BE649024A - - Google Patents
Info
- Publication number
- BE649024A BE649024A BE649024A BE649024A BE649024A BE 649024 A BE649024 A BE 649024A BE 649024 A BE649024 A BE 649024A BE 649024 A BE649024 A BE 649024A BE 649024 A BE649024 A BE 649024A
- Authority
- BE
- Belgium
- Prior art keywords
- junction
- silicon carbide
- solvent
- crystal
- crystals
- Prior art date
Links
- 239000013078 crystal Substances 0.000 claims description 26
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 22
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 11
- 239000011651 chromium Substances 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000009736 wetting Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 238000009833 condensation Methods 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 239000004020 conductor Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021431 alpha silicon carbide Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/34—Materials of the light emitting region containing only elements of Group IV of the Periodic Table
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/02—Zone-melting with a solvent, e.g. travelling solvent process
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/02—Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/107—Melt
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/166—Traveling solvent method
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/931—Silicon carbide semiconductor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Led Devices (AREA)
Description
<Desc/Clms Page number 1>
Jonction au carbure de silicium utilisable comme source de loumière, et procédé pour son établissement..
L'invention est relative à de nouvelles jonctions au car- bure de silicium et à leur procédé de préparation; et alle concerna, plus particulièrement, des jonctions au carbure de silicium pouvant émettre de la lumière, la portée de l'invention s'étendant à des diodes-jonctions possédant des caractéristiques du type %jasera lorsqu'elles sont polarisées dans le sens conducteur.
Conformément à l'invention, on réalise une jonction au carbure de silicium qui est très abrupte,sans région d'étendue apprécia- ble à haute résistivité entre les réglons P et N, à la différence de ce que l'on observe pour le type de jonction formé en phase vapeur et antérieurement décrit par Van Daal et ses collaborateurs dans
<Desc/Clms Page number 2>
"Investigations on Silicon Carbide", Journal of Applied Physics, supplément au vol. 2, N 10, p. 22-25 (oct. 1961), type dans leque une région "I" appréciable se trouve entre les régions P et N. Une, telle région "I" donne une tension relativement élevée dans le sent conducteur, contrairement à la basse tension dans le sens conducteur observable avec les jonctions faisant l'objet de l'invention.
Par conséquent, les diodes faisant l'objet de l'invention possèdent une densité de courant relativement élevée (de l'ordre de 105 microam- pères par centimètre carré) lorsqu'on les soumet à un* polarisation,) dans le sens conducteur, aussi faible que 1,5 volt à la température ordinaire. Ainsi, par exemple, on observe, pour une diode réalisée conformément à l'invnetion, une densité de courant d'environ 1,7 x ; 105 microampèrs par centimètre carré lorsqu'on la soumet à une po- larisation de 1,5 volt dans le sens conducteur, à la température ordinaire(c'est-à-dire environ 21*C).
La jonction au carbure de silicium en question possède, outre son caractère abrupt, une très haute densité de dislocation dans le plan de la jonction P-N. Lorsqu'on Mesure la capacité de la jonction en fonction de la tension appliquée, on constate que le carré de la capacité est Inversement proportionnel à la tension appliquée.
Une intéressante caractéristique de la jonction au carbure de silicium faisant l'objet de l'invention est la densité relative- ment élevée de dislocations dans le plan de la jonction, l'existence de ce réseau de dislocations étant indiquée par l'extrême porosité à l'égard de l'or fondu dans là région du plan de la jonction.
Selon un mode de réalisation préféré de l'invention, on prépare la nouvelle diode-jonction au carbure de silicium en mettant en oeuvre le mode opératoire suivant, décrit bien entendu à titre d'exemple non limitatif. On choisit, pour constituer la jonction, deux unicristaux de carbure de silicium alpha (un. et un P). Ces cristaux possèdent de préférence une résisitivité comprise entre 0,01 et 10 chm-cm, ils sont soigneusement meules Jusqu'aux dimensions con-
<Desc/Clms Page number 3>
venables puis ils sont polis pour leur donner un fini superficiel très lisse.
Ensuite, on les nettoie, on les sèche puis on les place dans une chambre à vide. On dégaze complètement ctte chambra,puis, au moyen de pompes, on y fait un vide très poussé;de l'ordre de
10-8 à 10-o torr. Chaque cristal, comportant une:surface plane destinée à être jointe à une surface plane analogue prévue sur l'autre cristal, est chauffé par bombardement électronique jusqu'à une température supérieure à 1200*C tandis que règne toujours dans la chambre un vide très poussé. Cette opération de chauffage pro- voque une volatilisation et une élimination des impuretés qui con- taminent les surfaces.
On évapore ensuite du chrome dansla chanbre à vide, et une mince pellicule de chrome se dépose alors sur la sur- face plane ainsi traitée de chaque cristal de carbure de silicium.
On constitue ensuite avec les cristaux un ensemble stratifié ou "sandwich" dans lequel les deux surfaces recouvertes de chrome se font mutuellement face, avec interposition d'une feuille de chrome pur de 0,127 mm d'épaisseur entre les deux surfaces recouvertes d'une couche de chrome. On soumet ensuite le sandwich résultant à un gradient de température pur chauffage dans un*four à atmosphère d'argon, par exemple en posant ce sandwich sur un bloc de graphite chauffé :par induction. Dans ce cas, la température du bloc peut être supérieure ou au moins égale à 1900 C, tandis que la surface supé- rieure du sandwich cristallin se trouve à une température notable- ment supérieure à 1700 C.
Ceci établit un gradient de température dans le sandwich tout en permettant de maintenir'la totalité de la masse de carbure de silicium à une température inférieure à 2000 C.
Dans ces conditions, la couche de chrome forme un eutec- tique à bas point de fusion avec le carbure de silicium, et la zone en fusion résultante se déplace au travers du cristal Inférieur vers la surface plus chaude. (Des variantes de cette technique de constitution de jonctions P-N au moyen d'un "solvant migrateur- se trouvent décrites dans les brevets E.U.A. Nos 2.996.456 et 2.813.048 respectivement déposés les 8 septembre 1958 et 24 juin 1954).
<Desc/Clms Page number 4>
Lorsque la couche de chrome a complètement passé au travers du cris- tal intérieur de carbure de silicium, on fait refroidir le four, on sort le cristal du tour, et l'on en enlève tout chrome restant par meulage. Comme résultat de cette opération, on obtient un unicris- tal possédant une jonction P-N abrupte dans le plan de croissance par épitaxie du carbure de silicium inférieur dissous sur le car- bure de silicium supérieur ayant servi de germe.
On place ensuite sur la jonction des contacts ohmiques, on la découpe en cubes, et l'on y monte des conducteurs d'amenée et de sortie de courant. Deux tranches .opposées du cristal normales au plan de la jonction sont de préférence gaulées et polies de façon à établir une cavité optique dans le plan de la jonstion, cette tech- nique de finition des lasers du type diode-jonction étant bien connue! de l'homme de l'art. Lorsqu'un tel cristal est coumis, à la tempéra- ture ordinaire, à une densité de courant suffisamment élevée (jus- qu'à 5.000 ampères/cm2), il émet une brillante lumière possédant une longueur d'onde d'environ 4560 # (correspondant à une transition d'environ 2,72 électron-volts).
Avec une cavité optique convenable- ment établie, on constate que la lumière obtenue est caractérisée par une largeur de bande extrêmement @ble, une grande cohérence spatiale, et un rendement quantique élevé.
On pense qu'un excellent mouillage interfacial est obtenu entre le chrome et le carbure de silicium, et que cela est impor- tant en vue de l'obtention d'une bonne continuité cristalline par épitaxie d'un unicristal sur le cristal servant de germe, Il faut souligner aussi un autre fait!on considère *on** important que la recristallisation du cristal s'effectue au-dessous de la température de transition alpha-bêta (environ 2000 C),car cela doit favoriser fer tement la création d'une jonction abrupte avec une Interface cria- tallographique hautement perturbée au niveau de la jonction P-N.
Bien que les faces cristallines à nettoyer avant formation du dépt de métal-solvant soient nettoyées de la manière la plus avantageuse par chauffage au moyen d'un bombardement électronique
<Desc/Clms Page number 5>
sous vide très Toussé, on peut réaliser cette opération de nettoyage par d'autres moyens de chauffage sous vide.
Le dépôt du métal-solvant à partir d'une vapeur de ce métal, de préférence du chrome, sur chaque surface établit une rela- tion intime entre les cristaux de carbure de silicium P et N,chacun avec le métal-solvant, afin d'assurer le mouillage interfacial. Pour assurer 'la formation d'une couche de métal-solvant continue, on utilise de préférence une feuille additionnelle du métal-solvant bien que l'on puisse omettre une telle feuille si les dépôts de métal formés par condensation de la vapeur sous vide sont établis assez épais.
Il convient enfin de mentionner que l'on peut faire migrer le métal solvant aussi bien au travers du cristal P qu'au travers du cristal N pour obtenir une jonction possédant des caractéristiques
EMI5.1
label'. laser.
<Desc / Clms Page number 1>
Silicon carbide junction which can be used as a source of salt, and method for its establishment.
The invention relates to novel silicon carbide junctions and to their preparation process; and more particularly, it relates to light emitting silicon carbide junctions, the scope of the invention extending to junction diodes having% jasera type characteristics when biased in the conductive direction.
In accordance with the invention, a silicon carbide junction is made which is very steep, without a region of appreciable extent at high resistivity between the P and N regions, unlike what is observed for the type. junction formed in the vapor phase and previously described by Van Daal et al in
<Desc / Clms Page number 2>
"Investigations on Silicon Carbide", Journal of Applied Physics, supplement to vol. 2, N 10, p. 22-25 (Oct. 1961), type in which an appreciable "I" region is between the P and N regions. Such a "I" region gives a relatively high voltage in the conductor, unlike the low voltage in the conductor. the conductive direction observable with the junctions forming the subject of the invention.
Consequently, the diodes which are the subject of the invention have a relatively high current density (of the order of 105 microampers per square centimeter) when subjected to a * polarization,) in the conductive direction, as low as 1.5 volts at room temperature. Thus, for example, a current density of approximately 1.7 x is observed for a diode produced in accordance with the invention; 105 microampers per square centimeter when subjected to a 1.5 volt conductive polarization at room temperature (ie about 21 ° C).
The silicon carbide junction in question has, in addition to its abrupt nature, a very high dislocation density in the plane of the P-N junction. When measuring the capacitance of the junction as a function of the applied voltage, we find that the square of the capacitance is inversely proportional to the applied voltage.
An interesting characteristic of the silicon carbide junction which is the subject of the invention is the relatively high density of dislocations in the plane of the junction, the existence of this network of dislocations being indicated by the extreme porosity at with respect to molten gold in the region of the plane of the junction.
According to a preferred embodiment of the invention, the novel silicon carbide junction diode is prepared by implementing the following operating mode, described of course by way of non-limiting example. To form the junction, two single crystals of alpha silicon carbide (one and one P) are chosen. These crystals preferably have a resistivity of between 0.01 and 10 chm-cm, they are carefully grinded to the dimensions con
<Desc / Clms Page number 3>
venables then they are polished to give them a very smooth surface finish.
Then they are cleaned, dried and then placed in a vacuum chamber. This chamber is completely degassed, then, by means of pumps, a very high vacuum is created; of the order of
10-8 to 10-o torr. Each crystal, comprising a: flat surface intended to be joined to a similar flat surface provided on the other crystal, is heated by electron bombardment to a temperature above 1200 * C while a very high vacuum still reigns in the chamber . This heating operation causes volatilization and removal of impurities which contaminate the surfaces.
Chromium is then evaporated in the vacuum tube, and a thin film of chromium is then deposited on the planar surface thus treated of each crystal of silicon carbide.
A stratified or "sandwich" assembly is then formed with the crystals in which the two chrome-coated surfaces face each other, with the interposition of a sheet of pure chrome 0.127 mm thick between the two surfaces covered with a layer. of chrome. The resulting sandwich is then subjected to a pure temperature gradient heating in an oven with an argon atmosphere, for example by placing this sandwich on a block of graphite heated: by induction. In this case, the temperature of the block may be greater than or at least equal to 1900 C, while the upper surface of the crystalline sandwich is at a temperature significantly higher than 1700 C.
This establishes a temperature gradient in the sandwich while still allowing the entire mass of silicon carbide to be maintained at a temperature below 2000C.
Under these conditions, the chromium layer forms a low melting point eutectic with the silicon carbide, and the resulting molten zone moves through the Lower crystal to the warmer surface. (Variants of this technique of forming P-N junctions using a "migrating solvent" are described in U.S. Patents 2,996,456 and 2,813,048 filed September 8, 1958 and June 24, 1954, respectively).
<Desc / Clms Page number 4>
When the chromium layer has completely passed through the inner silicon carbide crystal, the furnace is cooled, the crystal is taken out of the lathe, and any remaining chromium removed by grinding. As a result of this operation, a unicristal having a steep P-N junction in the growth plane is obtained by epitaxy of the lower silicon carbide dissolved on the upper silicon carbide which served as the seed.
Ohmic contacts are then placed on the junction, cut into cubes, and current supply and output conductors are mounted there. Two opposite slices of the crystal normal to the junction plane are preferably gelled and polished so as to establish an optical cavity in the junction plane, this diode-junction type laser finishing technique being well known! to those skilled in the art. When such a crystal is set, at ordinary temperature, to a sufficiently high current density (up to 5,000 amps / cm2), it emits a brilliant light having a wavelength of about 4560 # (corresponding to a transition of about 2.72 electron volts).
With a suitably established optical cavity, the light obtained is found to be characterized by extremely low bandwidth, high spatial coherence, and high quantum efficiency.
It is believed that excellent interfacial wetting is obtained between chromium and silicon carbide, and that this is important for obtaining good crystal continuity by epitaxy of a single crystal on the seed crystal. , It is also necessary to underline another fact! It is considered * on ** important that the recrystallization of the crystal takes place below the alpha-beta transition temperature (around 2000 C), because this should strongly favor the creation of 'An abrupt junction with a highly disturbed crystallographic interface at the PN junction.
Although the crystal faces to be cleaned before formation of the metal-solvent deposit are most advantageously cleaned by heating by means of electron bombardment
<Desc / Clms Page number 5>
under very high vacuum, this cleaning operation can be carried out by other means of heating under vacuum.
The deposition of the metal-solvent from a vapor of this metal, preferably chromium, on each surface establishes an intimate relationship between the crystals of silicon carbide P and N, each with the metal-solvent, in order to d 'ensure interfacial wetting. To ensure the formation of a continuous metal-solvent layer, an additional foil of the metal-solvent is preferably used although such foil can be omitted if the metal deposits formed by condensing the vapor under vacuum are. established thick enough.
Finally, it should be mentioned that the solvent metal can be made to migrate both through crystal P and through crystal N to obtain a junction having characteristics.
EMI5.1
label'. laser.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28759163A | 1963-06-13 | 1963-06-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
BE649024A true BE649024A (en) | 1964-10-01 |
Family
ID=23103561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BE649024A BE649024A (en) | 1963-06-13 | 1964-06-09 |
Country Status (4)
Country | Link |
---|---|
US (1) | US3205101A (en) |
BE (1) | BE649024A (en) |
FR (1) | FR1398471A (en) |
NL (1) | NL6406340A (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1034503A (en) * | 1963-05-14 | 1966-06-29 | Nat Res Dev | Improvements in or relating to the production of crystalline material |
US3337375A (en) * | 1964-04-13 | 1967-08-22 | Sprague Electric Co | Semiconductor method and device |
US3396059A (en) * | 1964-09-14 | 1968-08-06 | Nat Res Corp | Process of growing silicon carbide p-nu junction electroluminescing diodes using a modified travelling solvent method |
US3333324A (en) * | 1964-09-28 | 1967-08-01 | Rca Corp | Method of manufacturing semiconductor devices |
US3429818A (en) * | 1965-02-12 | 1969-02-25 | Tyco Laboratories Inc | Method of growing crystals |
US3377210A (en) * | 1965-03-25 | 1968-04-09 | Norton Co | Process of forming silicon carbide diode by growing separate p and n layers together |
US3522164A (en) * | 1965-10-21 | 1970-07-28 | Texas Instruments Inc | Semiconductor surface preparation and device fabrication |
US3484302A (en) * | 1966-01-18 | 1969-12-16 | Fujitsu Ltd | Method of growing semiconductor crystals |
US3462321A (en) * | 1966-04-27 | 1969-08-19 | Nat Res Corp | Process of epitaxial growth of silicon carbide |
US3510733A (en) * | 1966-05-13 | 1970-05-05 | Gen Electric | Semiconductive crystals of silicon carbide with improved chromium-containing electrical contacts |
US3447976A (en) * | 1966-06-17 | 1969-06-03 | Westinghouse Electric Corp | Formation of heterojunction devices by epitaxial growth from solution |
NL6615376A (en) * | 1966-11-01 | 1968-05-02 | ||
US3975213A (en) * | 1973-10-30 | 1976-08-17 | General Electric Company | High voltage diodes |
US3956026A (en) * | 1973-10-30 | 1976-05-11 | General Electric Company | Making a deep diode varactor by thermal migration |
US3898106A (en) * | 1973-10-30 | 1975-08-05 | Gen Electric | High velocity thermomigration method of making deep diodes |
US3956024A (en) * | 1973-10-30 | 1976-05-11 | General Electric Company | Process for making a semiconductor varistor embodying a lamellar structure |
US3899361A (en) * | 1973-10-30 | 1975-08-12 | Gen Electric | Stabilized droplet method of making deep diodes having uniform electrical properties |
US3901736A (en) * | 1973-10-30 | 1975-08-26 | Gen Electric | Method of making deep diode devices |
US4063965A (en) * | 1974-10-30 | 1977-12-20 | General Electric Company | Making deep power diodes |
US4349407A (en) * | 1979-05-09 | 1982-09-14 | The United States Of America As Represented By The United States Department Of Energy | Method of forming single crystals of beta silicon carbide using liquid lithium as a solvent |
US5225032A (en) * | 1991-08-09 | 1993-07-06 | Allied-Signal Inc. | Method of producing stoichiometric, epitaxial, monocrystalline films of silicon carbide at temperatures below 900 degrees centigrade |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE544843A (en) * | 1955-02-25 | |||
US3030704A (en) * | 1957-08-16 | 1962-04-24 | Gen Electric | Method of making non-rectifying contacts to silicon carbide |
US2998334A (en) * | 1958-03-07 | 1961-08-29 | Transitron Electronic Corp | Method of making transistors |
US2996415A (en) * | 1959-10-05 | 1961-08-15 | Transitron Electronic Corp | Method of purifying silicon carbide |
-
1963
- 1963-06-13 US US287561A patent/US3205101A/en not_active Expired - Lifetime
-
1964
- 1964-06-04 NL NL6406340A patent/NL6406340A/xx unknown
- 1964-06-09 BE BE649024A patent/BE649024A/fr unknown
- 1964-06-11 FR FR977978A patent/FR1398471A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
NL6406340A (en) | 1964-12-14 |
FR1398471A (en) | 1965-05-07 |
US3205101A (en) | 1965-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BE649024A (en) | ||
US5629532A (en) | Diamond-like carbon optical waveguide | |
EP0197078B1 (en) | Method for making monocrystalline silicon islands electrically isolated from each other | |
FR2918791A1 (en) | SUBSTRATE FOR THE EPITAXIAL GROWTH OF GALLIUM NITRIDE | |
FR2711276A1 (en) | Photovoltaic cell and method of manufacturing such a cell. | |
JPH0758354A (en) | Manufacture of thin film photo-cell device | |
US5221411A (en) | Method for synthesis and processing of continuous monocrystalline diamond thin films | |
FR2548219A1 (en) | METHOD FOR FORMING A LAYER OF MATERIAL WITH MULTIPLE CONSTITUENTS | |
EP0199638B1 (en) | Process for producing on an insulator substrate an oriented single silicon crystal film with localized faults | |
US3902924A (en) | Growth of mercury cadmium telluride by liquid phase epitaxy and the product thereof | |
US8157914B1 (en) | Substrate surface modifications for compositional gradation of crystalline materials and associated products | |
FR2497402A1 (en) | PROCESS FOR MANUFACTURING P-N JUNIONS BY ELECTROMIGRATION | |
FR2974745A1 (en) | APPARATUS AND METHOD FOR INK-COATED INK-BASED INK RACLE DEPOSITION | |
Müller | Structure of Oriented, Vapor‐Deposited GaAs Films, Studied by Electron Diffraction | |
EP0202977B1 (en) | Process for producing on an insulator substrate an oriented single silicon crystal film with localized faults | |
Pounds et al. | Formation of ohmic contacts to III–V semiconductors, using a laser beam | |
FR2646020A1 (en) | COMPOSITE MATERIAL COMPRISING A III-V COMPOUND LAYER AND A RARE EARTH NUCLEIC LAYER, PROCESS FOR MANUFACTURING AND APPLICATION | |
EP0543699A1 (en) | Integrated semiconductor lasers and the method of manufacturing the same | |
EP2319072A1 (en) | Method for preparing a self-supporting crystallized silicon thin film | |
RU2135648C1 (en) | Method of preparing crystalline fullerenes | |
FR2463508A1 (en) | Ohmic contact mfr. on hydrogenated amorphous silicon - using intermediate layer starved of hydrogen | |
US4540450A (en) | InP:Te Protective layer process for reducing substrate dissociation | |
FR2468210A1 (en) | MULTILAYER SEMICONDUCTOR PHOTOPILE AND PROCESS FOR PRODUCING THE SAME | |
FR3147427A1 (en) | Process for manufacturing a substrate | |
van Oirschot et al. | LPE growth and properties of GaP‐(AlGa) As‐GaAs heterostructures as a function of the GaP substrate roughness |