BE781189A - Dehydrating natural gas - by solvent extraction with n-alkyl lactam which is recovered by solvent extraction - Google Patents

Dehydrating natural gas - by solvent extraction with n-alkyl lactam which is recovered by solvent extraction

Info

Publication number
BE781189A
BE781189A BE781189A BE781189A BE781189A BE 781189 A BE781189 A BE 781189A BE 781189 A BE781189 A BE 781189A BE 781189 A BE781189 A BE 781189A BE 781189 A BE781189 A BE 781189A
Authority
BE
Belgium
Prior art keywords
emi
gas
pyrrolidone
solvent extraction
triethylene glycol
Prior art date
Application number
BE781189A
Other languages
French (fr)
Inventor
H G Psyras
A A Bellisio
Original Assignee
Gaf Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaf Corp filed Critical Gaf Corp
Publication of BE781189A publication Critical patent/BE781189A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/2672-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0205Separation of non-miscible liquids by gas bubbles or moving solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/343Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
    • B01D3/346Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas the gas being used for removing vapours, e.g. transport gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • B01D53/526Mixtures of hydrogen sulfide and carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/60Isolation of sulfur dioxide from gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/16Separation or purification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gas Separation By Absorption (AREA)
  • Drying Of Gases (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Pyrrole Compounds (AREA)

Abstract

Dehydration of gas (pref. natural gas, with simultaneous sweetening and CO2 removal) by contacting gas with a liq. N-alkyl lactam (I) and recovering (I) with absorbed water; extracting (I) from the dried gas using a solvent (II) of higher b.pt. than (I), and regenerating and reconcentrating (I) and (II). Pref. (I) is N-methyl pyrrolidone; pref. (II) are tri- and tetra-ethylene glycol and N-cyclohexyl pyrrolidone.

Description

       

  la présente invention concerne un procède de déshy- 

  
dratation de courants gazeux et plus particulièrement concerne

  
 <EMI ID=1.1> 

  
utilisés dans ces procédés. 

  
Les gaz, aux diverses étapes de traitement et de 

  
 <EMI ID=2.1> 

  
 <EMI ID=3.1> 

  
tête d'un puits" contient des Quantités considérables de vapeur

  
d'eau et ces gaz naturels ont souvent des points de rosée à 

  
 <EMI ID=4.1> 

  
du traitement et/ou de.autres exigences de manipulation au

  
cours du transport et du traitement de ses gaz, des problèmes

  
surgissent lorsque ces gaz sont refroidis en dessous du point

  
de rosée. La vapeur d'eau se transforme en eau liquide et/ou

  
souvent en glace. Cette transformation de l'eau en une phase

  
liquide ou solide dans le pipeline diminue l'espace d'écoulement et tend à bloquer les parties opérantes destinées à

  
manipuler le flux gazeux. En outre, l'eau réagit avec certains

  
composants du gaz pour former des hydrates solides de ces 

  
composants du gaz. Ces hydrates tendent à se déposer et à 

  
geler ou à bloquer les étranglements, 9 les soupapes, les

  
pistons et autres dispositifs opérant le long des pipelines 

  
et dans les installations de traitement. 

  
Dans le passe, on a mis des procédés de déshydratation basés sur l'absorption chimique ou physique de l'eau par

  
des solides ou des liquides. Les gels de silice se trouvent

  
parmi' les- solides utilisés pour l'absorption physique de l'eau.

  
 <EMI ID=5.1> 

  
pour l'absorption physique de l'eau dans les gaz combustibles.

  
Les !gels de silice exigent une chaleur considérable pour la

  
régénération et l'utilisation efficace, Les glycols, en raison

  
de leur viscosité, ont une faible efficacité de plateau et par

  
conséquent exigent une dépense considérable d'énergie pour la

  
recirculation et la régénération de grandes quantités de ces

  
liquides visqueux nécessaires pour parvenir à l'abaissement

  
désiré du point de rosée. 

  
Il est en conséquence intéressant de fournir un

  
 <EMI ID=6.1> 

  
équilibre avec la teneur en vapeur d'eau du courant gazeux  et la collecte du mélange liquide en équilibre de N-alcoyl-. 

  
 <EMI ID=7.1> 

  
 <EMI ID=8.1> 

  
 <EMI ID=9.1> 

  
 <EMI ID=10.1>  d'adoucissement,. On a remarqué une perte allant jusqu'à 30-100  kg/heure par entraînement en fonction de la température de ce 

  
 <EMI ID=11.1> 

  
 <EMI ID=12.1> 

  
Pour abaisser ces pertes à 3 kg/heure pour 30 000 m , on traite les gaz qui s'écoulent dans ces opérations d'adoucissement de la technique antérieure avec de l'eau, pour diminuer les pertes en N-méthyl-pyrrolidone et par conséquent un quelconque effet de déshydratation est perdu dans la réhydratation pour récupérer la N-méthyl-pyrrolidone. Pour les procédés d'adoucissement,

  
 <EMI ID=13.1> 

  
qu'élevée, est tolérable pour des procédés de déshydratation de gaz, les risques de pertes semblables sont prohibitifs lorsqu'on compare aux coûts des procédés présentement en utilisation basés sur les di- et triéthylène glycols. Les procédés aux glycols, qui peuvent réaliser un abaissement du point de

  
 <EMI ID=14.1> 

  
tion, sont favorables en raison du faible prix des glycols.

  
Or, la Demanderesse a découvert qu'en introduisant

  
 <EMI ID=15.1> 

  
après la déshydratation initiale, il est possible d'éliminer presque totalement les pertes en lactame. La présente découverte permet en outre d'abaisser les frais de déshydratation de ces matières pour fournir des gaz secs provenant du procédé de déshydratation avec des points'de rosée nettement plus bas, avec de moindres frais de pompage,, d'énergie, de tour, de construction et frais similaires comparativement aux procédés actuellement en faveur.

  
 <EMI ID=16.1> 

  
agents déshydratants permet des abaissements du point de rosée jusqu'à 35[deg.]C environ. Les petites quantités de lactame qui sont entraînées dans le flux gazeux sont alors absorbées à l'étape d'absorption selon la présente invention au cours de laquelle on introduit dans le courant de gaz à déshydrater un liquide absorbant qui est un solvant pour le lactame et dont le point d'ébullition est supérieur à celui du lactame. 

  
 <EMI ID=17.1>  substances sont des amides d'acides cycliques. Elles sont neutres et par conséquent agissent conformément à la présente invention, comme absorbants dissolvants physiques pour l'eau, et incidemment pour certains des composants acides,des gaz

  
 <EMI ID=18.1> 

  
les groupes alcoyle inférieurs sont compris entre et 7

  
 <EMI ID=19.1>  Bien qu'il soit utile d'avoir un liquide absorbant 

  
 <EMI ID=20.1> 

  
dratant également une telle propriété n'est pas nécessaire.  L'absorbant doit de préférence être l'un de ceux qui ont

  
 <EMI ID=21.1> 

  
primaires, en particulier la N-méthyl-pyrrolidone, la N-cyclohexyl-pyrrolidone s'est avérée être un liquide absorbant utile

  
 <EMI ID=22.1>  

  
 <EMI ID=23.1> 
 <EMI ID=24.1> 
  <EMI ID=25.1> 

  

 <EMI ID=26.1> 


  
 <EMI ID=27.1> 

  
L'étape d'absorption selon la présente invention

  
 <EMI ID=28.1> 

  
 <EMI ID=29.1> 

  
de sorte que le point de rosée du gaz sacré émergeant de la

  
 <EMI ID=30.1> 

  
termes, le procédé préféré selon la présente invention se traduit par un procédé de déshydratation de gaz qui fournit  en routine un abaissement du point de rosée des gaz traites

  
 <EMI ID=31.1> 

  
présentent en routine un abaissement du point de rosée en dessous de -23[deg.]C après la première étape de déshydratation et,; après achèvement du traitement complet avec le procédé selon la présente invention , le point de rosée final est aussi bas que -29[deg.]C. Des gaz naturels qui présentent des points de rosée

  
 <EMI ID=32.1> 

  
 <EMI ID=33.1> 

  
conséquent ne sont pas sujets à des surcharges dans des pipelines qui s'appliquent aux gaz dont les points de rosée sont

  
 <EMI ID=34.1> 

  
d'encombrement des tours d'extraction requises pour le procède complet selon la présente invention. 

  
 <EMI ID=35.1> 

  
liquide et les sections supplémentaires d'extraction requise par rapport à un système à solvant unique utilisé par les

  
 <EMI ID=36.1> 

  
pyrrolidone, ceci donne lieu à une diminution considérable de ^investissement de capital pour l'équipement relativeme aux installations utilisant des glycols pour la déshydratai

  
Le procédé selon la présente invention sera plus particulièrement décrite et ses avantages rendus apparents en référence à la planche de dessins annexée dans laquelle
- la figure 1 représente un organigramme schémati <EMI ID=37.1> 

  
 <EMI ID=38.1> 

  
primaire pour le traitement d'un courant gazeux et dans lac

  
 <EMI ID=39.1> 

  
pérée ensuite dans le courant gazeux par un solvant absorbe

  
 <EMI ID=40.1> 

  
préféré) dans une étape séparée de récupération, puis on le récupère et les recycle tous deux, et  <EMI ID=41.1>  <EMI ID=42.1> 

  
laquelle le triéthylène glycol après son absorption dans le

  
 <EMI ID=43.1> 

  
 <EMI ID=44.1> 

  
 <EMI ID=45.1> 

  
 <EMI ID=46.1> 

  
on les régénère et on recycle chacun.

  
En se référant spécifiquement" à la figure 1, on

  
 <EMI ID=47.1>   <EMI ID=48.1> 

  
tituée soit par une colonne à garnissage, soit par une série de cuvettes de barbottage pour assurer le contact total et

  
 <EMI ID=49.1> 

  
la section d'absorption primaire 11 '.peut être également cons-

  
 <EMI ID=50.1> 

  
 <EMI ID=51.1> 

  
est entraînée par le gaz qui quitte [deg.].la section d'absorption

  
 <EMI ID=52.1> 

  
 <EMI ID=53.1> 

  
 <EMI ID=54.1> 

  
plateau de barbottage 20 pénètre dans la section d'absorption secondaire 12 de la colonne d'absorption 10 où le courant de 

  
 <EMI ID=55.1> 

  
intime avec l'absorbant de triéthylène glycol qu'on introduit dans la section d'absorption secondaire 19 par un pulvérisateur
17. 

  
La section 12 d'absorption secondaire peut être aussi soit une colonne à garnissage soit une colonne 'non garnie ou bien elle peut contenir des cuvettes classiques ou les garnissages normalement utilisés pour le contact intime de liquides avec des gaz. Le triéthylène glycol introduit par un pulvéri-

  
 <EMI ID=56.1>  

  
 <EMI ID=57.1> 

  
 <EMI ID=58.1> 

  
 <EMI ID=59.1> 

  
 <EMI ID=60.1>   <EMI ID=61.1> 

  
absorbée qui s'accumule dans une section de collecte 18, est

  
 <EMI ID=62.1> 

  
de triéthylène glycol 31 où l'absorbât de triéthylène glycol est chauffé par le' réchauffeur 33, pour distiller la N-méthylpyrrolidone absorbée hors du triéthylène glycol. Le distillât provenant de la section 32 contenant la N-méthyl-pyrrolidone

  
 <EMI ID=63.1> 

  
 <EMI ID=64.1> 

  
lidone et d'eau proche de l'arrivée où elle est introduite

  
 <EMI ID=65.1> 

  
pyrrolidone est aussi purifiée.

  
On recueille le triéthylène glycol, après élimination de N-méthyl-pyrrolidone dans le reconcentrateur 31, dans les portions basses du reconcentrateur dans un puits 35 d'où il est dirigé par un pipeline 36 vers la section de pulvérisation de triéthylène glycol '17 et réintroduit dans la section de contact secondaire 19 de la tour d'absorption 10.

  
 <EMI ID=66.1> 

  
simplifié par rapport à celui de la figure 1, en ce qu'on

  
 <EMI ID=67.1> 

  
utilisée pour la déshydratation du courant gazeux. On ne le sépare de la N-méthyl-pyrrolidone qu'en quantité suffisante pour absorber la N-méthyl-pyrrolidone entraînée. Ceci abaisse l'ampleur du pompage. Ceci peut se faire puisque le triéthylène glycol est complètement miscible et compatible avec la

  
 <EMI ID=68.1> 

  
solvants absorbants.

  
 <EMI ID=69.1> 

  
initialement déshydraté par la N-méthyl-pyrrolidone dans une colonne d'absorption 50 dans une section d'absorption primaire

  
51. Dans cette section d'absorption primaire 51, le courant de gaz introduit à l'extrémité inférieure par une entrée 53

  
 <EMI ID=70.1> 

  
done introduite de préférence par des pulvérisateurs 55 à la portion supérieure de la section d'absorption primaire 51. 

  
 <EMI ID=71.1> 

  
 <EMI ID=72.1> 

  
 <EMI ID=73.1> 

  
nissages et des cuvettes de barbottage,.

  
Le courant gazeux est pratiquement et efficacement déshydraté par la N-méthyl-pyrrolidone qui se rassemble au fond de la colonne 50 dans une section de collecte 56. Le gaz continue à s'écouler vers le haut et passe de la section d'absorption primaire 51 vers une section d'absorption secondaire
52 pour le contact avec le triéthylène glycol. On introduit

  
 <EMI ID=74.1> 

  
rieure de la section d'absorption secondaire 52 par un pulvérisateur de triéthylène glycol 57 et s'écoule vers le bas à contre-courant par rapport au courant gazeux. Dans la section d'absorption secondaire 529 la N-méthyl-pyrrolidone éventuellement entraînée dans le courant de gaz est absorbée ainsi qu'il est prévu par la présente . 'invention* 

  
 <EMI ID=75.1> 

  
le bas.-dans le courant de gaz à travers la sectioa 3 'absorption

  
 <EMI ID=76.1> 

  
 <EMI ID=77.1> 

  
 <EMI ID=78.1> 

  
et extrait de son eau et autres composants solubles dans la

  
 <EMI ID=79.1>  une conduite 63 vers le reconcentrateur de triéthylène glycol
64.

  
 <EMI ID=80.1> 

  
 <EMI ID=81.1> 

  
 <EMI ID=82.1> 

  
 <EMI ID=83.1> 

  
 <EMI ID=84.1> 

  
 <EMI ID=85.1> 

  
 <EMI ID=86.1> 

  
 <EMI ID=87.1> 

  
 <EMI ID=88.1> 

  
 <EMI ID=89.1> 

  
 <EMI ID=90.1>  

  
 <EMI ID=91.1>   <EMI ID=92.1> 

  
comme produits liquides. 

  
 <EMI ID=93.1> 

  
 <EMI ID=94.1> 

  
 <EMI ID=95.1> 

  
 <EMI ID=96.1> 

  
 <EMI ID=97.1> 

  
 <EMI ID=98.1> 

  
inférieur et évite aussi la ré-absorption d'une certaine humidité provenant de solvants/absorbants non anhydres da.

  
 <EMI ID=99.1> 

  
 <EMI ID=100.1> 

  
 <EMI ID=101.1> 

  
traîné dans une opération de déshydratation industrielle

  
 <EMI ID=102.1> 

  
 <EMI ID=103.1> 

  
température de la pression et de la viscosité du liquide cours des opérations de déshydratation du gaz naturel*   <EMI ID=104.1> 

  
vitesse d'injection correspondantes

  
iLr u 11;

  

 <EMI ID=105.1> 


  
 <EMI ID=106.1> 

  
 <EMI ID=107.1> 

  
pyrrolidone par jour. 

  
On introduit du triéthylène glycol (ci-après par abréviation TEG) dans le courant de gaz sec à raison d'environ

  
 <EMI ID=108.1> 

  
cuvettes de barbottage pour assurer un bon contact or .contrecourant du triéthylène glycol avec le courant gazeux contenant  <EMI ID=109.1>  cyclohexyl-pyrrolidone est pleinement équivalente au triéthy- 

  
 <EMI ID=110.1> 

  
de rosée du gaz de sortie peut être affaibli encore de 2,8[deg.]C  par passage à travers le solvant/absorbant de N-cyclohexylpyrrolidone qui est également un agent déshydratant excellent.

  
Le reconcentrateur de N-cyclohexyl-2-pyrrolidone fonctionne à 190-205[deg.]C et sous un vide modère.

  
EXEMPLE 3 

  
On introduit du gaz naturel à la même température

  
et sous la même pression qu'à l'exemple 1 et on le traite en

  
 <EMI ID=111.1> 

  
pyrrolidone, la N-p-butyl-pyrrolidone, la N-isopropyl-pipéridone.

  
Les N-alcoyl-lactames entraînés sont absorbés par

  
la N-cyclohexyl-pyrrolidone et on obtient une déshydratation efficace.

  
EXEMPLE 4

  
On charge du gaz humide provenant d'une tête de puits à 26,7[deg.]C et sous 56 kg/cm<2> au manomètre dans l'appareil de déshydratation selon la-figure. 2. Le gaz naturel est déshydraté d'abord par la N-méthyl-pyrrolidone introduite par la tête de pulvérisation 55 dans la section d'absorption primaire 51 de la colonne 50. La N-méthyl-pyrrolidone contenant l'eau absorbée est recueillie au fond de la colonne 56. La N-méthyl-pyrrolidone entraînée dans le courant gazeux est ensuite absorbée par le triéthylène glycol introduit par une tête de pulvérisation 57 à la partie supérieure de la section d'absorption secondaire 52.

   On laisse ensuite descendre le triéthylène glycol contenant la N-méthyl-pyrrolidone absorbée, à travers la section d'absorption primaire 51 au fond de la colonne 50 dans la zone de collecte 56 où elle s'accumule avec le mélange de N-méthyl-pyrrolidone et d'eau. Ce mélange de Nméthyl-pyrrolidone, de triéthylène glycol et d'eau est dirigé ensuite vers les sections de reconcentrateur et de régénérateur de l'appareil. Une fois que l'installation a démarré, la Nméthyl-pyrrolidone se mélange avec une partie du triéthylène glycol. Les proportions de ces matières dans le mélange après opération continue devient pratiquement constant.; Pour des

  
 <EMI ID=112.1> 

  
 <EMI ID=113.1> 

  
acceptable pour le pipeline:, on obtient environ une proportion

  
 <EMI ID=114.1> 

  
glycol. La présence du triéthylène glycol dans la N-méthylpyrrclidone ne codifie pas matériellement l'efficacité de la

  
 <EMI ID=115.1> 

  
MMSMLl 

  
Un gaz de synthèse obtenu par oxydation partielle

  
 <EMI ID=116.1> 

  
 <EMI ID=117.1> 

  
 <EMI ID=118.1>  

  
 <EMI ID=119.1> 

  
d'eau introduit dans l'appareil et le gaz qui s'écoule et&#65533;

  
 <EMI ID=120.1> 

  
 <EMI ID=121.1> 

  
 <EMI ID=122.1> 

  

 <EMI ID=123.1> 


  
 <EMI ID=124.1>   <EMI ID=125.1>  

  
 <EMI ID=126.1> 

  
 <EMI ID=127.1> 

  
étapes 

  
 <EMI ID=128.1>  <EMI ID=129.1> 

  
 <EMI ID=130.1> 

  
 <EMI ID=131.1> 

  
 <EMI ID=132.1> 

  
 <EMI ID=133.1> 

  
 <EMI ID=134.1> 

  
lacta&#65533;e entraîné ou vaporisé dans le gaz  <EMI ID=135.1> 

  
lactame qui y est dissous  <EMI ID=136.1>  recueilli et l'absorbant-, liquide pour le recyclage vers le processus et
(f) on récupère le gaz combustible déshydrate.



  the present invention relates to a dehy-

  
dration of gas streams and more particularly concerns

  
 <EMI ID = 1.1>

  
used in these processes.

  
The gases, at the various stages of treatment and

  
 <EMI ID = 2.1>

  
 <EMI ID = 3.1>

  
head of a well "contains considerable amounts of vapor

  
water and these natural gases often have dew points at

  
 <EMI ID = 4.1>

  
processing and / or other handling requirements at

  
during the transport and processing of its gases, problems

  
arise when these gases are cooled below the point

  
dew. The water vapor turns into liquid water and / or

  
often in ice. This transformation of water into a phase

  
liquid or solid in the pipeline decreases the flow space and tends to block the operating parts intended for

  
manipulate the gas flow. In addition, water reacts with certain

  
components of the gas to form solid hydrates of these

  
gas components. These hydrates tend to settle and

  
freeze or block the chokes, 9 the valves,

  
pistons and other devices operating along pipelines

  
and in processing facilities.

  
In the past, dehydration processes based on the chemical or physical absorption of water by

  
solids or liquids. Silica gels are found

  
among the solids used for the physical absorption of water.

  
 <EMI ID = 5.1>

  
for the physical absorption of water in combustible gases.

  
Silica gels require considerable heat for

  
regeneration and efficient use, Glycols, due to

  
of their viscosity, have a low plate efficiency and therefore

  
therefore require a considerable expenditure of energy for the

  
recirculation and regeneration of large quantities of these

  
viscous liquids required to achieve lowering

  
desired dew point.

  
It is therefore interesting to provide a

  
 <EMI ID = 6.1>

  
equilibrium with the water vapor content of the gas stream and the collection of the equilibrium liquid mixture of N-alkyl-.

  
 <EMI ID = 7.1>

  
 <EMI ID = 8.1>

  
 <EMI ID = 9.1>

  
 <EMI ID = 10.1> softening ,. We have noticed a loss of up to 30-100 kg / hour per training depending on the temperature of this

  
 <EMI ID = 11.1>

  
 <EMI ID = 12.1>

  
To reduce these losses to 3 kg / hour for 30,000 m, the gases which flow in these softening operations of the prior art are treated with water, to reduce the losses of N-methyl-pyrrolidone and by therefore any dehydration effect is lost in rehydration to recover N-methyl-pyrrolidone. For softening processes,

  
 <EMI ID = 13.1>

  
As high, is tolerable for gas dehydration processes, the risks of similar losses are prohibitive when compared to the costs of processes currently in use based on di- and triethylene glycols. Glycol processes, which can achieve lowering of the

  
 <EMI ID = 14.1>

  
tion, are favorable due to the low price of glycols.

  
However, the Applicant has discovered that by introducing

  
 <EMI ID = 15.1>

  
after the initial dehydration, it is possible to almost completely eliminate the lactam losses. The present discovery further lowers the costs of dewatering these materials to provide dry gases from the dehydration process with significantly lower dew points, with lower pumping, energy, tower costs. , construction and similar costs compared to currently favored processes.

  
 <EMI ID = 16.1>

  
dehydrating agents allow dew point reductions to around 35 [deg.] C. The small amounts of lactam which are entrained in the gas stream are then absorbed in the absorption step according to the present invention during which an absorbent liquid which is a solvent for the lactam to be dehydrated is introduced into the stream of gas to be dehydrated and whose boiling point is higher than that of lactam.

  
 <EMI ID = 17.1> substances are amides of cyclic acids. They are neutral and therefore act in accordance with the present invention as physical solvent absorbents for water, and incidentally for some of the acidic components, gases.

  
 <EMI ID = 18.1>

  
lower alkyl groups are between and 7

  
 <EMI ID = 19.1> Although it is useful to have an absorbent liquid

  
 <EMI ID = 20.1>

  
also drating such a property is not necessary. The absorbent should preferably be one which has

  
 <EMI ID = 21.1>

  
primary, especially N-methyl-pyrrolidone, N-cyclohexyl-pyrrolidone has been shown to be a useful absorbent liquid

  
 <EMI ID = 22.1>

  
 <EMI ID = 23.1>
 <EMI ID = 24.1>
  <EMI ID = 25.1>

  

 <EMI ID = 26.1>


  
 <EMI ID = 27.1>

  
The absorption step according to the present invention

  
 <EMI ID = 28.1>

  
 <EMI ID = 29.1>

  
so that the dew point of the sacred gas emerging from the

  
 <EMI ID = 30.1>

  
In terms, the preferred process according to the present invention results in a gas dehydration process which routinely provides a lowering of the dew point of the treated gases.

  
 <EMI ID = 31.1>

  
routinely show a drop in the dew point below -23 [deg.] C after the first dehydration step and; after completion of the complete treatment with the process according to the present invention, the final dew point is as low as -29 [deg.] C. Natural gases that present dew points

  
 <EMI ID = 32.1>

  
 <EMI ID = 33.1>

  
therefore are not subject to overloads in pipelines that apply to gases whose dew points are

  
 <EMI ID = 34.1>

  
size of the extraction towers required for the complete process according to the present invention.

  
 <EMI ID = 35.1>

  
liquid and the additional extraction sections required compared to a single solvent system used by

  
 <EMI ID = 36.1>

  
pyrrolidone, this results in a considerable decrease in capital investment for equipment relative to plants using glycols for dehydrating.

  
The method according to the present invention will be more particularly described and its advantages made apparent with reference to the attached drawing board in which
- figure 1 represents a schematic flowchart <EMI ID = 37.1>

  
 <EMI ID = 38.1>

  
primary for the treatment of a gas stream and in lake

  
 <EMI ID = 39.1>

  
then absorbed in the gas stream by a solvent absorbs

  
 <EMI ID = 40.1>

  
preferred) in a separate recovery step, then both recovered and recycled, and <EMI ID = 41.1> <EMI ID = 42.1>

  
which triethylene glycol after its absorption in the

  
 <EMI ID = 43.1>

  
 <EMI ID = 44.1>

  
 <EMI ID = 45.1>

  
 <EMI ID = 46.1>

  
we regenerate and recycle each one.

  
Referring specifically "to Figure 1, we

  
 <EMI ID = 47.1> <EMI ID = 48.1>

  
tituated either by a packed column or by a series of bubbling cups to ensure full contact and

  
 <EMI ID = 49.1>

  
the primary absorption section 11 '. can also be constructed

  
 <EMI ID = 50.1>

  
 <EMI ID = 51.1>

  
is entrained by the gas leaving [deg.]. the absorption section

  
 <EMI ID = 52.1>

  
 <EMI ID = 53.1>

  
 <EMI ID = 54.1>

  
bubbling tray 20 enters the secondary absorption section 12 of the absorption column 10 where the stream of

  
 <EMI ID = 55.1>

  
intimate with the triethylene glycol absorbent which is introduced into the secondary absorption section 19 by a sprayer
17.

  
The secondary absorption section 12 can also be either a packed column or an unpacked column or it can contain conventional cuvettes or the packings normally used for the intimate contact of liquids with gases. The triethylene glycol introduced by a sprayer

  
 <EMI ID = 56.1>

  
 <EMI ID = 57.1>

  
 <EMI ID = 58.1>

  
 <EMI ID = 59.1>

  
 <EMI ID = 60.1> <EMI ID = 61.1>

  
absorbed which accumulates in a collecting section 18, is

  
 <EMI ID = 62.1>

  
triethylene glycol 31 where the triethylene glycol absorbate is heated by the heater 33, to distill the absorbed N-methylpyrrolidone from the triethylene glycol. The distillate from section 32 containing N-methyl-pyrrolidone

  
 <EMI ID = 63.1>

  
 <EMI ID = 64.1>

  
lidone and water close to the inlet where it is introduced

  
 <EMI ID = 65.1>

  
pyrrolidone is also purified.

  
The triethylene glycol is collected, after removal of N-methyl-pyrrolidone in the reconcentrator 31, in the lower portions of the reconcentrator in a well 35 from where it is directed by a pipeline 36 to the triethylene glycol spray section '17 and reintroduced into the secondary contact section 19 of the absorption tower 10.

  
 <EMI ID = 66.1>

  
simplified compared to that of Figure 1, in that we

  
 <EMI ID = 67.1>

  
used for the dehydration of the gas stream. It is only separated from the N-methyl-pyrrolidone in an amount sufficient to absorb the entrained N-methyl-pyrrolidone. This lowers the amount of pumping. This can be done since triethylene glycol is completely miscible and compatible with

  
 <EMI ID = 68.1>

  
absorbent solvents.

  
 <EMI ID = 69.1>

  
initially dehydrated by N-methyl-pyrrolidone in an absorption column 50 in a primary absorption section

  
51. In this primary absorption section 51, the gas stream introduced at the lower end through an inlet 53

  
 <EMI ID = 70.1>

  
therefore preferably introduced by sprayers 55 at the upper portion of the primary absorption section 51.

  
 <EMI ID = 71.1>

  
 <EMI ID = 72.1>

  
 <EMI ID = 73.1>

  
nissages and bubbling cups ,.

  
The gas stream is practically and efficiently dehydrated by N-methyl-pyrrolidone which collects at the bottom of column 50 in a collection section 56. The gas continues to flow upward and passes from the primary absorption section. 51 to a secondary absorption section
52 for contact with triethylene glycol. We introduce

  
 <EMI ID = 74.1>

  
of the secondary absorption section 52 by a triethylene glycol sprayer 57 and flows downward in countercurrent to the gas stream. In the secondary absorption section 529 any N-methyl-pyrrolidone possibly entrained in the gas stream is absorbed as provided herein. 'invention*

  
 <EMI ID = 75.1>

  
the bottom .-- In the gas flow through the sectioa 3 'absorption

  
 <EMI ID = 76.1>

  
 <EMI ID = 77.1>

  
 <EMI ID = 78.1>

  
and extracts from its water and other soluble components in

  
 <EMI ID = 79.1> a line 63 to the triethylene glycol reconcentrator
64.

  
 <EMI ID = 80.1>

  
 <EMI ID = 81.1>

  
 <EMI ID = 82.1>

  
 <EMI ID = 83.1>

  
 <EMI ID = 84.1>

  
 <EMI ID = 85.1>

  
 <EMI ID = 86.1>

  
 <EMI ID = 87.1>

  
 <EMI ID = 88.1>

  
 <EMI ID = 89.1>

  
 <EMI ID = 90.1>

  
 <EMI ID = 91.1> <EMI ID = 92.1>

  
as liquid products.

  
 <EMI ID = 93.1>

  
 <EMI ID = 94.1>

  
 <EMI ID = 95.1>

  
 <EMI ID = 96.1>

  
 <EMI ID = 97.1>

  
 <EMI ID = 98.1>

  
lower and also avoids re-absorption of some moisture from non-anhydrous solvents / absorbents da.

  
 <EMI ID = 99.1>

  
 <EMI ID = 100.1>

  
 <EMI ID = 101.1>

  
dragged through an industrial dehydration operation

  
 <EMI ID = 102.1>

  
 <EMI ID = 103.1>

  
liquid pressure and viscosity temperature during natural gas dehydration operations * <EMI ID = 104.1>

  
corresponding injection speed

  
iLr u 11;

  

 <EMI ID = 105.1>


  
 <EMI ID = 106.1>

  
 <EMI ID = 107.1>

  
pyrrolidone per day.

  
Triethylene glycol (hereinafter abbreviated TEG) is introduced into the stream of dry gas at a rate of approximately

  
 <EMI ID = 108.1>

  
bubbling cuvettes to ensure good contact gold .contruding triethylene glycol with the gas stream containing <EMI ID = 109.1> cyclohexyl-pyrrolidone is fully equivalent to triethyl-

  
 <EMI ID = 110.1>

  
dew point of the outlet gas can be further weakened by 2.8 [deg.] C by passing through the solvent / absorbent of N-cyclohexylpyrrolidone which is also an excellent dehydrating agent.

  
The N-cyclohexyl-2-pyrrolidone reconcentrator operates at 190-205 [deg.] C and in moderate vacuum.

  
EXAMPLE 3

  
Natural gas is introduced at the same temperature

  
and under the same pressure as in Example 1 and it is treated by

  
 <EMI ID = 111.1>

  
pyrrolidone, N-p-butyl-pyrrolidone, N-isopropyl-piperidone.

  
Entrained N-alkyl-lactams are absorbed by

  
N-cyclohexyl-pyrrolidone and efficient dehydration is obtained.

  
EXAMPLE 4

  
Wet gas from a well head at 26.7 [deg.] C and under 56 kg / cm 2 is charged with a pressure gauge in the dehydration apparatus according to the figure. 2. The natural gas is first dehydrated by the N-methyl-pyrrolidone introduced through the spray head 55 into the primary absorption section 51 of the column 50. The N-methyl-pyrrolidone containing the absorbed water is collected. at the bottom of column 56. The N-methyl-pyrrolidone entrained in the gas stream is then absorbed by the triethylene glycol introduced by a spray head 57 at the top of the secondary absorption section 52.

   The triethylene glycol containing the absorbed N-methyl-pyrrolidone is then allowed to descend through the primary absorption section 51 at the bottom of the column 50 into the collection zone 56 where it accumulates with the mixture of N-methyl-. pyrrolidone and water. This mixture of N-methyl-pyrrolidone, triethylene glycol and water is then directed to the reconcentrator and regenerator sections of the apparatus. Once the installation has started, the N-methyl-pyrrolidone mixes with part of the triethylene glycol. The proportions of these materials in the mixture after continuous operation becomes almost constant .; For some

  
 <EMI ID = 112.1>

  
 <EMI ID = 113.1>

  
acceptable for the pipeline: we obtain approximately a proportion

  
 <EMI ID = 114.1>

  
glycol. The presence of triethylene glycol in N-methylpyrrclidone does not materially codify the effectiveness of the

  
 <EMI ID = 115.1>

  
MMSMLl

  
Synthesis gas obtained by partial oxidation

  
 <EMI ID = 116.1>

  
 <EMI ID = 117.1>

  
 <EMI ID = 118.1>

  
 <EMI ID = 119.1>

  
water introduced into the device and the gas flowing and &#65533;

  
 <EMI ID = 120.1>

  
 <EMI ID = 121.1>

  
 <EMI ID = 122.1>

  

 <EMI ID = 123.1>


  
 <EMI ID = 124.1> <EMI ID = 125.1>

  
 <EMI ID = 126.1>

  
 <EMI ID = 127.1>

  
steps

  
 <EMI ID = 128.1> <EMI ID = 129.1>

  
 <EMI ID = 130.1>

  
 <EMI ID = 131.1>

  
 <EMI ID = 132.1>

  
 <EMI ID = 133.1>

  
 <EMI ID = 134.1>

  
lacta &#65533; e entrained or vaporized in gas <EMI ID = 135.1>

  
lactam dissolved therein <EMI ID = 136.1> collected and absorbent-, liquid for recycling to the process and
(f) recovering the dehydrated fuel gas.


    

Claims (1)

<EMI ID=137.1> <EMI ID = 137.1> <EMI ID=138.1> <EMI ID = 138.1> liquide se fait en écoulement à. contre-courante liquid is made in flow to. counter-current <EMI ID=139.1> <EMI ID = 139.1> en ce que l'absorbant liquide est en contact avec le gaz séché en écoulement à contre-courant. in that the liquid absorbent is in contact with the dried countercurrent flow gas. <EMI ID=140.1> <EMI ID = 140.1> le tri- et le tétraéthylène glycol. tri- and tetraethylene glycol. <EMI ID=141.1> <EMI ID = 141.1> <EMI ID=142.1> <EMI ID = 142.1> doïîe* <EMI ID=143.1> finger * <EMI ID = 143.1> <EMI ID=144.1> <EMI ID = 144.1> <EMI ID=145.1> <EMI ID = 145.1> <EMI ID=146.1> <EMI ID = 146.1> nants comportant des composants acides contenant du soufre nants with acidic components containing sulfur <EMI ID=147.1> <EMI ID = 147.1> <EMI ID=148.1> <EMI ID = 148.1> en ce qu'on l'applique au gaz naturel provenant de la in that it is applied to natural gas from the <EMI ID=149.1> <EMI ID = 149.1> nément pour le rendre conforme aux normes des pipelines industriels préalable-mont à l'injection dans le pipeline pour le transport.. J nement to make it conform to the standards of industrial pipelines pre-assembly for injection into the pipeline for transport. J <EMI ID=150.1> <EMI ID = 150.1> décrit plus haute described above
BE781189A 1971-03-25 1972-03-24 Dehydrating natural gas - by solvent extraction with n-alkyl lactam which is recovered by solvent extraction BE781189A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12794371A 1971-03-25 1971-03-25

Publications (1)

Publication Number Publication Date
BE781189A true BE781189A (en) 1972-07-17

Family

ID=22432773

Family Applications (1)

Application Number Title Priority Date Filing Date
BE781189A BE781189A (en) 1971-03-25 1972-03-24 Dehydrating natural gas - by solvent extraction with n-alkyl lactam which is recovered by solvent extraction

Country Status (12)

Country Link
AR (1) AR197870A1 (en)
BE (1) BE781189A (en)
BR (1) BR7201752D0 (en)
CS (1) CS164209B2 (en)
DD (1) DD96844A5 (en)
ES (1) ES401100A1 (en)
IL (1) IL39076A (en)
IT (1) IT965767B (en)
PL (1) PL83298B1 (en)
RO (1) RO64379A (en)
SE (1) SE376437B (en)
ZA (1) ZA721993B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3898562A4 (en) * 2018-12-20 2022-09-07 Services Pétroliers Schlumberger Heating flash-on-oil vapor section

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015183384A1 (en) * 2014-05-30 2015-12-03 Exxonmobil Chemical Patents Inc. Process and device for removing water and/or oxygen from organic liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3898562A4 (en) * 2018-12-20 2022-09-07 Services Pétroliers Schlumberger Heating flash-on-oil vapor section

Also Published As

Publication number Publication date
AR197870A1 (en) 1974-05-15
CS164209B2 (en) 1975-11-07
IL39076A0 (en) 1972-06-28
DD96844A5 (en) 1973-04-12
ES401100A1 (en) 1975-02-16
ZA721993B (en) 1972-12-27
PL83298B1 (en) 1975-12-31
SE376437B (en) 1975-05-26
IT965767B (en) 1974-02-11
IL39076A (en) 1975-02-10
RO64379A (en) 1979-06-15
BR7201752D0 (en) 1973-09-25

Similar Documents

Publication Publication Date Title
CA2742533C (en) Reabsorber for ammonia stripper offgas
CN108840311B (en) Hydrogen sulfide liquid-phase oxidation removal method using eutectic solvent as medium
US3745746A (en) Dehydration process
JP5661681B2 (en) Method for obtaining an acid gas stream under high pressure by removing acid gas from a fluid stream
EP0362023B1 (en) Process of dehydration, of deacification and of separation of a condensate from a natural gas
CA1061083A (en) Simultaneous drying and sweetening of wellhead natural gas
US3918934A (en) Process for purifying gases
FR2814379A1 (en) Process for the temperature controlled deacidification of a gas by absorption in a solvent
JPH02111414A (en) Removal of co2 and, according to circumstances, h2s from gas
FR2573671A1 (en) PROCESS FOR SELECTIVELY EXTRACTING HYDROGEN SULFIDE FROM GASEOUS MIXTURES ALSO CONTAINING CARBON DIOXIDE.
CA2452991A1 (en) Process for deacidifying and dehydrating a natural gas
FR2478089A1 (en) PROCESS FOR EXTRACTING MATERIALS THAT HAVE NOT REACTED IN THE SYNTHESIS OF UREA
FR2509732A1 (en) PROCESS FOR RECOVERING, WITH A QUASI-CRITICAL OR SUPER-CRITICAL FLUID CONTAINING PARTICULARLY CARBON DIOXIDE, ETHYLENE OXIDE FROM AQUEOUS SOLUTIONS
FR2845392A1 (en) PROCESS FOR DEACIDIFYING A NATURAL GAS
RU2536511C2 (en) Process and plant for water removal from natural gas or industrial gases by physical solvents
US4057403A (en) Gas treating process
EP0215911A1 (en) Selective absorption of hydrogene sulfide from gases which also contain carbon dioxide
CA1205277A (en) Process of regenerating absorbent solutions for sulfur-containing gases
FR2507498A1 (en) PROCESS FOR REMOVING CO2 AND, IF PRESENT, H2S FROM A GAS MIXTURE
NL2015921B1 (en) Process for the purification of a gas
BE781189A (en) Dehydrating natural gas - by solvent extraction with n-alkyl lactam which is recovered by solvent extraction
RU2381823C1 (en) Method of purifying gas from acid components and installation for realising said method
BE897531Q (en) PROCESS FOR REMOVAL OF ACIDIC CONSTITUENTS FROM A GAS STREAM
KR101889133B1 (en) Method for oxidizing hydrocarbons
FR2573672A1 (en) PROCESS FOR SELECTIVELY SEPARATING HYDROGEN SULFIDE FROM GASEOUS MIXTURES ALSO CONTAINING CARBON DIOXIDE.