BE674652A - - Google Patents

Info

Publication number
BE674652A
BE674652A BE674652DA BE674652A BE 674652 A BE674652 A BE 674652A BE 674652D A BE674652D A BE 674652DA BE 674652 A BE674652 A BE 674652A
Authority
BE
Belgium
Prior art keywords
emi
parts
dihydrofuran
reaction
weight
Prior art date
Application number
Other languages
French (fr)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of BE674652A publication Critical patent/BE674652A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/28Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  

   <EMI ID=1.1> 

  
dihydrofurannes à partir de 2,5 -

  
 <EMI ID=2.1>  La présente invention est relative à un procédé de 

  
 <EMI ID=3.1> 

  
furannes. 

  
se laissent 

  
 <EMI ID=4.1> 

  
inconvénient de ce procédé réside dans le fait qu'il nécessite de grandes quantités d'alcalis.

  
On a constaté à présent que l'on peut-avantageusement obtenir des 2,3-dihydrofurannes de formule

  

 <EMI ID=5.1> 


  
 <EMI ID=6.1> 

  

 <EMI ID=7.1> 


  
 <EMI ID=8.1> 

  
d'un catalyseur, qui contient au moins un métal du-Se groupe du système périodique éventuellement appliqua sur un support, à une température comprise entre 50 et 2000 C, le cas échéant en présence d'un solvant inerte,

  
Comme matières de départ on pout utiliser, outre le

  
 <EMI ID=9.1>  platine, le cobalt, le ruthénium ou le nickel de Raney. Les métaux peuvent être appliqués sur des supports, tels que le

  
 <EMI ID=10.1> 

  
la fraction catalytique active sur le support peut varier dans des limites étendues. En règle générale, elle est comprise entre 0,1 et 50 % en poids, par rapport au catalyseur sur support. Cependant, cette quantité peut encore être plus élevée et peut atteindre, par exemple, 90 % en poids.

  
La réaction peut s'effectuer en phase liquide ou gazeuse, de manière continue ou discontinue,

  
On peut travailler en présence de solvants inertes ou en l'absence de tels solvants. Comme solvants, on peut utiliser, par exemple, des hydrocarbures benzéniques, tels que

  
le benzène, le toluène ou le xylène.

  
On préfère travailler à la pression normale. Cependant, la réaction peut également s'effectuer à pression élevée, par exemple à une pression pouvant aller jusqu'à 50 atmosphères. Il est avantageux d'effectuer la réaction dans une atmosphère de gaz inerte. Cornue gaz inerte on peut employer, par exemple,

  
 <EMI ID=11.1>  Les températures de réaction sont comprises entre 50 et

  
 <EMI ID=12.1> 

  
une solution de chlorhydrate d'hydroxylamine et par titration de l'acide chlorhydrique libère. Les composés de départ ne donnent pas cette réaction.

  
Les produits obtenus par le procédé peuvent être puri-

  
 <EMI ID=13.1> 

  
fractions de tête contiennent encore de petites quantités de furannes. Lors d'une utilisation répétée de la nome masse de contact, la formation de furanne est presque entièrement supprimée et la formation de 2,3-dihydrofuranne favorisée,

  
Les produits obtenus par le procédé constituent des produits intermédiaires intéressants pour la préparation de médicaments et de résines synthétiques.

  
Les parties indiquées dans les exemples sont des parties en poids. 

  
E X E M P L E 1

  
Dans un tube rempli de 200 parties de billes d'aluminium,

  
 <EMI ID=14.1> 

  
courant d'azote. On obtient 495 parties de produit de réaction que l'on soumet à une distillation fractionnée. La 1ère

  
 <EMI ID=15.1> 

  
125 parties de 2,5-dihydrofuranne . 

  
Le rendement atteint ainsi 85 % de la théorie, par. rapport 

  
 <EMI ID=16.1> 

  
E X E M P L E 2  a) 100 parties de 2,5-dihydrofuranne sont traitées avec  précaution avec 50 parties de palladium sur gel de silice
(0,5 % en poids). La température est maintenue par refroi- <EMI ID=17.1> 

  
2,5-dihydrofuranne au mélange. En même temps, une quantité sensiblement équivalente de produit de réaction est- séparée par distillation. Ce produit est ensuite soumis à une distillation fractionnée. On/obtient 77 parties de furanne,

  
 <EMI ID=18.1> 

  
de départ,  b) 100 parties de 2,5-dihydrofuranne et le catalyseur de l'exemple (2 a) sont mis en présence. Lors de la seconde utilisation, on ne constate plus de dégagement de chaleur.

  
 <EMI ID=19.1> 

  
ment égale de mélange réactionnel est séparée par distillation. Par distillation fractionnée on obtient 37 parties de furanne, 359 parties de 2,3-dihydrofuranne et 135 parties de matière de départ.

  
c) 100 parties de 2,5-dihydrofuranne et le catalyseur <EMI ID=20.1> 
60 - 80[deg.] C. On ajoute ensuite lentement 600 parties de 2,5-dihydrofuranne, Le produit de réaction que l'on sépare en même t&#65533;mps par distillation est ensuite soumis à une distillation fractionnée. On obtient 22 parties de furanne,
371 parties de 2,3-dihydrofuranne et 125 parties de matière de départ, 

  
Cet exemple montre que, lorsqu'on utilise plusieurs  fois le même catalyseur, la formation de sous-produits  diminue et le rendement en 2,3-dihydrofuranne, augmente, 

  
 <EMI ID=21.1> 

  
100 parties de 2,5-dihydrofuranne et 0,5 parties de  palladium sur amiante (10 % en poids) sont agitées pendant 5 heures a 150[deg.] 0 et soirs une pression de 10 atmosphères,  Le produit de la réaction est traité à l'aide d'acide 

  
 <EMI ID=22.1> 

  
drofuranne, 

  
 <EMI ID=23.1> 

  
100 parties de 2,5-dihydrofuranne et 1 partie de platina sur amiante (10 % en poids) sont 'agitées pondant

  
 <EMI ID=24.1> 

  
déterminée de la manière indiquée dans l'exemple 3. Le

  
 <EMI ID=25.1> 

  
 <EMI ID=26.1> 

  
100 parties de 2,5-dihydrofuranne et 5 parties de . nickel de Raney sont agitées pendant 5 heures à 1500 C,

  
, Le produit de la réaction est soumis à une distillation fractionnée. On obtient 3 parties de furanne, 35 parties de 2,3-dihydrofuranne et 23 parties de matière de départ.

  
Le rendement atteint 45,5 &#65533; de la théorie, par rapport au 2,5-dihydrofuranne mis en réaction. 

  
EXEMPLE 6 

  
100 parties de 2,2,5-triméthyl-2,5-dihydrofuranne et

  
1 partie de palladium sur amiante (30 %) sont agitées pendant 5 heures à 150[deg.] C dans un autoclave à une pression de  <EMI ID=27.1> 

  
 <EMI ID=28.1> 

  
d'hydroxylamine et l'acide chlorhydriquè libéré est titré,  La quantité d'acide chlorhydrique libérée, correspond à une. :'

  
 <EMI ID=29.1> 

  
diméthyl-2,3-dihydrofuranne..';



   <EMI ID = 1.1>

  
dihydrofurans from 2.5 -

  
 <EMI ID = 2.1> The present invention relates to a method of

  
 <EMI ID = 3.1>

  
furans.

  
let themselves

  
 <EMI ID = 4.1>

  
disadvantage of this process lies in the fact that it requires large amounts of alkali.

  
It has now been found that it is advantageously possible to obtain 2,3-dihydrofurans of formula

  

 <EMI ID = 5.1>


  
 <EMI ID = 6.1>

  

 <EMI ID = 7.1>


  
 <EMI ID = 8.1>

  
a catalyst, which contains at least one metal of the -S group of the periodic system optionally applied to a support, at a temperature between 50 and 2000 C, optionally in the presence of an inert solvent,

  
As starting materials we can use, in addition to

  
 <EMI ID = 9.1> platinum, cobalt, ruthenium or Raney nickel. Metals can be applied to substrates, such as

  
 <EMI ID = 10.1>

  
the active catalytic fraction on the support can vary within wide limits. As a general rule, it is between 0.1 and 50% by weight, relative to the supported catalyst. However, this amount can be even higher and can reach, for example, 90% by weight.

  
The reaction can be carried out in liquid or gas phase, continuously or discontinuously,

  
It is possible to work in the presence of inert solvents or in the absence of such solvents. As solvents, there can be used, for example, benzene hydrocarbons, such as

  
benzene, toluene or xylene.

  
We prefer to work at normal pressure. However, the reaction can also be carried out at elevated pressure, for example at a pressure of up to 50 atmospheres. It is advantageous to carry out the reaction in an inert gas atmosphere. Inert gas retort can be used, for example,

  
 <EMI ID = 11.1> Reaction temperatures are between 50 and

  
 <EMI ID = 12.1>

  
a solution of hydroxylamine hydrochloride and by titration of hydrochloric acid releases. The starting compounds do not give this reaction.

  
The products obtained by the process can be purified

  
 <EMI ID = 13.1>

  
Top fractions still contain small amounts of furans. With repeated use of the name contact mass, the formation of furan is almost entirely suppressed and the formation of 2,3-dihydrofuran is favored,

  
The products obtained by the process constitute valuable intermediates for the preparation of medicaments and synthetic resins.

  
The parts given in the examples are parts by weight.

  
E X E M P L E 1

  
In a tube filled with 200 parts of aluminum balls,

  
 <EMI ID = 14.1>

  
nitrogen stream. 495 parts of the reaction product are obtained which are subjected to fractional distillation. The 1st

  
 <EMI ID = 15.1>

  
125 parts of 2,5-dihydrofuran.

  
The yield thus reaches 85% of theory, par. report

  
 <EMI ID = 16.1>

  
E X E M P L E 2 a) 100 parts of 2,5-dihydrofuran are carefully treated with 50 parts of palladium on silica gel
(0.5% by weight). The temperature is maintained by cooling <EMI ID = 17.1>

  
2,5-dihydrofuran to the mixture. At the same time, a substantially equivalent amount of the reaction product is separated by distillation. This product is then subjected to fractional distillation. 77 parts of furan are / are obtained,

  
 <EMI ID = 18.1>

  
starting point, b) 100 parts of 2,5-dihydrofuran and the catalyst of example (2 a) are brought together. During the second use, no heat is released.

  
 <EMI ID = 19.1>

  
An equal amount of reaction mixture is separated by distillation. By fractional distillation 37 parts of furan, 359 parts of 2,3-dihydrofuran and 135 parts of starting material are obtained.

  
c) 100 parts of 2,5-dihydrofuran and the catalyst <EMI ID = 20.1>
60 - 80 [deg.] C. Then slowly added 600 parts of 2,5-dihydrofuran. The reaction product which is separated off at the same time by distillation is then subjected to fractional distillation. We obtain 22 parts of furan,
371 parts of 2,3-dihydrofuran and 125 parts of starting material,

  
This example shows that, when the same catalyst is used several times, the formation of by-products decreases and the yield of 2,3-dihydrofuran increases,

  
 <EMI ID = 21.1>

  
100 parts of 2,5-dihydrofuran and 0.5 parts of palladium on asbestos (10% by weight) are stirred for 5 hours at 150 [deg.] 0 and even at a pressure of 10 atmospheres. The reaction product is treated. using acid

  
 <EMI ID = 22.1>

  
drofuran,

  
 <EMI ID = 23.1>

  
100 parts of 2,5-dihydrofuran and 1 part of platinum on asbestos (10% by weight) are stirred while laying

  
 <EMI ID = 24.1>

  
determined as shown in Example 3. The

  
 <EMI ID = 25.1>

  
 <EMI ID = 26.1>

  
100 parts of 2,5-dihydrofuran and 5 parts of. Raney nickel are stirred for 5 hours at 1500 C,

  
The reaction product is subjected to fractional distillation. 3 parts of furan, 35 parts of 2,3-dihydrofuran and 23 parts of starting material are obtained.

  
The yield reaches 45.5 theory, relative to the 2,5-dihydrofuran reacted.

  
EXAMPLE 6

  
100 parts of 2,2,5-trimethyl-2,5-dihydrofuran and

  
1 part of palladium on asbestos (30%) are stirred for 5 hours at 150 [deg.] C in an autoclave at a pressure of <EMI ID = 27.1>

  
 <EMI ID = 28.1>

  
of hydroxylamine and the released hydrochloric acid is titrated, The quantity of released hydrochloric acid corresponds to one. : '

  
 <EMI ID = 29.1>

  
dimethyl-2,3-dihydrofuran .. ';

 

Claims (1)

<EMI ID=30.1> <EMI ID = 30.1> Procédé de préparation de 2,3-dihydrofurannes de formule Process for the preparation of 2,3-dihydrofurans of formula <EMI ID=31.1> <EMI ID = 31.1> <EMI ID=32.1> <EMI ID = 32.1> <EMI ID=33.1> <EMI ID = 33.1> <EMI ID=34.1> <EMI ID = 34.1> dessus, caractérisé en ce que l'on effectue l'isomérisation above, characterized in that the isomerization is carried out <EMI ID=35.1> <EMI ID = 35.1> du 8e groupe du système périodique appliqué, le cas échéante of the 8th group of the periodic system applied, if applicable <EMI ID=36.1> <EMI ID = 36.1> le cas échéant en présence d'un solvant inerte, where appropriate in the presence of an inert solvent,
BE674652D 1965-01-07 1965-12-31 BE674652A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEB0080007 1965-01-07

Publications (1)

Publication Number Publication Date
BE674652A true BE674652A (en) 1966-06-30

Family

ID=6980543

Family Applications (1)

Application Number Title Priority Date Filing Date
BE674652D BE674652A (en) 1965-01-07 1965-12-31

Country Status (2)

Country Link
BE (1) BE674652A (en)
DE (1) DE1248669B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004023A1 (en) * 1993-07-31 1995-02-09 Basf Aktiengesellschaft Process for producing 1,4 butane diol
WO1997042182A1 (en) * 1996-05-03 1997-11-13 Eastman Chemical Company Continuous process for the conversion of 2,5-dihydrofuran to 2,3-dihydrofuran
CN114349616A (en) * 2022-01-10 2022-04-15 上海巽田科技股份有限公司 Method for preparing cyclopropane formaldehyde

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2603036B1 (en) * 1986-08-22 1988-11-25 Rhone Poulenc Agrochimie 2,3-DIHYDROFURANNE DERIVATIVES, THEIR PREPARATION PROCESS, THEIR USE AS AN INTERMEDIATE FOR THE PREPARATION OF TETRAHYDROFURANNE
US5254701A (en) * 1991-05-20 1993-10-19 Eastman Kodak Company Process for the production of mixtures of 2-hydroxytetrahydrofuran and 4-hydroxybutanal
IN187234B (en) * 1995-01-31 2002-03-09 Eastman Chem Co
US5670672A (en) * 1995-01-31 1997-09-23 Eastman Chemical Company Process for the preparation of 2,3-dihydrofurans
US5536851A (en) * 1995-01-31 1996-07-16 Eastman Chemical Company Preparation of 2,3-dihydrofurans

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004023A1 (en) * 1993-07-31 1995-02-09 Basf Aktiengesellschaft Process for producing 1,4 butane diol
WO1997042182A1 (en) * 1996-05-03 1997-11-13 Eastman Chemical Company Continuous process for the conversion of 2,5-dihydrofuran to 2,3-dihydrofuran
CN1103767C (en) * 1996-05-03 2003-03-26 伊斯曼化学公司 Continuous process for the conversion of 2,5-dihydrofuran to 2,3-dihydrofuran
CN114349616A (en) * 2022-01-10 2022-04-15 上海巽田科技股份有限公司 Method for preparing cyclopropane formaldehyde
CN114349616B (en) * 2022-01-10 2023-12-26 上海巽田科技股份有限公司 Process for preparing cyclopropanecarboxaldehyde

Also Published As

Publication number Publication date
DE1248669B (en) 1968-03-14

Similar Documents

Publication Publication Date Title
US6020501A (en) Process for preparing phthalides
US5198554A (en) 5-(2,4-Dioxotetrahydro-3-furanylmethyl)norbornane-2,3-dicarboxylic acid anhydride and process for production thereof
BE674652A (en)
US4093661A (en) Catalytic decarbonylation of esters
US3109005A (en) Process for making 2-pyrrolidone from maleic anhydride
EP1564205B1 (en) Process for synthesizing (7-methoxy-1-naphthyl) acetonitrile and its application in the synthesis of agomelatine
CN111704584B (en) Benzotriazole and derivative high-selectivity N2 alkylation method thereof
US2413250A (en) 1,5-bis (1-amino-3,5-dioxacyclohexyl) 2,4 dioxapentane
AU602196B2 (en) A process for producing a silanic or siloxanic compound containing at least a cycloalkylic ring
Ballini et al. A new, highly efficient synthesis of conjugated nitrocycloalkenes
EP2661422B9 (en) Method and intermediate products for the preparation of agomelatine
Wu et al. Radical cyclization of bromomethyldimethylsilyl propargyl ethers; synthesis of a carbocyclic core of steroid skeleton by a tandem radical cyclization
KR100236667B1 (en) Method for the preparation of 4-hydroxymethyltetrahydropyrans
US5986141A (en) Process for the production of cyclopropanemethylamine
JPH01186864A (en) Production of n-alkyl-substituted lactam
US5336808A (en) Process for the preparation of 3,5-diaminobenzotrifluoride
US5149831A (en) Process for producing methylnorbornene dicarboxylic acid anhydride
CN109678776B (en) Preparation method of 3-aryl succinimide compound
Siriwardana et al. Addition of 2-oxazolidinones to arylidenecyclopropanes: A highly efficient method for the preparation of gem-aryl disubstituted homoallylic oxazolidinones
US4225513A (en) Catalytic decarbonylation of esters
Cimarelli et al. An improved solvent-free preparation of 2-imidoylphenols
EP0623109A1 (en) Method of preparing dibenzylamine
US4581463A (en) Nucleophilic substitution process combined with additional reaction steps
US4259518A (en) 3-Methyl-5-keto-α,ω-alkenedioic acids and esters
JP2708582B2 (en) Method for producing p-aminophenyl acetate