BE646413A - - Google Patents

Info

Publication number
BE646413A
BE646413A BE646413DA BE646413A BE 646413 A BE646413 A BE 646413A BE 646413D A BE646413D A BE 646413DA BE 646413 A BE646413 A BE 646413A
Authority
BE
Belgium
Prior art keywords
emi
annealing
ductility
irradiation
steel
Prior art date
Application number
Other languages
French (fr)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication of BE646413A publication Critical patent/BE646413A/fr

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

       

   <EMI ID=1.1> 

  
 <EMI ID=2.1>   <EMI ID=3.1> 

  
 <EMI ID=4.1> 

  
 <EMI ID=5.1>  de manière prédominante dans la partit non uniforme de l'allonge-

  
 <EMI ID=6.1> 

  
 <EMI ID=7.1> 

  
tion sur la ductilité de licier est désavantageux" 

  
 <EMI ID=8.1> 

  
 <EMI ID=9.1> 

  
 <EMI ID=10.1> 

  
Autrement un précipité fin dans, des conditions d'irradiation.

  
 <EMI ID=11.1> 

  
 <EMI ID=12.1> 

  
recuit -et on considère que la gamme optimale de températures peut  <EMI ID=13.1> 

  
élevée pour obtenir une durée de recuit relativement courte.

  
 <EMI ID=14.1> 

  
 <EMI ID=15.1> 

  
 <EMI ID=16.1> 

  
ductilité de l'Acier observée après l'irradiation"

  
 <EMI ID=17.1> 

  
 <EMI ID=18.1> 

  
tière qui se précipiterait Autrement sous une forme fine lors de

  
 <EMI ID=19.1> 

  
recuit une fois entre les deux dernières phases du travail et de

  
 <EMI ID=20.1> 

  
court et le recuit final peut s'étendre sur un temps plus long" L'examen de l'acier Apres le premier recuit court montre que la  précipitation s'est produite -aux limites des grains et que les

  
 <EMI ID=21.1> 

  
second recuite le précipité est plut épais et n'est plus situé aux limites des grains, les dimensions des grains ayant diminué

  
 <EMI ID=22.1> 

  
au travail et au recuit. Il est également possible de prévoir

  
 <EMI ID=23.1> 

  
 <EMI ID=24.1> 

  
 <EMI ID=25.1> 

  
précipite fin, la ductilité à température élevée de l'acier n'était que très légèrement altérée par l'irradiation. 

  
Afin de la présente invention soit bien comprise, les exemples ci-dessous montrent l'effet du recuit à temporale peu

  
 <EMI ID=26.1>   <EMI ID=27.1> 

  

 <EMI ID=28.1> 


  
 <EMI ID=29.1> 

  
 <EMI ID=30.1> 

  
 <EMI ID=31.1> 

  
 <EMI ID=32.1> 

  
 <EMI ID=33.1> 

  
 <EMI ID=34.1> 
 <EMI ID=35.1> 
  <EMI ID=36.1> 

  
tien est due à la précipitation de carbure de chrome ou de carbure de niobium et éventuellement de nitrure de chrome ou de nitrure 

  
 <EMI ID=37.1> 

  
a pour résultat que la plus grande partie de ce matériau est  précipitée pendant le recuit sous une forme épaisse* Une tempera'* 

  
 <EMI ID=38.1> 

  
 <EMI ID=39.1> 

  
de l'irradiation avec pour résultat une perte de ductilité. On 

  
 <EMI ID=40.1> 

  
éviter une réduction de la ductilité lors de l'irradiation, que  t'il est effectua pendant un temps qui est suffisant pour provo- ' quer la précipitation de la plue grande partie, sinon de la  totalité des matières qui, autrement, seraient précipitées lorsque  l'acier est soumis à l'irradiation. 

  
 <EMI ID=41.1> 

  
 <EMI ID=42.1> 

  
 <EMI ID=43.1> 

  
 <EMI ID=44.1> 

  
 <EMI ID=45.1> 

  
 <EMI ID=46.1> 

  

 <EMI ID=47.1> 
 

  
 <EMI ID=48.1> 

  
 <EMI ID=49.1> 

  
 <EMI ID=50.1> 

  
 <EMI ID=51.1> 

  
Tableau III. 

  
 <EMI ID=52.1> 

  

 <EMI ID=53.1> 


  
 <EMI ID=54.1> 

  
présente invention a également été déterminée pour de l'acier

  
 <EMI ID=55.1> 

  
 <EMI ID=56.1> 

  

 <EMI ID=57.1> 


  
 <EMI ID=58.1>   <EMI ID=59.1> 

  

 <EMI ID=60.1> 


  
 <EMI ID=61.1> 

  
 <EMI ID=62.1> 

  

 <EMI ID=63.1> 


  
 <EMI ID=64.1> 

  
 <EMI ID=65.1> 

  
 <EMI ID=66.1>  

  
 <EMI ID=67.1> 

  

 <EMI ID=68.1> 


  
Sa générale la baisse de ductilité lors de l'Irradia"

  
 <EMI ID=69.1>  qu'une réduction de cette valeur ou une réduction de la teneur en  bore-10 est avantageuse. L'absorption neutronique due à une telle teneur en bore est négligeable* 

  
 <EMI ID=70.1> 

  
 <EMI ID=71.1> 

  
 <EMI ID=72.1> 

  
 <EMI ID=73.1> 

  
échantillons travaillés à froid et recuits provenant de chaque   <EMI ID=74.1> 

  
 <EMI ID=75.1> 

  
 <EMI ID=76.1> 

  
 <EMI ID=77.1> 

  
évitant en substance la formation de ce précipité fin et diminuant la tendance de l'acier à subit une réduction de la ductilité à température élevée après irradiation.



   <EMI ID = 1.1>

  
 <EMI ID = 2.1> <EMI ID = 3.1>

  
 <EMI ID = 4.1>

  
 <EMI ID = 5.1> predominantly in the non-uniform part of the elongation-

  
 <EMI ID = 6.1>

  
 <EMI ID = 7.1>

  
tion on the ductility of licier is disadvantageous "

  
 <EMI ID = 8.1>

  
 <EMI ID = 9.1>

  
 <EMI ID = 10.1>

  
Otherwise a fine precipitate under irradiation conditions.

  
 <EMI ID = 11.1>

  
 <EMI ID = 12.1>

  
annealing - and it is considered that the optimum temperature range can <EMI ID = 13.1>

  
high to obtain a relatively short annealing time.

  
 <EMI ID = 14.1>

  
 <EMI ID = 15.1>

  
 <EMI ID = 16.1>

  
ductility of steel observed after irradiation "

  
 <EMI ID = 17.1>

  
 <EMI ID = 18.1>

  
which would otherwise precipitate in a fine form when

  
 <EMI ID = 19.1>

  
annealing once between the last two phases of working and

  
 <EMI ID = 20.1>

  
short and the final annealing may extend over a longer time "Examination of the steel After the first short annealing shows that the precipitation has occurred - at the grain boundaries and that the

  
 <EMI ID = 21.1>

  
second annealing the precipitate is rather thick and is no longer located at the grain boundaries, the grain dimensions having decreased

  
 <EMI ID = 22.1>

  
during work and annealing. It is also possible to provide

  
 <EMI ID = 23.1>

  
 <EMI ID = 24.1>

  
 <EMI ID = 25.1>

  
fine precipitate, the ductility at high temperature of the steel was only slightly altered by the irradiation.

  
In order for the present invention to be fully understood, the examples below show the effect of the annealing at low temporal

  
 <EMI ID = 26.1> <EMI ID = 27.1>

  

 <EMI ID = 28.1>


  
 <EMI ID = 29.1>

  
 <EMI ID = 30.1>

  
 <EMI ID = 31.1>

  
 <EMI ID = 32.1>

  
 <EMI ID = 33.1>

  
 <EMI ID = 34.1>
 <EMI ID = 35.1>
  <EMI ID = 36.1>

  
your is due to the precipitation of chromium carbide or niobium carbide and possibly chromium nitride or nitride

  
 <EMI ID = 37.1>

  
results in most of this material being precipitated during annealing in a thick form * A tempera '*

  
 <EMI ID = 38.1>

  
 <EMI ID = 39.1>

  
irradiation resulting in loss of ductility. We

  
 <EMI ID = 40.1>

  
to avoid a reduction in ductility on irradiation, which is carried out for a time which is sufficient to cause precipitation of most, if not all, of the material which would otherwise be precipitated when the steel is subjected to irradiation.

  
 <EMI ID = 41.1>

  
 <EMI ID = 42.1>

  
 <EMI ID = 43.1>

  
 <EMI ID = 44.1>

  
 <EMI ID = 45.1>

  
 <EMI ID = 46.1>

  

 <EMI ID = 47.1>
 

  
 <EMI ID = 48.1>

  
 <EMI ID = 49.1>

  
 <EMI ID = 50.1>

  
 <EMI ID = 51.1>

  
Table III.

  
 <EMI ID = 52.1>

  

 <EMI ID = 53.1>


  
 <EMI ID = 54.1>

  
present invention has also been determined for steel

  
 <EMI ID = 55.1>

  
 <EMI ID = 56.1>

  

 <EMI ID = 57.1>


  
 <EMI ID = 58.1> <EMI ID = 59.1>

  

 <EMI ID = 60.1>


  
 <EMI ID = 61.1>

  
 <EMI ID = 62.1>

  

 <EMI ID = 63.1>


  
 <EMI ID = 64.1>

  
 <EMI ID = 65.1>

  
 <EMI ID = 66.1>

  
 <EMI ID = 67.1>

  

 <EMI ID = 68.1>


  
Its general decrease in ductility during Irradia "

  
 <EMI ID = 69.1> that a reduction in this value or a reduction in the boron-10 content is advantageous. The neutron absorption due to such a boron content is negligible *

  
 <EMI ID = 70.1>

  
 <EMI ID = 71.1>

  
 <EMI ID = 72.1>

  
 <EMI ID = 73.1>

  
cold worked and annealed samples from each <EMI ID = 74.1>

  
 <EMI ID = 75.1>

  
 <EMI ID = 76.1>

  
 <EMI ID = 77.1>

  
substantially avoiding the formation of this fine precipitate and decreasing the tendency of the steel to undergo a reduction in ductility at elevated temperature after irradiation.


    

Claims (1)

2.- Procède suivant la revendication 1, caractérise en <EMI ID=78.1> 2.- Method according to claim 1, characterized in <EMI ID = 78.1> 900*C. 900 * C. <EMI ID=79.1> <EMI ID = 79.1> tions 2, caractérisé en outre en ce que les phases de travail et tions 2, further characterized in that the working phases and <EMI ID=80.1> <EMI ID = 80.1> <EMI ID=81.1> <EMI ID = 81.1> <EMI ID=82.1> <EMI ID = 82.1> précédentes, caractérisé en outre en ce qu'une phase finale de preceding, further characterized in that a final phase of <EMI ID=83.1> <EMI ID = 83.1> <EMI ID=84.1> <EMI ID = 84.1> caractérisé en ce que la teneur en bore-10 est inférieure à celle ' characterized in that the boron-10 content is lower than that ' <EMI ID=85.1> <EMI ID = 85.1> <EMI ID=86.1> <EMI ID=87.1> <EMI ID = 86.1> <EMI ID = 87.1>
BE646413D 1964-04-09 BE646413A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR970400A FR1389292A (en) 1964-04-09 1964-04-09 Heat treatment process for austenitic stainless steels

Publications (1)

Publication Number Publication Date
BE646413A true BE646413A (en)

Family

ID=8827435

Family Applications (1)

Application Number Title Priority Date Filing Date
BE646413D BE646413A (en) 1964-04-09

Country Status (2)

Country Link
BE (1) BE646413A (en)
FR (1) FR1389292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804680A (en) * 1970-06-06 1974-04-16 Atomic Energy Commission Method for inducing resistance to embrittlement by neutron irradiation and products formed thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804680A (en) * 1970-06-06 1974-04-16 Atomic Energy Commission Method for inducing resistance to embrittlement by neutron irradiation and products formed thereby

Also Published As

Publication number Publication date
FR1389292A (en) 1965-02-12

Similar Documents

Publication Publication Date Title
Bolouri et al. Coarsening of equiaxed microstructure in the semisolid state of aluminum 7075 alloy through SIMA processing
Nakada et al. Solid-solution strengthening in Ni-C alloys
EP0209437B1 (en) Lightly alloyed, forged steel cylinder for cold rolling
BE646413A (en)
Liang et al. Achieving improved strength and ductility through multi-pass cold deformation and annealing of a Cu-Zn-Bi alloy
Oršulová et al. Comparison of temperature dependence of internal damping of selected magnesium alloys
Bhattacharya Effects of Metal Induced Embrittlement in Free-Machining Steels
MCEVILY The fatigue of powder metallurgy alloys[Annual Scientific Report, 1 Dec. 1982- 30 Nov. 1983]
DERLACKI Formation of microfissures on grain boundaries in deformed metals
Brenner et al. Embrittlement Phenomena in Microalloyed Steels and Their Effect on Welding Properties Under Extreme Conditions
Anongba The rate of hardening in stage IV at high temperatures in [112] copper Single Crystals
Kasatkin et al. Influence of the initial stages of delayed fracture on the cold resistance of the metal of 14 Kh 2 GMR steel welded joints
Bolling et al. Some observation on grain boundary melting
Bouzaher et al. Study of Intercrystalline Precipitation in Al--Zn
Vigier Relation Between Crack Orientation and KIC in the Aluminum Alloy AZ 5 GU
Gindin et al. INFLUENCE OF ALLOYING ADDITIONS ON EFFECT OF COPPER STRENGTHENING IN THE PROCESS OF ANNEALING UNDER SMOOTHLY INCREASING LOAD
Mushkudiani Modification of 40 Kh Steel by Alloying Composition With Rare-Earth Metals at Rustavi Metallurgical Works
LOW Grain boundary segregation of impurities in metals and intergranular brittle fracture(Grain boundary segregation and intergranular brittle fracture caused by impurities in nickel chromium steels undergoing tempering)
Trefilov et al. The General Nature of Work-Hardening in Polycrystalline B. C. C. Metals
Petunina et al. Strength increase of titanium-base alloys by cold working
Ahn et al. Effect of Titanium, Boron Element and delta-Ferrite on the Hot Ductility of STS 304
LEE et al. The study for static recrystallization kinetics of AA 8091 alloy
Blagin et al. Effect of the Chemical Composition and Structure of Ingots on the Extrusion Rate for Aluminum Alloys
Hori et al. Metallographical research on superplasticity
Burykina Solid-State Interaction During the Formation and Service of High-Temperature Coatings