La présente invention concerne un procédé d'halogénation d'hydrocarbures en phase gazeuse;, particulièrement un procédé de chloration d'hydrocarbures oléfiniques au moyen de chlore gazeux, en présence d'une matière adsorbante et, éventuellement de catalyseurs.
<EMI ID=1.1>
l'éthylène, au moyen de chlore gazeux, en présence d'une matière adsorbante et, éventuellement;, de catalyseurs, sans qu'il soit nécessaire de séparer le diohloréthane avant de le soumettre à la pyrolyse dans un dispositif différent.
Un autre objet de l'invention est un procédé de préparation de 3 chlorpropène (chlorure d'allyle) par la pyrolyse du dichlorpropane obtenu par la chloration du propylène, au moyen de chlore gazeux, en présence d'une matière adsorbante, et, éventuellement, de catalyseurs, sans qu'il soit nécessaire de séparer le dichlorpropane avant de le soumettre à la pyrolyse dans un dispositif différente
La Demanderesse a découvert que par introduction de chlore gazeux et d'éthylène ou de propylène dans un rapport moléculaire sensiblement égal à '/le la réaction de ohloration s'effectuait immédiatement si les réactifs gazeux étaient introduits dans un lit mobile de matière adsorbante, éventuellement 'en présence de catalyseurs. La Demanderesse a encore découvert que l'on pourrait effectuer, dans le même lit mobile, la pyrolyse du dichloréthane ou
<EMI ID=2.1>
éthylène ou du propylène, et recueillir avec d'excellents rendements, du chlorure de vinyle ou du chlorure d'allyle.
Les avantages d'un tel procédé apparaissent clairement. En raison de la chaleur dégagée par l'adsorption du chlore sur la matière du lit mobile et de la chaleur dégagée par la réaction de chloration des oléfines, il ne faut pas prévoir des moyens spéciaux de chauffage pour maintenir la température de .pyrolyse des hydrocarbures chlorés saturés, puisque les calories dégagées ' ' sont véhiculées par le lit mobile à l'endroit de leur utilisation. De plus,
la température sera régulièrement répartie tout le long de la section droite de la zone de réaction, c'est-à-dire qu'il n'y aura pas de gradient de température comme c'est le cas dans les procédés utilisés jusqu'à ce jour, où les zones de réaction sont chauffées ou refroidies extérieurement. Dans le procédé de l'invention, la totalité de la chaleur est transmise par l'intérieur du réacteur, et en raison de ce fait, les matériaux nécessaires à la construction des réacteurs sont des matériaux ordinaires, non coûteux, à l'inverse des matériaux utilisés dans les procédés connus jusqu'à ce jour. Un autre avantage du procédé est la simplicité de réalisation du réacteur, alors que jusqu'à présent, on a proposé des réacteurs de forme compliquée pour éviter des pointes de température excessive dans les zones de réaction.
Comme matière adsorbante, on choisit, de préférence, le charbon actif; mais on peut encore utiliser le charbon de bois, le charbon animal, le gel de silice ou d'alumineo Comme catalyseurs, on choisit les catalyseurs connus favorisant la chloration et la déshydrochloration, par exemple les chlorures métalliques tels que les chlorures de baryum, de cobalt, de nickel, de zinc, de manganèse de fer, de cuivre, etc...
L'invention est expliqués en détail avec référence à la figure unique du dessin annexé. Il doit être bien entendu que cette figure est donnée uniquement à titre illustratif et qu'elle ne limite en rien la portée de l'invention, qui est susceptible de nombreuses variantes ne sortant pas de son cadre.
La figure unique du dessin annexé représente, très schématiquement, un dispositif de réalisation du procédé de l'invention.
<EMI ID=3.1>
adsorbante, par exemple du charbon actif. Ce dernier descend d'un réservoir de charge 3, pénètre en 4 dans le réacteur 1 et en sort au 5 d'où il est ramené dans le réservoir de charge 3 par la soufflerie 6 et la conduite 7.
Pour la facilité de l'exposé, on considérera les zones suivantes du réacteur, prises du haut vers le bas: une zone 8 de réfrigération, une zone 9 d'adsorption du chlore et de chloration; une zone 10 de pyrolyse et une zone 11 d'où sont évacués les produits finis et où la matière adsorbante se retrouve dans
<EMI ID=4.1>
té de produits chlorés peut rester adsorbée sur la matière adsorbante et ne serait désorbée qu'à température plus élevée. Certains de ces produits chlorés, notamment le dichloréthane ou le dichlo,rpropane peuvent être recyclés, il suffira d'introduire au début de l'opération, un très léger excès de chlore correspondant à la formation de ces produits, et, par la suite, on opérera avec des quantités de chlore et d'oléfine sensiblement dans le rapport moléculaire correspondant aux produits chlorés séparés du cycle de fabrication.
La zone 8 est pourvue d'un système de réfrigération 12 dont le but est d'amener la matière adsorbante à une température favorisant l'adsorption
du chlore. La zone 9 porte la tubulure d'entrée du chlore 13 et la tubulure d'entrée de l'oléfine 14. Dans cette zone est prévu le dispositif de réglage
de la température 15 qui est destiné à fournir, éventuellement, des calories
au début de l'opération. La zone de pyrolyse 10 est pourvue d'un dispositif 16 de réglage de la température qui est destiné soit à faire l'appoint de calories nécessaires à la pyrolyse, soit à fournir de frigories. Le dispositif est réglé automatiquement en fonction de la température à maintenir dans cette zone, température qui dépend des produits que l'on veut obtenir.
<EMI ID=5.1>
duits obtenus, lesquels sont, par la suite, condensés et rectifiés.
Le chlore est introduit en 13 et s'adsorbe très rapidement sur les particules de matière adsorbante et descend vers les zones inférieures. L'éthylène est introduit en 14 et la chloration de cette oléfine démarre aussitôt.
En raison de la chaleur dégagée par l'adsorption du chlore sur la matière mo-
<EMI ID=6.1>
évacué en 17. Les gaz obtenus sont recueillis, condensés et on sépare le chlorure d'hydrogène formé, qui peut alors être renvoyé dans une colonne où circule un-.lit de matière adsorbante et où est introduit de l'acétylène pour former ainsi de nouvelles quantités de monochloréthylène. Une partie du chlorure d'hydrogène peut être utilisée comme véhicule pour la remontée de la matière adsorbante au-dessus du réacteur.
Le dichloréthane non décomposé peut éventuellement être recyclé pour être transformé en monochloréthylène. Cet hydrocarbure chloré est obtenu
<EMI ID=7.1>
troduit dans le réacteur.
On opère de la même façon avec le propylène, mais dans ce cas, on
<EMI ID=8.1>
si on le désire$ réchauffer les réactifs en les faisant passer dans un échangeur thermique dont la source de chaleur est constituée par le lit mobile à refroidir après la zone de pyrolyse. On recueille, alors, du chlorure d'allyle avec un rendement élevé. Le dichlorpropane éventuellement non transformé peut être recyclé.
Les avantages du procédé apparaissent nettement; il nécessite un appareillage simple, d'encombrement minime. Comme il n'existe pas de gradient de température le long de la section droite du réacteur et que la majeure partie
de la chaleur est produite par la réaction de chloration de l'oléfine, et, en outre, que la totalité de la chaleur est transmise par l'intérieur du réacteur, les matériaux de construction dudit réacteur ne devront pas être choisis parmi:
les matériaux spéciaux peu économiques puisque ne se pose plus aucun problème de corrosion.
REVENDICATIONS.
<EMI ID=9.1>
lièrement de chloration d'oléfines au moyen de chlore gazeux, caractérisé en ce que la réaction s'effectue dans un lit mobile de matière adsorbante et, éventuellement, en présence de catalyseurs.
<EMI ID=10.1>
The present invention relates to a process for the halogenation of hydrocarbons in the gas phase, particularly a process for the chlorination of olefinic hydrocarbons by means of gaseous chlorine, in the presence of an adsorbent material and, optionally, of catalysts.
<EMI ID = 1.1>
ethylene, by means of gaseous chlorine, in the presence of an adsorbent material and, optionally ;, catalysts, without it being necessary to separate the diohloroethane before subjecting it to pyrolysis in a different device.
Another object of the invention is a process for the preparation of 3 chlorpropene (allyl chloride) by the pyrolysis of dichlorpropane obtained by the chlorination of propylene, by means of gaseous chlorine, in the presence of an adsorbent material, and, optionally , catalysts, without the need to separate the dichlorpropane before subjecting it to pyrolysis in a different device
The Applicant has discovered that by introducing gaseous chlorine and ethylene or propylene in a molecular ratio substantially equal to '/ le, the chlorination reaction takes place immediately if the gaseous reactants were introduced into a moving bed of adsorbent material, optionally. 'in the presence of catalysts. The Applicant has also discovered that it is possible to carry out, in the same moving bed, the pyrolysis of dichloroethane or
<EMI ID = 2.1>
ethylene or propylene, and collect in excellent yields vinyl chloride or allyl chloride.
The advantages of such a process appear clearly. Because of the heat given off by the adsorption of chlorine on the moving bed material and the heat given off by the chlorination reaction of the olefins, special heating means need not be provided to maintain the pyrolysis temperature of the hydrocarbons. saturated chlorine, since the calories released '' are transported by the moving bed to the place of their use. Furthermore,
the temperature will be evenly distributed throughout the cross section of the reaction zone, that is to say that there will be no temperature gradient as is the case in the processes used up to this day, where the reaction zones are heated or cooled externally. In the process of the invention, all of the heat is transmitted through the interior of the reactor, and due to this fact, the materials necessary for the construction of the reactors are ordinary, inexpensive materials, unlike materials used in the processes known to date. Another advantage of the process is the simplicity of construction of the reactor, whereas until now, reactors of complicated shape have been proposed to avoid excessive temperature peaks in the reaction zones.
As adsorbent material, activated carbon is preferably chosen; but it is also possible to use charcoal, animal charcoal, silica gel or alumina. As catalysts, known catalysts are chosen which promote chlorination and dehydrochlorination, for example metal chlorides such as barium chlorides, cobalt, nickel, zinc, manganese iron, copper, etc ...
The invention is explained in detail with reference to the single figure of the accompanying drawing. It must be understood that this figure is given solely by way of illustration and that it in no way limits the scope of the invention, which is susceptible of numerous variants which do not go beyond its scope.
The single figure of the appended drawing represents, very schematically, a device for carrying out the method of the invention.
<EMI ID = 3.1>
adsorbent, for example activated carbon. The latter descends from a charge tank 3, enters at 4 into the reactor 1 and leaves it at 5, from where it is returned to the charge tank 3 by the blower 6 and the pipe 7.
For ease of explanation, the following zones of the reactor, taken from top to bottom, will be considered: a refrigeration zone 8, a chlorine adsorption and chlorination zone 9; a pyrolysis zone 10 and a zone 11 from which the finished products are discharged and where the adsorbent material is found in
<EMI ID = 4.1>
t of chlorine products may remain adsorbed on the adsorbent material and would only be desorbed at a higher temperature. Some of these chlorinated products, in particular dichloroethane or dichlo, rpropane can be recycled, it will suffice to introduce at the start of the operation, a very slight excess of chlorine corresponding to the formation of these products, and, subsequently, the operation will be carried out with amounts of chlorine and olefin substantially in the molecular ratio corresponding to the chlorinated products separated from the production cycle.
Zone 8 is provided with a refrigeration system 12 whose purpose is to bring the adsorbent material to a temperature promoting adsorption.
chlorine. Zone 9 carries the chlorine inlet pipe 13 and the olefin inlet pipe 14. In this zone is provided the adjustment device.
of the temperature 15 which is intended to provide, optionally, calories
at the start of the operation. The pyrolysis zone 10 is provided with a device 16 for adjusting the temperature which is intended either to top up the calories required for the pyrolysis, or to provide frigories. The device is automatically adjusted according to the temperature to be maintained in this zone, a temperature which depends on the products to be obtained.
<EMI ID = 5.1>
results obtained, which are, subsequently, condensed and rectified.
The chlorine is introduced at 13 and is adsorbed very quickly on the particles of adsorbent material and descends to the lower zones. Ethylene is introduced at 14 and the chlorination of this olefin starts immediately.
Due to the heat given off by the adsorption of chlorine on the mo-
<EMI ID = 6.1>
evacuated at 17. The gases obtained are collected, condensed and the hydrogen chloride formed is separated, which can then be returned to a column where a bed of adsorbent material circulates and where acetylene is introduced to thus form new amounts of monochlorethylene. Part of the hydrogen chloride can be used as a vehicle for the rise of the adsorbent material above the reactor.
The undecomposed dichloroethane can optionally be recycled to be transformed into monochlorethylene. This chlorinated hydrocarbon is obtained
<EMI ID = 7.1>
produced in the reactor.
We operate in the same way with propylene, but in this case, we
<EMI ID = 8.1>
if desired $ reheat the reagents by passing them through a heat exchanger whose heat source consists of the moving bed to be cooled after the pyrolysis zone. Allyl chloride is then collected in a high yield. The optionally unprocessed dichlorpropane can be recycled.
The advantages of the process appear clearly; it requires simple, compact equipment. As there is no temperature gradient along the straight section of the reactor and most
heat is produced by the chlorination reaction of the olefin, and, moreover, that all of the heat is transmitted by the interior of the reactor, the materials of construction of said reactor should not be chosen from:
special materials that are not very economical since there is no longer any corrosion problem.
CLAIMS.
<EMI ID = 9.1>
olefin chlorination system using chlorine gas, characterized in that the reaction is carried out in a mobile bed of adsorbent material and, optionally, in the presence of catalysts.
<EMI ID = 10.1>