BE1010211A6 - Method for programming a robot by means of external coordinate measuring system and manual probe - Google Patents

Method for programming a robot by means of external coordinate measuring system and manual probe Download PDF

Info

Publication number
BE1010211A6
BE1010211A6 BE9600435A BE9600435A BE1010211A6 BE 1010211 A6 BE1010211 A6 BE 1010211A6 BE 9600435 A BE9600435 A BE 9600435A BE 9600435 A BE9600435 A BE 9600435A BE 1010211 A6 BE1010211 A6 BE 1010211A6
Authority
BE
Belgium
Prior art keywords
robot
measuring system
coordinate measuring
probe
programming
Prior art date
Application number
BE9600435A
Other languages
Dutch (nl)
Original Assignee
Den Bossche Johan Van
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Den Bossche Johan Van filed Critical Den Bossche Johan Van
Priority to BE9600435A priority Critical patent/BE1010211A6/en
Application granted granted Critical
Publication of BE1010211A6 publication Critical patent/BE1010211A6/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/423Teaching successive positions by walk-through, i.e. the tool head or end effector being grasped and guided directly, with or without servo-assistance, to follow a path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36401Record play back, teach position and record it then play back
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39021With probe, touch reference positions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39024Calibration of manipulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Numerical Control (AREA)

Abstract

The invention relates to a method predominately to programme robots on the basis of an external coordinate measuring system and a manual probe. The points or paths to be presented by the robot are entered manually by the operator and measures with the external coordinates measuring system. The robot programme is then created on the basis of these measured poses or paths. The axis system of the external coordinate measuring system is referred to the robot's axis system beforehand.

Description

       

   <Desc/Clms Page number 1> 
 



  Methode \ oor robot programmatie door middel van een extern   coördinaten   meetsysteem en handprobe Deze methode is gebaseerd op een extern coördinaten meetsysteem. Dit meetsysteem geeft de positie en oriëntatie (pose) aan van een probe. De probe wordt door een operator manueel naar het werkstuk gebracht. Zodra de probe een geschikte positie en oriëntatie (pose) beeft bereikt, wordt de pose opgemeten en gestockeerd. Deze posities en orientates (poses) \ ormen dan de basis van een robot programma (zie   figuur t : voorbeeld van een     meetopsieUing   met   I =handprobe, 2=operator,   3=robot, 4=werkstuk, 5=meetsysteem). De robot za] dan de gestockeerde   poses aanvaren. en   aldus een taak uitvoeren zoals door de operator aangeleerd. De probe kan allerhande vormen aannemen.

   Als voorbeeld wordt een model \ an een puntlasapparaat aangehaald. Het   externe coördinaten meetsysteem registreelt   de   poshie en onentatie   (pose) van het model van bijvoorbeeld een puntlasapparaat. Een operator bezoekt dan met deze probe verschillende punten op bijvoorbeeld een koetswerk. 



  Op de plaatsen waar de robot bijvoorbeeld een puntlas moet aanbrengen, zal de operator de coördinaten van de probe stockeren. Deze coördinaten vormen dan de basis van het robot programma. De robot zal de aangeleerde poses aanvaren. 



  Deze methode kan ook dynamisch ingezet worden. Hierbij worden de coördinaten van een probe continu gestockeerd. Deze probe kan door de operator manueel bewogen worden. De banen die dan met de probe beschreven zijn, worden dan later door de robot aangevaren, rekening houdend met de positie en de oriëntatie van de probe op de overeenkomstige plaatsen. 



  Het op zieh bekende externe   coördinatenmeetsysteem   kan bijvoorbeeld bestaan uit een camera oflaser gebaseerd systeem (bijvoorbeeld   Smart   310 Laser Interferometer van Leica). 
 EMI1.1 
 Dit systeem geeft dan de X, Z coördinaten van puiten (vb infrarode LED's) op de probe Door de coördinaten van 3 punten op te meten kan de positie en oriëntatie (pose) 

 <Desc/Clms Page number 2> 

 continuvan de probe berekend worden. Deze   coördinaten   dienen dan weer als basis voor het robot programma. Het assenstelsel waarin het meetsysteem zijn coördinaten bepaalt, wordt gerefereerd naar het robot basis assenstelsel. Hiervoor kunnen bijvoorbeeld drie bekende punten op de robot basis opgemeten worden met het externe   coördinaten   meetsysteem.

   Een voorbeeld van een altematieve methode bestaat erin de ligging van de assen van de robot op te   meten   aan de hand van de op zieh bekende   onafllankelijke   as identificatie   methode.  



   <Desc / Clms Page number 1>
 



  Method for robot programming by means of an external coordinate measuring system and hand probe This method is based on an external coordinate measuring system. This measuring system indicates the position and orientation (pose) of a probe. The probe is manually brought to the workpiece by an operator. As soon as the probe reaches a suitable position and orientation (pose), the pose is measured and stored. These positions and orientations (poses) then form the basis of a robot program (see figure t: example of a measurement solution with I = hand probe, 2 = operator, 3 = robot, 4 = workpiece, 5 = measuring system). The robot will then enter the stored poses. and thus perform a task as taught by the operator. The probe can take a variety of forms.

   As an example, a model of a spot welder is cited. The external coordinate measuring system registers the poshie and onentation (pose) of the model of, for example, a spot welder. An operator then uses this probe to visit various points on a body, for example.



  For example, in places where the robot needs to make a spot weld, the operator will stock the coordinates of the probe. These coordinates then form the basis of the robot program. The robot will enter the learned poses.



  This method can also be used dynamically. The coordinates of a probe are stored continuously. This probe can be moved manually by the operator. The orbits described with the probe will then be collided later by the robot, taking into account the position and orientation of the probe in the corresponding places.



  The external coordinate measuring system known in the art may, for example, consist of a camera or laser-based system (e.g. Smart 310 Laser Interferometer from Leica).
 EMI1.1
 This system then gives the X, Z coordinates of syringes (eg infrared LEDs) on the probe. By measuring the coordinates of 3 points the position and orientation (pose) can be

 <Desc / Clms Page number 2>

 calculated continuously from the probe. These coordinates then serve as the basis for the robot program. The coordinate system in which the measuring system determines its coordinates is referred to the robot basic coordinate system. For this, for example, three known points on the robot base can be measured with the external coordinate measuring system.

   An example of an alternative method consists of measuring the position of the axes of the robot using the independent axis identification method known in the art.


    

Claims (4)

Conclusies 1. Methode voor het programmeren van robots aan de hand van een extern coördinaten meetsysteem door met een handprobe, waarvan positie en oriëntatie (pose) worden opgemeten, de met de robot aan te varen punten op te meten en dus aan te leren. Hierbij wordt eerst het assenstelsel van het meetsysteem gerefereerd naar het robot basis assenstelsel door drie punten op te meten op de robot basis. Op basis van de aangeleerde poses kan dan een robot programma opgebouwd worden. Conclusions 1. Method for programming robots on the basis of an external coordinate measuring system by measuring and thus learning the points to be reached with the robot with a hand probe, the position and orientation of which are measured. The coordinate system of the measuring system is first referred to the robot basic coordinate system by measuring three points on the robot base. A robot program can then be built on the basis of the taught poses. 2. Methode voor het programmeren van robots volgens conclusie 1 met het kenmerk EMI3.1 dat het om een camera 01'een laser gebaseerd coördinaten meetsysteem gaat.   Method of programming robots according to claim 1, characterized in that  EMI3.1  that it is a camera 01'a laser based coordinate measuring system. 3. Methode voor het programmeren van robots volgens conclusie 1. met het kenmerk dat ook banen, beschreven met de handprobe, kunlen opgemeten worden. Op basis van de opgemeten bauen, wordt het robot programma aangemaakt. Method for programming robots according to claim 1, characterized in that trajectories described with the hand probe can also be measured. The robot program is created based on the measured bauen. 4. Methode voor het programmeren van robots volgens conclusie 1. met het kenmerk dat het assenstelsel van het externe coördinaten meetsysteem gerefereerd wordt aan het robot assenkruis door de op zieh bekende onafhankelijke as identificatie methode. Method for programming robots according to claim 1, characterized in that the coordinate system of the external coordinate measuring system is referenced to the robot coordinate axis by the independent axis identification method known in the art.
BE9600435A 1996-05-14 1996-05-14 Method for programming a robot by means of external coordinate measuring system and manual probe BE1010211A6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BE9600435A BE1010211A6 (en) 1996-05-14 1996-05-14 Method for programming a robot by means of external coordinate measuring system and manual probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE9600435A BE1010211A6 (en) 1996-05-14 1996-05-14 Method for programming a robot by means of external coordinate measuring system and manual probe

Publications (1)

Publication Number Publication Date
BE1010211A6 true BE1010211A6 (en) 1998-03-03

Family

ID=3889750

Family Applications (1)

Application Number Title Priority Date Filing Date
BE9600435A BE1010211A6 (en) 1996-05-14 1996-05-14 Method for programming a robot by means of external coordinate measuring system and manual probe

Country Status (1)

Country Link
BE (1) BE1010211A6 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110978059A (en) * 2019-12-23 2020-04-10 芜湖哈特机器人产业技术研究院有限公司 Portable six-axis manipulator calibration device and calibration method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110978059A (en) * 2019-12-23 2020-04-10 芜湖哈特机器人产业技术研究院有限公司 Portable six-axis manipulator calibration device and calibration method thereof
CN110978059B (en) * 2019-12-23 2022-12-23 芜湖哈特机器人产业技术研究院有限公司 Portable six-axis manipulator calibration device and calibration method thereof

Similar Documents

Publication Publication Date Title
CN102483625B (en) The method of industrial robot and adjustment robot program
SE0303178D0 (en) A method and a system for programming an industrial robot
CN207840503U (en) U-shaped beam inner reinforced plate numerically controlled intelligent robot welding system
EP1640840A3 (en) Robot program production system
US20180348744A1 (en) Robot trajectory learning by demonstration with probe sensor
WO2011075093A1 (en) A multi axis robot
CN117047237B (en) Intelligent flexible welding system and method for special-shaped parts
BE1010211A6 (en) Method for programming a robot by means of external coordinate measuring system and manual probe
CN114227681A (en) Robot off-line virtual teaching programming method based on infrared scanning tracking
EP2359202B1 (en) Method and device for selecting a stored position of a working point of a manipulator
CN102873678A (en) Device and method for controlling attitude and space displacement of welding smoke air inlet
CN108213698B (en) Laser Machining head and laser-processing system with the laser Machining head
Xu et al. Hybrid visual servoing control for robotic arc welding based on structured light vision
CN114571491A (en) Robot control device based on force sensor and teaching method
CN213560677U (en) Welding smoke and dust purification robot
CN208483411U (en) A kind of portable spot welder device people
Xie et al. Mitigating the risk of musculoskeletal disorders during human robot collaboration: a reinforcement learning approach
JP2024526541A (en) Machining apparatus and associated marking device for generating machining trajectories
CN107110631A (en) Pass through the navigation of bending force
JPH04200979A (en) Teaching method for welding robots
SCULLY Robotics: An introduction to today's robot and future trends[Final Report]
Ramesh et al. Human Follower Robotic Device for Real-Time Application.
Senthilraja et al. Design and fabrication of three axis robot for material handling in chemical industries
JPS6210751B2 (en)
CN115846097A (en) Arm structure of spraying robot

Legal Events

Date Code Title Description
RE Patent lapsed

Owner name: VAN DEN BOSSCHE JOHAN

Effective date: 19980531