalato)oxiniobato de amônio. o precursor foi produzido pela fusão de nb2o5 e khso4 e posterior dissolução em um solução equimolar de ácido oxálico e oxalato de amônio. em seguida, o precursor obtido foi dopado com nitrato de cobre na faixa de 1% a 11% de cobre via sólido-sólido para produção de carbeto. a síntese do carbeto de nióbio e cobre, cu-nbc, ocorreu em forno tubular rotativo através de reação heterogênea, gás-sólido, em presença do gás metano e hidrogêneo, sendo mantido em baixa a temperatura e curto tempo de reação.synthesis of niobium carbide and copper through the precursor ammonium oxalate. The patent relates to the production of niobium carbide, where the precursor ammonium tris (oxalate) oxyniobate was initially synthesized. The precursor was produced by the fusion of nb2o5 and khso4 and subsequent dissolution in an equimolar solution of oxalic acid and ammonium oxalate. The precursor obtained was then doped with copper nitrate in the range of 1% to 11% copper via solid-solid for carbide production. The synthesis of niobium and copper carbide, cu-nbc, occurred in a rotary tubular furnace through a heterogeneous gas-solid reaction, in the presence of methane and hydrogen gas, being kept at low temperature and short reaction time.
Description
Relatório Descritivo da Patente de Invenção para “SÍNTESE DE CARBETO DE ΝΙΟΒΙΟ E COBRE ATRAVÉS DO PRECURSOR OXALATO DE AMÔNIA”. [001] A presente solicitação trata da patente de invenção da síntese de carbeto de nióbio e cobre através do precursor oxalato de amônia. O método de síntese foi desenvolvido da seguinte forma: inicialmente foi sintetizado o precursor tris(oxalato)oxiniobato de amônio, como material de partida para produção do carbeto. O precursor foi produzido misturando por maceração do Nb205 e KHSO4, os quais foram fundidos em cadinho de platina com auxílio de um bico de bussen. Durante a fusão, o KHSO4 decompõe-se em pirossulfato de potássio como intermediário e em trióxido de enxofre. Após a finalização da fusão, foi obtido um líquido homogêneo de coloração rubra. O líquido foi despejado em um recipiente de porcelana para o resfriamento e a cristalização. O material solidificado foi triturado com auxílio de almofariz e pistilo até a obtenção de um pó homogêneo de baixa granulometria. O produto foi então dissolvido e precipitado em água deionizada quente, entre 60°C e 80°C com agitação constante permanecendo nessas condições de 20 minutos à 40 minutos. A solução permaneceu em repouso por algumas horas para melhor aglomeração das partículas, obtendo o pentóxido de nióbio monohidratado (Nb205.H20). Em seguida, o produto foi lavado, com auxílio de bomba a vácuo, com água deionizada quente, a fim de eliminar os íons de potássio e sulfato, dentre outras impurezas. Posteriormente, o material foi dissolvido em uma solução equimolar entre 45°C e 65°C de ácido oxálico e oxalato de amônio com razão de 1:5 entre o nióbio e os íons oxalato. A solução complexante foi evaporada, obtendo-se assim, o precursor de cor branca. [002] O precursor oxálico produzido foi então misturado com nitrato de cobre de 1% a 11% via sólido-sólido com auxílio de almofariz e pistilo, e em seguida, submetido à calcinação. [003] Para a síntese do carbeto de nióbio e cobre fez-se necessário a utilização dos seguintes reagentes: precursor tris(oxalato)oxiniobato de amônio hidratado [(NH4)3Nb0(C204)3.H20] impregnado com cobre de 1% a 11%; Hidrogênio (H2); Metano (CH4) e Argônio (Ar). [004] O carbeto de nióbio com cobre foi produzido em baixa temperatura (860°C a 1000°C) a partir do precursor tris(oxalato)oxiniobato de amônio hidratado macerado em almofariz. O hidrogênio (H2) e o metano (CH4) foram utilizados como gases redutores e fonte de carbono, respectivamente. As reações entre o precursor e a mistura de metano e hidrogênio foram efetuadas em um forno resistivo, composto de um reator de leito fixo de alumina. Para acomodar a amostra de precursor no reator de leito fixo foi utilizada uma barquinha de alumina, utilizando para todos os ensaios uma massa de 2 gramas a 5 gramas, que foi introduzida no tubo de alumina até a parte central do forno. Após o fechamento do tubo, o mesmo foi lavado por alguns minutos com argônio a fim de eliminar todo o oxigênio atmosférico presente. Em seguida foram ajustados os fluxos dos gases reagentes (metano e hidrogênio) e a mistura gasosa foi circulada através do reator. Para a determinação das etapas de reações envolvidas e propor um mecanismo reacional que represente todo o processo reacional da síntese do Cu-NbC, as reações de decomposição-redução-carbonetação foram feitas na temperatura de 860°C a 1000°C e no tempo de isoterma entre 60 minutos e 120 minutos. Foi utilizada uma vazão de fluxo de aproximadamente 1L/h de metano, e, para o hidrogênio uma faixa de 17L/h a 19L/h. Ao final da reação de decomposição-redução-carbonetação, o fluxo de gases reagentes foi trocado por um fluxo de argônio, o qual foi mantido até a temperatura ambiente, quando as amostras foram retiradas. [005] O carbeto de nióbio (NbC) geralmente é processado por sinterização e é um aditivo freqüente em carboneto cimentado. Apresenta estrutura cristalina CFC de alta dureza, comparável com a do TaC e VC, e alto ponto de fusão (cerca de 3600°C).É um produto usado frequentemente em aços microligados devido ao seu produto de solubilidade extremamente baixa na austenita. [006] Com relação ao estado da técnica, é correto afirmar que os carbetos de nióbio vêm sendo estudados com muita frequência, pois suas características apresentam-se bem viáveis para aplicações industriais. Na literatura encontra-se alguns trabalhos científicos sobre a produção de carbetos de nióbio, dentre estes, Francisca de Fátima Pegado de Medeiros, Carlson Perera de Souza e Uilame Umbelino Gomes, publicaram o trabalho Preparation of mixed Carbide of Ta and Nb from tantalita mineral, no Congresso de Ingenieria de Procesos del Mercosur-Enpromr, em setembro de 1997, em Bahia Blanca - Argentina. Este trabalho consistiu na sintetização do NbC e TaC partindo do mineral tantalita. O processo consistiu na fusão do KHSO4 obtendo o óxido hidratado de nióbio e tântalo (NbxNb1.x)2.nH20. Este óxido foi complexado com H2C204/(NH4)C204. O complexo foi carbonetado em atmosfera de CH4/H a 980°C produzindo (TaxNb^x^C. A diferença é que no trabalho citado o precursor foi obtido a partir do mineral tantalita para então produzir os carbetos de nióbio e de tântalo, enquanto que, na patente em questão, o precursor foi produzido a partir do óxido de nióbio comercial, e então dopado com cobre para, em seguida, sintetizar o Carbeto de nióbio e cobre nanoestruturado(Cu-NbC). [007] Jianhua Ma publicou o trabalho Formatiori of nanocrystalline niobium Carbide (NbC) with a convenient route at low temperature, no Journal of Alloys and Compounds, em 2009. Ele sinterizou NbC nanocristalino através da reação de decomposição do pó de magnésio metálico com pentóxido de nióbio e de carbonato de magnésio básico numa autoclave a 550 °C, porém com tempo de reação de 10 horas. Este trabalho diferencia-se completamente da patente em questão, tanto pelo método de obtenção do precursor, como as condições da reação, apesar do NbC ter sido produzido em uma temperatura mais baixa, o tempo de reação é muito longo, o que não é economicamente viável para o meio industrial. [008] F.A.O. Fontes, desenvolveu o trabalho Production of Nbc from Nb2Os in a rotating cylinder reactor: Kinetic study of reduction/carburization reactions publicado em Chemical Engineering Journal 175 (2011) 534- 538, tendo por objetivo um modelo cinético para conversão de Nb02 em NbC na região isotérmica para a reação de redução / carburação. O modelo apresentado para a fase sólida foi baseado na variação da massa obtida em experiências com reações interrompidas em momentos diferentes e processadas a temperaturas de 1148 K, 1173 K e 1223 K. A reação ocorreu em um reator de cilindro rotativo, com a velocidade de 5 rpm. Neste trabalho o autor produziu o NbC em reator rotativo e em condições de síntese diferenciadas da patente em questão, como também o carbeto produzido não foi dopado com cobre, este metal acrescenta ao carbeto outras propriedades que serão apresentadas no decorrer desse texto. [009] Apesar de ter estudos sobre os carbetos, os carbetos de nióbio dopado com cobre não são citados, como também, não foram encontradas patentes para este composto nos bancos de dados nacionais e internacionais. Os produtos obtidos a partir dos compostos binários de nióbio e cobre vêm ganhando largas aplicações industriais e, atualmente, têm se mostrado candidatos promissores para aplicações em dispositivos de microondas, ferroelétricos e eletrocrômicos. O Cu-NbC foi produzido através do precursor tris(oxalato)oxiniobato de amônio monohidratado que é mais reativo que o precursor comercial e a dopagem com Cu aumenta a atividade catalítica em processos de oxidação de hidrogênio. Os íons de Cu2+ modificam as propriedades magnéticas exibidas pelos compostos, assim como o mecanismo de transporte elétrico, o que o diferencia dos carbetos de nióbio puros. Esses carbetos podem apresentar grande importância tecnológica, pois têm elevado ponto de fusão, boa resistência ao desgaste e extrema dureza. Apresentam também uma excelente porosidade, como visto na figura 01, obtida através do MEV, podendo ser viável para a utilização em processos catalíticos. [010] A formação do Cu-NbC foi identificado pela técnica de DRX, apresentado na figura 02. Utilizando dados do DRX obteve-se tamanhos de cristalitos através de refinamento Rietveld, como também pelo método de Schere e de Willison-Halls, os quais apresentaram-se nanométricos. Os produtos nanométricos vêm mostrando-se atraentes e promissores para o desenvolvimento tecnológico neste século. [011 ]O Cu-NbC apresentou área superficial, tamanho de poro e volume de poros viáveis para a catálise, de acordo com a tabela abaixo. Apresentou também tamanho de partículas nanométricos. Os resultados comprovam que o cobre influencia diretamente nas características dos materiais. [012] Os resultados obtidos nesse trabalho mostram que o processo de síntese via gás-sólido, ou seja, através da reação heterogênea é muito eficaz para produção do Cu-NbC nanoestruturado, pois este tipo de reação acontece intra e/ou extrapartícula, o que favorece o fenômeno de transferência de massa e de difusão, o que não ocorre em reações homogêneas.Report of the Invention Patent for "CARBIDE SYNTHESIS AND COPPER THROUGH AMMONIA OXALATE PRECURSOR". [001] This application is concerned with the patent for the synthesis of niobium carbide and copper via the ammonium oxalate precursor. The synthesis method was developed as follows: initially the ammonium tris (oxalate) oxyniobate precursor was synthesized as a starting material for carbide production. The precursor was produced by maceration mixing of Nb205 and KHSO4, which were melted in platinum crucible with the aid of a bussen burner. During the fusion KHSO4 decomposes into potassium pyrosulfate as intermediate and sulfur trioxide. After completion of the fusion, a homogeneous reddish liquid was obtained. The liquid was poured into a porcelain container for cooling and crystallization. The solidified material was ground with the aid of mortar and pistil until a homogeneous powder of low particle size was obtained. The product was then dissolved and precipitated in hot deionized water at 60 ° C to 80 ° C with constant agitation remaining under these conditions for 20 minutes to 40 minutes. The solution remained at rest for a few hours to better agglomerate the particles, obtaining niobium pentoxide monohydrate (Nb205.H20). Then, the product was washed with the aid of a vacuum pump with hot deionized water in order to eliminate potassium and sulfate ions, among other impurities. Subsequently, the material was dissolved in an equimolar solution between 45 ° C and 65 ° C of oxalic acid and ammonium oxalate with a ratio of 1: 5 between niobium and oxalate ions. The complexing solution was evaporated to give the white precursor. The oxalic precursor produced was then mixed with 1% to 11% copper nitrate via solid-solid with the aid of mortar and pistil, and then calcined. For the synthesis of niobium and carbide carbide the following reagents were required: precursor hydrated ammonium tris (oxalate) oxyniobate [(NH4) 3Nb0 (C204) 3.H20] with copper impregnated from 1% to 11%; Hydrogen (H2); Methane (CH4) and Argon (Ar). Coppered niobium carbide was produced at a low temperature (860 ° C to 1000 ° C) from the mortar-macerated hydrated ammonium tris (oxalate) precursor. Hydrogen (H2) and methane (CH4) were used as reducing gases and carbon sources, respectively. Reactions between the precursor and the methane and hydrogen mixture were performed in a resistive furnace composed of a fixed bed alumina reactor. To accommodate the precursor sample in the fixed bed reactor, an alumina boat was used, using for all assays a mass of 2 grams to 5 grams, which was introduced into the alumina tube to the central part of the oven. After tube closure, it was flushed with argon for a few minutes to remove all atmospheric oxygen present. Then the reactive gas flows (methane and hydrogen) were adjusted and the gas mixture was circulated through the reactor. For the determination of the reaction steps involved and to propose a reaction mechanism that represents the whole reaction process of Cu-NbC synthesis, decomposition-reduction-carbide reactions were carried out at a temperature of 860 ° C to 1000 ° C and at a time. isotherm between 60 minutes and 120 minutes. A flow rate of approximately 1L / h of methane was used, and for hydrogen a range of 17L / h to 19L / h. At the end of the decomposition-reduction-carbide reaction, the reactant gas flow was exchanged for an argon flow which was maintained until room temperature when the samples were taken. Niobium carbide (NbC) is usually processed by sintering and is a frequent additive in cemented carbide. It has a high hardness CFC crystalline structure, comparable to that of TaC and VC, and a high melting point (around 3600 ° C). It is a product often used in microalloyed steels due to its extremely low solubility product in austenite. With regard to the state of the art, it is correct to state that niobium carbides have been studied very often, as their characteristics are quite viable for industrial applications. In the literature there are some scientific works on the production of niobium carbides, among them, Francisca de Fátima Pegado de Medeiros, Carlson Perera de Souza and Uilame Umbelino Gomes, published the work Preparation of mixed Carbide of Ta and Nb from mineral tantalite, at the Congress of Ingenieria of Processes of Mercosur-Enpromr, in September 1997, in Bahia Blanca - Argentina. This work consisted in the synthesis of NbC and TaC starting from the tantalite mineral. The process consisted of the fusion of KHSO4 to obtain the hydrated niobium and tantalum oxide (NbxNb1.x) 2.nH20. This oxide was complexed with H2C204 / (NH4) C204. The complex was carbide in an atmosphere of CH4 / H at 980 ° C yielding (TaxNb ^ x ^ C). The difference is that in the above work the precursor was obtained from the tantalite mineral to then produce the niobium and tantalum carbides while that in the patent in question the precursor was produced from commercial niobium oxide, and then doped with copper to then synthesize the nanostructured copper niobium carbide (Cu-NbC). [007] Jianhua Ma published the work Formatiori of nanocrystalline niobium carbide (NbC) with a convenient route at low temperature in the Journal of Alloys and Compounds in 2009. He sintered nanocrystalline NbC through the decomposition reaction of metallic magnesium powder with niobium pentoxide and magnesium carbonate autoclave at 550 ° C, but with a reaction time of 10 hours.This work differs completely from the patent in question both in the method of obtaining the precursor and in the reaction conditions. o Although NbC was produced at a lower temperature, the reaction time is very long, which is not economically viable for the industrial environment. [008] F.A.O. Sources, developed the work Production of Nbc from Nb2Os in a rotating cylinder reactor: Kinetic study of reduction / carburization reactions published in Chemical Engineering Journal 175 (2011) 534-538, aiming at a kinetic model for conversion of Nb02 to NbC in the region. isothermal for the reduction / carburization reaction. The model presented for the solid phase was based on the mass variation obtained from experiments with interrupted reactions at different times and processed at temperatures of 1148 K, 1173 K and 1223 K. The reaction occurred in a rotary cylinder reactor with the velocity of 5 rpm. In this work the author produced NbC in rotary reactor and under different synthesis conditions of the patent in question, as well as the carbide produced was not doped with copper, this metal adds to the carbide other properties that will be presented throughout this text. Despite having carbide studies, copper-doped niobium carbides are not cited, nor are patents found for this compound in national and international databases. The products obtained from binary niobium and copper compounds have been gaining wide industrial applications and are currently promising candidates for applications in microwave, ferroelectric and electrochromic devices. Cu-NbC was produced through the precursor ammonium tris (oxalate) oxyniobate which is more reactive than the commercial precursor and Cu doping increases catalytic activity in hydrogen oxidation processes. Cu2 + ions modify the magnetic properties exhibited by the compounds, as well as the electrical transport mechanism, which differentiates it from pure niobium carbides. These carbides can be of great technological importance because they have high melting point, good wear resistance and extreme hardness. They also have excellent porosity, as seen in figure 01, obtained through SEM, and may be viable for use in catalytic processes. Cu-NbC formation was identified by the XRD technique, shown in Figure 02. Using XRD data, crystallite sizes were obtained by Rietveld refinement, as well as by the Schere and Willison-Halls method. were nanometric. Nanometric products have been attractive and promising for technological development in this century. Cu-NbC showed viable surface area, pore size and pore volume for catalysis according to the table below. It also presented nanometric particle size. The results show that copper directly influences the characteristics of materials. [012] The results obtained in this work show that the gas-solid synthesis process, that is, through the heterogeneous reaction is very effective for the production of nanostructured Cu-NbC, because this type of reaction happens intra and / or extraparticle, which favors the phenomenon of mass transfer and diffusion, which does not occur in homogeneous reactions.
REIVINDICAÇÃOCLAIM
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102014007198-9A BR102014007198B1 (en) | 2014-03-07 | SYNTHESIS PROCESS OF NANOSTRUCTURED NIOBIUM AND COPPER CARBIDE USING THE AMMONIA OXALATE PRECURSOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102014007198-9A BR102014007198B1 (en) | 2014-03-07 | SYNTHESIS PROCESS OF NANOSTRUCTURED NIOBIUM AND COPPER CARBIDE USING THE AMMONIA OXALATE PRECURSOR |
Publications (2)
Publication Number | Publication Date |
---|---|
BR102014007198A2 true BR102014007198A2 (en) | 2016-02-10 |
BR102014007198B1 BR102014007198B1 (en) | 2024-07-23 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jothi et al. | A simple, general synthetic route toward nanoscale transition metal borides | |
Benhammada et al. | Catalytic effect of green CuO nanoparticles on the thermal decomposition kinetics of ammonium perchlorate | |
Liu et al. | Salt melt synthesis of ceramics, semiconductors and carbon nanostructures | |
Gillan et al. | Synthesis of refractory ceramics via rapid metathesis reactions between solid-state precursors | |
Portehault et al. | A general solution route toward metal boride nanocrystals | |
Fang et al. | Green synthesis and characterization of anisotropic uniform single-crystal α-MoO3 nanostructures | |
US20210163291A1 (en) | Process for pure carbon production, compositions, and methods thereof | |
Ran et al. | Low‐temperature synthesis of nanocrystalline NbB2 powders by borothermal reduction in molten salt | |
Jeong et al. | Characteristics of an electrochemical reduction of Ta2O5 for the preparation of metallic tantalum in a LiCl–Li2O molten salt | |
Weber et al. | Evaluation of synthetic methods for Bismuth (III) oxide polymorphs: Formation of binary versus ternary oxides | |
Sidana et al. | Synthesis of molybdenum nitride (Mo2N) nanoflakes via in-situ reduction-nitridation | |
Fan et al. | Electrochemical synthesis of nano-metallic carbides from the mixtures of metal oxide and graphite | |
Golmohammadi et al. | An investigation into the formation and conversion of metal complexes to metal oxide nanoparticles in supercritical water | |
Qiao et al. | Kinetic study on preparation of substoichiometric tungsten oxide WO 2.72 via hydrogen reduction process | |
CN103658677A (en) | Nanometer tungsten carbide powder preparing method | |
Fan et al. | Synthesis of Ti (C, N, O) ceramic from rutile at low temperature by CH4-H2-N2 gas mixture | |
Tsang | Synthesis of lower-valent molybdenum oxides in aqueous solutions by reducing Na 2 MoO 4 with NaBH 4 | |
Singh et al. | Novel process for synthesis of nanocrystalline WC from wolframite ore | |
Zhang et al. | Progresses on high-entropy nano-catalysts for electrochemical energy conversion reactions | |
BR102014007198A2 (en) | niobium carbide synthesis through ammonium oxalate precursor | |
Chen et al. | Molten Salt‐Assisted Synthesis of Catalysts for Energy Conversion | |
Chen et al. | A novel synthesis route to Sn1− xRExO2− x/2 nanorods via microwave-induced salt-assisted solution combustion process | |
Choi et al. | Morphology control of high-quality hexagonal perovskite BaNiO3 by molten salt method | |
Avdeev et al. | Synthesis of Ternary Intercalation Compounds in the Graphite–HNO3–R (R= H2SO4, H3PO4, CH3COOH) Systems | |
BR102014007198B1 (en) | SYNTHESIS PROCESS OF NANOSTRUCTURED NIOBIUM AND COPPER CARBIDE USING THE AMMONIA OXALATE PRECURSOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B15U | Others concerning applications: numbering cancelled |
Free format text: NUMERACAO ANULADA POR NAO CUMPRIMENTO DE EXIGENCIA PUBLICADA NA RPI 2267 DE 17/06/2014. |
|
B150 | Others concerning applications: publication cancelled [chapter 15.30 patent gazette] |
Free format text: PUBLICACAO ANULADA POR TER SIDO INDEVIDA. REFERENTE A RPI 2289, DE 18/11/2014, COD. DE DESPACHO 15.21. |
|
B03A | Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette] | ||
B06F | Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette] | ||
B06V | Preliminary requirement: patent application procedure suspended [chapter 6.22 patent gazette] | ||
B07A | Application suspended after technical examination (opinion) [chapter 7.1 patent gazette] | ||
B09B | Patent application refused [chapter 9.2 patent gazette] | ||
B12B | Appeal against refusal [chapter 12.2 patent gazette] | ||
B16A | Patent or certificate of addition of invention granted [chapter 16.1 patent gazette] |
Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 07/03/2014, OBSERVADAS AS CONDICOES LEGAIS. PATENTE CONCEDIDA CONFORME ADI 5.529/DF, QUE DETERMINA A ALTERACAO DO PRAZO DE CONCESSAO. |