BE549785A - - Google Patents

Info

Publication number
BE549785A
BE549785A BE549785DA BE549785A BE 549785 A BE549785 A BE 549785A BE 549785D A BE549785D A BE 549785DA BE 549785 A BE549785 A BE 549785A
Authority
BE
Belgium
Prior art keywords
crucible
reactor
ore
brought
uranium
Prior art date
Application number
Other languages
French (fr)
Publication of BE549785A publication Critical patent/BE549785A/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D9/00Arrangements to provide heat for purposes other than conversion into power, e.g. for heating buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

       

   <Desc/Clms Page number 1> 
 



   Le procédé ( voir illustration en annexe ) est destiné principalement à obtenir la fusion directe de l'acier, en une seule opération, à partir d'un réacteur nucléaire utilisant la   fission   de l'Uranium 235, de l'Uranium 233 ou du Plutonium 239 indifféremment, comme source productrice de chaleur. 



   Le procédé couvre également toute variante qui consis- terait à permettre l'extraction, la fusion ou la cuisson industrielle de métaux en utilisant directement la chaleur produite au sein d'une pile atomique, quels que soient les constituants de cette dernière et la disposition de ceux-ci. Par constituants, il faut entendre essen- tiellement la source productrice de neutrons ( qu'ils soient lents ou rapides), le modérateur éventuel ( eau lourde, graphite etc ) barres de freinage en cadmium etc.. 



    FONCTIONNEMENT.   



   Le minerai I est introduit dans le creuset ménagé à cet effet au sein du réacteur haut-fourneau. Celui-ci est porté à une température suffisante pour assurer la fusion du métal à extraire ( le creuset peut être également situé dans le circuit secondaire tel qu'il est dessiné sur la figure 2). 



  La réduction de l'oxyde métallique se fait à l'aide d'un réducteur puissant amené dans le creuset en quantité voulue à partir de l'extérieur, ou du circuit secondaire; 

 <Desc/Clms Page number 2> 

 
Le réacteur est d'un type nouveau permettant d'une part l'aménagement d'un logement pour le creuset destiné à recevoir le minerai et le métal fondu,et d'autre part l'obtention d'une température de l'ordre de   2.000 C.   Le dispositif consistant à enchasser des sphères d'Uranium enrichi et de graphite (IV) dans un corps de réacteur en béryllium ou en pierres réfractaires, fait partie de la présente inven- tion et permet d'atteindre ces températures élevées. 



   Un réducteur ( CO ou H ou tout autre ) est amené dans le creuset où se trouvent le minerai et la chaux, par le circuit d'alimen- tation (VI) et l'échangeur de température   (VII )   
Ce procédé permet essentiellement: A. - De produire directement de la fonte à partir de l'Energie Nucléaire. 



  B.- De produire éventuellement directement de l'acier sans passer   par-,   le stade intermédiaire de la production de fonte. 



  La présente invention couvre toutes les applications d'un réacteur à la production de fusion de métaux, qu'il soit, hétérogène (fig. I) homogène et autorégénérateur (fig.2), et quelle que soit la position des éléments constituants décrits sur les figures et plans annexés.



   <Desc / Clms Page number 1>
 



   The process (see illustration in appendix) is mainly intended to obtain the direct smelting of steel, in a single operation, from a nuclear reactor using the fission of Uranium 235, Uranium 233 or Plutonium 239 indifferently, as a source of heat.



   The process also covers any variant which would consist in allowing the extraction, melting or industrial firing of metals by directly using the heat produced within an atomic cell, whatever the constituents of the latter and the disposition of the cell. these. By constituents, it is necessary to understand essentially the producing source of neutrons (whether slow or fast), the possible moderator (heavy water, graphite, etc.) cadmium brake bars, etc.



    OPERATION.



   The ore I is introduced into the crucible provided for this purpose within the blast furnace reactor. This is brought to a temperature sufficient to ensure the melting of the metal to be extracted (the crucible can also be located in the secondary circuit as drawn in FIG. 2).



  The reduction of the metal oxide is carried out using a powerful reducing agent brought into the crucible in the desired quantity from the outside, or from the secondary circuit;

 <Desc / Clms Page number 2>

 
The reactor is of a new type making it possible, on the one hand, to provide a housing for the crucible intended to receive the ore and the molten metal, and on the other hand to obtain a temperature of the order of 2,000 C. The device consisting in embedding spheres of enriched uranium and graphite (IV) in a reactor body made of beryllium or of refractory stones forms part of the present invention and makes it possible to achieve these high temperatures.



   A reducing agent (CO or H or any other) is brought into the crucible where the ore and the lime are found, through the supply circuit (VI) and the temperature exchanger (VII)
This process essentially allows: A. - To directly produce cast iron from Nuclear Energy.



  B.- Possibly produce steel directly without going through the intermediate stage of cast iron production.



  The present invention covers all the applications of a reactor for the production of metal smelting, whether it is heterogeneous (fig. I), homogeneous and self-regenerating (fig.2), and whatever the position of the constituent elements described on the attached figures and plans.


    
BE549785D BE549785A (en)

Publications (1)

Publication Number Publication Date
BE549785A true BE549785A (en)

Family

ID=175901

Family Applications (1)

Application Number Title Priority Date Filing Date
BE549785D BE549785A (en)

Country Status (1)

Country Link
BE (1) BE549785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181999A (en) * 1959-03-24 1965-05-04 Bbc Brown Boveri & Cie Heat treating method and means utilizing nuclear energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181999A (en) * 1959-03-24 1965-05-04 Bbc Brown Boveri & Cie Heat treating method and means utilizing nuclear energy

Similar Documents

Publication Publication Date Title
Lewin et al. International developments in electrorefining technologies for pyrochemical processing of spent nuclear fuels
Courouau et al. Corrosion by liquid sodium of materials for sodium fast reactors: the CORRONa testing device
CN103667991B (en) Nuclear power plants rod drive mechanism sealed shell and preparation method thereof
BE549785A (en)
RU2345141C1 (en) Radioactive metal waste reprocessing method and device used for method realisation
Durazzo et al. Current status of U3Si2 fuel elements fabrication in Brazil
Burris et al. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor.[Metal fuel]
WO2013188993A1 (en) Nodularization-processing method
Min et al. Distribution characteristics of radionuclides in high-temperature melt phase during melt decontamination of decommissioned metal waste
Barlow et al. Thermal Treatment of UK Magnox Sludge
RU2253912C1 (en) Homogeneous fast reactor-reservoir
Kalenova et al. Irradiated FA Structural Materials Conditioning by Induction-Slag Remelting in a Cold Crucible
Mukhachev et al. Nuclear zirconium–the basis of alloys with improved neutron-physical, radiation, and corrosion properties
Copus Sustained uranium dioxide/concrete interaction tests: the SURC test series
RU2765028C1 (en) Method for recycling radioactive waste generated during destruction of irradiated fuel assemblies of fast neutron reactors by induction slag remelting in cold crucible
RU2472862C1 (en) Processing method of metal radioactive waste
Dillon Cladding hulls
Bonniaud et al. Glass melter materials technical options for the French vitrification process and operations experience authors
Shin et al. Analysis on the present status of conceptually designed pyroprocessing facilities for determining a reference pyroprocessing facility
Simpson et al. Non-aqueous Processing
Schlienger et al. Melt processing of radioactive waste: a technical overview
Griggs Feasibility studies for decontamination and densification of chop-leach cladding residues
RU2184995C2 (en) Method for servicing fast homogeneous reactor
McKoon Decarburization of uranium via electron beam processing
CN110806108A (en) Slag recovery device of high-carbon ferrochrome smelting furnace