BG61824B1 - Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making - Google Patents
Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making Download PDFInfo
- Publication number
- BG61824B1 BG61824B1 BG99974A BG9997495A BG61824B1 BG 61824 B1 BG61824 B1 BG 61824B1 BG 99974 A BG99974 A BG 99974A BG 9997495 A BG9997495 A BG 9997495A BG 61824 B1 BG61824 B1 BG 61824B1
- Authority
- BG
- Bulgaria
- Prior art keywords
- superconducting
- contact
- layer
- weak
- energy
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/10—Junction-based devices
- H10N60/12—Josephson-effect devices
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
Изобретението се отнася до слаб свръхпроводящ контакт, по-специално джозефсонов контакт от високотемпературни свръхпроводящи материали, по-специално от УВа2Си3О7, и метод за изготвянето му.The invention relates to a weak superconducting contact, in particular a Josephson contact of high temperature superconducting materials, in particular of UVa 2 Cu 3 O 7 , and a method for its preparation.
Предшестващо състояние на техникатаBACKGROUND OF THE INVENTION
Известни са слаби свръхпроводящи контакти с джозефсонови свойства, изготвени от високотемпературни свръхпроводящи материали, при които слабата връзка се създава чрез бомбардировка на малък участък от същия материал с ускорени йони. При тази бомбардировка ускорените йони модифицират материала и свръхпроводящият елемент работи като 5-Ν5 (свръхпроводник - нормален метал - свръхпроводник) или като 5-5’5-(свръх проводник друг свръхпроводник-свръхпроводник) [ 1 ].Known weak superconducting contacts with Josephson properties made of high temperature superconducting materials, in which the weak bond is created by bombarding a small section of the same material with accelerated ions. In this bombardment, accelerated ions modify the material and the superconducting element operates as 5-Ν5 (superconductor - normal metal - superconductor) or 5-5'5- (superconductor another superconductor-superconductor) [1].
Недостатъците на тези свръхпроводящи изделия са следните. Работният канал променя силно сечението си при промяна на температурата, вследствие на което температурният диапазон, в който работят, е много тесен, съществува силна зависимост от дебелината на слоя, което налага подбиране на параметрите на бомбардиращите частици (йони) за всеки слой, поради неизбежните толеранси на дебелината им; работният проводящ канал е формиран точно върху интерфейса между подложката и свръхпроводящия материал, където свръхпроводящият материал е с много дефекти.The disadvantages of these superconducting products are the following. The working channel changes its cross section strongly as the temperature changes, which makes the temperature range in which they operate very narrow, there is a strong dependence on the thickness of the layer, which necessitates the selection of the parameters of the bombarding particles (ions) for each layer, due to the inevitable their thickness tolerances; the working conductive channel is formed exactly at the interface between the substrate and the superconducting material, where the superconducting material has many defects.
Техническа същност на изобретениетоSUMMARY OF THE INVENTION
Методът съгласно изобретението използва повече от една бомбардировка (имплантация) с различни по вид и количество енергии и/или частици (йони), при което проводящият канал се създава във вътрешността на свръхпроводящия слой.The method according to the invention uses more than one bombardment (implantation) with different types and amounts of energy and / or particles (ions), whereby the conduction channel is created inside the superconducting layer.
Предимствата на електронните изделия, изготвени по метода се състоят в следното: разширява се температурния диапазон на работата им; отпада необходимостта от подбиране на параметрите на модифициране (енергия и доза на йоните), поради неизбежните толеранси в дебелината на свръхпроводящия слой; подобрява се повторяемостта на резултатите, вследствие на формирането на проводящия канал във вътрешността на свръхпроводящия слой, където той е по-съвършен.The advantages of electronic products made by the method are as follows: the temperature range of their work is expanded; the need to select modification parameters (energy and ion dose) is eliminated due to the inevitable tolerances in the thickness of the superconducting layer; the repeatability of the results is improved due to the formation of the conduction channel inside the superconducting layer, where it is more perfect.
Примерно изпълнение на изобретениетоAn exemplary embodiment of the invention
Фигура 1 илюстрира едно примерно изпълнение на метода съгласно изобретението за изготвяне на свръхпроводящ контакт. От високотемпературен свръхпроводящ слой 2 (например УВа2Си3О7) с дебелина 200 пт, нанесен например с лазерна аблация върху подложка 1 от 5гТЮ3, посредством фотолитография и ецване е формиран мост 3 с размери около 5 рт ширина и 10 цт дължина, след което върху цялата структура е нанесен слой от електронен резист 6 (например РММА), служещ за имплантационна маска. В нея посредством електроннолъчева литография се формира канал 5 със субмикронни размери, под който материалът се модифицира. Модифицирането се осъществява с ускорени йони 4 (например Ο, Ν, Не или други) с различна по количество и вид енергия, така че формирането на проводящия канал да стане във вътрешността на свръхпроводящия слой.Figure 1 illustrates an exemplary embodiment of the method according to the invention for making a superconducting contact. A high-temperature superconducting layer 2 (for example UVa 2 Cu 3 O 7 ) with a thickness of 200 pt, applied, for example, by laser ablation on a substrate 1 of 5gTY 3 , is formed by photolithography and etching to form a bridge 3 of about 5 µm wide and 10 µm long. thereafter, an electronic resist layer 6 (eg PMMA) is applied to the entire structure to serve as an implant mask. In it, a channel 5 of submicron size is formed by electron beam lithography, under which the material is modified. The modification is accomplished by accelerated ions 4 (e.g., Ο, Ν, No, or others) with different amounts and types of energy so that the formation of the conducting channel takes place inside the superconducting layer.
Фигура 2 илюстрира разпределението на критичната температура Тс по дълбочината на свръхпроводящия слой, имплантиран двукратно с кислородни йони с енергия 200 кеУ, доза 1,5.1013 йона/ст2 и енергия 30 кеУ, доза 5,2.1012 йона/ст2. Очевидно е, че при работна температура 77 К проводящият канал се намира във вътрешността на свръхпроводящия слой.Figure 2 illustrates the distribution of the critical temperature Tc over the depth of the superconducting layer implanted twice with oxygen ions of 200 keU energy, dose 1.5.10 13 ion / cm 2 and energy 30 keU, dose 5.2.10 12 ion / cm 2 . Obviously, at an operating temperature of 77 K, the conductive channel is located inside the superconducting layer.
Приложение на изобретениетоApplication of the invention
Контактът съгласно изобретението може да се използва в свръхпроводящи квантови интерферометри (СКВИД), както и в други устройства на свръхпроводниковата електроника, например микровълнови приемни устройства, аналогово-цифрови преобразуватели, логически схеми и памети.The contact according to the invention can be used in superconducting quantum interferometers (SQUID) as well as in other devices of superconducting electronics, such as microwave receivers, analog-to-digital converters, logic circuits and memories.
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BG99974A BG61824B1 (en) | 1995-09-04 | 1995-09-04 | Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making |
DE19634081A DE19634081A1 (en) | 1995-09-04 | 1996-08-23 | Weakly superconductor Josephson contact of high temp. surge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BG99974A BG61824B1 (en) | 1995-09-04 | 1995-09-04 | Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making |
Publications (2)
Publication Number | Publication Date |
---|---|
BG99974A BG99974A (en) | 1997-04-30 |
BG61824B1 true BG61824B1 (en) | 1998-06-30 |
Family
ID=3926282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BG99974A BG61824B1 (en) | 1995-09-04 | 1995-09-04 | Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making |
Country Status (2)
Country | Link |
---|---|
BG (1) | BG61824B1 (en) |
DE (1) | DE19634081A1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5401716A (en) * | 1987-04-15 | 1995-03-28 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing superconducting patterns |
US5053383A (en) * | 1988-03-29 | 1991-10-01 | At&T Bell Laboratories | Method of reducing critical current density of oxide superconductors by radiation damage |
FI950805A (en) * | 1994-02-24 | 1995-08-25 | Shimadzu Corp | Superconducting tunnel joint and method of making it |
-
1995
- 1995-09-04 BG BG99974A patent/BG61824B1/en unknown
-
1996
- 1996-08-23 DE DE19634081A patent/DE19634081A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
BG99974A (en) | 1997-04-30 |
DE19634081A1 (en) | 1997-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nakayama et al. | Electron‐beam cell projection lithography: A new high‐throughput electron‐beam direct‐writing technology using a specially tailored Si aperture | |
Dmitriev et al. | High quality Nb-based tunnel junctions for high frequency and digital applications | |
Imamura et al. | A submicrometer Nb/AlO x/Nb Josephson junction | |
Harriott et al. | High‐resolution patterning of high T c superconductors | |
Morimoto et al. | Focused ion beam lithography and its application to submicron devices | |
US4586062A (en) | Microcircuits formed from substrates of organic quasiunidimensional conductors | |
Fretto et al. | Nano SNIS junctions fabricated by 3D FIB sculpting for application to digital electronics | |
BG61824B1 (en) | Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making | |
EP0410374B1 (en) | Superconductive multilayer circuit and its manufacturing method | |
Born et al. | Fabrication of ultrasmall tunnel junctions by electron beam direct-writing | |
KR100362075B1 (en) | an MIM or MIS electron source and method of manufacturing the same | |
Jones et al. | Very high voltage (500 kV) electron beam lithography for thick resists and high resolution | |
US4176029A (en) | Subminiature bore and conductor formation | |
JPS63265473A (en) | Manufacture of superconducting electronic circuit | |
US5637555A (en) | Method for manufacturing a three-terminal superconducting device having an extremely short superconducting channel | |
US5099294A (en) | Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure | |
Fritzsch et al. | Superconductor-normal metal-superconductor Josephson junctions with Ti interlayer | |
Akaike et al. | Fabrication of submicron Nb/AlO/sub x/-Al/Nb tunnel junctions using focused ion beam implanted Nb patterning (FINP) technique | |
Broers et al. | High resolution electron beam lithography and applications to superconducting devices | |
Chao et al. | 0.2 micron length T-shaped gate fabrication using angle evaporation | |
Machalett et al. | Focused-ion-beam writing of electrical connections into platinum oxide films | |
Aoyagi et al. | Submicron NbN Josephson tunnel junctions for digital applications | |
van der Harg et al. | Deep-submicron structures in YBCO: fabrication and measurements | |
JPH01181444A (en) | Semiconductor device and its manufacture | |
Barth et al. | Electron beam lithography and ion implantation techniques for fabrication of high-Tc Josephson junctions |