BG61824B1 - Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making - Google Patents

Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making Download PDF

Info

Publication number
BG61824B1
BG61824B1 BG99974A BG9997495A BG61824B1 BG 61824 B1 BG61824 B1 BG 61824B1 BG 99974 A BG99974 A BG 99974A BG 9997495 A BG9997495 A BG 9997495A BG 61824 B1 BG61824 B1 BG 61824B1
Authority
BG
Bulgaria
Prior art keywords
superconducting
contact
layer
weak
energy
Prior art date
Application number
BG99974A
Other languages
Bulgarian (bg)
Other versions
BG99974A (en
Inventor
Original Assignee
Тинчев Савчо
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тинчев Савчо filed Critical Тинчев Савчо
Priority to BG99974A priority Critical patent/BG61824B1/en
Priority to DE19634081A priority patent/DE19634081A1/en
Publication of BG99974A publication Critical patent/BG99974A/en
Publication of BG61824B1 publication Critical patent/BG61824B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

The invention relates to a weak superconducting contact suchas of YBa2Cu307. By the method, more than one bombardment(implantation) by quantity and type of energy and/or ions isapplied, where the conducting channel is created in the interiorof the supperconductive layer. The temperature range of operationis extended by the method and the electronic devices made with itand there is no need for the selection of parameters formodification such as energy and ion doses due to the inevitabletolerences in the thicknesses of the superconducting layer, therepetitiveness of reults is improved and the percentage of the fitfor operation instruments as a result of the formation of theconductive channel within the interior of the superconductinglayer is increased where this layer is superior.

Description

Изобретението се отнася до слаб свръхпроводящ контакт, по-специално джозефсонов контакт от високотемпературни свръхпроводящи материали, по-специално от УВа2Си3О7, и метод за изготвянето му.The invention relates to a weak superconducting contact, in particular a Josephson contact of high temperature superconducting materials, in particular of UVa 2 Cu 3 O 7 , and a method for its preparation.

Предшестващо състояние на техникатаBACKGROUND OF THE INVENTION

Известни са слаби свръхпроводящи контакти с джозефсонови свойства, изготвени от високотемпературни свръхпроводящи материали, при които слабата връзка се създава чрез бомбардировка на малък участък от същия материал с ускорени йони. При тази бомбардировка ускорените йони модифицират материала и свръхпроводящият елемент работи като 5-Ν5 (свръхпроводник - нормален метал - свръхпроводник) или като 5-5’5-(свръх проводник друг свръхпроводник-свръхпроводник) [ 1 ].Known weak superconducting contacts with Josephson properties made of high temperature superconducting materials, in which the weak bond is created by bombarding a small section of the same material with accelerated ions. In this bombardment, accelerated ions modify the material and the superconducting element operates as 5-Ν5 (superconductor - normal metal - superconductor) or 5-5'5- (superconductor another superconductor-superconductor) [1].

Недостатъците на тези свръхпроводящи изделия са следните. Работният канал променя силно сечението си при промяна на температурата, вследствие на което температурният диапазон, в който работят, е много тесен, съществува силна зависимост от дебелината на слоя, което налага подбиране на параметрите на бомбардиращите частици (йони) за всеки слой, поради неизбежните толеранси на дебелината им; работният проводящ канал е формиран точно върху интерфейса между подложката и свръхпроводящия материал, където свръхпроводящият материал е с много дефекти.The disadvantages of these superconducting products are the following. The working channel changes its cross section strongly as the temperature changes, which makes the temperature range in which they operate very narrow, there is a strong dependence on the thickness of the layer, which necessitates the selection of the parameters of the bombarding particles (ions) for each layer, due to the inevitable their thickness tolerances; the working conductive channel is formed exactly at the interface between the substrate and the superconducting material, where the superconducting material has many defects.

Техническа същност на изобретениетоSUMMARY OF THE INVENTION

Методът съгласно изобретението използва повече от една бомбардировка (имплантация) с различни по вид и количество енергии и/или частици (йони), при което проводящият канал се създава във вътрешността на свръхпроводящия слой.The method according to the invention uses more than one bombardment (implantation) with different types and amounts of energy and / or particles (ions), whereby the conduction channel is created inside the superconducting layer.

Предимствата на електронните изделия, изготвени по метода се състоят в следното: разширява се температурния диапазон на работата им; отпада необходимостта от подбиране на параметрите на модифициране (енергия и доза на йоните), поради неизбежните толеранси в дебелината на свръхпроводящия слой; подобрява се повторяемостта на резултатите, вследствие на формирането на проводящия канал във вътрешността на свръхпроводящия слой, където той е по-съвършен.The advantages of electronic products made by the method are as follows: the temperature range of their work is expanded; the need to select modification parameters (energy and ion dose) is eliminated due to the inevitable tolerances in the thickness of the superconducting layer; the repeatability of the results is improved due to the formation of the conduction channel inside the superconducting layer, where it is more perfect.

Примерно изпълнение на изобретениетоAn exemplary embodiment of the invention

Фигура 1 илюстрира едно примерно изпълнение на метода съгласно изобретението за изготвяне на свръхпроводящ контакт. От високотемпературен свръхпроводящ слой 2 (например УВа2Си3О7) с дебелина 200 пт, нанесен например с лазерна аблация върху подложка 1 от 5гТЮ3, посредством фотолитография и ецване е формиран мост 3 с размери около 5 рт ширина и 10 цт дължина, след което върху цялата структура е нанесен слой от електронен резист 6 (например РММА), служещ за имплантационна маска. В нея посредством електроннолъчева литография се формира канал 5 със субмикронни размери, под който материалът се модифицира. Модифицирането се осъществява с ускорени йони 4 (например Ο, Ν, Не или други) с различна по количество и вид енергия, така че формирането на проводящия канал да стане във вътрешността на свръхпроводящия слой.Figure 1 illustrates an exemplary embodiment of the method according to the invention for making a superconducting contact. A high-temperature superconducting layer 2 (for example UVa 2 Cu 3 O 7 ) with a thickness of 200 pt, applied, for example, by laser ablation on a substrate 1 of 5gTY 3 , is formed by photolithography and etching to form a bridge 3 of about 5 µm wide and 10 µm long. thereafter, an electronic resist layer 6 (eg PMMA) is applied to the entire structure to serve as an implant mask. In it, a channel 5 of submicron size is formed by electron beam lithography, under which the material is modified. The modification is accomplished by accelerated ions 4 (e.g., Ο, Ν, No, or others) with different amounts and types of energy so that the formation of the conducting channel takes place inside the superconducting layer.

Фигура 2 илюстрира разпределението на критичната температура Тс по дълбочината на свръхпроводящия слой, имплантиран двукратно с кислородни йони с енергия 200 кеУ, доза 1,5.1013 йона/ст2 и енергия 30 кеУ, доза 5,2.1012 йона/ст2. Очевидно е, че при работна температура 77 К проводящият канал се намира във вътрешността на свръхпроводящия слой.Figure 2 illustrates the distribution of the critical temperature Tc over the depth of the superconducting layer implanted twice with oxygen ions of 200 keU energy, dose 1.5.10 13 ion / cm 2 and energy 30 keU, dose 5.2.10 12 ion / cm 2 . Obviously, at an operating temperature of 77 K, the conductive channel is located inside the superconducting layer.

Приложение на изобретениетоApplication of the invention

Контактът съгласно изобретението може да се използва в свръхпроводящи квантови интерферометри (СКВИД), както и в други устройства на свръхпроводниковата електроника, например микровълнови приемни устройства, аналогово-цифрови преобразуватели, логически схеми и памети.The contact according to the invention can be used in superconducting quantum interferometers (SQUID) as well as in other devices of superconducting electronics, such as microwave receivers, analog-to-digital converters, logic circuits and memories.

Claims (2)

1. Слаб свръхпроводящ контакт, по-специално джозефсонов контакт от високотемпературни свръхпроводящи материали, състоящ се от мост с микронни размери, напречно на който свръхпроводящите свойства на материала са отслабени в област със субмикронни размери, характеризиращ се с това, че проводящият канал е формиран във вътрешността 10 или непосредствено под повърхността на свръхпроводящия слой.1. Weak superconducting contact, in particular a Josephson contact of high temperature superconducting materials, comprising a micron-sized bridge transversely to which the superconducting properties of the material are weakened in a submicron-size region, characterized in that the conduction channel is inside 10 or just below the surface of the superconducting layer. 2. Метод за създаване на слаб свръхпроводящ контакт, по-специално джозефсонов контакт от високотемпературни свръхпрово- 15 дящи материали съгласно претенция 1, при който свръхпроводящият слой се модифицира с помощта на ускорени частици, характеризиращ се с това, че при модифицирането се из5 ползва повече от една йонна имплантация с различни по количество и вид енергия и йони.2. A method for creating a weak superconducting contact, in particular a Josephson contact of high-temperature superconducting materials according to claim 1, wherein the superconducting layer is modified by accelerated particles, characterized in that it uses more than 5 from an ion implant with different amounts and types of energy and ions.
BG99974A 1995-09-04 1995-09-04 Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making BG61824B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BG99974A BG61824B1 (en) 1995-09-04 1995-09-04 Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making
DE19634081A DE19634081A1 (en) 1995-09-04 1996-08-23 Weakly superconductor Josephson contact of high temp. surge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BG99974A BG61824B1 (en) 1995-09-04 1995-09-04 Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making

Publications (2)

Publication Number Publication Date
BG99974A BG99974A (en) 1997-04-30
BG61824B1 true BG61824B1 (en) 1998-06-30

Family

ID=3926282

Family Applications (1)

Application Number Title Priority Date Filing Date
BG99974A BG61824B1 (en) 1995-09-04 1995-09-04 Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making

Country Status (2)

Country Link
BG (1) BG61824B1 (en)
DE (1) DE19634081A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401716A (en) * 1987-04-15 1995-03-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing superconducting patterns
US5053383A (en) * 1988-03-29 1991-10-01 At&T Bell Laboratories Method of reducing critical current density of oxide superconductors by radiation damage
FI950805A (en) * 1994-02-24 1995-08-25 Shimadzu Corp Superconducting tunnel joint and method of making it

Also Published As

Publication number Publication date
BG99974A (en) 1997-04-30
DE19634081A1 (en) 1997-03-06

Similar Documents

Publication Publication Date Title
Nakayama et al. Electron‐beam cell projection lithography: A new high‐throughput electron‐beam direct‐writing technology using a specially tailored Si aperture
Dmitriev et al. High quality Nb-based tunnel junctions for high frequency and digital applications
Imamura et al. A submicrometer Nb/AlO x/Nb Josephson junction
Harriott et al. High‐resolution patterning of high T c superconductors
Morimoto et al. Focused ion beam lithography and its application to submicron devices
US4586062A (en) Microcircuits formed from substrates of organic quasiunidimensional conductors
Fretto et al. Nano SNIS junctions fabricated by 3D FIB sculpting for application to digital electronics
BG61824B1 (en) Weak superconducting contact (josephson contact) of high temperature superconducting materials and method for its making
EP0410374B1 (en) Superconductive multilayer circuit and its manufacturing method
Born et al. Fabrication of ultrasmall tunnel junctions by electron beam direct-writing
KR100362075B1 (en) an MIM or MIS electron source and method of manufacturing the same
Jones et al. Very high voltage (500 kV) electron beam lithography for thick resists and high resolution
US4176029A (en) Subminiature bore and conductor formation
JPS63265473A (en) Manufacture of superconducting electronic circuit
US5637555A (en) Method for manufacturing a three-terminal superconducting device having an extremely short superconducting channel
US5099294A (en) Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
Fritzsch et al. Superconductor-normal metal-superconductor Josephson junctions with Ti interlayer
Akaike et al. Fabrication of submicron Nb/AlO/sub x/-Al/Nb tunnel junctions using focused ion beam implanted Nb patterning (FINP) technique
Broers et al. High resolution electron beam lithography and applications to superconducting devices
Chao et al. 0.2 micron length T-shaped gate fabrication using angle evaporation
Machalett et al. Focused-ion-beam writing of electrical connections into platinum oxide films
Aoyagi et al. Submicron NbN Josephson tunnel junctions for digital applications
van der Harg et al. Deep-submicron structures in YBCO: fabrication and measurements
JPH01181444A (en) Semiconductor device and its manufacture
Barth et al. Electron beam lithography and ion implantation techniques for fabrication of high-Tc Josephson junctions