BE1006617A3 - Fin tubes and method of making. - Google Patents

Fin tubes and method of making. Download PDF

Info

Publication number
BE1006617A3
BE1006617A3 BE9300085A BE9300085A BE1006617A3 BE 1006617 A3 BE1006617 A3 BE 1006617A3 BE 9300085 A BE9300085 A BE 9300085A BE 9300085 A BE9300085 A BE 9300085A BE 1006617 A3 BE1006617 A3 BE 1006617A3
Authority
BE
Belgium
Prior art keywords
fins
tube
tubes
finned
bevelled
Prior art date
Application number
BE9300085A
Other languages
French (fr)
Inventor
Michel Louis Simon Vouche
Original Assignee
Hamon Thermal Engineers & Cont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamon Thermal Engineers & Cont filed Critical Hamon Thermal Engineers & Cont
Priority to BE9300085A priority Critical patent/BE1006617A3/en
Priority to EP94870012A priority patent/EP0609189A1/en
Priority to CN 94101152 priority patent/CN1093800A/en
Application granted granted Critical
Publication of BE1006617A3 publication Critical patent/BE1006617A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Le tube à ailette est constitué d'un tube (2) présentant des surfaces planes et pourvues extérieurement d'ailettes (11), sous forme de tôles ondulées présentant des génératrices externes (79 et des génératrices internes (8) ainsi que deux arêtes situées aux extrémités des génératrices des ailettes et est caractérisé en ce qu'au moins une des arêtes (12) des tôles ondulées est biseautée par rapport au plan desdites surfaces planes.The fin tube consists of a tube (2) having flat surfaces and externally provided with fins (11), in the form of corrugated sheets having external generators (79 and internal generators (8) as well as two edges located at the ends of the generatrices of the fins and is characterized in that at least one of the edges (12) of the corrugated sheets is bevelled relative to the plane of said plane surfaces.

Description

       

   <Desc/Clms Page number 1> 
 



   DESCRIPTION Tubes à ailettes et procédé pour leur fabrication 
La présente invention se rapporte aux tubes à ailettes et, plus particulièrement, aux échangeurs de chaleur entre deux fluides sans contact direct entre ces fluides, constitués de tubes à ailettes galvanisés, le fluide intérieur aux tubes étant soit un liquide, soit un gaz se condensant, notamment la vapeur d'eau saturante, le fluide externe aux tubes étant un gaz, notamment l'air atmosphérique. 



   L'invention se rapporte également au procédé de fabrication de ces tubes à ailettes. 



   Les tubes ailetés considérés ici sont réalisés en acier galvanisé et ont une section allongée dont les deux côtés longs opposés présentent des surfaces rectilignes. Ces tubes sont normalement droits,   c'est-à-dire   non courbés, présentant donc deux faces opposées planes ; ces tubes sont dits plats. Ces faces planes sont pourvues extérieurement d'ailettes sinueuses constituées par des tôles fines ondulées. Il y a une tôle ondulée par face de tube. 



  Un tube à ailettes peut être constitué par le soudage de deux tôles profilées pourvues des ailettes sinueuses. On peut également souder les tôles ondulées directement sur un tube plat. Après réalisation du tube aileté, voire après constitution de batteries de tubes, a lieu la galvanisation de l'ensemble par immersion dans un bain de galvanisation à chaud. 



   Le concept d'échangeur de chaleur où les ailettes sinueuses sont appliquées sur des tubes plats est déjà mentionné dans le brevet US 2 063 757 de General Motors du 29 décembre 

 <Desc/Clms Page number 2> 

 1934. C'est l'échangeur de chaleur qui constitue classiquement les radiateurs de véhicules automobiles. 



   Depuis lors de nombreux brevets se rapportent à de tels types d'échangeurs. Chaque ailette peut s'étendre sur plusieurs tubes plats, comme représenté à la figure 4 du brevet EPB 325 844 de Modine ou sur un seul tube, comme représenté à la figure 6 du même brevet. 



   Dans ce brevet, chaque ailette est appliquée entre deux tubes, les creux de l'ondulation de l'ailette étant reliés à un tube, tandis que les sommets de l'ondulation sont reliés à l'autre tube. Mais il existe aussi des échangeurs où chaque tube possède ses propres ailettes, une sur chaque face. C'est le cas de l'échangeur de chaleur décrit dans le brevet US 4 256 177 de Modine. 



   La figure 2 de ce brevet représente un tube à ailettes typique de l'art connu auquel notre invention se rapporte. 



   Un matériau industriel très courant est l'acier galvanisé, bon marché et résistant relativement bien à la corrosion atmosphérique. 



   La galvanisation des tubes plats à ailettes sinueuses pose un problème dû à la rétention par capillarité de quantités trop grandes de zinc à l'arête inférieure des ailettes, lorsqu'on retire les tubes du bain de galvanisation. 



   Les tubes sont retirés en position horizontale des bains de galvanisation, les parois des ailettes étant disposées verticalement (chenaux d'air verticaux dans les ailettes). Lorsqu'une ailette quitte la surface du bain de zinc, un bourrelet de zinc (bavure) reste accroché à son arête inférieure, par effet de capillarité, de tension de surface, voire un voile de zinc peut obturer les lumières entre ailettes et tubes. 



   Ces bourrelets de zinc entravent le passage de l'air dans les chenaux des ailettes et augmentent fortement les pertes de charge aérauliques. 



   Quant à araser l'arête inférieure des ailettes pour en supprimer les bavures de zinc, c'est un travail très onéreux. 

 <Desc/Clms Page number 3> 

 Quant à l'électrozingage, il donne des épaisseurs de zinc beaucoup trop faibles, de l'ordre du micron, alors que l'on recherche une épaisseur d'au moins 60 microns. Il en est de même avec des tôles préalablement zinguées, telles que les tôles du procédé Zenzimir où l'épaisseur de zinc ne peut atteindre que quelques dizaines de microns, inférieures à 60 microns. 



   De plus, ces procédés de zingage ne permettent pas d'avoir aux pieds des ailettes,   c'est-à-dire   au contact entre la tôle sinueuse et la face du tube, la bonne quantité de zinc que donne la galvanisation à chaud à plein bain, avec sa rétention de zinc dans les angles très aigus formés entre la tôle sinueuse et la face des tubes, assurant un excellent transfert thermique (pont thermique). 



   Il y a deux moyens connus pour réduire, voire pratiquement supprimer, les bourrelets de zinc aux extrémités des ailettes. 



   Un procédé consiste à élever la température du bain de zinc d'une centaine de degrés et à galvaniser ainsi vers 5500C au lieu de   450 C.   Le zinc est nettement plus fluide, moins visqueux, plus mouillant. Sa viscosité et sa tension superficielle sont plus faibles. Les épaisseurs de zinc sont plus régulières, et notamment les surépaisseurs de zinc aux arêtes inférieures des pièces à la sortie des bains sont négligeables. Mais de telles installations sont beaucoup plus coûteuses en investissements ; en effet, les cuves ne peuvent plus être en acier, mais doivent être en céramique. La consommation d'énergie est également beaucoup plus importante, à cause de la déperdition calorifique nettement plus grande à   5500C qu'à 4500C.   



   De telles installations sont plus rares à travers le monde, voire inexistantes dans les pays peu développés, où il peut être intéressant de fabriquer les tubes à ailettes, avec des machines aisément transportables dans ces pays, et où il faudrait terminer l'ouvrage par une galvanisation à faire au voisinage du lieu où s'est effectuée la fabrication. Enfin, une température plus élevée augmentant la fluidité du zinc donne une plus faible épaisseur de 

 <Desc/Clms Page number 4> 

 zinc qu'à plus basse température, de l'ordre de 40 à 50 microns au lieu de 60 à 70 microns couramment obtenus à   450 C.   



   L'autre procédé donnant moins de bavures de zinc consiste à ajouter au zinc davantages d'additifs, notamment de l'aluminium ou du plomb, afin d'en diminuer la viscosité. Il en résulte comme pour la galvanisation à haute température une moindre épaisseur de zinc sur la pièce galvanisée. Le procédé est également plus coûteux (coût des additifs), et la conduite de la galvanisation (contrôle des bains) plus délicate. 



   L'invention a pour but de permettre une galvanisation à chaud des tubes plats à ailettes sinueuses exempte de bourrelets ou bavures de zinc aux arêtes inférieures des ailettes (dans la position de retrait du bain de galvanisation), dans les bains courants (classiques) de galvanisation à chaud,   c'est-à-dire   dans des bains à 445 à   460oC,   sans additifs spéciaux, bains tels qu'il s'en présente couramment à travers le monde. 



   La galvanisation des tubes plats à ailettes sinueuses selon l'invention ne nécessite ni de bains de galvanisation spéciaux, ni de techniques spéciales de galvanisation. A cet effet, un tube à ailettes galvanisé selon l'invention est constitué d'un tube présentant des surfaces planes et pourvues extérieurement d'ailettes, sous forme de tôles fines ondulées présentant des génératrices externes et des génératrices internes ainsi que deux arêtes, une supérieure et une inférieure, situées aux extrémités des génératrices des ailettes, dont au moins une des deux, l'arête inférieure, est biseautée selon un angle a par rapport au plan longitudinal des faces planes du tube. 



   L'invention consiste donc à biseauter une des extrémités des ailettes sinueuses et à constituer chaque tube à ailettes de telle sorte que les ailettes des tubes aient toutes leurs parties biseautées du même côté, qui est le côté inférieur lors de la galvanisation. 



   Pareillement, si la galvanisation a lieu par batterie de tubes plats à ailettes sinueuses, plutôt que tube par tube, tous les tubes d'une même batterie sont disposés de telle sorte qu'ils pré- 

 <Desc/Clms Page number 5> 

 sentent la partie biseautée de leurs ailettes du même côté, qui sera le côté bas lors de la galvanisation. 



   On décrira ci-après un exemple de réalisation de l'in- 
 EMI5.1 
 vention en se référant aux dessins annexés dans lesquels : - la figure 1 représente une vue en perspective d'un tube plat à ailettes sinueuses selon l'art connu ; - la figure la est une vue de dessous, illustrant les sections de passage d'air entre les ailettes selon la figure 1 après galvanisation ;   - la   figure 2 représente une vue en perspective d'un tube plat à ailettes sinueuses galvanisé selon l'invention ; - la figure 2a est une vue de dessous, illustrant les sections de passage d'air entre les ailettes galvanisées selon la figure 2 ;   - la   figure 3 représente une coupe transversale dans le tube d'échange de chaleur à ailettes sinueuses selon l'invention ;   - la   figure 3a est une vue en coupe selon la ligne AA dans la figure 3 ;

   - la figure 4 représente le profil de l'arête de découpe de l'outil (poinçon) de biseautage de la tôle plane des ailettes non encore ondulée. 



   Sur la figure 1 on a représenté un ensemble d'un tube à ailettes 1 selon la technique connue. Le tube plat est composé de deux tôles profilées 2 constituant les demi-tubes reliés aux extrémités 4 par soudure sur toute la longueur du tube assurant l'étanchéité. La section plane d'un demi-tube 2 est pourvue d'une tôle ondulée formant les ailettes sinueuses 3 avec génératrices externes 7 et génératrices internes 8. Ces ailettes 3 sont soudées sur le côté extérieur et plan du demi-tube 2 par leur génératrice interne 8. Lors de la galvanisation, cet ensemble 1 est immergé et retiré dans une position telle que représentée à la figure 3,   c'est-à-dire   le tube plat 2, en position horizontale, et les ailettes 3 avec les génératrices 7 et 8, en position verticale. 



   La figure la, représentant une vue de face du côté inférieur des ailettes 3, montre la formation de bourrelets de zinc 6 après solidification, ne laissant qu'un passage fortement obstrué 9, 

 <Desc/Clms Page number 6> 

 voire complètement bouché pour l'air de refroidissement. Ces bourrelets de zinc 6 résultent de la galvanisation à chaud dans un bain normal,   c'est-à-dire   à une température de 445 à   460 C,   sans additifs. 



   La figure 2 montre un ensemble 10 réalisé selon l'invention avec un tube plat 2 constitué de deux demi-tubes soudés dont un côté extérieur est pourvu d'ailettes sinueuses 11. Conformément à l'invention, une des arêtes de ces ailettes 11 présente une partie biseautée 12 du même côté, qui est le côté inférieur lors de la galvanisation. 



   L'angle a du biseau est tel que le zinc s'écoule le long de l'arête inclinée 12 sans plus y former de bourrelets ou bavures. Le seul endroit où pourrait se manifester une rétention de zinc est la pointe inférieure 13 des ondulations de l'ailette en contact avec le tube, ce qui n'entrave nullement le passage de l'air, parce que cette surépaisseur est très locale, ponctuelle, et parce que le biseau agrandit nettement les orifices des chenaux d'air entre ailettes sinueuses et tubes. 



   En outre, les bourrelets de zinc 5 situés au pied des ailettes, le long des génératrices internes 8, résultant de la galvanisation réalisent un pont thermique très favorable entre le tube 2 et ses ailettes 11. 



   De préférence le biseau se présente, vu en coupe, transversalement aux tubes, sous forme rectiligne avec un angle a de 300 entre l'arête biseautée vue en coupe et la face du tube (voir figure 3). Cet angle a, de préférence constant, peut être compris entre 15 et   600.   Mais cet angle peut aussi varier le long du biseau. 



   Sur la figure 3 on a montré la position de l'ensemble du tube à ailettes 10 selon l'invention, avant immersion dans un bain 14 rempli de zinc 15 à une température d'environ   450oC.   



   L'invention couvre également un procédé de fabrication de tube à ailettes 10 selon l'invention et plus particulièrement la réalisation des ailettes biseautées. 

 <Desc/Clms Page number 7> 

 



   Comme montré sur la figure 4, les biseaux 12 sont réalisés par découpe 16 dans la tôle 17 des ailettes avant la mise en forme (ondulation) de cette tôle,   c'est-à-dire   par découpe à plat du feuillard. L'outil de découpe a une arête de découpe dont le profil est sinueux. Le profil de l'arête de découpe 16 doit correspondre judicieusement au profil des ondulations des ailettes pour que le biseau se présente en coupe transversale sous forme rectiligne. 



  Notamment la découpe est triangulaire si le profil des ailettes est triangulaire. Elle est sinusoïdale s'il est sinusoïdal. Sinon, l'arête biseautée des ailettes vue en coupe transversale est courbe, voire ondulée, ce qui est toutefois acceptable et satisfait aux buts de l'invention pour autant que les angles entre les tangentes locales à l'arête biseautée sinueuse et la face du tube soient suffisamment aigus pour permettre l'écoulement aisé du zinc. 



   L'ensemble des opérations de fabrication de batteries galvanisées de tubes plats à ailettes sinueuses se déroule normalement selon le processus suivant :   . en   ce qui concerne les ailettes : a) découpe sinueuse à plat d'un côté du feuillard 17 constituant les ailettes, destinée à former le futur biseau ; b) ondulation du feuillard, en correspondance (synchronisme) avec la sinuosité de la découpe 16 précédente du biseau 12. 



  . en ce qui concerne le tube : - découpe et mise en forme des tôles des demi-tubes 2 ; - soudage des ailettes 11 sur le côté extérieur des demi-tubes
2 ; - assemblage par soudage en 4 des demi-tubes 2 pour consti- tuer les tubes entiers à ailettes 10 ; - assemblage des ensembles de tubes à ailettes en batteries ; - galvanisation des batteries de tubes à ailettes, les génératrices des ailettes ondulées étant disposées verticalement, biseaux 12 situés en bas, comme représenté à la figure 3. 



   Un autre avantage du biseautage des ailettes est la possibilité de peinture par trempage des batteries galvanisées de 

 <Desc/Clms Page number 8> 

 tubes plats à ailettes sinueuses, sans formation de bourrelets de peinture aux arêtes inférieures (dans la position de retrait du bain de peinture) des ailettes.



   <Desc / Clms Page number 1>
 



   DESCRIPTION Finned tubes and process for their manufacture
The present invention relates to finned tubes and, more particularly, to heat exchangers between two fluids without direct contact between these fluids, consisting of galvanized finned tubes, the fluid inside the tubes being either a liquid or a condensing gas. , in particular saturated water vapor, the fluid external to the tubes being a gas, in particular atmospheric air.



   The invention also relates to the method of manufacturing these finned tubes.



   The finned tubes considered here are made of galvanized steel and have an elongated section whose two opposite long sides have rectilinear surfaces. These tubes are normally straight, that is to say not curved, therefore having two opposite planar faces; these tubes are said to be flat. These flat faces are externally provided with sinuous fins constituted by corrugated thin sheets. There is one corrugated sheet per tube face.



  A fin tube can be formed by welding two profiled sheets provided with sinuous fins. Corrugated sheets can also be welded directly to a flat tube. After the finned tube has been produced, or even after the batteries have been formed, the assembly is galvanized by immersion in a hot-dip galvanizing bath.



   The concept of heat exchanger where the winding fins are applied to flat tubes is already mentioned in US Pat. No. 2,063,757 to General Motors of December 29

 <Desc / Clms Page number 2>

 1934. It is the heat exchanger which conventionally constitutes the radiators of motor vehicles.



   Since then many patents relate to such types of exchangers. Each fin can extend over several flat tubes, as shown in FIG. 4 of patent EPB 325,844 of Modine or onto a single tube, as shown in FIG. 6 of the same patent.



   In this patent, each fin is applied between two tubes, the valleys of the corrugation of the fin being connected to one tube, while the vertices of the corrugation are connected to the other tube. But there are also exchangers where each tube has its own fins, one on each side. This is the case of the heat exchanger described in US Pat. No. 4,256,177 to Modine.



   FIG. 2 of this patent represents a fin tube typical of the known art to which our invention relates.



   A very common industrial material is galvanized steel, which is inexpensive and relatively resistant to atmospheric corrosion.



   The galvanization of flat tubes with sinuous fins poses a problem due to the retention by capillarity of too large quantities of zinc at the lower edge of the fins, when the tubes are removed from the galvanizing bath.



   The tubes are removed in a horizontal position from the galvanizing baths, the walls of the fins being arranged vertically (vertical air channels in the fins). When a fin leaves the surface of the zinc bath, a strip of zinc (burr) remains attached to its lower edge, by capillary action, surface tension, or even a veil of zinc can block the lights between fins and tubes.



   These zinc beads obstruct the passage of air in the channels of the fins and greatly increase the air pressure losses.



   As for leveling the lower edge of the fins to remove the zinc burrs, it is a very expensive job.

 <Desc / Clms Page number 3>

 As for electrogalvanizing, it gives zinc thicknesses that are much too small, on the order of a micron, while we are looking for a thickness of at least 60 microns. It is the same with previously zinc-coated sheets, such as sheets of the Zenzimir process where the thickness of zinc can only reach a few tens of microns, less than 60 microns.



   In addition, these zinc-coating processes do not allow the fins at the feet, that is to say at the contact between the sinuous sheet and the face of the tube, the right amount of zinc that gives full hot-dip galvanization. bath, with its zinc retention in the very acute angles formed between the sinuous sheet and the face of the tubes, ensuring excellent heat transfer (thermal bridge).



   There are two known means for reducing, or even practically eliminating, the zinc beads at the ends of the fins.



   One process consists in raising the temperature of the zinc bath by a hundred degrees and thus galvanizing around 5500C instead of 450 C. The zinc is clearly more fluid, less viscous, more wetting. Its viscosity and surface tension are lower. The zinc thicknesses are more regular, and in particular the zinc thicknesses at the lower edges of the parts at the outlet of the baths are negligible. But such installations are much more costly in investment; in fact, the tanks can no longer be made of steel, but must be made of ceramic. The energy consumption is also much higher, because of the heat loss clearly greater at 5500C than at 4500C.



   Such installations are rarer throughout the world, or even nonexistent in less developed countries, where it can be interesting to manufacture the finned tubes, with machines easily transportable in these countries, and where it would be necessary to finish the work with a galvanization to be done in the vicinity of the place where the manufacturing was carried out. Finally, a higher temperature increasing the fluidity of the zinc gives a smaller thickness of

 <Desc / Clms Page number 4>

 zinc at lower temperature, around 40 to 50 microns instead of 60 to 70 microns commonly obtained at 450 C.



   The other method giving less zinc burrs consists in adding more additives, in particular aluminum or lead, to the zinc in order to reduce its viscosity. As with high-temperature galvanizing, this results in a reduced thickness of zinc on the galvanized part. The process is also more expensive (cost of additives), and the conduct of galvanization (bath control) more difficult.



   The object of the invention is to allow hot-dip galvanization of flat tubes with sinuous fins, free of zinc beads or burrs at the lower edges of the fins (in the position for withdrawing from the galvanizing bath), in standard (conventional) baths of hot-dip galvanizing, that is to say in baths at 445 to 460oC, without special additives, baths as they are commonly found throughout the world.



   The galvanization of flat tubes with sinuous fins according to the invention does not require either special galvanizing baths or special galvanizing techniques. To this end, a galvanized fin tube according to the invention consists of a tube having flat surfaces and externally provided with fins, in the form of thin corrugated sheets having external generators and internal generators as well as two edges, one upper and lower, located at the ends of the generatrices of the fins, of which at least one of the two, the lower edge, is bevelled at an angle a with respect to the longitudinal plane of the plane faces of the tube.



   The invention therefore consists in bevelling one of the ends of the sinuous fins and in constituting each fin tube so that the fins of the tubes have all their bevelled parts on the same side, which is the lower side during galvanization.



   Likewise, if the galvanization takes place by battery of flat tubes with sinuous fins, rather than tube by tube, all the tubes of the same battery are arranged so that they pre-

 <Desc / Clms Page number 5>

 feel the bevelled part of their fins on the same side, which will be the bottom side when galvanizing.



   An exemplary embodiment of the invention will be described below.
 EMI5.1
 vention with reference to the accompanying drawings in which: - Figure 1 shows a perspective view of a flat tube with sinuous fins according to the prior art; - Figure la is a bottom view, illustrating the air passage sections between the fins according to Figure 1 after galvanization; - Figure 2 shows a perspective view of a flat tube with sinuous fins galvanized according to the invention; - Figure 2a is a bottom view, illustrating the air passage sections between the galvanized fins according to Figure 2; - Figure 3 shows a cross section in the heat exchange tube with sinuous fins according to the invention; - Figure 3a is a sectional view along line AA in Figure 3;

   - Figure 4 shows the profile of the cutting edge of the tool (punch) for bevelling the flat sheet of the fins not yet wavy.



   In Figure 1 there is shown an assembly of a fin tube 1 according to the known technique. The flat tube is composed of two profiled sheets 2 constituting the half-tubes connected to the ends 4 by welding over the entire length of the tube ensuring sealing. The flat section of a half-tube 2 is provided with a corrugated sheet forming the sinuous fins 3 with external generators 7 and internal generators 8. These fins 3 are welded on the outside and plane side of the half-tube 2 by their generatrix internal 8. During galvanizing, this assembly 1 is immersed and removed in a position as shown in FIG. 3, that is to say the flat tube 2, in a horizontal position, and the fins 3 with the generators 7 and 8, in a vertical position.



   FIG. 1a, representing a front view of the lower side of the fins 3, shows the formation of zinc beads 6 after solidification, leaving only a heavily obstructed passage 9,

 <Desc / Clms Page number 6>

 or even completely blocked for cooling air. These zinc beads 6 result from hot galvanizing in a normal bath, that is to say at a temperature of 445 to 460 C, without additives.



   FIG. 2 shows an assembly 10 produced according to the invention with a flat tube 2 consisting of two welded half-tubes, one outer side of which is provided with sinuous fins 11. According to the invention, one of the edges of these fins 11 has a bevelled part 12 on the same side, which is the lower side during galvanizing.



   The angle a of the bevel is such that the zinc flows along the inclined edge 12 without further forming beads or burrs there. The only place where a zinc retention could appear is the lower point 13 of the undulations of the fin in contact with the tube, which does not in any way obstruct the passage of air, because this extra thickness is very local, punctual , and because the bevel clearly enlarges the orifices of the air channels between sinuous fins and tubes.



   In addition, the zinc beads 5 situated at the foot of the fins, along the internal generatrices 8, resulting from the galvanization produce a very favorable thermal bridge between the tube 2 and its fins 11.



   Preferably the bevel is presented, seen in section, transversely to the tubes, in rectilinear form with an angle a of 300 between the bevelled edge seen in section and the face of the tube (see FIG. 3). This angle a, preferably constant, can be between 15 and 600. But this angle can also vary along the bevel.



   In FIG. 3, the position of the assembly of the finned tube 10 according to the invention has been shown, before immersion in a bath 14 filled with zinc 15 at a temperature of approximately 450 ° C.



   The invention also covers a method of manufacturing finned tube 10 according to the invention and more particularly the production of beveled fins.

 <Desc / Clms Page number 7>

 



   As shown in Figure 4, the bevels 12 are produced by cutting 16 in the sheet 17 of the fins before the shaping (corrugation) of this sheet, that is to say by cutting the strip flat. The cutting tool has a cutting edge with a sinuous profile. The profile of the cutting edge 16 must judiciously correspond to the profile of the corrugations of the fins so that the bevel is in cross section in rectilinear form.



  In particular, the cut is triangular if the profile of the fins is triangular. It is sinusoidal if it is sinusoidal. Otherwise, the bevelled edge of the fins seen in cross section is curved, even wavy, which is however acceptable and satisfies the aims of the invention provided that the angles between the local tangents to the sinuous beveled edge and the face of the tube are sharp enough to allow easy flow of zinc.



   All the manufacturing operations for galvanized batteries of flat tubes with sinuous fins normally take place according to the following process:. with regard to the fins: a) sinuous cut flat on one side of the strip 17 constituting the fins, intended to form the future bevel; b) undulation of the strip, in correspondence (synchronism) with the sinuosity of the previous cut 16 of the bevel 12.



  . with regard to the tube: - cutting and shaping of the sheets of the half-tubes 2; - welding of the fins 11 on the outside of the half-tubes
2; - assembly by welding in 4 of the half-tubes 2 to constitute the whole tubes with fins 10; - assembly of sets of finned tubes into batteries; - galvanizing the batteries of finned tubes, the generators of the corrugated fins being arranged vertically, bevels 12 located at the bottom, as shown in FIG. 3.



   Another advantage of the bevelling of the fins is the possibility of dip painting of the galvanized batteries of

 <Desc / Clms Page number 8>

 flat tubes with sinuous fins, without formation of paint beads at the lower edges (in the position of withdrawal of the paint bath) of the fins.


    

Claims (9)

REVENDICATIONS 1. Tube à ailettes constitué d'un tube (2) présentant des surfaces planes et pourvues extérieurement d'ailettes (11), sous forme de tôles ondulées présentant des génératrices externes (7) et des génératrices internes (8) ainsi que deux arêtes situées aux extrémités des génératrices des ailettes, caractérisé en ce qu'au moins une des arêtes (12) des tôles ondulées est biseautée par rapport au plan desdites surfaces planes. CLAIMS 1. Finned tube consisting of a tube (2) having flat surfaces and externally provided with fins (11), in the form of corrugated sheets having external generators (7) and internal generators (8) as well as two edges located at the ends of the generatrices of the fins, characterized in that at least one of the edges (12) of the corrugated sheets is bevelled relative to the plane of said plane surfaces. 2. Tube à ailettes selon la revendication 1, caractérisé en ce que les ailettes du tube aient toutes leurs arêtes biseautées (12) du même côté, qui est le côté inférieur lors d'une opération de traitement par immersion (dans un produit liquide ou pâteux).  2. Finned tube according to claim 1, characterized in that the fins of the tube have all their bevelled edges (12) on the same side, which is the lower side during an immersion treatment operation (in a liquid product or pasty). 3. Tube à ailettes selon la revendication 1 ou 2, caractérisé en ce que l'arête biseautée (12) se présente, vue en coupe, transversalement au tube sous forme rectiligne avec un angle (a) constant compris entre 15 et 600 entre l'arête biseautée vue en coupe et la face plane du tube (2).  3. Finned tube according to claim 1 or 2, characterized in that the bevelled edge (12) is, seen in section, transversely to the tube in rectilinear form with a constant angle (a) between 15 and 600 between l 'bevelled edge sectional view and the flat face of the tube (2). 4. Tube à ailettes selon la revendication 3, caractérisé en ce que le biseau (12) se présente sous un angle (a) de 300.  4. Finned tube according to claim 3, characterized in that the bevel (12) has an angle (a) of 300. 5. Tube à ailettes selon la revendication 1 ou 2, caractérisé en ce que l'arête biseautée (12) se présente, vue en coupe, transversalement au tube sous forme curviligne, les angles entre les tangentes locales à l'arête biseautée vue en coupe et la face plane du tube étant compris entre 15 et 600.  5. Finned tube according to claim 1 or 2, characterized in that the bevelled edge (12) is presented, seen in section, transversely to the tube in curvilinear form, the angles between the local tangents to the beveled edge seen in section and the flat face of the tube being between 15 and 600. 6. Procédé de fabrication d'un tube à ailettes selon les revendications 1 à 5, caractérisé par les étapes suivantes : - découpe sinueuse à plat d'un côté du feuillard constituant les ailettes ; <Desc/Clms Page number 10> ondulation du feuillard en correspondance avec la découpe sinueuse ; découpe et mise en forme des tôles constituant les demi-tubes ; soudure des ailettes de la tôle ondulée sur le côté extérieur des demi-tubes ; assemblage par soudage des demi-tubes pour constituer un tube entier à ailettes.  6. A method of manufacturing a finned tube according to claims 1 to 5, characterized by the following steps: - sinuous cut flat on one side of the strip constituting the fins;  <Desc / Clms Page number 10>  undulation of the strip in correspondence with the sinuous cut; cutting and shaping of the sheets constituting the half-tubes; welding of the corrugated sheet fins on the outside of the half-tubes; assembly by welding of the half-tubes to constitute an entire tube with fins. 7. Procédé selon la revendication 6, caractérisé par l'étape additionnelle d'assemblage d'ensembles de tubes à ailettes en batteries.  7. Method according to claim 6, characterized by the additional step of assembling sets of finned tubes in batteries. 8. Procédé selon la revendication 6 ou 7 pour la fabrication de tubes à ailettes, caractérisé en ce qu'on effectue une immersion complète de l'ensemble de tubes à ailettes dans un bain de produits liquides ou pâteux, les génératrices externes et internes des tôles ondulées étant disposées verticalement avec l'arête bisautée située vers le bas.  8. Method according to claim 6 or 7 for the manufacture of finned tubes, characterized in that a complete immersion of the set of finned tubes is carried out in a bath of liquid or pasty products, the external and internal generators of corrugated sheets being arranged vertically with the bevelled edge downwards. 9. Procédé selon la revendication 6 ou 7 pour la fabrication de tubes à ailettes galvanisés, caractérisé en ce qu'on effectue une immersion complète de l'ensemble des tubes à ailettes dans un bain de zinc à une température comprise entre 445 et 460 C, sans y ajouter davantage d'additifs, les génératrices externes et internes des tôles ondulées étant disposées verticalement avec l'arête biseautée située vers le bas.  9. Method according to claim 6 or 7 for the manufacture of galvanized fin tubes, characterized in that one carries out a complete immersion of all the fin tubes in a zinc bath at a temperature between 445 and 460 C , without adding more additives, the external and internal generators of the corrugated sheets being arranged vertically with the bevelled edge downwards.
BE9300085A 1993-01-27 1993-01-27 Fin tubes and method of making. BE1006617A3 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BE9300085A BE1006617A3 (en) 1993-01-27 1993-01-27 Fin tubes and method of making.
EP94870012A EP0609189A1 (en) 1993-01-27 1994-01-26 Finned tubes and relevant manufacturing method
CN 94101152 CN1093800A (en) 1993-01-27 1994-01-26 Finned tube and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE9300085A BE1006617A3 (en) 1993-01-27 1993-01-27 Fin tubes and method of making.

Publications (1)

Publication Number Publication Date
BE1006617A3 true BE1006617A3 (en) 1994-11-03

Family

ID=3886817

Family Applications (1)

Application Number Title Priority Date Filing Date
BE9300085A BE1006617A3 (en) 1993-01-27 1993-01-27 Fin tubes and method of making.

Country Status (3)

Country Link
EP (1) EP0609189A1 (en)
CN (1) CN1093800A (en)
BE (1) BE1006617A3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062557B (en) * 2006-11-08 2012-07-04 浙江三花制冷集团有限公司 Fin and condenser
CN101178292B (en) * 2006-11-08 2011-05-04 浙江三花制冷集团有限公司 Fin and condensator
CN106255396B (en) * 2016-10-18 2019-06-11 中车大连机车研究所有限公司 A kind of pipe type microcirculation radiator and microcirculation heat-exchange system
CN106332529B (en) * 2016-10-18 2019-06-11 中车大连机车研究所有限公司 A kind of corrugated tube type microcirculation radiator and microcirculation heat-exchange system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1273141A (en) * 1968-02-13 1972-05-03 Glacier Co Ltd Heat exchanger and method of making it
FR2323118A1 (en) * 1975-09-02 1977-04-01 Borg Warner TUBULAR FINNED EVAPORATOR, ESPECIALLY FOR AIR CONDITIONING SYSTEMS
US4171015A (en) * 1977-03-28 1979-10-16 Caterpillar Tractor Co. Heat exchanger tube and method of making same
GB2124659A (en) * 1982-06-26 1984-02-22 Gkn Birwelco Ltd Hot dip galvanising bath

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236045A (en) * 1992-04-03 1993-08-17 L & M Radiator, Inc. Heat exchanger tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1273141A (en) * 1968-02-13 1972-05-03 Glacier Co Ltd Heat exchanger and method of making it
FR2323118A1 (en) * 1975-09-02 1977-04-01 Borg Warner TUBULAR FINNED EVAPORATOR, ESPECIALLY FOR AIR CONDITIONING SYSTEMS
US4171015A (en) * 1977-03-28 1979-10-16 Caterpillar Tractor Co. Heat exchanger tube and method of making same
GB2124659A (en) * 1982-06-26 1984-02-22 Gkn Birwelco Ltd Hot dip galvanising bath

Also Published As

Publication number Publication date
CN1093800A (en) 1994-10-19
EP0609189A1 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
EP1976662B1 (en) Flat tube, flat tube heat exchanger, and method of manufacturing same
EP0447528B1 (en) Condenser for motor vehicle
US5295302A (en) Method of manufacturing an aluminum heat exchanger
US20090020278A1 (en) Flat tube, flat tube heat exchanger, and method of manufacturing same
BE1005554A3 (en) Method of manufacturing a tube wall multiple.
FR2706197A1 (en) Grooved tubes for heat exchangers of air conditioning and refrigeration units, and corresponding exchangers.
FR2865028A1 (en) Heat exchanger for cooling batteries of electric vehicle, has heat exchanging modules between which path is arranged for condensable heat transfer fluid flow, where hydraulic diameter of path is reduced as condensation of fluid occurs
FR2499234A1 (en) HEAT EXCHANGER
PL193959B1 (en) Heat exchanger and method for producing a heat exchanger
BE1006617A3 (en) Fin tubes and method of making.
FR2515259A1 (en) OIL COOLER
US2821772A (en) Method of making fluid-tight heat exchange tubes
FR2838509A1 (en) PLATE HEAT EXCHANGER HAVING SURFACE FLUID PASSAGES
WO2003046456A1 (en) Tube profiles for heat exchanger
WO2008025615A1 (en) Method for manufacturing a heat exchanger tube
FR2987673A1 (en) METHOD FOR MANUFACTURING A HEAT EXCHANGER TUBE FOR A VEHICLE, IN PARTICULAR A MOTOR VEHICLE, TUBE OBTAINED BY SAID METHOD AND HEAT EXCHANGER COMPRISING SUCH A TUBE
JP4455912B2 (en) Fixing method for fin member of heat transfer tube with spiral fin
EP3532791B1 (en) Collector plate for a motor vehicle heat exchanger
JP3632871B2 (en) Manufacturing method of header tank
FR2572798A1 (en) Heat exchanger with plates of the &lt;&lt;fin-plates&gt;&gt; type and its method of manufacture
FR2810727A1 (en) Heat exchanger tube for car radiator comprises metal strip which is bent over to form edges with space between, tube being folded inwards to form groove into which brazing flux is introduced
FR2801233A1 (en) Flat bent tube-type heat exchanger for production of car radiators has tubes made from strip of bent sheet, the surface of which is coated with silicon-containing aluminum-based brazing alloy, to provide a joint between tubes and inserts
CN108856944B (en) Solar heat absorption fin wrapped with copper pipe and welding method thereof
FR2726076A1 (en) HEAT EXCHANGER WITH TUBULAR COLLECTOR BOXES
FR2925374A1 (en) METHOD FOR THE WELDING OF TUBULAR ELEMENTS FOR A RADIATOR WITH A HEAT PUMP FLUID AND A RADIATOR THUS HAPPENED

Legal Events

Date Code Title Description
RE Patent lapsed

Owner name: S.A. HAMON THERMAL ENGINEERS & CONTACTORS

Effective date: 19970131