BE1010211A6 - Method for programming a robot by means of external coordinate measuring system and manual probe - Google Patents
Method for programming a robot by means of external coordinate measuring system and manual probe Download PDFInfo
- Publication number
- BE1010211A6 BE1010211A6 BE9600435A BE9600435A BE1010211A6 BE 1010211 A6 BE1010211 A6 BE 1010211A6 BE 9600435 A BE9600435 A BE 9600435A BE 9600435 A BE9600435 A BE 9600435A BE 1010211 A6 BE1010211 A6 BE 1010211A6
- Authority
- BE
- Belgium
- Prior art keywords
- robot
- measuring system
- coordinate measuring
- probe
- programming
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/42—Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
- G05B19/423—Teaching successive positions by walk-through, i.e. the tool head or end effector being grasped and guided directly, with or without servo-assistance, to follow a path
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36401—Record play back, teach position and record it then play back
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39021—With probe, touch reference positions
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39024—Calibration of manipulator
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Numerical Control (AREA)
Abstract
The invention relates to a method predominately to programme robots on the basis of an external coordinate measuring system and a manual probe. The points or paths to be presented by the robot are entered manually by the operator and measures with the external coordinates measuring system. The robot programme is then created on the basis of these measured poses or paths. The axis system of the external coordinate measuring system is referred to the robot's axis system beforehand.
Description
<Desc/Clms Page number 1>
Methode \ oor robot programmatie door middel van een extern coördinaten meetsysteem en handprobe Deze methode is gebaseerd op een extern coördinaten meetsysteem. Dit meetsysteem geeft de positie en oriëntatie (pose) aan van een probe. De probe wordt door een operator manueel naar het werkstuk gebracht. Zodra de probe een geschikte positie en oriëntatie (pose) beeft bereikt, wordt de pose opgemeten en gestockeerd. Deze posities en orientates (poses) \ ormen dan de basis van een robot programma (zie figuur t : voorbeeld van een meetopsieUing met I =handprobe, 2=operator, 3=robot, 4=werkstuk, 5=meetsysteem). De robot za] dan de gestockeerde poses aanvaren. en aldus een taak uitvoeren zoals door de operator aangeleerd. De probe kan allerhande vormen aannemen.
Als voorbeeld wordt een model \ an een puntlasapparaat aangehaald. Het externe coördinaten meetsysteem registreelt de poshie en onentatie (pose) van het model van bijvoorbeeld een puntlasapparaat. Een operator bezoekt dan met deze probe verschillende punten op bijvoorbeeld een koetswerk.
Op de plaatsen waar de robot bijvoorbeeld een puntlas moet aanbrengen, zal de operator de coördinaten van de probe stockeren. Deze coördinaten vormen dan de basis van het robot programma. De robot zal de aangeleerde poses aanvaren.
Deze methode kan ook dynamisch ingezet worden. Hierbij worden de coördinaten van een probe continu gestockeerd. Deze probe kan door de operator manueel bewogen worden. De banen die dan met de probe beschreven zijn, worden dan later door de robot aangevaren, rekening houdend met de positie en de oriëntatie van de probe op de overeenkomstige plaatsen.
Het op zieh bekende externe coördinatenmeetsysteem kan bijvoorbeeld bestaan uit een camera oflaser gebaseerd systeem (bijvoorbeeld Smart 310 Laser Interferometer van Leica).
EMI1.1
Dit systeem geeft dan de X, Z coördinaten van puiten (vb infrarode LED's) op de probe Door de coördinaten van 3 punten op te meten kan de positie en oriëntatie (pose)
<Desc/Clms Page number 2>
continuvan de probe berekend worden. Deze coördinaten dienen dan weer als basis voor het robot programma. Het assenstelsel waarin het meetsysteem zijn coördinaten bepaalt, wordt gerefereerd naar het robot basis assenstelsel. Hiervoor kunnen bijvoorbeeld drie bekende punten op de robot basis opgemeten worden met het externe coördinaten meetsysteem.
Een voorbeeld van een altematieve methode bestaat erin de ligging van de assen van de robot op te meten aan de hand van de op zieh bekende onafllankelijke as identificatie methode.
<Desc / Clms Page number 1>
Method for robot programming by means of an external coordinate measuring system and hand probe This method is based on an external coordinate measuring system. This measuring system indicates the position and orientation (pose) of a probe. The probe is manually brought to the workpiece by an operator. As soon as the probe reaches a suitable position and orientation (pose), the pose is measured and stored. These positions and orientations (poses) then form the basis of a robot program (see figure t: example of a measurement solution with I = hand probe, 2 = operator, 3 = robot, 4 = workpiece, 5 = measuring system). The robot will then enter the stored poses. and thus perform a task as taught by the operator. The probe can take a variety of forms.
As an example, a model of a spot welder is cited. The external coordinate measuring system registers the poshie and onentation (pose) of the model of, for example, a spot welder. An operator then uses this probe to visit various points on a body, for example.
For example, in places where the robot needs to make a spot weld, the operator will stock the coordinates of the probe. These coordinates then form the basis of the robot program. The robot will enter the learned poses.
This method can also be used dynamically. The coordinates of a probe are stored continuously. This probe can be moved manually by the operator. The orbits described with the probe will then be collided later by the robot, taking into account the position and orientation of the probe in the corresponding places.
The external coordinate measuring system known in the art may, for example, consist of a camera or laser-based system (e.g. Smart 310 Laser Interferometer from Leica).
EMI1.1
This system then gives the X, Z coordinates of syringes (eg infrared LEDs) on the probe. By measuring the coordinates of 3 points the position and orientation (pose) can be
<Desc / Clms Page number 2>
calculated continuously from the probe. These coordinates then serve as the basis for the robot program. The coordinate system in which the measuring system determines its coordinates is referred to the robot basic coordinate system. For this, for example, three known points on the robot base can be measured with the external coordinate measuring system.
An example of an alternative method consists of measuring the position of the axes of the robot using the independent axis identification method known in the art.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9600435A BE1010211A6 (en) | 1996-05-14 | 1996-05-14 | Method for programming a robot by means of external coordinate measuring system and manual probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9600435A BE1010211A6 (en) | 1996-05-14 | 1996-05-14 | Method for programming a robot by means of external coordinate measuring system and manual probe |
Publications (1)
Publication Number | Publication Date |
---|---|
BE1010211A6 true BE1010211A6 (en) | 1998-03-03 |
Family
ID=3889750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BE9600435A BE1010211A6 (en) | 1996-05-14 | 1996-05-14 | Method for programming a robot by means of external coordinate measuring system and manual probe |
Country Status (1)
Country | Link |
---|---|
BE (1) | BE1010211A6 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110978059A (en) * | 2019-12-23 | 2020-04-10 | 芜湖哈特机器人产业技术研究院有限公司 | Portable six-axis manipulator calibration device and calibration method thereof |
-
1996
- 1996-05-14 BE BE9600435A patent/BE1010211A6/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110978059A (en) * | 2019-12-23 | 2020-04-10 | 芜湖哈特机器人产业技术研究院有限公司 | Portable six-axis manipulator calibration device and calibration method thereof |
CN110978059B (en) * | 2019-12-23 | 2022-12-23 | 芜湖哈特机器人产业技术研究院有限公司 | Portable six-axis manipulator calibration device and calibration method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102483625B (en) | The method of industrial robot and adjustment robot program | |
SE0303178D0 (en) | A method and a system for programming an industrial robot | |
CN207840503U (en) | U-shaped beam inner reinforced plate numerically controlled intelligent robot welding system | |
EP1640840A3 (en) | Robot program production system | |
US20180348744A1 (en) | Robot trajectory learning by demonstration with probe sensor | |
WO2011075093A1 (en) | A multi axis robot | |
CN117047237B (en) | Intelligent flexible welding system and method for special-shaped parts | |
BE1010211A6 (en) | Method for programming a robot by means of external coordinate measuring system and manual probe | |
CN114227681A (en) | Robot off-line virtual teaching programming method based on infrared scanning tracking | |
EP2359202B1 (en) | Method and device for selecting a stored position of a working point of a manipulator | |
CN102873678A (en) | Device and method for controlling attitude and space displacement of welding smoke air inlet | |
CN108213698B (en) | Laser Machining head and laser-processing system with the laser Machining head | |
Xu et al. | Hybrid visual servoing control for robotic arc welding based on structured light vision | |
CN114571491A (en) | Robot control device based on force sensor and teaching method | |
CN213560677U (en) | Welding smoke and dust purification robot | |
CN208483411U (en) | A kind of portable spot welder device people | |
Xie et al. | Mitigating the risk of musculoskeletal disorders during human robot collaboration: a reinforcement learning approach | |
JP2024526541A (en) | Machining apparatus and associated marking device for generating machining trajectories | |
CN107110631A (en) | Pass through the navigation of bending force | |
JPH04200979A (en) | Teaching method for welding robots | |
SCULLY | Robotics: An introduction to today's robot and future trends[Final Report] | |
Ramesh et al. | Human Follower Robotic Device for Real-Time Application. | |
Senthilraja et al. | Design and fabrication of three axis robot for material handling in chemical industries | |
JPS6210751B2 (en) | ||
CN115846097A (en) | Arm structure of spraying robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RE | Patent lapsed |
Owner name: VAN DEN BOSSCHE JOHAN Effective date: 19980531 |