BE1013099A3 - Window for a car roof - Google Patents

Window for a car roof Download PDF

Info

Publication number
BE1013099A3
BE1013099A3 BE9900643A BE9900643A BE1013099A3 BE 1013099 A3 BE1013099 A3 BE 1013099A3 BE 9900643 A BE9900643 A BE 9900643A BE 9900643 A BE9900643 A BE 9900643A BE 1013099 A3 BE1013099 A3 BE 1013099A3
Authority
BE
Belgium
Prior art keywords
sep
sheet
glass
glazing according
interlayer
Prior art date
Application number
BE9900643A
Other languages
French (fr)
Inventor
Dominique Coster
Denis Legrand
Alain Masereel
Pol Baudin
Original Assignee
Glaverbel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaverbel filed Critical Glaverbel
Priority to BE9900643A priority Critical patent/BE1013099A3/en
Priority to AU45485/00A priority patent/AU4548500A/en
Priority to US09/958,751 priority patent/US6538192B1/en
Priority to EP00926911A priority patent/EP1171294B1/en
Priority to DE60018271T priority patent/DE60018271T2/en
Priority to PCT/EP2000/003332 priority patent/WO2000061366A1/en
Priority to AT00926911T priority patent/ATE289542T1/en
Application granted granted Critical
Publication of BE1013099A3 publication Critical patent/BE1013099A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

This invention concerns windows designed for car roofs. The window in thisinvention has a first sheet of glass on the outside of the roof; a secondsheet of glass on at least part of the inside of the roof turned toward theinside; an intermediate sheet made of one or more thermoplastic materialstraditionally used to make laminated glass, this intermediary sheet extendingat least over the surfaces of the sheets of glass facing each other;non-transparent functional elements laid out under the first sheet of glass;the transparent sheet part having a light transmission rate of less than 30%,and an energy transmission rate of less than 20%.<IMAGE>

Description

       

   <Desc/Clms Page number 1> 
 



  Vitrage pour toit de véhicule automobile 
L'invention est relative aux vitrages destinés aux toits de véhicules automobiles comportant une partie assurant une certaine transmission lumineuse dans l'habitacle. 



   Les constructeurs automobiles développent des modèles dont la surface vitrée est toujours plus importante. Les dimensions des pare-brise et des lunettes arrières sont en progression notamment pour améliorer les profils aérodynamiques. Au delà, les vitrages entrent de façon prépondérante dans la constitution des toits ouvrants. Suivant cette tendance, les constructeurs souhaitent l'utilisation de vitrages formant la totalité, ou au moins une part très importante des toits des véhicules. 



   L'utilisation de vitrages formant la majeure partie du toit, conduit pour des raisons à la fois d'esthétique, mais aussi pour des raisons techniques telles que l'étanchéité de la structure, la réduction des bruits aérodynamiques, ou la commodité de montage, à limiter le plus possible le nombre de éléments de vitrages constituant le toit. Le cas le plus favorable correspond par exemple à un vitrage unique formant l'ensemble du toit. 



   Les toits dont toute la surface présente les mêmes caractéristiques, notamment de transparence, constituent une part significative de ce que réclament les constructeurs. Les toits de ce type, s'ils doivent offrir une certaine transparence, doivent plus encore prévenir une transmission énergétique trop importante, pour préserver le confort des passagers. 



  Cependant, il reste des dispositions dans lesquelles les toits comportent simultanément plusieurs parties remplissant des fonctions différentes, et qui pour cette raison doivent présenter des caractéristiques différentes. En particulier certaines fonctions peuvent conduire à faire que la partie du vitrage remplissant cette fonction ne soit pas transparente. 



   L'objet de l'invention est de fournir des vitrages de toits de véhicules, dont au moins une partie présente une certaine transparence, et dont au moins une autre partie doit satisfaire à des conditions de transmission différentes. Un cas typique de vitrages répondant à cette dernière exigence, est celui des vitrages qui pourvus de cellules photovoltaïques. L'invention est décrite dans la suite à propos de ces vitrages recevant des cellules de ce type. Elle peut s'appliquer cependant à d'autres sortes de vitrages dont seulement une partie doit offrir la transparence indiquée. 

 <Desc/Clms Page number 2> 

 



   Les constructeurs de véhicules automobiles proposent sur certains modèles, en particulier de haut de gamme, l'installation de cellules photovoltaïques qui ont pour fonction de limiter la sollicitation des accumulateurs, notamment lorsque le moteur du véhicule ne fonctionne pas. A l'heure actuelle ceci est utilisé par exemple pour recharger les accumulateurs, ou pour alimenter une ventilation et limiter ainsi l'échauffement du véhicule à l'arrêt. D'autres utilisations sont néanmoins dès à présent envisagées qui toutes ont en commun de constituer une source complémentaire d'énergie pour réduire d'autant la consommation de celle générée par le moteur du véhicule. 



   Pour une bonne efficacité, il convient de disposer les cellules sur une surface bien exposée aussi vaste que possible, et sous une protection qui les met à l'abri des agressions de l'environnement : humidité, graisse etc. Les cellules sont donc placées derrière un écran transparent, constitué habituellement d'une feuille de verre. 



   Dans les véhicules commercialisés qui comportent des cellules, l'emplacement de celles-ci s'est orienté vers le toit pour des raisons de commodité. L'adaptation de cellules photovoltaïques sur des éléments de toits en verre a fait l'objet de diverses propositions antérieures. 



   Toujours pour ce qui concerne les véhicules commercialisés comportant ce type d'équipement, la mise en place de cellules photovoltaïques a été faite sur une feuille de verre formant au moins une partie du toit, et sur la face de cette feuille qui n'est pas exposée à l'environnement extérieur. Les cellules sont collées sur la feuille de verre, et protégées et dissimulées du côté de l'habitacle par un parement. 



   Une difficulté pour la formation de ces toits comportant des cellules, réside dans le fait que, pour satisfaire aux normes de sécurité, notamment en matière de résistance mécanique, la feuille de verre doit présenter une certaine épaisseur. Plus le verre est épais, plus la part de l'énergie transmise aux cellules est réduite. 



   Typiquement, dans les réalisations antérieures, une feuille de verre trempé d'au moins 5mm d'épaisseur est nécessaire. A ces épaisseurs, les verres clairs usuels ont une absorption qui n'est pas négligeable. La transmission énergétique (TE), mesurée selon Moon, s'établit par exemple aux environs de 82% de la lumière incidente
Ces réalisations antérieures conduisent donc, pour les cellules, à une efficacité qui n'est pas optimisée. Il est souhaitable de rechercher une mise en oeuvre qui réduise au minimum l'absorption sans compromettre les qualités mécaniques. 

 <Desc/Clms Page number 3> 

 



   Dans ce sens, il est possible, tout en gardant la structure décrite ci-dessus, d'utiliser des verres dits"extra clairs". Ces verres qui présentent notamment comme particularité une teneur en fer extrêmement faible, sont relativement peu absorbants. Sous une épaisseur de 5mm, comme précédemment, la TE peut être de l'ordre de 90%, soit un gain de l'ordre de   8%.   L'inconvénient de ces verres réside dans leur coût. Leur prix est environ 2,5 fois celui des verres clairs ordinaires. Même si le coût du verre n'entre que pour une part limitée dans la constitution du coût du toit, on conçoit que la différence ne soit pas insignifiante pour les constructeurs. 



   Par ailleurs dans les réalisations antérieures, l'utilisation d'une feuille de verre dont la transmission énergétique est aussi élevée que possible, pour améliorer le rendement des cellules photovoltaïques, est directement contraire aux exigences des constructeurs pour ce qui concerne la transmission dans l'habitacle. Pour des raisons de confort thermique, la transmission énergétique doit être la plus faible possible, et ne pas dépasser 20%, et de préférence être inférieure à 15%. L'utilisation de verres clairs, et, a fortiori de verres extra clairs, ne pouvait donc être envisagée si une partie du toit seulement reçoit les cellules, le reste étant aménagé pour la vision des passagers. 



   Il est possible pour satisfaire aux conditions contradictoires rappelées précédemment, de procéder au dépôt d'une couche mince limitant la transmission suivant une technique traditionnelle. Le dépôt doit néanmoins se limiter aux parties de la feuille qui ne comportent pas de cellules, ce qui ajoute à la complexité de l'opération. Par ailleurs, la couche, quelle que soit la technique utilisée pour sa formation, est relativement fragile, et, à l'intérieur de l'habitacle, elle reste exposée à tous les risques de dégradation par rayure, abrasion etc. Les défauts qui résultent de telles dégradations sont extrêmement sensibles dans la mesure où la couche absorbe et/ou réfléchit une part importante de la lumière incidente. Les défauts de cette couche apparaissent alors comme autant de points ou traits lumineux sur une surface qui l'est nettement moins. 



   L'invention propose, des vitrages de toits de véhicules présentant une structure nouvelle répondant aux nécessités exposées précédemment. Les vitrages selon l'invention comportent au moins une partie transparente, et au moins une partie qui n'est pas transparente, notamment du fait de la présence de cellules photovoltaïques ou d'autres éléments fonctionnels. Cette solution offre par ailleurs un certain nombre d'avantages qui seront précisés dans le cours de la description. 

 <Desc/Clms Page number 4> 

 



   Dans ce qui suit, on fait référence à un toit de véhicule. Cette désignation concerne le cas où la totalité du toit est envisagée. Elle concerne également le cas où seulement une partie de celui-ci est équipée de la façon qui est précisée. On comprend aisément que la   partie"en verre"peut   se limiter par exemple à ce qui constitue l'élément mobile d'un toit ouvrant. Le cas du toit complet est celui qui correspond cependant le mieux aux buts poursuivis lorsque l'on s'efforce de disposer d'une surface aussi large que possible pour les cellules, sans pour autant renoncer aux autres aspects. Par ailleurs la tendance en matière   de"design"automobile,   rappelée ci-dessus, est clairement vers un accroissement de la surface vitrée.

   Les réalisations selon l'invention, suivant cette tendance, sont donc en faveur d'un toit entier en matériau verrier. 



  La suite de la description et des exemples présente le cas du toit vitré entier sans que ceci soit limitatif. 



   Le vitrage de toit selon l'invention présente au moins une partie transparente, et une partie non transparente du fait de la présence d'éléments fonctionnels eux mêmes non transparents. Il comprend une première feuille de verre constituant la face externe, une deuxième feuille de verre constituant au moins une partie de la face interne du toit, et une feuille intercalaire d'un ou plusieurs matériaux thermoplastiques traditionnellement utilisés pour former des vitrages feuilletés, intercalaire qui s'étend au moins sur les surfaces des feuilles de verre en regard l'une de l'autre. Les éléments fonctionnels non transparents, tels que les cellules photovoltaïques, sont disposés sous la première feuille de verre. 



   Dans la suite, par commodité il est fait référence aux cellules photovoltaïques en tant qu'éléments fonctionnels. Cet exemple est particulièrement représentatif de ce que peuvent être ces éléments. Mais il peut s'agir de tout autre dispositif non transparent et qui recouvrirait une part significative de la surface du toit. 



   L'ensemble des caractéristiques des éléments superposés dans la partie transparente du vitrage, est tel que la transmission énergétique sur cette partie n'est pas supérieure à 25%, et de préférence reste inférieure à   20%.   



  Toujours dans la partie transparente, la transmission lumineuse est au plus de 35%, et le plus souvent est inférieure à   30%.   



   Le choix de la première feuille de verre, lorsque les éléments fonctionnels sont des cellules photovoltaïques, est tel que sa transmission énergétique, TE, est au moins de 82%, et de préférence supérieure à   87%.   



   La structure feuilletée peut s'étendre sur l'ensemble du vitrage ou ne concerner qu'une partie de celui-ci. La partie transparente du toit est 

 <Desc/Clms Page number 5> 

 toujours feuilletée. A l'inverse, la partie non transparente du toit, partie où les cellules se situent, peut ne comporter que la feuille de verre externe. 



   Dans le cas d'un vitrage partiellement feuilleté, il est avantageux de faire en sorte que la première feuille de verre, qui est celle qui présente les plus grandes dimensions, soit la seule qui repose sur la carrosserie. Il est important, pour des raisons d'assemblage et d'étanchéité, d'éviter les différences de niveau. Pour cela, le choix des dimensions des feuilles doit conduire à une première feuille dont tout le pourtour est libre sur quelques millimètres. Autrement dit la deuxième feuille de verre est toujours en retrait d'une distance au moins égale à celle nécessaire pour le positionnement du vitrage sur la carrosserie. 



   Par un choix approprié des feuilles de verre et, le cas échéant, des autres constituants de l'ensemble feuilleté : couches, émaillage ou qualité de l'intercalaire, il est possible de satisfaire aux exigences en matière de transmission énergétique dans l'habitacle. Ces exigences sont directement contraires à celles concernant l'exposition des cellules. Autrement dit le feuilletage permet de satisfaire des exigences distinctes et opposées selon la partie du vitrage considérée. 



   Tous les vitrages de toit selon l'invention répondent aussi aux exigences de résistance mécanique des constructeurs. Le toit contribue en effet à la rigidité d'ensemble de la structure. Quelle que soit la forme choisie, toit entièrement ou partiellement feuilleté, les vitrages selon l'invention confèrent les propriétés mécaniques requises dans les conditions indiquées dans ce qui suit. 



   Si une partie seulement est feuilletée et transparente, l'autre partie qui porte les cellules étant non transparente, les propriétés mécaniques peuvent être en partie obtenues par des éléments de renfort de structure tels que des profilés métalliques ou tôles situés sous la partie non feuilletée du vitrage. Ces éléments qui s'intègrent à la carrosserie du véhicule, ne constituent aucune gêne compte tenu du fait qu'ils se situent dans une partie non transparente du toit. Ces éléments de structure supplémentaires, mais aussi les cellules et les conducteurs divers, sont alors masqués du côté de l'habitacle par des revêtements et parements traditionnels. 



   Le fait d'utiliser un vitrage en partie feuilleté, au lieu d'un vitrage entièrement feuilleté, permet par ailleurs un allégement sensible. Cet aspect est d'autant plus significatif, que la deuxième feuille de verre, qui est de dimensions limitées, est aussi celle dont l'épaisseur est normalement la plus importante pour les raisons exposées plus loin relatives notamment à la 

 <Desc/Clms Page number 6> 

 transmission énergétique. 



   Lorsque le vitrage entier est feuilleté, la résistance mécanique propre à ce type de structure suffit pour atteindre les performances requises. Il n'est alors pas nécessaire de disposer des éléments supplémentaires de renfort sous la partie non transparente du vitrage
Dans la construction selon l'invention, les feuilles sont assemblées suivant les techniques usuelles pour l'obtention de vitrages feuilletés. 



   L'assemblage feuilleté permet en particulier, par rapport aux constructions de l'art antérieur, de diminuer l'épaisseur de la feuille de verre qui protège les cellules lorsque le feuilletage est réalisé sur le vitrage entier et que les cellules sont placées entre les deux feuilles de verre. Une part importante de la résistance de l'ensemble est alors conférée par la deuxième feuille de verre dont les caractéristiques de transmission énergétique, et donc d'épaisseur, ne sont pas commandées par la présence des cellules photovoltaïques. 



   Si la première feuille est avantageusement de faible épaisseur, l'épaisseur totale de l'assemblage feuilleté influe sur les propriétés mécaniques. 



  Les considérations de poids, comme pour les vitrages monolithiques, conduisent à limiter cette épaisseur. On s'efforce de maintenir l'épaisseur totale inférieure à   10mm,   et de préférence inférieure à 7mm. 



   Comme indiqué ci-dessus, selon que l'ensemble feuilleté s'étend sur pratiquement toute la surface vitrée ou se limite à la partie transparente du toit, l'épaisseur de la première feuille de verre est sensiblement différente. Dans les deux cas cependant la première feuille de verre contribue à la résistance mécanique de l'ensemble. Dans le premier cas la feuille de verre externe doit présenter une épaisseur suffisante pour résister convenablement aux efforts extérieurs, indépendamment de la question de la rigidification de l'habitacle. 



  Dans le second cas, la contribution de la première feuille de verre à cette rigidification est plus significative. 



   Pour ces raisons, dans le premier cas on utilise avantageusement des feuilles dont l'épaisseur n'est pas inférieure à 1 mm. A l'inverse, pour conserver l'avantage énergétique même avec les verres sodo-calciques ordinaires, l'épaisseur de cette première feuille n'est pas supérieure à 3mm. Le plus couramment cette épaisseur est comprise entre 1,5 et 2,5mm. Pour les verres"clairs"et"extra-clairs", l'épaisseur de la première feuille peut être plus importante, sans perdre le bénéfice d'un taux élevé de transmission énergétique. Pour ces verres clairs, l'épaisseur peut atteindre 5mm. 

 <Desc/Clms Page number 7> 

 



   Dans le second   cas-celui d'un"feuilletage partiel"-l'épaisseur   dépend de la présence ou non d'éléments de renfort de la structure. Cette épaisseur est nécessairement plus importante que dans le premier cas, et est avantageusement de 2 à 6mm, et de manière préférée de 3 à 5mm. 



   La première feuille peut, bien entendu, être en verre extra clair pour optimiser la transmission. Dans ce cas, la transmission énergétique de la feuille peut dépasser 90%. Si on utilise une feuille de verre clair, la transmission énergétique, toujours dans les conditions d'épaisseur indiquées précédemment, est un peu moins élevée mais reste supérieure à   85%.   A titre indicatif pour un verre extra clair du commerce, en 4mm d'épaisseur, la transmission énergétique est de 90,7. Pour un verre clair du commerce, toujours sous 4mm, la transmission énergétique est de 89,5. Bien évidemment, ces transmissions sont d'autant plus élevées que la feuille considérée est plus mince. 



   La deuxième feuille de verre est choisie de manière à procurer la résistance nécessaire au moins dans la partie transparente. Les considérations relatives à son épaisseur pour ce qui concerne la transmission lumineuse sont opposées à celles concernant la première feuille. En effet, pour que le toit permette une vision vers l'extérieur, tout en limitant la transmission énergétique dans l'habitacle, cette deuxième feuille doit être très absorbante, et l'épaisseur est un facteur important dans l'établissement de cette absorption. En pratique cependant il faut établir un compromis entre l'accroissement de l'épaisseur, favorable à la résistance mécanique et à l'absorption, d'une part, et la nécessité de maintenir le poids dans des limites raisonnables, d'autre part. 



   D'un point de vue mécanique, dans un assemblage feuilleté, et en association avec les premières feuilles décrites ci-dessus, des feuilles de 2 à 5mm et, de préférence, de 2,5 à 4mm, permettent de satisfaire aux normes dans ce domaine. Pour ces épaisseurs, et pour obtenir une transmission énergétique ne dépassant pas 25%, et de préférence 20%, on utilise en particulier des verres fortement colorés. 



   L'importance du rôle de la deuxième feuille de verre dans la réalisation des vitrages de toits selon l'invention nous conduit à préciser leur nature. 



   Des verres colorés utiles selon l'invention sont connus de l'art antérieur. Parmi les verres qui permettent de réduire de manière très importante la transmission énergétique on préfère ceux qui en transmission ont une coloration neutre, bleutée, ou bleu-vert. Dans tous les cas les constructeurs demandent une pureté de coloration, au sens de la CIE (Commission Internationale de l'Eclairage), aussi faible que possible. Le choix de ces verres a 

 <Desc/Clms Page number 8> 

 pour but de faire en sorte que la lumière transmise dans l'habitacle ne déforme pas les couleurs. 



   On utilise ainsi avantageusement une feuille de verre gris dont la pureté d'excitation est inférieure à 10%, et qui, sous une épaisseur de 4mm, a une transmission lumineuse (TLA) inférieure à 25%, et de préférence inférieure à 20%. Des verres correspondant à ces conditions sont par exemple des verres sodo-calciques dont les composants de structure sont de façon traditionnelle dans les teneurs pondérales suivantes : 
 EMI8.1 
 
<tb> 
<tb> SiOz <SEP> 60-75 <SEP> % <SEP> AOs <SEP> 0-5 <SEP> %
<tb> Na2O <SEP> 10-20 <SEP> % <SEP> BaO <SEP> 0-2 <SEP> %
<tb> CaO <SEP> 0-16 <SEP> % <SEP> BaO+CaO+MgO <SEP> 10-20 <SEP> %
<tb> KO <SEP> 0-10 <SEP> % <SEP> KO+NaO <SEP> 10-20 <SEP> %
<tb> MgO <SEP> 0-10 <SEP> %
<tb> 
 A ces composants s'ajoutent des constituants chromophores notamment : Fe203, Co, Se, Cr2O3.

   Des verres "gris" de ce type sont notamment ceux dont les agents chromophores sont dans les teneurs : 
 EMI8.2 
 
<tb> 
<tb> Fez03 <SEP> 1-1,65 <SEP> %
<tb> Co <SEP> 0,017-0, <SEP> 030 <SEP> %
<tb> Se <SEP> 0,001-0, <SEP> 0100. <SEP> %
<tb> Une <SEP> autre <SEP> combinaison <SEP> de <SEP> chromophores <SEP> avantageuse
<tb> 
 comprend en plus de l'oxyde de chrome. Des teneurs préférées sont par exemple : 
 EMI8.3 
 
<tb> 
<tb> FeZ03 <SEP> 0,75-1, <SEP> 8 <SEP> %
<tb> Co <SEP> 0,0040-0, <SEP> 0180 <SEP> %
<tb> Se <SEP> 0,0003-0, <SEP> 0040 <SEP> %
<tb> Cr203 <SEP> 0,0010-0, <SEP> 0100 <SEP> %
<tb> Des <SEP> verres <SEP> de <SEP> ces <SEP> types <SEP> sont <SEP> décrits <SEP> de <SEP> façon <SEP> détaillée
<tb> 
 notamment dans les publications FR-A 2   738 238   et   2 738 240.   



   Tous les verres précédents sont très neutres et"gris"en transmission. Le cas échéant, comme indiqué précédemment, les vitrages selon l'invention peuvent présenter une nuance bleutée. Pour atteindre ce type de vitrage il est avantageux d'utiliser pour deuxième feuille un verre dont les constituants chromophores sont essentiellement les oxydes de fer et le cobalt dans les proportions pondérales : 
 EMI8.4 
 
<tb> 
<tb> Fe2O3 <SEP> (fer <SEP> total) <SEP> 1,1-1,8 <SEP> %
<tb> FeO <SEP> 0,30-0,50 <SEP> %
<tb> Co <SEP> 0,0030-0,0270 <SEP> %
<tb> 
 
 EMI8.5 
 auxquels S'ajoutent éventuellement d'autres agents dans les limites indiquées 

 <Desc/Clms Page number 9> 

 ci-après :

   
 EMI9.1 
 
<tb> 
<tb> Cr203 <SEP> 0-0,0250 <SEP> %
<tb> V205 <SEP> 0-0,0500 <SEP> %
<tb> CeO2 <SEP> 0-0,5 <SEP> %
<tb> TiOz <SEP> 0-1,5 <SEP> %
<tb> Se <SEP> 0-0,0100 <SEP> %
<tb> 
 
Des verres bleus répondant à cette définition sont décrits de façon détaillée dans la demande de brevet européen déposée le 22 décembre 1998 sous le   n 98   124 371. 0. 



   Il est également possible, d'utiliser un verre à forte sélectivité (rapport TLA/TE) tels que ceux dont les chromophores sont en proportions : 
 EMI9.2 
 
<tb> 
<tb> Fez03 <SEP> (fer <SEP> total) <SEP> 1,2-1, <SEP> 85 <SEP> %
<tb> FeO <SEP> 0,40-0, <SEP> 50 <SEP> %
<tb> Co <SEP> 0,0020-0, <SEP> 013 <SEP> %
<tb> Cr203 <SEP> 0-0,0240 <SEP> %
<tb> VOg <SEP> 0-0, <SEP> 1 <SEP> %
<tb> Se <SEP> 0-0,0015 <SEP> %
<tb> 
 
Ces verres sont de couleur très foncée avec une nuance verte à bleue. Leur sélectivité dépasse souvent 1,65. Ils sont décrits de façon détaillée dans la demande de brevet français déposée le 31 juillet sous le n 98/10020. 



   Une autre série de verres colorés très sélectifs et à faible transmission énergétique, utilisables pour former la deuxième feuille de la partie feuilletée du toit, correspond aux compositions dans lesquelles les chromophores sont : soit 
 EMI9.3 
 
<tb> 
<tb> Fe203 <SEP> (fer <SEP> total) <SEP> 1,2-1, <SEP> 8 <SEP> %
<tb> FeO <SEP> 0,25-0, <SEP> 35 <SEP> %
<tb> Co <SEP> 0,0020-0, <SEP> 010 <SEP> %
<tb> Cr203 <SEP> 0,001-0, <SEP> 0100 <SEP> %
<tb> CeO2 <SEP> 0, <SEP> 1-0, <SEP> 8 <SEP> %
<tb> 
 soit 
 EMI9.4 
 
<tb> 
<tb> FeZ03 <SEP> (fer <SEP> total) <SEP> 0,9-1, <SEP> 8 <SEP> %
<tb> FeO <SEP> 0,25-0, <SEP> 40 <SEP> %
<tb> Co <SEP> 0,0010-0, <SEP> 010%
<tb> Cr203 <SEP> 0-0,0240 <SEP> %
<tb> VOs <SEP> 0-0,2 <SEP> %
<tb> 
 
Ces verres très colorés également, sont gris verts. Ils ont une sélectivité normalement supérieure à 1,5.

   Ils sont décrits dans la publication 

 <Desc/Clms Page number 10> 

 EP-A 0887320. 



   Les caractéristiques colorimétriques de la deuxième feuille de verre de préférence satisfont aux relations suivantes : 
 EMI10.1 
 dans lesquelles P est la pureté d'excitation (CIE) mesurée sous 4mm d'épaisseur, avec l'illuminant C, sous un angle solide d'observation de 20. et R l'indice de rendu des couleurs tel que défini dans la norme EN 410. Ce dernier indice traduit l'observation au travers d'un vitrage déterminé, d'un ensemble de huit échantillons de couleur éclairés par l'illuminant de référence   Dgg.   



  L'indice de rendu des couleurs est d'autant plus élevé que la présence du vitrage modifie moins la perception des couleurs. Les verres gris proposés sont ceux dont l'indice de rendu des couleurs est le plus élevé. Il est généralement supérieur à 80% et peut atteindre et même dépasser 90%. Comparativement les verres qui confèrent une nuance bleutée, ont dans l'ensemble un indice plus faible qui se situe à environ 75%. De façon générale, on utilise pour constituer les vitrages selon l'invention des feuilles dont l'indice de rendu des couleurs n'est pas inférieur à 70 et de préférence 75%. 



   Les verres les plus neutres, et qui sont de couleur grise répondent avantageusement aux conditions : 
 EMI10.2 
 
L'usage de verres très colorés conduit normalement aux transmissions recherchées. Si néanmoins le verre choisi ne réduit pas suffisamment la transmission, ou si l'on préfère utiliser un verre moins fortement coloré, il est possible de conférer les propriétés de transmission recherchées par l'utilisation d'une couche mince absorbante et/ou réfléchissante traditionnelle, par exemple une couche à base de nitrure de titane ou de chrome, une couche d'oxyde d'étain éventuellement dopée, une couche d'oxyde d'indium et d'étain etc.

   Dans l'hypothèse de la mise en oeuvre d'une telle couche, cette dernière est avantageusement soustraite aux risques de dégradation, en la disposant sur la face de la feuille de verre qui se trouve au contact de l'intercalaire. 



   Pour pouvoir réaliser une couche couvrant uniformément la feuille, elle est de préférence située sur la deuxième feuille de verre. On s'affranchit de cette façon de la nécessité de délimiter précisément la couche par rapport aux emplacements des cellules. A l'inverse, si la couche est appliquée sur la première feuille, les emplacements correspondant aux cellules 

 <Desc/Clms Page number 11> 

 doivent être l'objet de réserves pour conserver la transmission la plus forte possible à ces emplacements. 



   Un autre moyen pour réduire la transmission lumineuse, qui peut être utilisé selon l'invention, consiste à disposer un émaillage suivant un motif constitué de points de très petites dimensions suivant une trame dense. 



  Les points doivent être de dimension suffisamment petite pour que l'observation depuis l'habitacle ne permette pas de les discerner. Ils sont en dessous du seuil de résolution. Des points de quelques dixièmes de millimètre espacés d'environ 0,5 à 2 mm peuvent être choisis. 



   Dans la mise en oeuvre d'un motif émaillé limitant la transmission, la fraction de la surface couverte détermine celle du rayonnement non transmis. Il est possible de faire varier cette fraction dans de très larges proportions. Tout en conservant une certaine"transparence"d'ensemble, l'émail peut recouvrir jusqu'à 70% de la surface. Avantageusement, on ne dépasse pas 60%. 



   Lorsqu'un motif de points émaillés est utilisé, il peut être réalisé sur l'une ou l'autre des feuilles de verre pour autant que ce motif ne masque pas les cellules. 



   Entre les deux feuilles de verre se trouve une feuille intercalaire d'un matériau thermoplastique. L'indication"d'une"feuille n'exclut pas qu'il puisse y avoir au moment de la formation du feuilletage plusieurs feuilles d'un même matériau ou de matériaux différents. La feuille thermoplastique peut également être formée dans l'assemblage à partir d'un état différent, notamment par polymérisation ou réticulation d'un matériau à l'état liquide. 



  L'indication feuille intercalaire correspond donc à la forme finale dans l'assemblage, et ne concerne pas l'état du matériau initial, même si la forme la plus usuelle est bien celle d'une feuille. 



   Les feuilles intercalaires sont celles habituellement utilisées dans les vitrages feuilletés. Il s'agit en particulier des feuilles de polyvinylbutyral (PVB), d'acétate de polyvinyle (EVA), de polyuréthanne (PU) ou de chlorure de polyvinyle (PVC). 



   Lorsque les cellules sont prises entre deux feuilles de verre, l'épaisseur de la feuille, ou des feuilles intercalaires doit être au moins égale à celle des cellules photovoltaïques disposées dans l'assemblage. Dans la pratique les cellules ont entre 0,1 et lmm d'épaisseur. Les intercalaires des feuilletés usuels présentent une épaisseur de l'ordre de 0,3 à 2mm. Ces épaisseurs conviennent donc bien, que les cellules soient prises dans le feuilletage ou non. 

 <Desc/Clms Page number 12> 

 



   L'absorption des feuilles intercalaires est en général suffisamment faible pour n'avoir qu'une incidence limitée sur les caractéristiques de transmission de l'ensemble. Il est néanmoins possible, lorsque plusieurs feuilles sont utilisées pour constituer l'intercalaire, de combiner leurs caractéristiques pour répondre aux objectifs poursuivis par l'invention. Il est en particulier possible dans le cas des cellules prises entre les deux feuilles de verre, de disposer sous les cellules une feuille d'un matériau qui contribue à l'absorption lumineuse sans entraver le rayonnement reçu par les cellules. On peut en particulier utiliser des matériaux tels que les PVB colorés dont la transmission énergétique pour des épaisseurs type de 0,76mm peut être aussi faible que 15%.

   Bien entendu, les produits commercialisés permettent de réaliser toute une gamme de transmissions de valeurs intermédiaires. 



   Lorsque les cellules sont disposées dans une partie non feuilletée du vitrage, leur mise en place peut être avantageusement obtenue par collage sur la première feuille de verre. Le collage peut être réalisé au moyen d'adhésifs variés sous la condition que ces adhésifs ne fassent pas obstacle à la transmission énergétique vers les cellules. On peut aussi fixer les cellules au moyen de la feuille thermoplastique servant au feuilletage. Dans ce cas, la feuille thermoplastique s'étend au delà de la partie feuilletée pour couvrir aussi la zone des cellules. Une feuille d'EVA est particulièrement bien adaptée à ce type de construction. Dans un autre mode de réalisation, les cellules peuvent également être fixées par une feuille d'adhésif disposée de manière à les envelopper. 



   Quand les cellules sont dans le feuilletage le mode d'introduction dans l'intercalaire dépend en partie de la malléabilité de celui-ci. Pour les produits facilement déformables, il est possible d'imprimer dans la feuille l'empreinte correspondant à la cellule qu'on loge ensuite dans ladite empreinte. 



  Pour les feuilles moins facilement déformables, il peut être préférable d'associer au moins deux feuilles dont une d'épaisseur sensiblement égale à celle des cellules. Cette feuille est poinçonnée pour découper des logements aux dimensions des cellules. Elle est ensuite associée à au moins une feuille pour constituer un ensemble analogue à la feuille imprimée décrite précédemment. 



  Dans les deux cas, en tant que de besoin, à l'ensemble portant les cellules et les connections électriques, est superposée une feuille supplémentaire pour envelopper complètement la cellule dans un produit relativement souple, et éviter le contact avec les surfaces des feuilles de verre. 



   Pour faciliter l'incorporation des cellules dans l'intercalaire, on peut aussi combiner les caractéristiques de différents matériaux. Il est possible 

 <Desc/Clms Page number 13> 

 par exemple d'associer une feuille préformée de PVB comportant des logements pour les cellules, avec un film souple, par exemple d'EVA, qui permet une enduction et une adhésion parfaitement uniformes de la cellule dans l'intercalaire. 



   Pour des raisons d'esthétique il est aussi avantageux selon l'invention de masquer les bords des cellules, ou au moins ceux comportant des connexions électriques, ainsi que les conducteurs, et de façon générale toute partie qui introduit une discontinuité dans l'apparence du produit, par le dépôt d'émaux suivant des motifs obtenus par sérigraphie. Ces parties émaillées lorsqu'elles sont destinées à masquer les discontinuités apparentes depuis l'extérieur, sont établies sur la première feuille de verre. 



   Le vitrage selon l'invention est feuilleté suivant les techniques traditionnelles. Typiquement pour des feuilles intercalaires préformées, comme des feuilles de PVB, on procède habituellement en deux étapes : une première étape de dégazage suivie d'une étape de collage. La technique utilisée est notamment celle décrite dans la publication FR-A 2428920, à propos de l'encapsulation de cellules photovoltaïques dans un ensemble feuilleté. 



   D'autres modes de feuilletage sont aussi utilisables, notamment lorsque l'on procède avec un matériau liquide pour constituer l'intercalaire. 



   L'invention est décrite dans la suite en faisant référence aux dessins dans lesquels :   - la   figure 1 est une vue schématique en coupe d'un assemblage pour toit selon l'invention ; 
 EMI13.1 
 - la figure 2 est une vue en coupe d'un mode de réalisation de l'insertion des cellules photovoltaïques selon l'invention ; - la figure 3 est une vue en coupe d'un autre mode d'insertion des cellules photovoltaïques ; - la figure 4 est une vue schématique en perspective d'un toit équipé de cellules photovoltaïques ; - la figure 5 est une vue en coupe selon B-B de la figure 4 ; - la figure 6 est une vue en coupe selon A-A de la figure 4 ; - la figure 7 est une vue schématique en perspective, analogue à la figure 4, dans laquelle le feuilletage est limité à la seule partie transparente :

   - la figure 8 est une coupe d'une partie d'un vitrage du type de celui de la figure 7. 



   La coupe de la figure 1 comprend une cellule photovoltaïque, schématisée 1, avec des conduits de connexion. La cellule est enveloppée dans un intercalaire 2, constitué par exemple par du PVB incolore. La figure montre 

 <Desc/Clms Page number 14> 

 le matériau de l'intercalaire comme homogène. Cette structure est celle que l'on peut constituer après les opérations de feuilletage, à partir de feuilles initialement séparées comme montré à propos des figures 2 et 3. Cette structure de l'intercalaire peut aussi être obtenue lorsque l'on utilise un matériau qui se trouve à l'état liquide avant l'opération de feuilletage. 



   La face externe de l'assemblage est constituée par une feuille de verre 4, dont les caractéristiques, composition et épaisseur, sont telles que la transmission lumineuse est la plus élevée possible, et n'est pas inférieure à 82%. La face interne, c'est-à-dire celle tournée vers l'habitacle, est constituée par une feuille de verre 3 dont la transmission lumineuse ne dépasse pas 35%. 



   Le matériau constituant l'intercalaire est avantageusement aussi peu absorbant que possible, pour que le rayonnement incident ayant traversé la feuille 4 parvienne presque intégralement sur la cellule. Dans le cas d'un matériau absorbant, on maintient l'épaisseur de matériau séparant la cellule de la feuille 4 aussi petite que possible. Il est préférable de conserver un minimum de matériau intercalaire entre la cellule et la feuille 4, pour protéger la cellule contre un risque de détérioration au moment des opérations d'assemblage. La pression exercée sur la cellule est alors répartie de manière plus homogène sur toute la cellule du fait de l'élasticité du matériau de l'intercalaire. 



   La feuille 4 est représentée sensiblement moins épaisse que la feuille 3. Comme indiqué plus haut, il est préférable de maintenir l'épaisseur de la feuille 4 aussi petite que possible pour limiter son absorption. A l'inverse, la feuille 3 qui participe de façon prépondérante à l'établissement des propriétés mécaniques requises de l'assemblage est avantageusement plus épaisse. 



   La figure 2 montre un moyen d'insertion de la cellule dans le matériau intercalaire. Dans le cas représenté, la cellule est prise entre deux feuilles 5 et 6. Pour éviter de soumettre la cellule à une pression excessive lors de l'assemblage, un logement correspondant à ses dimensions est estampé dans l'une des feuilles (sur la figure la feuille 6). Les matériaux utilisés sont suffisamment malléables pour se prêter sans difficulté à ce type de mise en forme. Une fois la cellule mise en place dans son logement, la feuille 6 recouvre l'ensemble, et l'on procède au feuilletage suivant les modalités habituelles. Par exemple, l'intercalaire étant placé entre les deux feuilles de verre 3 et 4, on procède tout d'abord à un dégazage sous vide partiel.

   Simultanément, on prévient l'établissement d'une pression sur les faces des feuilles de verre, pression qui rendraient le dégazage plus difficile. Après dégazage, la température de l'ensemble est progressivement accrue, cette fois en laissant la 

 <Desc/Clms Page number 15> 

 pression extérieure s'exercer. Les dernières traces d'air sont alors dissoutes dans le matériau qui colle aux feuilles de verre. Simultanément les feuilles 5 et 6 se soudent l'une à l'autre pour ne constituer qu'une seule masse dans laquelle les cellules sont incorporées. 



   La figure 3 présente un principe analogue au précédent. Pour constituer l'intercalaire, par exemple trois feuilles de PVB 7,8 et 9 sont réunies. 



  La feuille intermédiaire 7, dont l'épaisseur correspond approximativement à celle des cellules, est poinçonnée. Les ouvertures pratiquées dans la feuille 7 reçoivent les cellules et l'on procède comme précédemment après avoir placé deux feuilles 8 et 9, de part et d'autre de la feuille 7. 



   La figure 4 présente un toit automobile selon l'invention. Le toit comporte deux zones fonctionnelles distinctes. La zone 12 correspond à une partie transparente permettant la vision depuis l'habitacle. La zone 13 est celle équipée de cellules. Sur cette figure on a représenté de façon très accentuée, un motif émaillé 14, destiné à masquer par exemple la fixation de la périphérie du toit et les intervalles entre les cellules, intervalles dans lesquels sont placés les conduits électriques. Sur cette figure l'émaillage est établi sur le pourtour de chaque cellule. Si il s'agit de ne masquer que les conducteurs, l'émaillage peut être limité à des bandes longitudinales ou transversales, et non à un quadrillage comme représenté. Le détail de la structure apparaît aux figures 5 et 6. 



   Dans la zone 12 destinée à la vision, L'assemblage est formé des deux feuilles de verre 3 et 4, et de l'intercalaire 2. Sur le bord du toit se trouve une bande émaillée 11. L'émaillage est avantageusement réalisé sur la feuille externe 4, et, plus précisément, sur la face de cette feuille en contact avec l'intercalaire. De la même façon, la figure 6 montre une bande émaillée 10 masquant la jonction entre deux cellules voisines. 



   Dans cette zone 12 la transmission lumineuse, même très réduite, du fait des caractéristiques de la feuille de verre 3, est suffisante pour permettre aux passagers de voir depuis l'habitacle à travers le toit. A l'inverse, de l'extérieur, la vision de l'habitacle, lorsque celui-ci n'est pas éclairé, est pratiquement nulle. De l'extérieur le toit parait presque uniformément sombre, et sur ce fond, on distingue tout juste les bandes émaillées. 



   Dans la zone 13, l'ensemble des motifs émaillés et des cellules photovoltaïques recouvre toute la surface. Cette partie n'est pas transparente. 



  Les cellules qui sont recouvertes par une feuille de verre offrant une très forte transmission sont dans les meilleures conditions d'efficacité. 



   La figure 7 montre de manière schématique un mode de réalisation de l'invention dans lequel la partie feuilletée est distincte de celle 

 <Desc/Clms Page number 16> 

 portant les cellules. La figure ne présente que le vitrage et l'emplacement occupé par les cellules. 



   Dans cette forme, la partie feuilletée transparente ne recouvre pas la totalité de la largeur du toit vitré. Une zone périphérique 18 de la feuille externe 4 est hors du feuilletage. Les cellules sont disposées sur la feuille 4 par exemple par collage. Le cas échéant les zones 18 de même que les intervalles entre les cellules peuvent recevoir un émail comme pour la réalisation de la figure 4. La feuille intercalaire, non représentée, s'étend sous la feuille 3, y compris dans la partie occupée par les cellules 1. Elle ne couvre pas les zones 18, réservées pour la fixation sur la carrosserie du véhicule par des moyens de fixation spécifiques. 



   Les zones 18 sont normalement limitées en largeur. Elles ont pour but de conserver sur l'ensemble de la périphérie du vitrage le même niveau. Il est important pour une bonne fixation sur la carrosserie qu'il n'apparaisse aucune discontinuité de niveau. La largeur nécessaire pour la mise en place du vitrage sur la carrosserie est généralement de l'ordre de 20 à 50mm. 



   La figure 8 montre le détail d'une structure du type de celle de la figure 7. La coupe de cette figure se situe à la transition entre la partie feuilletée et celle portant les cellules photovoltaïques. La feuille externe 4 recouvre l'ensemble. Les cellules 1 sont disposées en dehors de la partie feuilletée sous la feuille 4. Elles sont collées à la feuille 4 au moyen de l'intercalaire 2, constitué par exemple d'une feuille d'EVA. Comme précédemment, les contours des cellules, de même que les limites entre les parties feuilletées et non feuilletées, sont masqués par des bandes émaillées 10 disposées sur la face interne de la feuille 4. 



   La partie non feuilletée de la feuille 4 est supportée par des traverses métalliques telle qu'en 16. Un parement 17 recouvre l'ensemble du côté habitacle à l'exception de la partie feuilletée transparente. Pour l'esthétique le parement 17 couvre aussi le bord de la feuille 3. Pour éviter un contact direct des cellules avec les traverses 16, une feuille souple 19 est interposée. Cette feuille est par exemple un feutre ou une feuille de carton épais ou de matériau synthétique éventuellement expansé. 



   Dans le tableau suivant figurent les caractéristiques de transmission lumineuse (TLA), et énergétique (TE), pour différents verres ou assemblages feuilletés. La mesure de TE est selon Moon. 



   Pour ces ensembles la première feuille est en verre sodo-calcique clair ordinaire correspondant à la composition indiquée plus haut. La 

 <Desc/Clms Page number 17> 

 deuxième feuille est en verre gris de coloration conduisant à une absorption élevée du type décrit dans la publication FR-A2 738 240 et. Lorsqu'une couche athermique est présente, elle est disposée sur la deuxième feuille de verre. Il s'agit d'une couche à base d'oxyde d'étain dopé, d'environ 400 nanomètres d'épaisseur. 



   Les exemples 1 et 2 ont pour but de montrer le rôle significatif de la deuxième feuille de verre dans l'établissement de la transmission énergétique de l'ensemble constitué. 



   La comparaison entre les exemples 1 et 6, permet de montrer les rôles respectifs de la feuille grise, présente dans les deux cas, d'une part, et de la feuille de verre clair, et de l'intercalaire en PVB, présents uniquement dans l'exemple 6, d'autre part. Dans ce dernier cas, la transmission énergétique n'est abaissée que de 0,6%. En d'autres termes, la présence d'une feuille de verre clair de 1,8mm d'épaisseur et d'une feuille intercalaire de PVB de lmm d'épaisseur atténue très peu le rayonnement reçu sur les cellules dans la configuration proposée selon l'invention dans laquelle les cellules sont dans la partie feuilletée
L'épaisseur de la deuxième feuille intervient de façon significative. On peut comparer à ce sujet les exemples 1 et 2, mais aussi 3 et 6. 



   La présence de la couche athermique permet aussi un contrôle efficace de la transmission énergétique de l'ensemble. Ceci, comme on peut le constater, permet le cas échéant de limiter l'épaisseur de la deuxième feuille de verre sans perdre la réduction de transmission énergétique dans l'habitacle. 
 EMI17.1 
 
<tb> 
<tb> 



  Epaisseur <SEP> Epaisseur <SEP> Epaisseur <SEP> Couche <SEP> Epaisseur <SEP> TLA <SEP> TE
<tb> feuille <SEP> 1 <SEP> PVB <SEP> feuille <SEP> 2 <SEP> totale
<tb> 1 <SEP> 3, <SEP> 15 <SEP> 24, <SEP> 1 <SEP> 21,4
<tb> 2 <SEP> 4 <SEP> 16, <SEP> 9 <SEP> 14. <SEP> 7
<tb> 3 <SEP> 2, <SEP> 5 <SEP> 1 <SEP> 4 <SEP> 7, <SEP> 5 <SEP> 16, <SEP> 5 <SEP> 14, <SEP> 3
<tb> 4 <SEP> 1, <SEP> 5 <SEP> 0, <SEP> 76 <SEP> 3,15 <SEP> oui <SEP> 5, <SEP> 41 <SEP> 13,6 <SEP> 11,6
<tb> 5 <SEP> 1, <SEP> 8 <SEP> 1 <SEP> 3,15 <SEP> oui <SEP> 5, <SEP> 95 <SEP> 13,6 <SEP> 11. <SEP> 5
<tb> 6 <SEP> 1, <SEP> 8 <SEP> 1 <SEP> 3, <SEP> 15 <SEP> 5, <SEP> 95 <SEP> 23,7 <SEP> 20. <SEP> 8
<tb> 
 
Dans le second tableau figurent des données comparables à celles du premier tableau. La différence réside dans le choix du verre constituant la seconde feuille.

   Dans ce cas précis on choisit un verre gris encore plus absorbant que pour la première série. Ceci, comme on le constate, permet encore de diminuer de façon très substantielle la transmission énergétique pour la partie du toit qui ne comporte pas de cellules photovoltaïques. Pour ces exemples, les remarques précédentes concernant les caractéristiques de la première feuille de verre et de l'intercalaire, s'appliquent également. Autrement 

 <Desc/Clms Page number 18> 

 dit, la transmission reste élevée au niveau des cellules. 
 EMI18.1 
 
<tb> 
<tb> 



  Epaisseur <SEP> Epaisseur <SEP> Epaisseur <SEP> Couche <SEP> Epaisseur <SEP> TLA <SEP> TE
<tb> feuille <SEP> 1 <SEP> PVB <SEP> feuille <SEP> 2 <SEP> totale
<tb> 7 <SEP> 3, <SEP> 15 <SEP> 15, <SEP> 9 <SEP> 13,7
<tb> 8 <SEP> 4 <SEP> 10 <SEP> 8, <SEP> 4
<tb> 9 <SEP> 2, <SEP> 5 <SEP> 1 <SEP> 4 <SEP> 7, <SEP> 5 <SEP> 9, <SEP> 8 <SEP> 7, <SEP> 8
<tb> 10 <SEP> 1, <SEP> 5 <SEP> 0,76 <SEP> 3,15 <SEP> oui <SEP> 5, <SEP> 41 <SEP> 9 <SEP> 7, <SEP> 1
<tb> 11 <SEP> 1, <SEP> 8 <SEP> 1 <SEP> 3, <SEP> 15 <SEP> oui <SEP> 5, <SEP> 95 <SEP> 9 <SEP> 7
<tb> 12 <SEP> 1, <SEP> 8 <SEP> 1 <SEP> 3, <SEP> 15 <SEP> 5, <SEP> 95 <SEP> 15,6 <SEP> 12,8
<tb> 
 
 EMI18.2 
 On voit sur ce tableau que la transmission énergétique peut être abaissée très significativement même sans avoir recours à des couches additionnelles, simplement par le choix d'un verre approprié pour la seconde feuille de verre. 



  D'autres assemblages ont été réalisés en utilisant un émaillage partiel de la partie"transparente"pour en atténuer la transmission. Les assemblages sont tous constitués d'une première feuille de verre"clair"de 2, 5mm d'épaisseur, d'une feuille intercalaire de 0, 76mm d'épaisseur et d'une feuille de verre gris, du type utilisé aux exemples 1 à 6, de 2, 5mm d'épaisseur. 



  L'émaillage est de préférence réalisé sur la première feuille, en même temps que le masquage des bords de la feuille et des conducteurs électriques. 



  Les exemples 13 à 16 correspondent à des feuilletages dans lesquels une proportion croissante de la surface de la partie transparente est revêtue par l'émaillage par points. Les exemples 17 à 20 sont analogues aux exemples 13 à 16, mais, en plus, une couche athermique est utilisée, comme celle décrite à propos des exemples 4, 5, 10 et 11. Par mesure de simplicité, il est préférable de déposer la couche athermique sur la feuille grise. De cette façon le dépôt peut revêtir toute la surface sans s'opposer à la transmission vers les cellules photovoltaïques. 



  Le tableau suivant donne les caractéristiques de transmission pour ces différents assemblages. A titre d'indication, la feuille de verre"clair", de 2, 5mm d'épaisseur, présente une transmission lumineuse TLA de 91, 5, et une transmission énergétique, TE, de 90, 5. Ceci correspond pratiquement à ce que reçoivent les cellules. 

 <Desc/Clms Page number 19> 

 
 EMI19.1 
 
<tb> 
<tb> 



  Emaillage <SEP> % <SEP> Couche <SEP> TLA <SEP> TE
<tb> 13 <SEP> 33, <SEP> 5 <SEP> 30
<tb> 14 <SEP> 50 <SEP> 16, <SEP> 5 <SEP> 15
<tb> 15 <SEP> 60 <SEP> 13, <SEP> 5 <SEP> 12
<tb> 16 <SEP> 70 <SEP> 12 <SEP> 9
<tb> 17 <SEP> oui <SEP> 18, <SEP> 5 <SEP> 15, <SEP> 5
<tb> 18 <SEP> 50 <SEP> oui <SEP> 9, <SEP> 5 <SEP> 8
<tb> 19 <SEP> 60 <SEP> oui <SEP> 7, <SEP> 5 <SEP> 6, <SEP> 5
<tb> 20 <SEP> 70oui <SEP> 5, <SEP> 5 <SEP> 5
<tb> 
 
Si l'émaillage partiel permet de réduire la transmission en proportion de la surface couverte, il ne peut être utilisé seul pour atteindre les transmissions les plus basses sans altérer le caractère"transparent"souhaité. 



  Pour cela, lorsque la transmission doit être extrêmement faible, on combine avantageusement les différents moyens mis en oeuvre. Les exemples 18,19 et 20 proposent ainsi les effets simultanés de la coloration de la deuxième feuille, de l'émaillage partiel et d'une couche athermique. 



   Aux figures 4 et 7, les vitrages représentés comportent une partie dans laquelle les cellules sont rassemblées. Des dispositions différentes peuvent être préférées selon les arrangements propres à chaque véhicule. Une autre disposition particulière consiste par exemple à disposer les cellules sur le pourtour du toit, laissant la partie transparente au centre de celui-ci. Cette disposition en ménageant les zones non transparentes sur la périphérie, peut améliorer l'esthétique en confondant les zones portant les cellules avec celles correspondant à la carrosserie,   en"élargissant"ces   dernières. Ces exemples ne sont bien entendu pas limitatifs des dispositions respectives possibles des zones transparentes et non transparentes des toits selon l'invention.



    <Desc / Clms Page number 1>
 



  Glazing for motor vehicle roof
The invention relates to glazing intended for the roofs of motor vehicles comprising a part ensuring a certain light transmission in the passenger compartment.



   Car manufacturers are developing models with an ever-increasing glass surface. The dimensions of the windshields and rear glasses are increasing, in particular to improve the aerodynamic profiles. Beyond this, glazing predominantly enters into the constitution of sunroofs. Following this trend, manufacturers want the use of glazing forming all, or at least a very large part of the roofs of vehicles.



   The use of glazing forming the major part of the roof, leads for reasons of both aesthetics, but also for technical reasons such as the tightness of the structure, the reduction of aerodynamic noise, or the convenience of mounting, to limit as much as possible the number of glazing elements constituting the roof. The most favorable case corresponds for example to a single glazing forming the whole of the roof.



   Roofs whose entire surface has the same characteristics, in particular transparency, constitute a significant part of what the builders are asking for. Roofs of this type, if they have to offer a certain transparency, must even more prevent an excessive energy transmission, to preserve the comfort of the passengers.



  However, there remain provisions in which the roofs simultaneously comprise several parts fulfilling different functions, and which for this reason must have different characteristics. In particular, certain functions can lead to the part of the glazing fulfilling this function not being transparent.



   The object of the invention is to provide glazing for vehicle roofs, at least one part of which has a certain transparency, and at least one other part of which must satisfy different transmission conditions. A typical case of glazing which meets this last requirement is that of glazing which is provided with photovoltaic cells. The invention is described below in connection with these glazing units receiving cells of this type. It can however be applied to other kinds of glazing of which only a part must offer the indicated transparency.

  <Desc / Clms Page number 2>

 



   Motor vehicle manufacturers offer on certain models, in particular high-end models, the installation of photovoltaic cells which have the function of limiting the stress on the accumulators, in particular when the vehicle engine is not running. At present this is used for example to recharge the accumulators, or to supply a ventilation and thus limit the heating of the vehicle when stationary. Other uses are nevertheless already envisaged, which all have in common that they constitute a complementary source of energy to reduce the consumption of that generated by the engine of the vehicle.



   For good efficiency, the cells should be placed on a well exposed surface as large as possible, and under a protection which protects them from environmental aggressions: humidity, grease, etc. The cells are therefore placed behind a transparent screen, usually consisting of a sheet of glass.



   In commercial vehicles which have cells, the location of these cells is oriented towards the roof for reasons of convenience. The adaptation of photovoltaic cells on elements of glass roofs has been the subject of various previous proposals.



   Still with regard to commercial vehicles comprising this type of equipment, the installation of photovoltaic cells was made on a sheet of glass forming at least part of the roof, and on the face of this sheet which is not exposed to the outside environment. The cells are glued to the glass sheet, and protected and hidden on the side of the passenger compartment by a facing.



   A difficulty for the formation of these roofs comprising cells lies in the fact that, in order to meet safety standards, in particular as regards mechanical strength, the glass sheet must have a certain thickness. The thicker the glass, the lower the share of energy transmitted to the cells.



   Typically, in previous embodiments, a sheet of tempered glass at least 5mm thick is required. At these thicknesses, the usual clear glasses have an absorption which is not negligible. The energy transmission (TE), measured according to Moon, is established for example around 82% of the incident light
These previous embodiments therefore lead, for the cells, to an efficiency which is not optimized. It is desirable to seek an implementation which minimizes absorption without compromising the mechanical qualities.

  <Desc / Clms Page number 3>

 



   In this sense, it is possible, while keeping the structure described above, to use so-called "extra clear" glasses. These glasses, which in particular have an extremely low iron content, are relatively poorly absorbent. Under a thickness of 5mm, as before, the TE can be of the order of 90%, or a gain of the order of 8%. The disadvantage of these glasses lies in their cost. Their price is about 2.5 times that of ordinary clear glasses. Even if the cost of glass is only a small part of the cost of the roof, it is understandable that the difference is not insignificant for manufacturers.



   Furthermore, in the previous embodiments, the use of a glass sheet, the energy transmission of which is as high as possible, in order to improve the efficiency of the photovoltaic cells, is directly contrary to the requirements of the manufacturers with regard to the transmission in the cockpit. For reasons of thermal comfort, the energy transmission must be as low as possible, and not exceed 20%, and preferably be less than 15%. The use of clear glasses, and a fortiori extra clear glasses, could therefore not be envisaged if only part of the roof receives the cells, the rest being arranged for the vision of the passengers.



   It is possible to satisfy the contradictory conditions mentioned above, to deposit a thin layer limiting the transmission according to a traditional technique. The deposit must nevertheless be limited to the parts of the sheet which do not contain cells, which adds to the complexity of the operation. Furthermore, the layer, whatever the technique used for its formation, is relatively fragile, and, inside the passenger compartment, it remains exposed to all risks of degradation by scratching, abrasion etc. The defects which result from such degradations are extremely sensitive insofar as the layer absorbs and / or reflects a significant part of the incident light. The defects of this layer then appear as so many points or luminous lines on a surface which is clearly less so.



   The invention provides glazing for vehicle roofs with a new structure that meets the requirements set out above. The glazing units according to the invention comprise at least one transparent part, and at least one part which is not transparent, in particular due to the presence of photovoltaic cells or other functional elements. This solution also offers a number of advantages which will be explained in the course of the description.

  <Desc / Clms Page number 4>

 



   In what follows, reference is made to a vehicle roof. This designation concerns the case where the entire roof is envisaged. It also relates to the case where only part of it is equipped in the manner which is specified. It is easy to understand that the "glass" part can be limited for example to what constitutes the movable element of a sunroof. The case of the complete roof is however that which best corresponds to the aims pursued when an effort is made to have as large an area as possible for the cells, without however giving up the other aspects. Furthermore, the trend in automotive “design”, mentioned above, is clearly towards an increase in the glazed surface.

   The embodiments according to the invention, according to this trend, are therefore in favor of an entire roof made of glass material.



  The following description and examples present the case of the entire glass roof without this being limiting.



   The roof glazing according to the invention has at least one transparent part, and a non-transparent part due to the presence of functional elements which are themselves non-transparent. It comprises a first glass sheet constituting the external face, a second glass sheet constituting at least part of the internal face of the roof, and an interlayer sheet of one or more thermoplastic materials traditionally used to form laminated glazing, interlayer which extends at least over the surfaces of the glass sheets facing each other. The non-transparent functional elements, such as the photovoltaic cells, are arranged under the first sheet of glass.



   In the following, for convenience, reference is made to photovoltaic cells as functional elements. This example is particularly representative of what these elements can be. However, it can be any other non-transparent device which covers a significant part of the roof surface.



   The set of characteristics of the elements superimposed in the transparent part of the glazing is such that the energy transmission on this part is not more than 25%, and preferably remains less than 20%.



  Still in the transparent part, the light transmission is at most 35%, and most often is less than 30%.



   The choice of the first glass sheet, when the functional elements are photovoltaic cells, is such that its energy transmission, TE, is at least 82%, and preferably greater than 87%.



   The laminated structure can extend over the whole of the glazing or concern only part of it. The transparent part of the roof is

  <Desc / Clms Page number 5>

 always flaky. Conversely, the non-transparent part of the roof, the part where the cells are located, may include only the outer glass sheet.



   In the case of partially laminated glazing, it is advantageous to ensure that the first sheet of glass, which is the one which has the largest dimensions, is the only one which rests on the bodywork. It is important, for reasons of assembly and sealing, to avoid differences in level. For this, the choice of the dimensions of the sheets must lead to a first sheet, the entire periphery of which is free over a few millimeters. In other words, the second glass sheet is always set back a distance at least equal to that necessary for positioning the glazing on the bodywork.



   By an appropriate choice of glass sheets and, where appropriate, of the other constituents of the laminated assembly: layers, enameling or quality of the interlayer, it is possible to satisfy the requirements for energy transmission in the passenger compartment. These requirements are directly contrary to those regarding cell exposure. In other words, laminating makes it possible to satisfy distinct and opposite requirements depending on the part of the glazing considered.



   All roof glazings according to the invention also meet the mechanical strength requirements of the manufacturers. The roof contributes to the overall rigidity of the structure. Whatever the form chosen, roof entirely or partially laminated, the glazings according to the invention confer the mechanical properties required under the conditions indicated below.



   If only one part is laminated and transparent, the other part which carries the cells being non-transparent, the mechanical properties can be partly obtained by structural reinforcing elements such as metal profiles or sheets situated under the non-laminated part. glazing. These elements which are integrated into the vehicle body, do not constitute any discomfort given the fact that they are located in a non-transparent part of the roof. These additional structural elements, but also the various cells and conductors, are then masked on the side of the passenger compartment by traditional coverings and facings.



   The fact of using a partially laminated glazing, instead of a fully laminated glazing, also allows significant reduction. This aspect is all the more significant since the second sheet of glass, which is of limited dimensions, is also the one whose thickness is normally the greatest for the reasons explained below, in particular relating to the

  <Desc / Clms Page number 6>

 energy transmission.



   When the entire glazing is laminated, the mechanical resistance specific to this type of structure is sufficient to achieve the required performance. It is then not necessary to have additional reinforcing elements under the non-transparent part of the glazing.
In the construction according to the invention, the sheets are assembled according to the usual techniques for obtaining laminated glazing.



   The laminated assembly makes it possible in particular, compared with the constructions of the prior art, to reduce the thickness of the glass sheet which protects the cells when the laminating is carried out on the entire glazing and the cells are placed between the two glass sheets. A large part of the resistance of the assembly is then imparted by the second glass sheet whose energy transmission characteristics, and therefore of thickness, are not controlled by the presence of the photovoltaic cells.



   If the first sheet is advantageously thin, the total thickness of the laminated assembly influences the mechanical properties.



  Weight considerations, as for monolithic glazing, lead to limit this thickness. We strive to keep the total thickness less than 10mm, and preferably less than 7mm.



   As indicated above, depending on whether the laminated assembly extends over practically the entire glazed surface or is limited to the transparent part of the roof, the thickness of the first sheet of glass is substantially different. In both cases, however, the first glass sheet contributes to the mechanical strength of the assembly. In the first case, the external glass sheet must have a sufficient thickness to suitably resist external forces, regardless of the question of stiffening of the passenger compartment.



  In the second case, the contribution of the first glass sheet to this stiffening is more significant.



   For these reasons, in the first case it is advantageous to use sheets whose thickness is not less than 1 mm. Conversely, to maintain the energy advantage even with ordinary soda-lime glasses, the thickness of this first sheet is not more than 3mm. Most commonly this thickness is between 1.5 and 2.5mm. For "clear" and "extra-clear" glasses, the thickness of the first sheet can be greater, without losing the benefit of a high rate of energy transmission. For these clear glasses, the thickness can reach 5mm.

  <Desc / Clms Page number 7>

 



   In the second case - that of a "partial lamination" - the thickness depends on the presence or not of reinforcing elements of the structure. This thickness is necessarily greater than in the first case, and is advantageously from 2 to 6mm, and preferably from 3 to 5mm.



   The first sheet can, of course, be made of extra clear glass to optimize transmission. In this case, the energy transmission of the sheet can exceed 90%. If a sheet of clear glass is used, the energy transmission, still under the thickness conditions indicated above, is slightly lower but remains greater than 85%. As an indication for an extra clear commercial glass, 4mm thick, the energy transmission is 90.7. For a clear glass of the trade, always under 4mm, the energy transmission is 89.5. Obviously, these transmissions are all the higher the thinner the sheet considered.



   The second glass sheet is chosen so as to provide the necessary resistance at least in the transparent part. The considerations relating to its thickness with regard to the light transmission are opposite to those relating to the first sheet. Indeed, for the roof to allow vision towards the outside, while limiting the energy transmission in the passenger compartment, this second sheet must be very absorbent, and the thickness is an important factor in establishing this absorption. In practice, however, a compromise must be established between the increase in thickness, favorable to mechanical resistance and absorption, on the one hand, and the need to keep the weight within reasonable limits, on the other hand.



   From a mechanical point of view, in a laminated assembly, and in association with the first sheets described above, sheets of 2 to 5mm and, preferably, 2.5 to 4mm, make it possible to meet the standards in this field. For these thicknesses, and to obtain an energy transmission not exceeding 25%, and preferably 20%, in particular highly colored glasses are used.



   The importance of the role of the second sheet of glass in the production of roof glazing according to the invention leads us to specify their nature.



   Colored glasses useful according to the invention are known from the prior art. Among the glasses which make it possible to reduce in a very significant way the energy transmission one prefers those which in transmission have a neutral, bluish, or blue-green coloring. In all cases, the manufacturers ask for a purity of coloring, within the meaning of the CIE (International Lighting Commission), as low as possible. The choice of these glasses has

  <Desc / Clms Page number 8>

 intended to ensure that the light transmitted into the passenger compartment does not distort the colors.



   A sheet of gray glass is thus advantageously used, the excitation purity of which is less than 10%, and which, under a thickness of 4mm, has a light transmission (TLA) of less than 25%, and preferably less than 20%. Glasses corresponding to these conditions are, for example soda-lime glasses, the structural components of which are traditionally in the following weight contents:
 EMI8.1
 
 <tb>
 <tb> SiOz <SEP> 60-75 <SEP>% <SEP> AOs <SEP> 0-5 <SEP>%
 <tb> Na2O <SEP> 10-20 <SEP>% <SEP> BaO <SEP> 0-2 <SEP>%
 <tb> CaO <SEP> 0-16 <SEP>% <SEP> BaO + CaO + MgO <SEP> 10-20 <SEP>%
 <tb> KO <SEP> 0-10 <SEP>% <SEP> KO + NaO <SEP> 10-20 <SEP>%
 <tb> MgO <SEP> 0-10 <SEP>%
 <tb>
 To these components are added chromophoric constituents in particular: Fe203, Co, Se, Cr2O3.

   "Gray" glasses of this type are in particular those whose chromophoric agents are in the contents:
 EMI8.2
 
 <tb>
 <tb> Fez03 <SEP> 1-1,65 <SEP>%
 <tb> Co <SEP> 0.017-0, <SEP> 030 <SEP>%
 <tb> Se <SEP> 0.001-0, <SEP> 0100. <SEP>%
 <tb> A <SEP> other <SEP> combination <SEP> from <SEP> chromophores <SEP> advantageous
 <tb>
 additionally includes chromium oxide. Preferred contents are for example:
 EMI8.3
 
 <tb>
 <tb> FeZ03 <SEP> 0.75-1, <SEP> 8 <SEP>%
 <tb> Co <SEP> 0.0040-0, <SEP> 0180 <SEP>%
 <tb> Se <SEP> 0.0003-0, <SEP> 0040 <SEP>%
 <tb> Cr203 <SEP> 0.0010-0, <SEP> 0100 <SEP>%
 <tb> Des <SEP> glasses <SEP> from <SEP> these <SEP> types <SEP> are <SEP> described <SEP> from <SEP> way <SEP> detailed
 <tb>
 notably in publications FR-A 2 738 238 and 2 738 240.



   All previous lenses are very neutral and "gray" in transmission. Where appropriate, as indicated above, the glazings according to the invention may have a bluish shade. To achieve this type of glazing, it is advantageous to use a second sheet of glass whose chromophoric constituents are essentially iron oxides and cobalt in the weight proportions:
 EMI8.4
 
 <tb>
 <tb> Fe2O3 <SEP> (iron <SEP> total) <SEP> 1.1-1.8 <SEP>%
 <tb> FeO <SEP> 0.30-0.50 <SEP>%
 <tb> Co <SEP> 0.0030-0.0270 <SEP>%
 <tb>
 
 EMI8.5
 to which other agents may be added within the limits indicated

  <Desc / Clms Page number 9>

 below:

   
 EMI9.1
 
 <tb>
 <tb> Cr203 <SEP> 0-0.0250 <SEP>%
 <tb> V205 <SEP> 0-0.0500 <SEP>%
 <tb> CeO2 <SEP> 0-0.5 <SEP>%
 <tb> TiOz <SEP> 0-1.5 <SEP>%
 <tb> Se <SEP> 0-0.0100 <SEP>%
 <tb>
 
Blue glasses meeting this definition are described in detail in the European patent application filed on December 22, 1998 under the number 98 124 371. 0.



   It is also possible to use a glass with high selectivity (TLA / TE ratio) such as those whose chromophores are in proportions:
 EMI9.2
 
 <tb>
 <tb> Fez03 <SEP> (iron <SEP> total) <SEP> 1,2-1, <SEP> 85 <SEP>%
 <tb> FeO <SEP> 0.40-0, <SEP> 50 <SEP>%
 <tb> Co <SEP> 0.0020-0, <SEP> 013 <SEP>%
 <tb> Cr203 <SEP> 0-0.0240 <SEP>%
 <tb> VOg <SEP> 0-0, <SEP> 1 <SEP>%
 <tb> Se <SEP> 0-0.0015 <SEP>%
 <tb>
 
These glasses are very dark in color with a green to blue shade. Their selectivity often exceeds 1.65. They are described in detail in the French patent application filed on July 31 under No. 98/10020.



   Another series of very selective colored glasses with low energy transmission, which can be used to form the second sheet of the laminated part of the roof, corresponds to the compositions in which the chromophores are: either
 EMI9.3
 
 <tb>
 <tb> Fe203 <SEP> (iron <SEP> total) <SEP> 1,2-1, <SEP> 8 <SEP>%
 <tb> FeO <SEP> 0.25-0, <SEP> 35 <SEP>%
 <tb> Co <SEP> 0.0020-0, <SEP> 010 <SEP>%
 <tb> Cr203 <SEP> 0.001-0, <SEP> 0100 <SEP>%
 <tb> CeO2 <SEP> 0, <SEP> 1-0, <SEP> 8 <SEP>%
 <tb>
 is
 EMI9.4
 
 <tb>
 <tb> FeZ03 <SEP> (iron <SEP> total) <SEP> 0.9-1, <SEP> 8 <SEP>%
 <tb> FeO <SEP> 0.25-0, <SEP> 40 <SEP>%
 <tb> Co <SEP> 0.0010-0, <SEP> 010%
 <tb> Cr203 <SEP> 0-0.0240 <SEP>%
 <tb> VOs <SEP> 0-0.2 <SEP>%
 <tb>
 
These glasses, also very colorful, are gray green. They have a selectivity normally greater than 1.5.

   They are described in the publication

  <Desc / Clms Page number 10>

 EP-A 0887320.



   The colorimetric characteristics of the second glass sheet preferably satisfy the following relationships:
 EMI10.1
 in which P is the excitation purity (CIE) measured under 4mm of thickness, with the illuminant C, under a solid angle of observation of 20. and R the color rendering index as defined in the standard EN 410. This last index translates the observation through a specific glazing, of a set of eight color samples illuminated by the reference illuminant Dgg.



  The color rendering index is all the higher as the presence of the glazing modifies the perception of colors less. The gray lenses offered are those with the highest color rendering index. It is generally greater than 80% and can reach and even exceed 90%. Comparatively, the glasses which confer a bluish shade, on the whole, have a lower index which is around 75%. In general, sheets are used to form the glazings according to the invention, the color rendering index of which is not less than 70 and preferably 75%.



   The most neutral glasses, which are gray, advantageously meet the conditions:
 EMI10.2
 
The use of very colored glasses normally leads to the desired transmissions. If nevertheless the chosen glass does not reduce transmission sufficiently, or if it is preferred to use a less strongly colored glass, it is possible to confer the desired transmission properties by the use of a traditional absorbent and / or reflective thin layer. , for example a layer based on titanium nitride or chromium, a layer of tin oxide possibly doped, a layer of indium tin oxide etc.

   In the hypothesis of the implementation of such a layer, the latter is advantageously removed from the risks of degradation, by placing it on the face of the glass sheet which is in contact with the interlayer.



   To be able to produce a layer uniformly covering the sheet, it is preferably located on the second glass sheet. This eliminates the need to precisely delimit the layer relative to the locations of the cells. Conversely, if the layer is applied to the first sheet, the locations corresponding to the cells

  <Desc / Clms Page number 11>

 must be subject to reservations to keep the strongest possible transmission at these locations.



   Another means of reducing light transmission, which can be used according to the invention, consists in placing an enameling according to a pattern made up of very small points in a dense frame.



  The points must be of sufficiently small size so that observation from the passenger compartment does not make it possible to discern them. They are below the resolution threshold. Points of a few tenths of a millimeter spaced about 0.5 to 2 mm can be chosen.



   When using an enameled pattern limiting transmission, the fraction of the area covered determines that of the non-transmitted radiation. It is possible to vary this fraction in very large proportions. While maintaining a certain overall "transparency", the enamel can cover up to 70% of the surface. Advantageously, it does not exceed 60%.



   When an enamelled dot pattern is used, it can be made on either glass sheet as long as this pattern does not mask the cells.



   Between the two sheets of glass is an interlayer sheet of a thermoplastic material. The indication "of" a sheet does not exclude that there may be at the time of formation of the laminate several sheets of the same material or different materials. The thermoplastic sheet can also be formed in the assembly from a different state, in particular by polymerization or crosslinking of a material in the liquid state.



  The indication intermediate sheet therefore corresponds to the final shape in the assembly, and does not relate to the state of the initial material, even if the most usual form is that of a sheet.



   The interlayer sheets are those usually used in laminated glazing. These are in particular sheets of polyvinyl butyral (PVB), polyvinyl acetate (EVA), polyurethane (PU) or polyvinyl chloride (PVC).



   When the cells are taken between two sheets of glass, the thickness of the sheet, or of the interleaving sheets, must be at least equal to that of the photovoltaic cells arranged in the assembly. In practice, the cells are between 0.1 and 1 mm thick. The spacers of the usual laminates have a thickness of the order of 0.3 to 2mm. These thicknesses are therefore suitable, whether the cells are taken up in the lamination or not.

  <Desc / Clms Page number 12>

 



   The absorption of the interlayer sheets is generally sufficiently low to have only a limited impact on the transmission characteristics of the assembly. It is nevertheless possible, when several sheets are used to constitute the interlayer, to combine their characteristics to meet the objectives pursued by the invention. It is in particular possible in the case of cells taken between the two glass sheets, to have under the cells a sheet of a material which contributes to light absorption without hampering the radiation received by the cells. One can in particular use materials such as colored PVB whose energy transmission for typical thicknesses of 0.76 mm can be as low as 15%.

   Of course, the products sold make it possible to carry out a whole range of intermediate value transmissions.



   When the cells are placed in a non-laminated part of the glazing, their positioning can advantageously be obtained by bonding to the first sheet of glass. Bonding can be carried out by means of various adhesives on the condition that these adhesives do not obstruct the energy transmission towards the cells. The cells can also be fixed using the thermoplastic sheet used for laminating. In this case, the thermoplastic sheet extends beyond the laminated part to also cover the area of the cells. An EVA sheet is particularly well suited to this type of construction. In another embodiment, the cells can also be fixed by a sheet of adhesive arranged so as to wrap them.



   When the cells are in the lamination the mode of introduction into the interlayer depends in part on the malleability of the latter. For easily deformable products, it is possible to print in the sheet the imprint corresponding to the cell which is then housed in said imprint.



  For less easily deformable sheets, it may be preferable to combine at least two sheets, one of a thickness substantially equal to that of the cells. This sheet is punched to cut housings to the dimensions of the cells. It is then associated with at least one sheet to form an assembly similar to the printed sheet described above.



  In both cases, as necessary, on the assembly carrying the cells and the electrical connections, is superimposed an additional sheet to completely wrap the cell in a relatively flexible product, and avoid contact with the surfaces of the glass sheets. .



   To facilitate the incorporation of cells in the interlayer, it is also possible to combine the characteristics of different materials. It is possible

  <Desc / Clms Page number 13>

 for example associating a preformed sheet of PVB comprising housings for the cells, with a flexible film, for example of EVA, which allows a perfectly uniform coating and adhesion of the cell in the interlayer.



   For aesthetic reasons it is also advantageous according to the invention to mask the edges of the cells, or at least those comprising electrical connections, as well as the conductors, and in general any part which introduces a discontinuity in the appearance of the produced by the deposition of enamels according to patterns obtained by screen printing. These enamelled parts when they are intended to mask the apparent discontinuities from the outside, are established on the first sheet of glass.



   The glazing according to the invention is laminated according to traditional techniques. Typically for preformed interlayer sheets, such as PVB sheets, one usually proceeds in two steps: a first degassing step followed by a bonding step. The technique used is in particular that described in publication FR-A 2428920, concerning the encapsulation of photovoltaic cells in a laminated assembly.



   Other laminating modes can also be used, in particular when using a liquid material to form the interlayer.



   The invention is described below with reference to the drawings in which: - Figure 1 is a schematic sectional view of a roof assembly according to the invention;
 EMI13.1
 - Figure 2 is a sectional view of an embodiment of the insertion of photovoltaic cells according to the invention; - Figure 3 is a sectional view of another mode of insertion of the photovoltaic cells; - Figure 4 is a schematic perspective view of a roof equipped with photovoltaic cells; - Figure 5 is a sectional view along B-B of Figure 4; - Figure 6 is a sectional view along A-A of Figure 4; FIG. 7 is a schematic perspective view, similar to FIG. 4, in which the lamination is limited to the only transparent part:

   FIG. 8 is a section through part of a glazing of the type of that of FIG. 7.



   The section of FIG. 1 comprises a photovoltaic cell, shown diagrammatically 1, with connection conduits. The cell is wrapped in a spacer 2, constituted for example by colorless PVB. The figure shows

  <Desc / Clms Page number 14>

 the interlayer material as homogeneous. This structure is that which can be formed after the lamination operations, from sheets initially separated as shown in connection with FIGS. 2 and 3. This structure of the interlayer can also be obtained when using a material which is in the liquid state before the lamination operation.



   The external face of the assembly is formed by a glass sheet 4, the characteristics, composition and thickness of which are such that the light transmission is as high as possible, and is not less than 82%. The internal face, that is to say that facing the passenger compartment, is constituted by a glass sheet 3 whose light transmission does not exceed 35%.



   The material constituting the interlayer is advantageously as little absorbent as possible, so that the incident radiation having passed through the sheet 4 reaches almost entirely on the cell. In the case of an absorbent material, the thickness of material separating the cell from the sheet 4 is kept as small as possible. It is preferable to keep a minimum of intermediate material between the cell and the sheet 4, to protect the cell against a risk of deterioration during the assembly operations. The pressure exerted on the cell is then distributed more evenly over the entire cell due to the elasticity of the interlayer material.



   The sheet 4 is shown to be substantially thinner than the sheet 3. As indicated above, it is preferable to keep the thickness of the sheet 4 as small as possible to limit its absorption. Conversely, the sheet 3 which participates predominantly in establishing the mechanical properties required for the assembly is advantageously thicker.



   FIG. 2 shows a means of inserting the cell into the intermediate material. In the case shown, the cell is taken between two sheets 5 and 6. To avoid subjecting the cell to excessive pressure during assembly, a housing corresponding to its dimensions is stamped in one of the sheets (in the figure sheet 6). The materials used are sufficiently malleable to lend themselves without difficulty to this type of shaping. Once the cell has been placed in its housing, the sheet 6 covers the assembly, and the lamination is carried out according to the usual methods. For example, the interlayer being placed between the two glass sheets 3 and 4, first of all degassing under partial vacuum.

   Simultaneously, it prevents the establishment of a pressure on the faces of the glass sheets, pressure which would make degassing more difficult. After degassing, the temperature of the assembly is gradually increased, this time leaving the

  <Desc / Clms Page number 15>

 external pressure to exert. The last traces of air are then dissolved in the material which sticks to the glass sheets. Simultaneously the sheets 5 and 6 are welded to each other to form a single mass in which the cells are incorporated.



   Figure 3 presents a principle similar to the previous one. To form the interlayer, for example three sheets of PVB 7,8 and 9 are combined.



  The intermediate sheet 7, the thickness of which corresponds approximately to that of the cells, is stamped. The openings made in sheet 7 receive the cells and the procedure is carried out as above after having placed two sheets 8 and 9 on either side of sheet 7.



   Figure 4 shows a car roof according to the invention. The roof has two separate functional areas. Zone 12 corresponds to a transparent part allowing vision from the passenger compartment. Zone 13 is that equipped with cells. In this figure there is shown in a very accentuated manner, an enameled pattern 14, intended to hide for example the fixing of the periphery of the roof and the intervals between the cells, intervals in which the electrical conduits are placed. In this figure the enameling is established on the periphery of each cell. If it is a question of masking only the conductors, the enamelling may be limited to longitudinal or transverse bands, and not to a grid as shown. The detail of the structure appears in Figures 5 and 6.



   In the zone 12 intended for the vision, the assembly is formed of the two sheets of glass 3 and 4, and of the interlayer 2. On the edge of the roof is an enameled strip 11. The enameling is advantageously carried out on the outer sheet 4, and, more precisely, on the face of this sheet in contact with the interlayer. In the same way, FIG. 6 shows an enamelled strip 10 masking the junction between two neighboring cells.



   In this zone 12 the light transmission, even very small, due to the characteristics of the glass sheet 3, is sufficient to allow passengers to see from the passenger compartment through the roof. Conversely, from the outside, the vision of the passenger compartment, when it is not lit, is practically zero. From the outside the roof appears almost uniformly dark, and on this background, we can barely make out the enameled bands.



   In zone 13, all of the enamelled patterns and photovoltaic cells cover the entire surface. This part is not transparent.



  The cells which are covered by a sheet of glass offering a very strong transmission are in the best conditions of efficiency.



   FIG. 7 schematically shows an embodiment of the invention in which the laminated part is distinct from that

  <Desc / Clms Page number 16>

 carrying the cells. The figure shows only the glazing and the location occupied by the cells.



   In this form, the transparent laminated part does not cover the entire width of the glass roof. A peripheral zone 18 of the outer sheet 4 is outside of the lamination. The cells are arranged on sheet 4, for example by gluing. Where appropriate, the zones 18 as well as the intervals between the cells can receive an enamel as for the embodiment of FIG. 4. The intermediate sheet, not shown, extends under the sheet 3, including in the part occupied by the cells 1. It does not cover zones 18, reserved for fixing to the vehicle body by specific fixing means.



   The zones 18 are normally limited in width. They are intended to maintain the same level over the entire periphery of the glazing. It is important for a good fixing on the bodywork that no level discontinuity appears. The width required for the installation of the glazing on the bodywork is generally of the order of 20 to 50mm.



   Figure 8 shows the detail of a structure of the type of that of Figure 7. The section of this figure is located at the transition between the laminated part and that carrying the photovoltaic cells. The outer sheet 4 covers the assembly. The cells 1 are arranged outside the laminated part under the sheet 4. They are glued to the sheet 4 by means of the interlayer 2, consisting for example of an EVA sheet. As before, the contours of the cells, as well as the boundaries between the laminated and non-laminated parts, are masked by enameled strips 10 placed on the internal face of the sheet 4.



   The non-laminated part of the sheet 4 is supported by metal crosspieces such as at 16. A facing 17 covers the whole of the passenger compartment side with the exception of the transparent laminated part. For aesthetics, the facing 17 also covers the edge of the sheet 3. To avoid direct contact of the cells with the crosspieces 16, a flexible sheet 19 is interposed. This sheet is for example a felt or a sheet of thick cardboard or possibly expanded synthetic material.



   The following table shows the light transmission (TLA) and energy transmission (TE) characteristics for different laminated glasses or assemblies. The TE measurement is according to Moon.



   For these sets the first sheet is made of ordinary clear soda-lime glass corresponding to the composition indicated above. The

  <Desc / Clms Page number 17>

 second sheet is of gray colored glass leading to high absorption of the type described in publication FR-A2 738 240 and. When an athermic layer is present, it is placed on the second glass sheet. It is a layer based on doped tin oxide, about 400 nanometers thick.



   The purpose of Examples 1 and 2 is to show the significant role of the second glass sheet in establishing the energy transmission of the assembly made up.



   The comparison between Examples 1 and 6 makes it possible to show the respective roles of the gray sheet, present in both cases, on the one hand, and of the clear glass sheet, and of the PVB interlayer, present only in example 6, on the other hand. In the latter case, the energy transmission is only reduced by 0.6%. In other words, the presence of a sheet of clear glass 1.8 mm thick and an interlayer sheet of PVB 1 mm thick attenuates very little the radiation received on the cells in the configuration proposed according to the invention in which the cells are in the laminated part
The thickness of the second sheet is significant. We can compare examples 1 and 2 on this subject, but also 3 and 6.



   The presence of the athermic layer also allows effective control of the energy transmission of the assembly. This, as can be seen, allows the thickness of the second glass sheet to be limited if necessary without losing the reduction in energy transmission in the passenger compartment.
 EMI17.1
 
 <tb>
 <tb>



  Thickness <SEP> Thickness <SEP> Thickness <SEP> Layer <SEP> Thickness <SEP> TLA <SEP> TE
 <tb> sheet <SEP> 1 <SEP> PVB <SEP> sheet <SEP> 2 <SEP> total
 <tb> 1 <SEP> 3, <SEP> 15 <SEP> 24, <SEP> 1 <SEP> 21.4
 <tb> 2 <SEP> 4 <SEP> 16, <SEP> 9 <SEP> 14. <SEP> 7
 <tb> 3 <SEP> 2, <SEP> 5 <SEP> 1 <SEP> 4 <SEP> 7, <SEP> 5 <SEP> 16, <SEP> 5 <SEP> 14, <SEP> 3
 <tb> 4 <SEP> 1, <SEP> 5 <SEP> 0, <SEP> 76 <SEP> 3.15 <SEP> yes <SEP> 5, <SEP> 41 <SEP> 13.6 <SEP> 11.6
 <tb> 5 <SEP> 1, <SEP> 8 <SEP> 1 <SEP> 3.15 <SEP> yes <SEP> 5, <SEP> 95 <SEP> 13.6 <SEP> 11. <SEP> 5
 <tb> 6 <SEP> 1, <SEP> 8 <SEP> 1 <SEP> 3, <SEP> 15 <SEP> 5, <SEP> 95 <SEP> 23.7 <SEP> 20. <SEP> 8
 <tb>
 
The second table contains data comparable to that of the first table. The difference lies in the choice of glass constituting the second sheet.

   In this specific case, we choose an even more absorbent gray glass than for the first series. This, as can be seen, still makes it possible to very substantially reduce the energy transmission for the part of the roof which does not comprise photovoltaic cells. For these examples, the previous remarks concerning the characteristics of the first glass sheet and the interlayer also apply. Other

  <Desc / Clms Page number 18>

 said, transmission remains high at the cell level.
 EMI18.1
 
 <tb>
 <tb>



  Thickness <SEP> Thickness <SEP> Thickness <SEP> Layer <SEP> Thickness <SEP> TLA <SEP> TE
 <tb> sheet <SEP> 1 <SEP> PVB <SEP> sheet <SEP> 2 <SEP> total
 <tb> 7 <SEP> 3, <SEP> 15 <SEP> 15, <SEP> 9 <SEP> 13.7
 <tb> 8 <SEP> 4 <SEP> 10 <SEP> 8, <SEP> 4
 <tb> 9 <SEP> 2, <SEP> 5 <SEP> 1 <SEP> 4 <SEP> 7, <SEP> 5 <SEP> 9, <SEP> 8 <SEP> 7, <SEP> 8
 <tb> 10 <SEP> 1, <SEP> 5 <SEP> 0.76 <SEP> 3.15 <SEP> yes <SEP> 5, <SEP> 41 <SEP> 9 <SEP> 7, <SEP> 1
 <tb> 11 <SEP> 1, <SEP> 8 <SEP> 1 <SEP> 3, <SEP> 15 <SEP> yes <SEP> 5, <SEP> 95 <SEP> 9 <SEP> 7
 <tb> 12 <SEP> 1, <SEP> 8 <SEP> 1 <SEP> 3, <SEP> 15 <SEP> 5, <SEP> 95 <SEP> 15.6 <SEP> 12.8
 <tb>
 
 EMI18.2
 We see on this table that the energy transmission can be lowered very significantly even without having to use additional layers, simply by choosing an appropriate glass for the second glass sheet.



  Other assemblies have been made using partial enameling of the "transparent" part to reduce transmission. The assemblies all consist of a first sheet of "clear" glass 2.5 mm thick, an intermediate sheet 0.76 mm thick and a sheet of gray glass, of the type used in Examples 1 at 6, 2.5mm thick.



  Enamelling is preferably carried out on the first sheet, at the same time as the masking of the edges of the sheet and of the electrical conductors.



  Examples 13 to 16 correspond to laminates in which an increasing proportion of the surface of the transparent part is coated by point enameling. Examples 17 to 20 are similar to Examples 13 to 16, but in addition, an athermic layer is used, such as that described in connection with Examples 4, 5, 10 and 11. For simplicity, it is preferable to deposit the thermal layer on the gray sheet. In this way the deposit can cover the entire surface without preventing transmission to the photovoltaic cells.



  The following table gives the transmission characteristics for these different assemblies. As an indication, the "clear" glass sheet, 2.5 mm thick, has a TLA light transmission of 91.5 and an energy transmission TE of 90.5. This corresponds practically to what receive the cells.

  <Desc / Clms Page number 19>

 
 EMI19.1
 
 <tb>
 <tb>



  Enamelling <SEP>% <SEP> Layer <SEP> TLA <SEP> TE
 <tb> 13 <SEP> 33, <SEP> 5 <SEP> 30
 <tb> 14 <SEP> 50 <SEP> 16, <SEP> 5 <SEP> 15
 <tb> 15 <SEP> 60 <SEP> 13, <SEP> 5 <SEP> 12
 <tb> 16 <SEP> 70 <SEP> 12 <SEP> 9
 <tb> 17 <SEP> yes <SEP> 18, <SEP> 5 <SEP> 15, <SEP> 5
 <tb> 18 <SEP> 50 <SEP> yes <SEP> 9, <SEP> 5 <SEP> 8
 <tb> 19 <SEP> 60 <SEP> yes <SEP> 7, <SEP> 5 <SEP> 6, <SEP> 5
 <tb> 20 <SEP> 70yes <SEP> 5, <SEP> 5 <SEP> 5
 <tb>
 
If partial enameling allows the transmission to be reduced in proportion to the surface covered, it cannot be used alone to achieve the lowest transmissions without altering the desired "transparent" character.



  For this, when the transmission must be extremely weak, the various means used are advantageously combined. Examples 18, 19 and 20 thus propose the simultaneous effects of the coloring of the second sheet, of the partial enameling and of an athermic layer.



   In FIGS. 4 and 7, the glazings represented comprise a part in which the cells are assembled. Different arrangements may be preferred depending on the arrangements specific to each vehicle. Another particular arrangement consists, for example, of placing the cells on the periphery of the roof, leaving the transparent part in the center of the latter. This arrangement by providing non-transparent areas on the periphery, can improve the aesthetics by confusing the areas carrying the cells with those corresponding to the body, by "widening" the latter. These examples are of course not limitative of the respective possible arrangements of the transparent and non-transparent areas of the roofs according to the invention.


    

Claims (1)

REVENDICATIONS 1. Vitrage pour toit de véhicule automobile présentant au moins une partie transparente feuilletée, comprenant : - une première feuille de verre sur la face externe du toit ; - une deuxième feuille de verre sur au moins une partie de la face interne du toit tournée vers l'habitacle ; - une feuille intercalaire d'un ou plusieurs matériaux thermoplastiques traditionnellement utilisés pour former les vitrages feuilletés, intercalaire qui s'étend au moins sur les surfaces des feuilles de verre en regard l'une de l'autre ; - des éléments fonctionnels non transparents disposés sous la première feuille de verre ; la partie transparente feuilletée présentant une transmission lumineuse inférieure à 35%, et une transmission énergétique inférieure à 20%. CLAIMS 1. Glazing for a motor vehicle roof having at least one transparent laminated part, comprising: - a first sheet of glass on the external face of the roof; - a second sheet of glass on at least part of the internal face of the roof facing the passenger compartment; - an interlayer sheet of one or more thermoplastic materials traditionally used to form laminated glazing, an interlayer which extends at least over the surfaces of the glass sheets facing each other; - non-transparent functional elements arranged under the first sheet of glass; the transparent laminated part having a light transmission of less than 35%, and an energy transmission of less than 20%. 2. Vitrage selon la revendication 1 dans lequel la première feuille de verre présente une transmission énergétique d'au moins 82%.  2. Glazing according to claim 1 wherein the first glass sheet has an energy transmission of at least 82%. S. Vitrage selon la revendication 2 dans lequel les éléments fonctionnels non transparents comprennent des cellules photovoltaïques.    S. Glazing according to claim 2 wherein the non-transparent functional elements comprise photovoltaic cells. 4. Vitrage selon l'une des revendications précédentes, comprenant une partie feuilletée et une partie non feuilletée, la première feuille de verre étant de dimensions plus grandes que celles de la deuxième feuille de verre, et les éléments fonctionnels étant disposés sous la première feuille de verre, dans la partie de celle-ci qui n'est pas feuilletée.  4. Glazing according to one of the preceding claims, comprising a laminated part and a non-laminated part, the first glass sheet being of dimensions larger than those of the second glass sheet, and the functional elements being arranged under the first sheet. of glass, in the part of it which is not laminated. 5. Vitrage selon la revendication 4, dans lequel les éléments fonctionnels constitués par des cellules photovoltaïques, sont collés sur la face interne de la première feuille de verre.  5. Glazing according to claim 4, in which the functional elements constituted by photovoltaic cells are bonded to the internal face of the first glass sheet. 6. Vitrage selon la revendication 5 dans lequel les cellules sont collées sur la feuille intercalaire qui s'étend au delà de la partie feuilletée, sous la première feuille de verre.    6. Glazing according to claim 5 wherein the cells are glued to the interlayer sheet which extends beyond the laminated part, under the first glass sheet. 7. Vitrage selon l'une des revendications 4 à 6 dans lequel, du côté de l'habitacle du véhicule, sous la partie non feuilletée, sont disposés des éléments de structure et/ou des parements non transparents.  7. Glazing according to one of claims 4 to 6 wherein, on the side of the passenger compartment of the vehicle, under the non-laminated part, are arranged structural elements and / or non-transparent facings. 8. Vitrage selon une des revendications 4 à 7, dans lequel la première feuille de verre a une épaisseur de 2 à 6mm, et la deuxième feuille de verre une épaisseur de 2 à 5mm, l'ensemble feuilleté restant d'épaisseur inférieure ou égale à 10mm. <Desc/Clms Page number 21>  8. Glazing according to one of claims 4 to 7, wherein the first glass sheet has a thickness of 2 to 6mm, and the second glass sheet a thickness of 2 to 5mm, the laminated assembly remaining of less or equal thickness at 10mm.  <Desc / Clms Page number 21>   9. Vitrage selon l'une des revendications 1 à 3, dans lequel les feuilles de verre sont sensiblement de mêmes dimensions et forment un ensemble entièrement feuilleté, les éléments fonctionnels étant logés entre les feuilles de verre.  9. Glazing according to one of claims 1 to 3, wherein the glass sheets are substantially of the same dimensions and form a fully laminated assembly, the functional elements being housed between the glass sheets. 10. Vitrage selon la revendication 9 dans lequel la première feuille de verre a une épaisseur de 1 à 3mm, la seconde feuille de verre une épaisseur de 2 à 5mm, l'ensemble feuilleté restant d'épaisseur inférieure ou égale à 10mm.  10. Glazing according to claim 9 wherein the first glass sheet has a thickness of 1 to 3mm, the second glass sheet a thickness of 2 to 5mm, the laminated assembly remaining of thickness less than or equal to 10mm. 11. Vitrage selon l'une des revendications précédentes dans lequel la feuille intercalaire est constituée à partir d'une ou plusieurs feuilles de matériaux thermoplastiques du groupe comprenant : les polyvinylbutyral (PVB), les copolymères d'éthylène et d'acétate de vinyle (EVA), les polyuréthannes (PU), les chlorures de polyvinyles (PVC).  11. Glazing according to claim 1, in which the interlayer sheet is made from one or more sheets of thermoplastic materials from the group comprising: polyvinyl butyral (PVB), copolymers of ethylene and vinyl acetate ( EVA), polyurethanes (PU), polyvinyl chlorides (PVC). 12. Vitrage selon l'une des revendications 9 à 11 dans lequel, au cours de l'assemblage des feuilles, les éléments fonctionnels sont placés dans des logements ménagés par poinçonnage dans une feuille entrant dans la constitution de l'intercalaire, et la feuille poinçonnée est placée entre deux autres feuilles, entrant également dans la constitution de l'intercalaire.  12. Glazing according to one of claims 9 to 11 wherein, during the assembly of the sheets, the functional elements are placed in housings formed by punching in a sheet forming part of the interlayer, and the sheet hallmarked is placed between two other sheets, also forming part of the interlayer. 13. Vitrage selon l'une des revendications 9 à 11, dans lequel, au cours de l'assemblage, les éléments fonctionnels sont placés dans des logements ménagés, par estampage, dans une feuille entrant dans la constitution de l'intercalaire, une deuxième feuille entrant également dans la constitution de l'intercalaire recouvrant la première.  13. Glazing according to one of claims 9 to 11, wherein, during assembly, the functional elements are placed in housings formed, by stamping, in a sheet forming part of the interlayer, a second sheet also entering into the constitution of the interlayer covering the first. 14. Vitrage selon l'une des revendications précédentes, dans lequel l'épaisseur totale de l'intercalaire, éventuellement constitué de plusieurs feuilles superposées, est comprise entre 0,3 et 2mm.  14. Glazing according to one of the preceding claims, in which the total thickness of the interlayer, possibly consisting of several superimposed sheets, is between 0.3 and 2mm. IS. Vitrage selon l'une des revendications précédentes dans lequel la transmission de la partie transparente est contrôlée, au moins partiellement, au moyen d'un émaillage suivant un motif constitué de points de très petites dimensions disposés selon une trame dense, l'émaillage étant réalisé sur la face d'une des feuilles de verre au contact de l'intercalaire.  IS. Glazing according to one of the preceding claims, in which the transmission of the transparent part is controlled, at least partially, by means of an enameling according to a pattern consisting of very small dots arranged in a dense frame, the enamelling being carried out. on the face of one of the glass sheets in contact with the interlayer. 16. Vitrage selon l'une des revendications 1 à 14, dans lequel la transmission de la partie transparente est contrôlée, au moins partiellement, au moyen de couches minces déposées sur une des feuilles de verre, et sur la face de celle-ci au contact de l'intercalaire.  16. Glazing according to one of claims 1 to 14, in which the transmission of the transparent part is controlled, at least partially, by means of thin layers deposited on one of the glass sheets, and on the face thereof. interlayer contact. 17. Vitrage selon la revendication 16, dans lequel l'une au moins des couches est du type athermique. <Desc/Clms Page number 22>  17. Glazing according to claim 16, in which at least one of the layers is of the athermic type.  <Desc / Clms Page number 22>   18. Vitrage selon la revendication 17, dans lequel la couche est à base de d'oxyde d'étain éventuellement dopé, d'oxyde d'indium et d'étain, de nitrure de titane ou de chrome.  18. Glazing according to claim 17, in which the layer is based on optionally doped tin oxide, indium tin oxide, titanium nitride or chromium. 19. Vitrage selon la revendication 16, dans lequel la couche est une couche réfléchissante à base d'argent.  19. Glazing according to claim 16, in which the layer is a reflective layer based on silver. 20. Vitrage selon l'une des revendications précédentes dans lequel la face interne de la première feuille de verre comporte un émaillage dont le dessin recouvre la surface en réservant la partie transparente du vitrage et les emplacements des cellules.  20. Glazing according to one of the preceding claims, in which the internal face of the first glass sheet has an enamelling, the design of which covers the surface, reserving the transparent part of the glazing and the locations of the cells.
BE9900643A 1999-04-13 1999-09-27 Window for a car roof BE1013099A3 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BE9900643A BE1013099A3 (en) 1999-09-27 1999-09-27 Window for a car roof
AU45485/00A AU4548500A (en) 1999-04-13 2000-04-12 Glazing for the roof of a motor vehicle
US09/958,751 US6538192B1 (en) 1999-04-13 2000-04-12 Glazing for the roof of a motor vehicle
EP00926911A EP1171294B1 (en) 1999-04-13 2000-04-12 Roof of a motor vehicle
DE60018271T DE60018271T2 (en) 1999-04-13 2000-04-12 MOTOR VEHICLE ROOF
PCT/EP2000/003332 WO2000061366A1 (en) 1999-04-13 2000-04-12 Glazing for the roof of a motor vehicle
AT00926911T ATE289542T1 (en) 1999-04-13 2000-04-12 MOTOR VEHICLE ROOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE9900643A BE1013099A3 (en) 1999-09-27 1999-09-27 Window for a car roof

Publications (1)

Publication Number Publication Date
BE1013099A3 true BE1013099A3 (en) 2001-09-04

Family

ID=3892103

Family Applications (1)

Application Number Title Priority Date Filing Date
BE9900643A BE1013099A3 (en) 1999-04-13 1999-09-27 Window for a car roof

Country Status (1)

Country Link
BE (1) BE1013099A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012054088A3 (en) * 2010-10-22 2013-03-14 Guardian Industries Corp. Improved photovoltaic modules, and/or methods of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428920A1 (en) 1978-06-14 1980-01-11 Bfg Glassgroup METHOD FOR MANUFACTURING A PANEL COMPRISING AT LEAST ONE PHOTOVOLTAIC CELL AND PANEL COMPRISING AT LEAST ONE SUCH CELL
US4717790A (en) * 1985-11-02 1988-01-05 Licentia Patent-Verwaltungs-Gmbh Contoured solar generator
US5213626A (en) * 1991-02-21 1993-05-25 Webasto-Schade Gmbh Transparent pane for vehicles
US5228925A (en) * 1991-12-23 1993-07-20 United Solar Systems Corporation Photovoltaic window assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428920A1 (en) 1978-06-14 1980-01-11 Bfg Glassgroup METHOD FOR MANUFACTURING A PANEL COMPRISING AT LEAST ONE PHOTOVOLTAIC CELL AND PANEL COMPRISING AT LEAST ONE SUCH CELL
US4717790A (en) * 1985-11-02 1988-01-05 Licentia Patent-Verwaltungs-Gmbh Contoured solar generator
US5213626A (en) * 1991-02-21 1993-05-25 Webasto-Schade Gmbh Transparent pane for vehicles
US5228925A (en) * 1991-12-23 1993-07-20 United Solar Systems Corporation Photovoltaic window assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012054088A3 (en) * 2010-10-22 2013-03-14 Guardian Industries Corp. Improved photovoltaic modules, and/or methods of making the same
US9312417B2 (en) 2010-10-22 2016-04-12 Guardian Industries Corp. Photovoltaic modules, and/or methods of making the same

Similar Documents

Publication Publication Date Title
EP1171294B1 (en) Roof of a motor vehicle
BE1012766A3 (en) In particular for motor glass roof.
EP3233479B1 (en) Laminated glass
EP0353140B1 (en) Process to produce a curved glass
BE1011440A3 (en) Coated substrate for a glazed transparent high selectivity.
EP1029662B1 (en) Laminated glazing
WO2016097047A1 (en) Laminated glass
EP3310574A1 (en) Laminated glazing
EP1765588A1 (en) Glazing for a motor vehicle roof
FR3105943A1 (en) VEHICLE LEAF WINDOW AND DEVICE WITH ASSOCIATED INFRARED NEAR VISION SYSTEM AND ITS MANUFACTURING
EP4274817A1 (en) Motor vehicle roof comprising a glass sheet
BE1013099A3 (en) Window for a car roof
CA1337172C (en) Laminated glass with electro-conductive layer
BE1013036A4 (en) Car roof equipped with photovoltaic cells
EP4244057B1 (en) Laminated glazing for a vehicle, particularly a motor vehicle
EP2861420B1 (en) Sunroof for a motor vehicle
EP1199160B1 (en) Roller blind for vehicle
EP4214171A1 (en) Method for obtaining curved laminated glazing
FR3126974A1 (en) Rear window or quarter panel of a motor vehicle comprising a sheet of glass
FR3127471A1 (en) Lightened aircraft window with equal rigidity

Legal Events

Date Code Title Description
RE Patent lapsed

Effective date: 20050930