AU9340601A - A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis - Google Patents

A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis Download PDF

Info

Publication number
AU9340601A
AU9340601A AU93406/01A AU9340601A AU9340601A AU 9340601 A AU9340601 A AU 9340601A AU 93406/01 A AU93406/01 A AU 93406/01A AU 9340601 A AU9340601 A AU 9340601A AU 9340601 A AU9340601 A AU 9340601A
Authority
AU
Australia
Prior art keywords
immunoglobulin
antibody
fusion protein
amino acid
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU93406/01A
Other versions
AU775429B2 (en
Inventor
Mae Joanne Rosok
Dale E. Yelton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristol Myers Squibb Co
Original Assignee
Bristol Myers Squibb Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1997/013562 external-priority patent/WO1998005787A1/en
Application filed by Bristol Myers Squibb Co filed Critical Bristol Myers Squibb Co
Publication of AU9340601A publication Critical patent/AU9340601A/en
Application granted granted Critical
Publication of AU775429B2 publication Critical patent/AU775429B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

I
AUSTRALIA
Patents Act COMPLETE SPECIFICATION
(ORIGINAL)
Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: Name of Applicant: Bristol-Myers Squibb Company and Mae Joanne Rosok Actual Inventor(s): Mae Joanne Rosok, Dale E Yelton Address for Service: PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED TOXICITY RESULTING FROM THE USE OF IMMUNOGLOBULINS IN THERAPY AND IN VIVO DIAGNOSIS Our Ref: 657417 POF Code: 140109/140109, 261014 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): la A METHOD FOR INHIBITING IMMUNOGLOBULIN-INDUCED TOXICITY RESULTING FROM THE USE OF IMMUNOGLOBULINS IN THERAPY AND IN VIVO DIAGNOSIS The present application is a divisional application from Australian patent application number 39688/97, the entire disclosure of which is incorporated herein by reference.
Throughout this application various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
TECHNICAL FIELD OF THE INVENTION The present invention relates to methods for inhibiting or reducing immunoglobulin-induced toxicity resulting from therapy or in vivo diagnosis.
Specifically, in lieu of using unmodified antibodies or recombinant binding proteins for in vivo use. the invention provides the use of modified antibodies or recombinant binding proteins which have been structurally altered in the constant domain so that upon administration immunoglobulin-induced toxicity is reduced or inhibited.
BACKGROUND OF THE INVENTION Over the years investigators have attempted to harness the immune system for therapeutic use. Irmnunoglobulin (Ig) molecules which constitute an important part of the immune system are of great interest because they react with a diverse family of ligands, possess different effector functions and are of great biological importance. Despite its potential, a persistent problem with W. ancIetsped3968-dirvsionI doc immunoglobulin immunotherapy has been, among other problems, the toxic effect to normal cells of using antibodies which recognize both normal and diseased cells.
This problem is far-reaching because the majority of antibodies presently available recognize a target located on both normal and diseased cells (Slavin-Chiorini, et al., Int. J. Cancer 53: 97-103 (1993)).
The constant region can promote cell death through antibody dependent cell mediated cytotoxicity (ADCC) or by complement dependent cytotoxicirv (CDC).
Despite the deletion of portions of the constant region. particularly the CH- domain.
the antigen binding function can be retained Yelton. M. Scharf. Mutant monoclonal antibody with alterations in biological functions, J. Exp. Methods 156:1131-1148 (1982)).
Others have generated a CH:-deleted antibody (Mueller et al., Proc. Natl.. Acad. Sci.
USA 87: 5702-5705 (1990)). Their findings provide that the CH:-deleted antibody was cleared from the blood of tumor-bearing mice much faster than the corresponding intact antibody. Other in vivo findings also confirmed that a CH:deleted antibody, designated chl4.18DCH2, is a potentially useful reagent for radioinmmunodetection of human tumors because of its reduced immunogeniciv, increased targe: specificirv. and rapid clearance from circulation (Mueiler et al., Proc. Natl. Acad. Sci. USA 87: 5702-5705 (1990). G.J. Schreiber et al.. -'An Unmrcdified Anticarcinoma Antibody. BR96. Localizes to and Inhibits the Outgrowth of Human Tumors in Nude Mice," Cancer Res. 52: 3262-3266 (1992), reports the use of an IgGI class-switched variant of BR96 and fragments.
S.D. Gillies J.S. Wesolowski, ".Antigen Binding and Biological Activities of Engineered Mutant Chimeric Antibodies with Human Tumor Specificities," Hum.
Antibod. Hvbridomas 1: -17-54 (1990). report the use of fragments of chimeric antibodies to reduce toxicity. G.J. Weiner et al.. -The Role of T Cell Activation in Anti-CD3 X Antitumor Bispecific Antibody Therapy." J. mrmunol.
152: 2385-2392 (1994), report bispecific anti-CD3 x antitumor F(ab') 2 antibody fragment used for immune therapy.
Generally, whole antibody molecules are composed of two heavy and two light chains which are held together by covalent bonds (disulfide) and non-covalent interactions. Each chain contains a variable region and a constant region The variable regions at the amino termini of the two chains form the antigen binding region. The constant region of the H chain has three components or domains.
Occasionally, the first constant region domain (CHI) interacts with the C region of the L chain through hydrophobic interactions and generally a disulfide bond, depending on isotype. The next C region stretch is the hinge-acting disulfide bond stably introduced between two H chains. The second constant region domain (CH 2 is adjacent to the hinge region. CH 2 contains sequences important for effector functions of the antibody, such as the sequences responsible for complement fixation, and Fc receptor binding The third constant region domain (CH 3 is located at the carboxyl terminus of the H chain, and is considered to play an important role in H chain assembly as well as some C region finctions.
Today many antibodies in clinical trials are directed against tumor associated antigens. Most tumor associated antigens are not tumor specific but are also generally found on the cell surface of some normal, non-tumorigenic cells. The clinical use of some antibodies directed against tumor associated antigens are limited 20 because of the toxicity associated with their use. Therefore, there is a need for methods for inhibiting toxicity associated with immunoglobulin use in the field of disease therapy therapy for tumors, kidney disease, and the likeyand in vivo diagnosis.
We addressed this need by discovering methods for inhibiting or reducing toxicity to normal cells generally associated with immunoglobulin immunotherapy *or in vivo diagnosis, wherein the immunoglobulin recognizes both diseased and normal cells.
Our discovery involves generating immunoglobulin molecules or Ig fusion proteins having structurally altered constant regions which inhibit or reduce immunoglobulin-induced toxicity.
SUMMARY OF THE INVENTION The present invention provides methods for inhibiting immunoglobulin-induced toxicity by using known imnmunoglobulin or Ig fusion protein molecules which are structurally altered in their constant regions so that the resulting structurally altered immunoglobulin or Ig fusion protein molecules exhibit reduced or inhibited toxicity in vivo compared to their original unmodified counterparts.
Structural alteration of the constant region may be effected in a number of ways as long as it results in reducing or inhibiting immunoglobulin-induced toxicitv.
In accordance with the practice of one embodiment of the invention, structural alteration of the constant region is effected by deletion of the entire constant region.
In another embodiment, only the CH: domain is deleted. In another embodiment, only that portion of the CH: domain that binds the Fc receotor is deleted. In vet another embodiment, only that portion of the CH: domain that binds the complement component CIq is deleted. Alternatively, in another embodiment, multiple deletions in discrete Fc receptor and complement component bining domains are effected.
2 -Alternatively, strucurali alteration is effected by sing!e or multiple mutations in the CH domain such as amino acid insentions and substitutions. The mutation or mutations must result in inhibiting imnmrrnogiobuiin-induced toxiciy. By w-a of exampie. the amino acids in multiple toxicity associated domains in the constant region can be altered so as to render the constant region unable to mediate a DCC response or activate complement thereby inhibiting immunog!obuiin induced toxicity resulting from immunotherapy. Alternatively, multiple amino acids in a single toxicity associated domain in the constant region can be altered.
S. *S Further alternatively, structurai alteration can be effected by isotype switcring resulting in an altered immunoglobulin molecule that either does not induce toxicity or induces some limited toxicity but does not cause a harmful effect. For example.
isotype switching can result in the constant region being unable to mediate a CDC or ADCC response or some other activity which mediates toxicity.
BRIEF DESCRIPTION OF THE FIGURES Figure 1 is a line graph showing plasma clearance in high Ley expressing dogs using chimeric BR96 versus constant region mutant ofcBR96-2.
Figure 2 is a schematic diagram of a plasmid designated pTWD-cJVK.Ll including the chimeric (c)BR96-light chain (SEQ ID NO. 11).
Figure 3 is a schematic diagram of a plasmid designated pD 16hJl.L1 including the human (h)BR96-light chain (SEQ ID NO. 13).
Figure 4 is a schematic diagram of a piasmid, designated pDl7-hJml4-dCH2.HI, of hBR96-2A human mutant BR96 having the HI, H2, and H3 mutations and the CH 2 deletion (PCT Application No. 95/305444, published March 6, 1996)).
Figure 5 is a schematic diagram of a plasmid, designated pDi7-cJ-dCH2.HL. of cBR96-A (SEQ ID NO. 10) chimeric BR96 having the CH 2 deletion (PCT 20 Application No. 95/305444, published March 6, 1996)).
Figure 6 is a schematic diagram of a plasmid, designated pD 7-cJ.H of cBR96.
Figure 7 is a line graph showing the results of an ELISA assay of hBR96-2A- Dox to Le y (closed diamond), hBR96-2A to Le y (96:0006A2 R/A)(closed square), hBR96-2A to Le y (96:0006B R/A)(closed triangle), and BR96-Dox to Le S Figure 8 is a line graph showing the results of an ELISA assay of(1) BR96-A-Dox 30 to Le y (closed diamond), chiBR96 to Le y (closed square), cBR96-A to Le y (96:0003 R/A)(closed triangle), and cBR96-Dox to Le y Figures 9a-c are schematic diagrams showing the steps for deleting a CH 2 domain.
Figures 10a-c are schematic diagrams showing the construction of BR96 IgGI CH, Uomain point mutations.
Figure 11 is a schematic diagram showing the construction of the pNg 1/14 vector.
Figure 12 is a schematic diagram showing the construction of pD7-hBR96-2.
Figure 13 is a schematic diagram showing the construction of oDl7-hJmi4dCH2.Hl.
Figures I4A-J are the nucleic acid sequence of pDl7-cJ-dCH-2.HI, the plasmid shown in Figure 5. chimeric BR96 having the CH. deletion.
Fiure 15 is a line graph showing the results of an ELISA assay comparing whole chiBR96 and deleted CH, chiBR96 on Ley.
Figure 16 is a description of the seven structural alterations.
Figure 17 is a schematic diagram of a plasmid designated pD I 7-hG i b.
Figures 18 A-F are the nucleic acid sequence of pDI7-himi4.HI.
Figures 19 A-N are the nucleic acid sequence of pD 17-hGlb.
Figure 20 is a line graph showing complement dependent cytotoxicit. In :he legend, the closed square is hBR96-1; closed diamond is hBR96-2B: closed circie is hBR96-2C; closed triangle is hBR96-2D; open square is hBR96-2H: open circle is hBR96-2A and open triangle is 2B8, anti-Pseudonomas aeruginosa flagella type b mAb, negative control.
Figure 21 is a line graph showing antibody dependent cell-mediated cvtotoxitv. In the legend, the closed square is hBR96-1; closed diamond is hBR96-2B; closed circle is hBR96-2C; closed triangle is hBR96-2D; open square is hBR96-2H; open circle is hBR96-2A and open triangle is 2B8, anti-Pseudonomas aeruginosa flagella type b monoclonal antibody (mAb), negative control.
Figure 22 is a line graph showing binding activity of hBR96-2 constant region mutants on LeY-HSA. In the legend, the solid diamond is hBR96-1; solid square is hBR96-2A (CH2 deletion); solid triangle is hBR96-2B (235, 237 mutations): open square is hBR96-2C (318, 320, 322 mutations); open circle is hBR96-2D (331 mutation); and open triangle is hBR96-2H (235, 237, 318, 320, 322, 331 mutations).
Figure 23 is a line graph showing binding activity of hBR96-2 constant region mutants on LNFPIII-BSA. LNFPIII is a lacto-N-fucopentasose, a Lewis X trisaccharide with an additional lactose spacer (V Labs, Covington, LA). In the legend, the solid diamond is hBR96-1; solid square is hBR96-2A (CH2 deletion); solid triangle is hBR96-2B (235, 237 mutations); open square is hBR96-2C (318, 320, 322 mutations); open circle is hBR96-2D (331 mutation); and open triangle is 20 hBR96-2H (235. 237, 318, 320, 322, 331 mutations).
Figures 24A and 24B provide a strategy for introducing multiple mutations by RPCR. Diagram of he 1.4 kpb IgG heavy chain region showing the hinge CH 2 and CH 3 domains as boxed regions. Site-specific mutations to be introduced into
CH
2 positions Ll, L2, and L3 are encoded by complementary sets of mutant PCR primers (Al and A2; B1 and B2; and Cl and C2). The asterisks indicate the number of amino acid changes introduced at each L position. The two PCR primers, Rs (Recombination -sense) and Ra (Recombination-antisense), flank the Eco-47- III restriction sites and mediate homologous recombination with vector ends. The 3' ends of the oligonucleotides are represented by arrowheads. A three-way homologous recombination event between fragments RsA2, AIRa and the linearized vector produces the L1 mutant IgG. Two distally located sets of mutations (LI and L2) are simultaneously introduced by increasing the number of recombining PCR produces as is shown in the four-way recombination of RsA2, ALB2,. BIRa with vector.
Figure 25 is a gel showing Eco-47-HI restriction endonuclease analysis of DNAs prepared from colonies generated by multiple PCR fragment RPCR. Lane ikb ladder DNA marker (GIBCO/BRL Life Science Technology). Lanes 1-12: Twe!ve randomly selected colonies resulting from quadruple homologous recombination events were used to prepare plasmid and digested with Eco47-1I1. Clones 1. 2. 6 and 9 contain the fully assembled 1.4 kob insert.
Figure 26 provides the amino acid sequence for hBR96-2 heavy-chain variable region and the human IgGI constant region.
Figure '7 provides the amino acid sequence for hBR96-'A heavy-chain variable reion and the human g12G1 constant rezion from which the CH2 reaion has been deleted.
Figure 28 provides the arnino acid sequence for chi BR96 heavy-chain varabie re2ion and the humazn itG1 constant regicn without the CH: domain.
DETAILED DESCRIPTION OF THE INVENTION *ooS DEFINITIONS As used herein the term "inhibiting immunoglobulin-induced toxicity"' means to reduce or alleviate symptoms generally associated with toxicity caused by S, irmmunoglobulin or Ig fusion protein therapy, toxicity mediated by efector functions of the Fc receptor. For example. BR96 antibody recognizes and binds BR96 antigen which is found at some levels in the gastrointestinal tract and at elevated levels in tumors (as compared to the gastrointestinal tract of normal tissues). The binding of BR96 antibody to BR96 antigen in vivo causes symptoms associated with gastrointestinal toxicity. These symptoms include rapid onset of vomiting, often with blood, and nausea. In humans the bleeding is limited to the fundus of the stomach, causing erosion of the superficial mucosa of the stomach.
The pathology of the wound is limited and resolves. However, the extreme nature of the nausea and vomiting, unrelieved by anti-emetics, defines it as the dose-limiting toxicity. For highly elevated levels of other antigens found in the central nervous system (CNS), liver, and other locations, the toxicity will be characterized by symptoms other than those described above.
As used herein the term "immunoglobulin molecule" can be produced by B cells or be generated through recombinant engineering or chemical synthetic means.
Examples of immunoglobulin molecules include antibodies, polyclonal and monoclonal antibodies, chimeric or humanized, and recombinant Ig. containing binding proteins, Ig fusion proteins. Recombinant Ig containing binding proteins include cell surface proteins, CD antigens (in one embodiment, CTLA4), to which an Ig tail is joined.
As used herein the terms "structurally altered" or "structural alteration" means 20 manipulating the constant region so that the resulting molecule or protein exhibits a diminished ability to induce toxicity. Structural alteration can be by chemical modification. proteolytic alteration, or by recombinant genetic means. Recombinant genetic means may include, but is not limited to, the deletion, insertion and substitution of amino acid moieties.
As used herein the terms "multiple toxicity associated domains" means more than one discrete toxicity associated domain. As there appear to be at least two toxicity associated domains in the immunoglobulin molecule, one roughly localized to amino acids 231-238 and another roughly localized to amino acids 310-331, an example of the structural alteration of multiple toxicity associated domains comprises the insertion, substitution or deletion of amino acid residues in both of these domains.
This definition excludes structural alterations targeting a single toxicity associated domain.
Merely by way of example, the constant region of the immunoglobulin molecule can be structurally altered so that the molecule no longer mediates a CDC or ADCC response. However, the methods of the invention encompasses the use of structurally altered immunoglobulin molecules regardless of whether it mediates a CDC or ADCC response. The underlying requirement is that the altered molecule must inhibit immunoglobulin-induced toxicity.
Structural alteration can be effected in a number of ways. For example, structural alteration can be effected by deletion of the entire constant region.
Alternatively, structural alteration can be effected by deletion of the entire CH 2 domain of the constant region. In this instance, deletion of the entire CH 2 domain may render the molecule unable to bind an Fc receptor thereby eliminating the molecule's possibility of mediating antibody-dependent cellular cytotoxicity (ADCC), bind Clq, or activate complement.
Alternatively, structural alteration can be effected by deletion of only that portion of 20 the CH 2 domain that binds the Fc receptor or complement.
Further alternatively, a single mutation or multiple mutations such as substitutions and insertions in the CH 2 domain can be made. The underlying requirement of any mutation is that it must inhibit, diminish, or block immunoglobulin-induced toxicity. For example, this can be achieved by mutating the constant region such 0 that the altered molecule is rendered unable to mediate a CDC response or an ADCC response, or to activate complement.
Alternatively, structural alteration can be effected by isotype switching (also known as class switching) so that the altered molecule does not induce toxicity in the subject. In one embodiment, the constant region of the immunoglobulin is structurally altered so that it no longer binds the Fc receptor or a complement component, switching a molecule's original IgG isotype from IgGI to IgG4.
Isotype switching can be effected regardless of species, an isotype from a nonhuman being can be switched with an isotype from a human being Finkelman et al. (1990) Annu. Rev. Immunol. 8:303-333; T. Honjo et al. (1979) Cell 18: 559- 568; T. Honjo et al. In "Immunoglobulin Genes" pp. 124-149 Academic Press, London)).
As used herein the term "Ig fusion protein" means any recombinantly produced antigen or ligand binding domain having a constant region which can be structurally altered.
As used herein "cytotoxic agent" includes antimetabolites, alkylating agents, anthracyclines, antibiotics, anti-mitotic agents, and chemotherapeutic agents.
Specific examples within these groups include but are not limited to ricin, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide.
tenoposide. vincristine, vinblastine, colchicine, supporin, gelonin, PE40, brvodin, dihydroxy anthracin dione, actinomycin D, and 1-dehvdrotestosterone.
*0*g As used herein the term "BR96" refers to the whole BR96 monocional antibody 20 disclosed in PCT No. 95/305444, published March 6. 1996, chimeric BR96 monoclonal antibody disclosed in PCT No. 95/305444, published March 6, 1996, or BR96 mutant molecules disclosed in PCT No. 95/305444, published March 6, 1996.
*00* As used herein, "treating" means to provide tumor regression so that the tumor is S"not palpable for a period of time (standard tumor measurement procedures may be followed Miller et al. "Reporting results of cancer treatment" Cancer 47:207- 214 (1981)); stabilize the disease; or provide any clinically beneficial effects.
As used herein, an "effective amount" is an amount of the antibody, immunoconjugate, or recombinant molecule which kills cells or inhibits the proliferation thereof.
As used herein, "administering" means oral administration, administration as a suppository, topical contact, intravenous, intraperitoneal, intramuscular or subcutaneous administration, or the implantation of a slow-release device such as a miniosmotic pump, to the subject.
As used herein, "pharmaceutically acceptable carrier" includes any material which when combined with the antibody retains the antibody's specificity or efficacy and is non-reactive with the subject's immune system. Examples include, but are not limited to, any of the standard pharmaceutical carrii-s such as a phosphate buffered saline solution, water, emulsions such as oil/water emulsion, and various types of wetting agents. Other carriers may also include sterile solutions, tablets including coated tablets ard capsules.
Typically such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acid or salts thereof, magnesium or calcium stearate, talc, vegetable fats or oils, gums, glycols, or other known excipients. Such carriers may also include flavor and color additives or other ingredients. Compositions .o comprising such carriers are formulated by well known conventional methods.
As used herein, "mutation" means a single amino acid or nucleic acid mutation or multiple mutations by.whatever means, homologous recombination, error prone PCR, or site directed mutagenesis.
In order that the invention herein described may be more fully understood, the following description is set forth.
METHODS OF THE PRESENT INVENTION The present invention provides a method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulin during therapy or in vivo diagnosis. For example, the methods of the invention would be useful to minimize the toxicity associated with prolonged clinical exposure to immunoglobulin use during or after tumor imaging with radiolabeled antibodies.
In accordance with the practice of this invention, the subject includes, but is not limited to, human, equine, porcine, bovine, murine, canine, feline, and avian subjects. Other warm blooded animals are also included in this invention.
This method comprises administering an immunoglobulin molecule to the subject.
The immunoglobulin can be IgG, IgM, or IgA. IgG is preferred.
In one embodiment of the invention, the immunoglobulin molecule recognizes and binds Le y In another embodiment, the immunoglobulin recognizes and binds Le".
In a further embodiment, the immunoglobulin is a monoclonal antibody BR96 produced by the hybridoma deposited on February 22, 1989 with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, MD 20852 and accorded ATCC Accession No.: HB 10036. in vet another embodiment, the immunoglobulin is a chimeric antibody ChiBR96 produced by the hybridoma deposited on May 23, 1990, with the ATCC, 12301 Parklawn Drive, Rockville, MD 20852 and accorded ATCC Accession No.: IHB 10460.
In accordance with the practice of the invention, the immunoglobulin can be a bispecific antibody with a binding specificity for two different antigens, one of the antigens being that with which the monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC binds. Also, in accordance with the practice of the invention, the immunoglobulin can be an anti-idiotypic antibody.
As required by the invention, at least a portion of the constant region of the immunoglobulin molecule is structurally altered. Structural alteration can be effected by a number of means. In one embodiment, the entire constant region, i.e., CHI, CH 2 and CH 3 domains, can be deleted.
In another embodiment, only the CH 2 domain is deleted from the immunoglobulin molecule cBR96-A (Figure hBR96-2A (Figure In this embodiment, the CH 2 deletion may result in a molecule unable to bind the Fc receptor or a complement component.
In another embodiment, only that portion of the CH 2 domain which binds the complement component Clq is deleted. In yet another embodiment, mutations in specific portions of the CH 2 domain are made. For example, the immunoglobulin molecule may be modified by structurally altering multiple toxicity associated domains in the constant region so that immunoglobulin-induced toxicity is inhibited. A discussion of such mutations are further found hereinafter.
Regardless of the means, the underlying requirement for any structural alteration of the constant region is that immunoglobulin-induced toxicity is substantially reduced or inhibited. In one embodiment, immunoglobulin-induced toxicity is inhibited by structurally altering the constant region such that the molecule's ability to mediate a CDC response or ADCC response and/or activate the complement cascade is prevented or inhibited. Methods for determining whether the molecule is able to inhibit a CDC response are well known, one method involves a 20 test Garrigues et al. Int. J. Cancer 29:511 (1982); I. Hellstrom et al. PNAS 82:1499 (1985)). Methods for determining whether the molecule is able to inhibit an ADCC response are well known Hellstrom et al. PNAS 82:1499 (1985)).
Methods for determining whether the molecule is able to activate a complement cascade are well known.
In another embodiment of the invention, the method comprises administering to the subject an Ig fusion protein having a structurally altered constant region. Structural alteration of the constant region may include deletion of the entire C region or o*.o portions thereof, alteration of the CH 2 domain so that the altered molecule no longer binds the Fc receptor or a complement component.
The invention further provides a method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject. The method comprises administering to the subject an antibody which has been modified so that at least a portion of the constant region has been structurally altered as discussed supra. In one embodiment, the antibody recognizes and binds Le y In another embodiment, the antibody recognizes and binds to Le.
In accordance with the practice of this invention, the antibody can be monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC. Alternatively, the antibody can be chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC. Further, the antibody can be a bispecific antibody with a binding specificity for two different antigens, one of the antigens being that with which the monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with-the ATCC binds.
Additionally, the present invention provides a method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy for a disease in a subject. The disease will vary with the antigen sought to be bound. Examples of 20 diseases include but are not limited to immunological diseases, cancer, S cardiovascular diseases, neurological diseases, dermatological diseases or kidney disease.
This method comprises the following steps. Step one provides selecting an antibody for a target. Generally, the target is associated with the disease and the antibody directed to the target is known. For example, the target can be the BR96 antigen and the antibody selected is BR96.
Step two of this method provides structurally altering the constant region of the antibody so selected so that immunoglobulin induced toxicity is inhibited.
Inactivation can include any of the means discussed above. For example, inactivation can be effected by structurally altering multiple toxicity associated domains in the CH 2 domain of the constant region of the Ig protein so selected.
Step three of this method provides administering the structurally altered antibody of step two to the subject under conditions that the structurally altered antibody recognizes and binds the target and that such binding directly or indirectly alleviates symptoms associated with the disease.
In accordance with the invention, in one embodiment step one provides selecting an Ig fusion protein for a target. Further, the method provides mutating the Ig fusion protein so selected by structurally altering the CH 2 domain of the constant region of the Ig protein by the same means discussed above.
The invention further provides methods to treat human carcinoma. -For example, the immunoglobulin, antibody, or Ig fusion protein discussed above can be used in combination with standard or conventional treatment methods such as chemotherapy, radiation therapy or can be conjugated or linked to a therapeutic drug, or toxin, as well as to a lymphokine or a tumor-inhibitory growth factor, for delivery of the therapeutic agent to the site of the carcinoma.
20 Techniques for conjugating therapeutic agents to irmmunoglobulins are well known o (see, Arnon et al.. "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al.
pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstr6m et al., "Antibodies For Drug
O
Delivery", in Controlled Drug Delivery (2nd Robinson et al. pp. 623-53 25 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In o Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. pp. 475-506 (1985); and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol.
Rev., 62:119-58 (1982)).
Alternatively, the structurally altered antibody or Ig fusion protein can be coupled to high-energy radiative agents, a radioisotope such as 1311; which, when localized at the tumor site, results in a killing of several cell diameters (see, Order, "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. pp. 303-16 (Academic Press 1985)).
According to yet another embodiment, the structurally altered BR96 antibody can be conjugated to a second antibody to form an antibody heteroconjugate for the treatment of tumor cells as described by Segal in United States Patent 4,676,980.
Still other therapeutic applications for the structurally altered antibody or Ig fusion protein of the invention include conjugation or linkage, by recombinant DNA techniques or protein chemical techniques, to an enzyme capable of converting a prodrug into a cytotoxic drag and the use of that antibody-enzyme conjugate in combination with the prodrug to convert the prodrug to a cytotoxic agent at the tumor site (see, Senter et "Anti-Tumor Effects Of Antibody-alkaline Phosphatase", Proc. Natl. Acad. Sci. USA, 85:4842-46 (1988); "Enhancement of the in vitro and in vivo Antitumor Activities of Phosphorylated Mitomvcin C and Etoposide Derivatives by Monoclonai Antibody-Alkaline Phosphatase Conjugates", Cancer Research 49:5789-5792 (1989); and Senter. "Activation of Prodrugs by Antibody-Enzyme Conjugates: A New Approach to Cancer Therapy," FASEB J.
20 4:188-193(1990)).
It is apparent therefore that the present invention encompasses pharmaceutical compositions including immunoglobulin molecules, antibodies, and Ig fusion proteins all having structurally altered CH 2 domains, and their use in methods for treating human carcinomas. For example, the invention includes pharmaceutical compositions for use in the treatment of human carcinomas comprising a pharmaceutically effective amount of a structurally altered BR96 and a pharmaceutically acceptable carrier.
30 The compositions may contain the structurally altered antibody or Ig fusion protein or antibody fragments, either unmodified, conjugated to a therapeutic agent drug, toxin, enzyme or second antibody). The compositions may additionally include other antibodies or conjugates for treating carcinomas an antibody cocktail).
The compositions of the invention can be administered using conventional modes of administration including, but not limited to, intrathecal, intravenous, intraperitoneal, oral. intralymphatic or administration directly into the tumor. Intravenous administration is preferred.
The composition of the invention can be in a variety of dosage forms which include, but are not limited to, liquid solutions or suspensions, tablets, pills, powders, suppositories, polymeric microcapsules or microvesicles, liposomes, and injectable or infusible solutions. The preferred form depends upon the mode of administration and the therapeutic application.
The compositions of the invention also preferably include conventional pharmaceutically acceptable carriers and adjuvants known in the art such as human serum albumin, ion exchangers, alumina, lecithin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, and salts or electrolytes such as protamine sulfate.
in accordance with the practice of the invention, the pharmaceutical carrier can be a lipid carrier. The lipid carrier can be a phospholipid. Further, the lipid carrier can be a fatty acid. Also, the lipid carrier can be a detergent. As used herein, a detergent is any substance that alters the surface tension of a liquid, generally lowering it.
In one example of the invention, the detergent can be a nonionic detergent.
Examples of nonionic detergents include, but are not limited to, polysorbate 80 (also known as Tween® 80 or (polyoxyethylenesorbitan monooleate), Brij®, and Triton® (for example Triton® WR-1339 and Triton® 30 Alternatively, the detergent can be an ionic detergent. An example of an ionic detergent includes, but is not limited to, alkyltrimethylammonium bromide.
Additionally, in accordance with the invention, the lipid carrier can be a liposome.
As used in this application, a "liposome" is any membrane bound vesicle which contains any molecules of the invention or combinations thereof.
The most effective mode of administration and dosage regimen for the compositions of this invention depends upon the severity and course of the disease, the patient's health and response to treatment and the judgment of the treating physician.
The interrelationship of dosages for animals of various sizes and species and humans based on mg/m 2 of surface area is described by Freireich, et al. Cancer Chemother., Rep. 50 219-244 (1966). Adjustments in the dosage regimen can be made to optimize the tumor cell growth inhibiting and killing response,. e.g., doses can be divided and administered on a daily basis or the dose reduced proportionally depending upon the situation several divided doses can be administered daily or proportionally reduced depending on the specific therapeutic situation).
THE MOLECULES OF THE INVENTION 20 The present invention provides structurally altered BR96 or BR96 Ig fusion proteins.
Structurally altered BR96 antibodies or Ig fusion proteins have the variable region of BR96 and a modified constant region. This modification provides structurally altered BR96 antibodies or Ig fusion proteins with the ability to inhibit immunoglobulin-induced toxicity.
Various embodiments of structurally altered BR96 or BR96 Ig fusion proteins have S"been made.
In one embodiment, designated cBR96-A, the entire CH 2 domain of cBR96 was 30 deleted. CBR96-A is expressed by the plasmid having the sequence shown in SEQ.
ID. NO. 10. cBR96 is expressed by a plasmid having the sequence in SEQ ID NO.
9.
In another embodiment, designated hBR96-2A, the entire CH 2 domain of hBR96 was deleted. hBR96-A is expressed by the plasmid having the sequence shown in SEQ. ID. NO. 12. hBR96 is a mutant BR96 having the HI, H2, and H3 mutations described in PCT Application No. 95/305444, published March 6, 1996.
In yet another embodiment, designated hBR96-2B, the leucine residue located at amino acid position 235 is mutated to alanine. Additionally, the glycine residue located at amino acid position 237 is mutated to alanine. The amino acid position numbering used is described in Kabat et al. Sequences of Proteins of Immunological Interest 5th Edition (1991) United States Department of Health and Human Services.
In a further embodiment, designated hBR96-2C, the glutamic acid residue at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; and the lysine residue located at position 322 is mutated to serine using standard protocols (Alexander R. Duncan and Greg Winter "The binding site for Clq on IgG" Nature 332:738 (1988)).
In another embodiment, designated hBR96-2D, the proline residue at position 331 is 0 mutated to alanine Tao et al., "Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation" J. Exp.
Ii Med. 178:661-667 (1993); Y. Xu et al., "Residue at position 331 in the IgGI and IgG4 domains contributes to their differential ability to bind and activate complement" J. Biol. Chem. 269:3469-3474 (1994)).
In an additional embodiment, designated hBR96-2E, the leucine residue at position 235 is mutated to alanine; the glycine residue located at position 237 is mutated to alanine; the glutamic acid residue located at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; and the Ivsine residue 30 located at position 322 is mutated to serine Morgan et al., "The N-terminal end of the CH 2 domain of chimeric human IgGI anti-HLA-DR is necessary for Clq, Fc(gamma)RI and Fc(gamma)RIII binding" Immunol. 86:319-324 (1995)).
In yet a further embodiment, designated hBR96-2F, the leucine residue located at position 235 is mutated to alanine; the glycine residue located at position 237 is mutated to alanine; and the proline residue located at position 331 is mutated to alanine.
In yet another embodiment, designated hBR96-2G, the giutamic acid residue located at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; the lysine residue located at position 322 is mutated to serine; and the proline residue located at position 331 is mutated to alanine.
In another embodiment, designated hBR96-2H, the leucine residue located at position 235 is mutated to alanine; the glycine residue located at position 237 is mutated to alanine; the glutamic acid residue at position 318 is mutated to serine; the lysine residue located at position 320 is mutated to serine; the lysine residue located at position 322 is mutated to serine; and the proline residue located at position 331 is mutated to alanine.
Depending on its form. a structurally altered BR96 antibody or fusion protein can be a monofunctional antibody, such as a monoclonal antibody, or bifunctional antibody, such as a bispecific antibody or a heteroantibody. The uses of structurally altered BR96, as a therapeuti or diagnostic agent. will determine the different forms of structurally altered BR96 which is made.
S 25 Several options exists for antibody expression. Immunoexpression libraries can be combined with transfectoma technology, the genes for the Fab molecules 0 derived from the immunoglobulin gene expression library can be connected to the desired constant-domain exons. These recombinant genes can then be transfected and expressed in a transfectoma that would secrete an antibody molecule.
Once produced, the polypeptides of the invention can be modified, by amino acid modifications within the molecule, so as to produce derivative molecules. Such derivative molecules would retain the functional property of the polypeptide, namely, the molecule having such substitutions will still permit the binding of the polypeptide to the BR96 antigen or portions thereof.
It is a well-established principle of protein chemistry that certain amino acid substitutions, entitled "conservative amino acid substitutions," can frequently be made in a protein without altering either the conformation or the function of the protein.
Amino acid substitutions include, but are not necessarily limited to, amino acid substitutions known in the art as "conservative".
Such changes include substituting any of isoleucine valine and leucine (L) for any other of these hydrophobic amino acids; aspartic acid for glutamic acid and vice versa; giutamine for asparagine and vice versa: and serine (S) for threonine and vice versa.
Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three-dimensional structure of the protein. For example, glycine and alanine can frequently be interchangeable, as can alanine and valine .e Methionine which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine and arginine (R) are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered "conservative" in "particular environments.
30 In one embodiment of the present invention, the polypeptide is substantially pure, free of other amino acid residues which would inhibit or diminish binding of the polypeptide to its target and would inhibit or reduce gastrointestinal toxicity which are normally exhibited during or after antibody therapy.
NUCLEIC ACID MOLECULES ENCODING THE PRESENT INVENTION The nucleotide sequences and the amino acid sequences of the variable and constant regions of BR96 are known. The sequence for the immunoglobulin constant region is known and provided in Figure 18. Specific mutations in the constant region of the BR96 antibody were made. Nucleic acid molecules encoding the seven mutants described above (hBR96-2B through hBR96-2H) are as follows.
In hBR96-2B, alanine at amino acid positions 235 and 237 is encoded by codons GCU, GCC, GCA, or GCG.
In hBR96-2C, serine at positions 318, 320, and 322 is encoded by UCU, UCC, UCA. orUGG.
In hBR96-2D, alanine at position 331 is encoded by codons GCU, GCC, GCA, or
GCG.
in hBR96-2E, alanine at positions 235 and 237 is encoded by codons GCU, GCC, GCA, or GCG. Serine at positions 318, 320. and 322 is encoded by UCU, UCC.
UCA. or UGG.
In hBR96-2F, alanine at positions 235, 237, and 331 is encoded by codons GCU, GCC, GCA, or GCG.
In hBR96-2G, serine at positions 318, 320, 322 is encoded by UCU, UC UCUCA, or UGG. Further, the alanine at position 331 is encoded by codons GCU, GCC, GCA, or GCG.
In hBR96-2H, alanine at positions 235, 237, and 331 is encoded by codons GCU, GCC, GCA, or GCG. Additionally, serine at positions 318, 320, 322 is encoded by UCU, UCC, UCA, or UGG.
Any of the above can be deoxyribonucleic acid (DNA), complementary
DNA
(cDNA), or ribonucleic acid (RNA).
IMMUNOCONJUGATES
[mmunoconjugates (having whole antibody or Ig fusion proteins) may be constructed using a wide variety of chemotherapeutic agents such as folic acid and anthracyclines (Peterson et al., "Transport And Storage Of Anthracyclines In Experimental Systems And Human Leukemia", in Anthracycline Antibiotics In Cancer Therapy, Muggia et al. p. 132 (Martinus Nijhoff Publishers (1982); Smyth et al., "Specific Targeting of Chlorambucil to Tumors With the Use of Monoclonal Antibodies", J. Natl. Cancer Inst., 76:503-510 (1986)). including doxorubicin (DOX) (Yang and Reisfeld "Doxorubicin Conjugated with a Monoclonal Antibody Directed to a Human Melanoma-Associated Proteoglycan Suppresses Growth of Established Tumor xenografts in Nude Mice PNAS (USA)" 85:1189-1193 (1988)), Daunomycin (Arnon and Sela "In Vitro and in vivo Efficacy of Conjugates of Daunomycin With Anti-Tumor Antibodies" Inmunol. Rev., 65:5- 20 27 (1982)), and morpholinodoxorubicin (Mueller et al., "Antibody Conjugates With Morpholinodoxorubicin and Acid-Cleavable Linkers", Bioconjugate Chem., 1:325- 330 (1990)).
BR96 has been conjugated to doxorubicin and has been shown to be effective in therapy of certain cancers or carcinomas (Trail, Willner, Lasch, S.J., Henderson, Casazza, Firestone, Hellstr6m, and Hellstrom, K.E.
Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates.
Science, 261:212-215, 1993).
30 In accordance with the practice of the invention, structurally altered BR96 can be used in forms including unreduced IgG, reduced structurally altered IgG, and fusion proteins (PCT Application No. 95/305444, published March 6, 1996).
Suitable therapeutic agents for use in making the immunoconjugate includes Pseudomonas exotoxin A (PE) in either the native PE or LysPE40 form. LysPE40 is a truncated form containing a genetically modified amino terminus that includes a lysine residue for conjugation purposes. Doxorubicin is also a suitable therapeutic agent.
Additional examples of therapeutic agents include, but are not limited to.
antimetabolites, alkylating agents, anthracyclines, antibiotics, and anti-mitotic agents.
Antimetabolites include methotrexate, 6 -mercaptopurine, 6 -thioguanine, cytarabine, decarbazine.
Alklating agents include mechlorethamine, thiotepa chiorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cvclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C and cis-dichorodiamine platinum (II) (DDP) cisplatin.
Anthracyciines include daunorubicin (formerly daunomycin) and doxorubicin (also referred to herein as adria-iycin). Additional examples include mitozantrone and bisantrene.
Antibiotics include dactinomycin (formerly actinomycin), bleomycin. mithrarnvcin, and anthramycin
(AMC).
Antimitotic agents include vincristine and vinblastine (which are commonly referred to as vinca alkaloids).
30 Other cytotoxic agents include procarbazine, hydroxyurea, asparaginase, corticosteroids, mytotane interferons.
Further examples of cytotoxic agents include, but are not limited to, ricin, bryodin, gelonin, supporin, doxorubicin, taxol, cytochalasin B, gramicidin D, ethidium bromide, etoposide, tenoposide, colchicine, dihydroxy anthracin dione, 1dehydrotestosterone, and glucocorticoid.
Clearly analogs and homologs of such therapeutic and cytotoxic agents are encompassed by the present invention. For example, the chemotherapuetic agent aminopterin has a correlative improved analog namely methotrexate.
Further, the improved analog of doxorubicin is an Fe-chelate. Also, the improved analog for 1-methylnitrosourea is lomustine. Further, the improved analog of vinblastine is vincristine. Also, the improved analog ofmechlorethamine is cyclophosphamide.
METHODS FOR MAKING MOLECULES OF THE INVENTION There are multiple approaches to making site specific mutations in the CH 2 domain of an immunoglobulin molecule. One approach entails PCR amplification of the
CH
2 domain with the mutations followed by homologous recombination of the mutated CH 2 into the vector containing the desired immunoglobulin, hBR96-2.
For examnie, hBR96-2B and hBR96-2D have been made by this method.
Another approach would be to introduce mutations by site-directed mutagenesis of single-stranded DNA. For example, vector pD17-hGlb, which contains only the 25 constant region of IgG1 and not the V domain of hBR96, has the fl origin of replication. This gives the vector the properties of a phagemid and site-directed mutagenesis experiments can be performed according to the methods of Kunkel, et al. (Kunkel, J.D. Roberts, and R.A. Zakour, 1987 Methods Enzymol. 154:367- 383) as provided in the Bio-Rad Muta-Gene® phagemid in vitro mutagenesis kit, 30 version 2. For example, hBR96-2B, and -H were made by this method.
In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and arc not to be construed as limiting the scope of this invention in any manner.
EXAMPLE 1 The following standard ELISA protocol was used.
Materials: Immulon2 96 well plates and Genetic Systems Specimen Diluent Concentrate (1Ox); antibody conjugate was Goat Anti Human Kappa-HRP Mouse Adsorbed, Southern Biotech. at 1:10,000 in Genetic Systems Conjugate Diluent Genetic Systems EIA Chromogen Reagent (TMB) (1:100); Genetic Systems EIA Buffered Substrate primary antibody or antigen were AffiniPure F(ab')z Fragment Goat Anti Human IgG Fc Fragment specific (Jackson Irnuno Research), Goat Anti Human Kappa-UNLB (Southern Biotechnology Associates), Le-HSA (Alberta Research Council).
Methods: Dilute primary antibody or antigen to 1.0 Aig/ml in 0.05M Carb/Bicarb 20 buffer. Add 100 l of the diluted solution per well in immulon 2 plates. Seal plates and incubate O.N. at 4 0
C.
Block plates by flicking them and blotting on paper towels. Add 200ul/well of Genetic Systems, Specimen Diluent Concentrate Incubate at least 1 hour at room temperature and then dump the contents of the plates. Wash the plates 3x in saline/Tween. Blot to dry. Allow the plates to dry at R.T. (45 min. to 1 hour). Seal and store the plates at 4 0
C.
Test samples as follows. Dilute samples and standards in Specimen Diluent at 1:10.
30 Perform serial dilutions in separate round bottom plates. Transfer 100ul/well of final dilutions to antigen coated assay plates; then incubate O.N. at 4 0 C. Wash plates 3x with saline/Tween.
For conjugation add 100 l/well of antibody-HRP conjugate in Genetic Systems Conjugate Diluent Incubate plates at Rcom Temp. for 60 min. Wash plates 3x in saline/Tween.
Add 100 .l/well of Genetic Systems EIA Chromogen Reagent (TMB) 1:100 in EIA Buffered Substrate Incubate at R.T. for 15 min. and stop with IN H2SO 4 100 al/well. Read plate at 4 5 0 /630nm in EIA plate reader.
EXAMPLE 2 Construction of CH 2 deleted BR96 molecules Strategy for Deleting CH- Domains: To construct CH; deleted BR96 molecules, the hinge, CH 2 and CH 3 domains were removed from chimeric BR96 and humanized BR9696-2 IgG1 molecules by an Eco47-III restriction digestion in non-coding regions. The hinge and CH 3 domains were amplified by polymerase chain reaction (PCR) from a human IgG1 (pNyl.i4) molecule lacking the CH2 domain. Two oligonucleotides (Sense 49mer, Antisense 50mer) homologous to the sequences of 20 IgGI constant region at both sides preserving E.co47-III sites were synthesized.
The amplified hinge and CH 3 domain PCR fragments were added into Eco47-III sites on BR96 IgGI molecules by in vivo homologous recombination Bubeck et al., Nucleic Acid Research (1993) 21:3601-3602). The new BR96 IgG1 molecules t* were verified by restriction mapping and sequencing.
A sewing PCR strategy was used for the construction of CH 2 deleted human igG1 (pN /1.14) (Robert M. Horton, et al. (1990) Biotech 8 528).
The CHi domain was amplified as a 580 bp fragment with a sense oligonucleotide 30 TGG CAC CGA AAG CTT TCT GGG GCA GGC CAG GCC TGA (primer A) and an antisense oligonucleotide TCC GAG CAT GTT GGT ACC CAC GTG GTG GTC GAC GCT GAG CCT GGC TTC GAG CAG ACA (primer B) from a linearized human IgG 1 constant region vector (pNy The PCR fragment extends from the 5' end of the Hind-IIl site (in bold) through the Cel-II, Sal-I, Dra- III, Kpn-I, 6 bp nucleotide spacer and Mro-I sites (in bold) at the 3' end of the CHI domain.
The CH 3 domain was then partially amplified (to the Xba-I site) with a sense primer GTC GAC CAC CAC GTG GGT ACC AAC ATG TCC GGA GCC ACA TGG ACA GAG GCC GGC T (primer C) and an antisense primer CTG GTT CTT GTT CAT CTC CTC TCT AGA TGG (primer D) from a linearized human IgGI constant region vector (pNy A PCR fragment (about 150 bp) with Sal-I, Dra-III, Kpn-I, 6 nucleotide spacer and Mro-I sites (in bold) on its 5' end, extends only through the Xba-1 site (in bold) within the CH 3 domain.
The CHI and CH3 partial PCR fragments were combined in a PCR without any primer. The reaction was run through two full cycles of denaturation and reannealing to allow the fragments to combine at the homologous region at the 3' ends. Primers A and D (described above) were added to the reaction and the PCR cycle was completed. The polymerase extends the DNA with primer A and primer D, yielding a full- length (660 bp) PCR fragment. The newly extended PCR fragment is arranged from the 5' end to the 3' end in the following order: Hind-III C H Cei-II Sal-I Dra-III Kpn-I 6 bp spacer Mro-I ClH partial Xba-1.
The combined PCR fragment, with the CHI and partial CH3 domains, was then 2 5 cloned by a biunt end ligation into a Sma-I site on a pEMBL 18 vector and the sequence was confirmed by dideoxy sequencing (Sanger et al. (1977) PNAS (USA) 74:5463-5466).
To transfer the CHI and partial CH3 into a mammalian expression vector, both the 30 pEMBL18 and pNy 1.7 vectors were digested with Hind-III and Xba-I. The Hind- III and Xba-I fragment was ligated into the same sites on a linearized pNy1.7 vector.
The new construct, with CH, and a full CH3 domain, was designated the vector.
The hinge fragment was amplified from a Hind-III digested pNyl.7 vec:or with the primers designed to flank the hinge exon with a Sal-I and a Dra-lI cloning site at each end. These sites also exist between the CHI and CH 3 domains of the pNy 1.10 construct. The sense oligonucleotide ACC ATG GTC GAC CTC AGA CCT GCC AAG AGC CAT ATC with a 6 bp spacer and a Sal-I cloning site (in bold) and the antisense oligonucleotide CAT GGT CAC GTG GTG TGT CCC TGG ATG CAG GCT ACT CTA G with a 6 bp spacer and a Dra-III cloning site (in bold) were used for the amplication of the hinge fragment (250 bp).
The hinge region PCR fragment was cloned into a Sma-I site on pEMBL 8 by blunt end ligation. Both the pEMBL 18 with the hinge domain and the pNy 1.10 with the
CH
2 and CH 3 domains were digested with Sal-1 and Dra-III. The digested hinge fragment was cloned into the Sal-1 and Dra-III linearized sites on the pNy1.10 vector. The new construct, now carrying the CHi, hinge and CH 3 domains, was designated pNy1.11.
To make the final CH 2 deleted human igG1 construct, both the pN-i.11 construct 20 and pNy 1.11 vector were digested with BamH1 and HindIII. A fragment containing the CHI, hinge and CIH3 domains was cloned into the linearized pNy/l.11 vector.
The new constant region IgG1 construct lacks the CH 2 domain and is designated pNyl.14 (Figure 11).
25 For digestion of BR96 IgG1 with Eco47-III, a restriction fragment with hinge, Cl-h and CH 3 domains was identified on the constant region sequence of BR96 IgG1 vector in both chimeric and humanized molecules. The 5' end of this fragment lies inside the intron between CHI and hinge and the 3' end is located inside the CH 3 intron of the BR96 IgGI molecule. The hinge, CH 2 and CH 3 domains (1.368 kb 30 fragment) were removed from BR96 IgG1 molecules by Eco47-III restriction digestion. The Eco47-III is a blunt end cutter. The BR96 IgG1 DNA digested with this enzyme does not require any pretreatment before cloning. Figure 12 is a diagrammatic representation of the pD 7-hBR96-2 vector showing the Eco47-III sites used in cloning.
The CH 2 deleted BR96 IgGI was then constructed as follows. The hinge and CH 3 Sdomains were amplified from a CH, deleted L6 IgG1 (pNy1.14) construct with a sense oligonucleotide
CAGGGAGGGAGGGTGTCTGCTGGAAGCCAGGCTCAGCGCTGACCTCAG
A homologous to the constant region sequence of IgGI at the 5' end of the Eco47-III site (in bold) and an antisense oligonucleotide CCCAGGGCAGCGCTGGGTGCTT homologous to the constant region sequence of IgG1 at the 3' end of the Eco47-III site (in bold). The Eco47-III site at the 3' end of the pNyl.14 construct is modified in the cloning process. The Eco47- III site is thus introduced into an antisense primer and used in amplification of the hinge and CH 3 domains.
The pD17-BR96 IgG vector was digested with Eco47-III and the hinge, CHt and
CH
3 domains were removed. The linearized pD17-BR96 IgGI vector was mixed with equimolar amounts of hinge and CH 3 PCR fragments. Cotransformation of the 20 PCR fragment with linearized DNA into E.coli DH5a competent ceils resulted in a recombinant molecule. mediated by homologous recombination in bacteria. This construct lacks the CH 2 domain of BR96 IgG1 molecules, and is designated pD17- BR96-dCH2 (Figure 13).
C
25 1.9 grams of CH 2 -deleted chimeric BR96 was obtained as raw material from 89L of culture supernatant.
o C EXAMPLE 3 C 30 Toxicity, localization and clearance of CH 2 -deleted chimeric BR96 was tested in vivo as follows.
Three dogs received 400 mg/m 2 ofcBR96-A, the CH 2 deletion mutant of chimeric BR96, and two received chimeric BR96. Both molecules had been mildly reduced and alkylated. This is required to prevent dirnerization of the deletion mutant into a tetravalent form. Both control dogs experienced the typical GI toxicity and none of the three receiving the mutant displayed any toxicity. The control dogs and two of the test dogs were sacrificed at 1 hr to obtain duodenal tissue to measure antibody localization. Both control dogs had grossly visible GI pathology, and the test dogs had normal appearing GI tissue. The third dog has continued to show no signs of toxicity.
Results: A significant amount of localization of the CH 2 deleted cBR96 (cBR96-A) occurred to the GI tract in dogs treated with 400 mg/m 2 although the intact chiBR96 localized slightly better. The levels of localization indicate that roughly equivalent amounts of intact and CI-2 deleted cBR96 was delivered to the GI tract in these dogs.
Table 5. Localization of cBR96 to GI tissue.
Group Animal Specific mean Localization #271 155 a..
*o a a •no• .o a. a.
a a.
cBR96 135 #272 114 #273 126 cBR96-A 89 #274 52 Using the mean level of specific localization, an amount of cBR96-A equivalent to at least 66% of the amount of cBR96 was delivered to the target organ of toxicity, the duodenum. Based on the dose ranging done with cBR96 in dogs (some clinical signs of toxicity seen at doses of 10 mg/m 2 even if this difference is real, it could not explain the difference between significant toxicity and no toxicity, evaluation to date indicated that dogs treated with cBR96-A had no toxicity, pending microscopic histopathologic examination. This evaluation was based on analysis of 2 frozen blocks per dog and 2 sections per block. Replicates were quite good. We also ran historical frozen tissues from dogs treated with native cBR96 or F(ab)2/BR96 and the levels of localization for those tissues were 110 and 0. respectively, consistent with our previous data.
Assuming that there is no toxicity at marginally higher (2X) doses of cBR96-A, these data indicate that the CH 2 domain is associated with the induction of acute gastroenteropathy, and that the removal of this domain prevents the induction of gastroenteropathy mediated by BR96.
This study confirms the results showing that F(ab')2 is not toxic in the dog model and that the toxicity is mediated by the constant region. The CH 2 deletion mutant is a candidate for targeting agents clinically. Because of the very long half-life of chimeric BR96, some decrease in the mutant's half-life should be acceptable.
20 Figure 1 shows the measurement of the clearance of the cBR96-A in high Ley expressing dogs. The study used chimeric versus constant region mutant of cBR96- 2.
2 CBR96-2 did clear faster than the chimeric BR96. The localization ofcBR96-A to 25 the gastrointestinal epithelium is not significantly affected by this more rapid clearance. More than enough of the cBR96-A localized to have caused toxicity.
*Discussion: The constant region of chimeric IgG is responsible for the GI toxicity seen in clinical trials, e.g. with chiBR96-dox. The GI toxicity seen in the dog model 30 is very similar to the clinical toxicity. Both in man and dog, administration of the unconjugated antibody mediates an acute GI toxicity characterized by rapid onset of vomiting, often with blood.
In man the bleeding is limited to the fundus of the stomach, causing erosion of the superficial mucosa of the stomach. Although the pathology of the wound is limited and resolves, the extreme nature of the nausea and vomiting, unrelieved by antiemetics, defines it as the dose-limiting toxicity.
This toxicity is mediated in man and dog by the antibody molecule alone. At higher doses of the antibody-dox conjugate, additional toxicity is seen in the dog model, probably due to doxorubicin. Although the intact IgG of BR96 causes toxicity in dog and man, the F(ab')2 molecule (divalent and lacking only in the constant region) is not toxic in dogs. This finding has motivated our attempts at high levels, and improves the affinity and specificity of BR96 for tumor antigen.
The CH 2 domain is known to mediate complement and FcR binding. It was not known that structural alteration of the CH 2 domain would result in immunoglobuiininduced toxicity inhibition.
Toxicology study of hBR96-2B 20 The toxicology study of hBR96-2B in high Lewis Y expressor dogs showed that a dose of 400 mgi/m 2 did not cause hematemesis nor bloody stools, in contrast to BR96 which consistently causes one or both signs. A dog sacrificed at 24 hrs had normal gross appearance of the GI tract, again in marked contrast to chimeric BR96 which causes hemorrhagic lesions and mucosal erosions.
EXAMPLE 4 The polymerase chain reaction (PCR) is a widely used and versatile technique for the amplification and subsequent modification of immunoglobulin genes. The rapidity 30 and accuracy with which antibody genes can be modified in vitro has produced an Sassortment of novel antibody genes can be modified in vitro has produced an assortment of novel antibodies. For example, PCR methods have been used for engineering antibodies with increased affinity to antigen, for "humanizing" antibodies, and for modulating effector function (Marks, A.D. Griffiths, M.
Malmqvist, T. Clackson, J.M. Bye and G. Winter. 1992. Bypassing immunization: high affinity human antibodies by chain shuffling. Bio/Technology 10:779-783; Rosok, D.E. Yelton, L.J. Harris. J. Bajorath, Hellstrom. I. Hellstrom, G.A. Cruz, K. Kristensson, H. Lin, W.D. Huse and S.M. Glaser. 1996. A combinatorial library strategy for the rapid humanization of anticarcinoma BR96 Fab. J. Biol. Chem. 271:22611-22618; Morgan, D. Jones, A.M. Nesbitt, L.
Chaplin, M.W. Bodmer and S. Emtage. 1995. The N-terminal end of the CH2 domain of chimeric human IgGI anti-HLA-DR is necessary for Clq, FcyRI and FcyRIII binding. Immunology. 86:319-324).
As part of a more comprehensive study, we desired to introduce various site specific mutations in the CH 2 constant domain of human IgGi. Six specific amino acid residues distributed throughout the CH2 domain previously identified to play a role in immune effector function were marked as targets for mutagenesis (Morgan, A.N., D. Jones, A.M. Nesbitt, L. Chaplin, M.W. Bodmer and S. Emtage. 1995. The Nterminal end of the CH2 domain of chimeric human IgG 1 anti-HLA-DR is necessary for Clq, Fc-yRI and FcRIII binding. Immunology. 86:319-324; Duncan, 20 A.R. and G. Winter. 1988. The binding site for Clq on IgG. Nature 332:738-740; o. Tao, R.I.F. Smith and S.L. Morrison. 1993. Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J.Exp.Med. 178:661-667). five of the six residues were grouped into two clusters-one cluster consisting of two residues, two amino acids apart (Location 25 1, or L1); and a second cluster consisting of three residues spanning a sequence of five amino acids The remaining amino acid position (L3) made for the total of six residues. We were interested in constructing a panel of mutant CH 2 domain IgGs consisting of each L mutation by itself as well as in combination with other L mutants L1; L1; and L2; L1, L2 and L3; etc.).
S 30 SVarious in vitro methods have been described where PCR is used to simultaneously introduce distally located site-specific mutations within a gene sequence (Ho, S.N., H.D. Hunt, R.M. Horton, J.K. Pullen and L.R. Pease. 1989. Site-directed mutagenesis by overlap extension. Gene 77:51-59; Ge, L. and P. Rudolpf. 1996.
Simultaneous introduction of multiple mutations using overlap extention PCR.
BioTechniques 22:28-30). Alternatively. an in vivo procedure termed recombination PCR (RPCR) has also successfully been used for rapidly and efficiently generating distally located site-specific mutations (Jones, D.H. and S.C.
Winistorfer. 1993. Use of polymerase chain reaction for making recombinant constructs, p.241-250. In B.A. White Methods in Molecular Biology, Vol.
Humana Press Inc., Totowa, NJ, Jones, D.H. And B.H. Howard. 1991. A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. BioTechniques 10:62-66).
RPCR
uses E. Coli's recombination machinery to generate intact circular recombinant plasmids from a transfected mixture of linear PCR-generated product and linearized vector. In vivo recombination is mediated through the joining of nucleotide sequences designed into the 5' ends of both PCR primers that are homologous to DNA sequences encoded by the vector. In this report we describe an extension of the RPCR procedure for simultaneously introducing complex combinations of mutations into an antibody CH2 domain.
20 Humanized BR96 variable region hcavv and light chain genes, previously cloned and co-expressed as an assembled active Fab fragment in an MI13 phage expression vector, provided the starting material (Rosok, D.E. Yelton, L.J. Harris, J.
Bajorath, Hellstrom, I. Hellstrom, G.A. Cruz, K. Kristensson, H. Lin, W.D.
Huse and S.M. Glaser. 1996. A combinatorial library strategy for the rapid 25 humanization of anticarcinoma BR96 Fab. J. Biol. Chem. 271:22611-22618). The heavy and light chain V genes were amplified by PCR from a single-stranded M13 DNA template and subcloned by in vivo recombination (Jones, D.H. And B.H.
Howard. 1991. A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. BioTechniques 30 10:62-66) into vectors pD17-hGla and pD16-hCK, to form pBR96-hGla and pBR96-hCK respectively. pD17-hGla and pD16-hCK are eukaryotic immunoglobulin expression vectors derived from pcDNA3 (Invitrogen. San Diego, CA). The plasmid pBR96-hGla was further modified by site-directed mutagenesis to introduce two Eco47-III restriction sites flanking the immunoglobulin hinge-
CH
2
-CH
3 domains using standard procedures. The recipient vector was then prepared by digesting pBR96-hGla with Eco47-III, isolating the vector backbone by agarose gel electrophoresis followed by extracting the vector DNA from the excised gel slice using the Qiagen Gel Extraction kit (Qiagen, Chatsworth,
CA).
The strategy for introducing multiple mutations within the immunoglobulin CH2 gene, shown in Figure 24, relies on the in vivo homologous recombination of several independently amplified PCR products with each other as well as with the pBR96hGla vector DNA. For introducing mutations at two distal locations two PCR products are synthesized (Figure 24B). One end of each PCR product is for recombining with an homologous end of the linear vector, and the other end, encoding the mutation(s) of interest, is for recombining with the neighboring
PCR
product. As shown in Figure 24B, additional distally-located mutations can be introduced into a target sequence by increasing the number of PCR products proportionately. The recombination of neighboring PCR products always occurs across the regions containing the desired mutations, therefore the oligonucleotide primers encoding these ends Al, A2) contain complementary mutant residues.
20 The mutagenic PCR primers contain at least 15 nucleotides of wild-type sequence flanking each side of the mutant residues for either priming the polymerization reaction or mediating recombination. Two 49-nucleotide long PCR sense and antio sense primers (Rs and Ra) contain sequences for recombining with the end regions of the Eco47-III digested pBR96-hGla vector.
Each L mutation was amplified in a separate PCR reaction. The reaction conditions were 250 ng intact pBR96-hGla DNA template, 10 ul of IX Pfu buffer (Stratagene, Inc. San Diego, CA), 10 nmol dNTPs, 200ng each of the appropriate PCR primers, dimethysulfoxide (ATCC, Rockville, MD) and 2.5 units cloned Pfu DNA 30 polymerase in a 100ul reaction volume. Samples were first denatured at 950 C for S* min, cooled to 45 0 C for 5 min, and extended at 72 0 C for 1 min followed by cycles of denaturation at 94 0 C for 45 sec, annealing at 45 0 C for 45 sec, extension at 72 0 C for 1 min/kb, followed by a final extension at 72 0 C for 7 min in a Perkin- Elmer DNA Thermal Cycler (Norwalk, CT). The amplified products were purified from a 1% agarose gel, extracted with Qiagen Gel Extraction kit and the recovered DNA quantitated. 50 ng of each PCR product was mixed with 25 ng of the Eco47- III digested pBR96-hGla vector, transfected into Max competent E. coli according to the manufacturer's procedure (GIBCO BRL/Life Technologies, Gaithersburg, MD), and the entire transfection reaction plated onto selective LB agar plates containing 100 ug/ml ampicillin.
The results of several cloning experiments are summarized in the Table that follows.
Typically the transformations produced from 80 to 200 bacterial colonies.
Individual colonies were selected and grown overnight in 2 ml liquid cultures for isolation of miniprep plasmid DNA (Qiagen) and analysis by Eco47-III restriction endonuclease mapping. Among 24 independent transformants analyzed from triple homologous recombination events (two PCR products plus vector) 11 clones contained the predicted 1.4 kpb DNA insert.
Figure 25 shows a sample diagnostic restriction analysis of DNA prepared from clones derived from quadruple homologous recombination events (three PCR 20 products plus vector). Additional sampling of clones resulting from quadruple recombination yielded a cloning efficiency of 29% (7 clones containing inserts/24 clones sampled). At this point, due to the small sampling sizes, we do not know whether the differences in the cloning efficiencies observed between the triple and quadruple recombination events are meaningful.
C
To evaluate the expression of Lev -binding activity of the CH 2 mutant IgGs, miniprep DNAs from 6 clones derived from the triple recombination reaction and 6 •clones derived from the quadruple recombination reaction exhibiting the predicted diagnostic Eco47-III restriction patterns were isolated, mixed with pBR96- hCK 30 DNA and used to co-transfect COS7 cells. 48 hour spent supernatants from 3 ml cultures were assayed for total IgG production and for Le' binding activity by enzyme-linked immunosorbent assay (EIA) as described (Yelton, M.J. Rosok, G.A. Cruz, W.L. Cosand, J. Bajorath, I. Hellstom, Hellstorm, W.D. Huse and S.M. Glaser. 1995. Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis. J.Immunol. 155:1994-2004). All twelve cultures were found to secrete approximately 2-3 ug/ml Ley -reactive IgG. The spectrum of Ley binding activities were all similar to that of native humanized BR96 IgG indicating that the homologously recombined antibodies did not acquire any gross mutations that could affect antigen binding. To confirm that the desired CH 2 mutations had been incorporated, and to evaluate the recombined genes for misincorporated nucleotides, four of the clones producing functional antibody were sequenced using Sequenase Version 2 DNA Sequencing Kit (United States Biochemical). One clone was found to contain a single nucleotide change within the forward PCR primer used for mediating recombination with vector DNA. We are uncertain whether this error occurred during chemical synthesis of the oligonucleotide primer or is a result of misincorporation during the PCR reaction, despite the fact that we used a thermostable polymerase with proofreading activity.
A RPCR procedure for homologously recombining up to three separate PCRgenerated mutated antibody sequence products into a eukaryotic expression vector for the rapid construction of engineered IgG molecules is described herein. The 20 advantage of this approach is the ability to simultaneously introduce multiple distally-located mutations with PCR products synthesized by a single round of PCR.
Recombinant DNAs are produced with a reasonably high cloning efficiency and fidelity of correct nucleotide sequences. The ability to efficiently rejoin several distinct PCR products should permit combinatorial strategies for constructing 25 complexly mutated protein domains as well as broadening the number and location of desired mutations.
Analysis of transformants generated by multiple-fragment
RPCR.
S SS o g*o Mutant IgGs PCR HR' events Colonies Cloning Constructed Fragments in Analyzed Efficiencyb reaction 2 2 triple 24 S3 quadruple 24 33% aHR-homologous recombination bCloning efficiency (number of clones containing 1.4kbp insert/total number of colonies EXAMPLE This example provides two methods for introducing site specific mutations into the CH2 domain of human IgGI constant region containing vectors.
One method involves PCR amplification of a segment or segments of the constant region, wherein mutations are introduced using appropriately constructed 10 oligonucleotides. The vector receiving the fragment(s) is digested with a restriction enzyme to linearize the vector. PCR amplification primers are designed so that the 5' ends of the PCR fragments can hybridize to the DNA sequence of the vectors. If more than one PCR fragment is amplified, then common sequences to the two fragments are introduced by oligonucleotides. Bacteria are transfected with the PCR fragments and with the digested vector. The fragments and vector can recombine by homologous recombination using the bacteria's recombination machinery. Bacterial colonies are selected and the DNA is analyzed by size and restriction map as a preliminary determination that the vector and fragment(s) recombined correctly.
Correct insertion of fragments with the mutations is confirmed by dideoxynucleotide sequence analysis. DNA is then introduced into mammalian cells as described for the CH2 deleted antibody, and the expressed antibody analyzed for binding and functional activity.
By way of example, mutations Leu to Ala at residue 235 in CH2 and Gly to Ala at residue 237 were introduced by the procedure disclosed in Example 4. The heavy chain vector used for this procedure was pD 17-hG 1 a, similar to pD 17-BR96 vector described herein except that humanized V regions (Rosok, D.E. Yelton.
L.J.
Harris, J. Bajorath, K-E. Hellstrom, I, Hellstrom, G.A. Cruz, K. Kristensson, H. Lin, W.D. Huse, and S.M. Glaser, 1996. J. Biol. Chem 271 37:22611-22618) with three affinity mutations (HI, H2, and H3 mutations) were substituted.
pBR96-hGla contains two Eco47-III restriction sites flanking the Ig hinge-CH2- CH3 domains. The recipient vector was prepared by digesting pBR96-hGla with Eco47-III, isolating the vector by agarose gel electrophoresis, and (3) extracting the vector DNA from the excised gel slice using the Qiagen Gel Extraction kit (Qiagen, Chatsworth, CA). To introduce mutations at a single location, such as for positions 235 and 237, two PCR products were synthesized.
To introduce two distally located mutations, such as for mutant F (also referred to herein as hBR96-2F) with mutations at 235, 237, 331, requires 3 PCR products.
The recombination of neighboring PCR products occurs across the regions containing the desired mutations, therefore the oligonucleotide primers encoding 20 these ends contain complementary mutant residues. The mutagenic PCR primers contain at least 15 nucleotides of wild-type sequence flanking each side of the mutant residues for either priming the polymerization reaction or mediating recombination. Two 4 9 -nucieotide long PCR sense and anti-sense primers containing sequences for recombining with the end regions of the Ecc47-III digested 25 pBR96-hGla vector.
PCR amplification used 250 ng intact pBR96-hGla DNA template, 10 ul of Pfu buffer (Stratagene, Inc., San Diego, CA), 10 nmol dNTPs, 200 ng each of the appropriate PCR primers. 10% dimethylsulfoxide (ATCC, Rockville, MD) and 30 units cloned Pfu DNA polymerase (Stratagen, Inc. San Diego, CA) in 100 ul reaction. Samples were denatured at 95°C for 5 min, annealed at 45 0 C for 5 min, and extended at 72 0 C for 1 min followed by 25 cycles of denaturation at 94 0 C for sec, annealing at 45 0 C for 45 sec, extension at 72 0 C for 1 min/kb, and a final extension at 72°C for 7 min. The amplified products were purified from a 1% agarose gei, extracted with the Qiagen Gel Extraction kit and quantitated. 50 mg of each PCR product was mixed with 25 ng of the Eco47-III digested pBR96-hGla vector and transfected in E.coli MAX Efficiency DH5aTM according to the manufacturer's instructions (GIBCO BRL/Life Technologies, Gaithersburg,
MD).
The entire transfection reaction was plated onto LB agar plated containing 100 gg/ml ampicillin.
Bacterial colonies were selected and grown overnight at 370 C in 2 ml liquid cultures. DNA was isolated and analyzed by Eco47-III restriction endonuclease mapping. Clones with the correct size insert were sequenced (Sequenase Version 2, U.S. Biochemical Corp., Cleveland, OH).
The second method for introducing site specific mutations into the CH 2 domain of human IgG1 involved the method of Kunkel (1987 Methods Enzymology, supra).
For this procedure pD17-hGlb DNA with the Fl origin of replication was introduced into electrocompetent E. coli CJ236 dut-ung- (Bio-Rad Laboratories, Hercules, CA) by electroporation according to manufacturer's instructions. PD17hGIb is a vector having a constant region but no variable region. The Fl ori site allows treatment of this vector as a phagemid.
Bacteria containing the plasmid were selected by ampicillin resistance. Single stranded uridinylated DNA was prepared using the Muta-Gene Phagemid In Vitro 25 Mutagenesis Version 2 protocol (Bio-Rad). Mutations were introduced by sitedirected mutagenesis with the appropriate antisense oligonucleotide. For molecules with mutations at more than one location, mutations were introduced by either of the two methods discussed above. One method would be to prepare one mutant, for example, mutant 2C (also referred to herein as BR96-2C) with the mutations at 30 residues 318, 320, 322, isolate ssDNA, and introduce a second mutation set with the appropriate anti-sense oligonucleotide. The second method would be to anneal two antisense oligonucleotides with the same uridinylated ssDNA and screen for mutants with both sets of changes. Mutant 2H (hBR96-2H) was also prepared by a combination of thse methods.
The V region of humanized BR96-2 heavy chain was introduced by the homologous recombination method described above in pD17-hJml4.H1. The pD17-hJml4.H1 plasmid contains the BR96 humanized variable region with the H1/H2/H3 mutations and the plasmid was used to transfect mutant sequences into mammalian cells. The pD17Glb vector containing the Fc mutation(s) was digested with NheI for 3 hr at 370 C and the DNA isolated by methods described above. Insertion of the V region into the vector was determined by size and restriction enzyme mapping and confirmed by sequence analysis.
Transient expression of whole antibodies was performed by transfection of COS cells. For production of antibody, stable transfections of CHO cells were performed (see description of deleted CH2 mutant). All mutants were purified from CHO culture supernatants by protein A chromatography.
The oligonucleotide primers homologous to the vector and used to introduce the constant regions mutations were as follows: 20 Oligonucleotides homologous to vector sequences: Sens(sense)CH2 E47-3-5: CAG GGA GGG AGG GTG TCT GCT GGA AGC CAG GCT CAG CGC TGA CCT CAGA D CH2 E47-3 A (antisense): GGA AAG AAC CAT CAC AGT CTC GCA GGG GCC CAG GGC AGC GCT GGG TGC TT Oligonucleotides to mutate Leu235 to Ala and Gly237 to Ala (underlined sequences show sites of mutation): Antisense CH2 L235-G237/aa: GAA GAG GAA GAC TGA CGG TGC CCC CGC GAG TTC AGG TGC TGA GG 30 SensCH2 L235-G237/AA: CCT CAG CAC CTG AAC TCG CGG GGG CAC CGT CAG TCT TCC TCT TC Oligonucleotides to mutate Glu318, Lys320, Lys322 to Ser Antis(antisense)CH2 EKK/SSS-2: CTG GGA GGG CTT TGT TGG AGA CCG AGC ACG AGT ACG ACT TGC CAT TCA GCC Oligonucleotides to mutate Pro331 to Ala: Antis CH2 P331/A/3: GAT GGT TTT CTC GAT GGC GGC TGG GAG GGC Sense CH2 P33/A: GCC CTC CCA GCC GCC ATC GAG AAA ACC ATC Alternative antisense oligo to introduce Ala at 331 by site-directed mutation: CH2P331A: GAT GGT TTT CTC GAT AGC GGC TGG GAG GGC TTT G Oligonucleotides to mutate Glu318 to Ser, Lys320 to Ser, Lys322 to Ser, and Pro331 to Ala: Antis CH2 EKKP/SSA-6: GAT GGT TTT CTC GAT GGC GGC TGG GAG GGC TTT GTT GGA GAC CGA GCA CGA GTA CGA CTT GCC ATT CAG CCA GTC CTG GTG Sense CH2 EKKP/SSA-6: CAC CAG GAC TGG CTG AAT GGC AAG TCG TAC TCG TGC TCG GTC TCC AAC AAA GCC CTC CCA GCC GCC ATC GAG AAA ACC ATC 20 In vitro Assays of the Mutants Results of the CDC demonstrate that mutant hBR96-2B has approximately 10 fold less activity than the control hBR96-1 (two affinity mutations, one in H2 and one in H3, refer to previous patent (Figure The mutants that have the least ability to kill cells in the presence of complement is hBR96-2C with the triple mutations at positions 318, 320, and 322 and the hBR96-2H mutant (least cytotoxic antibodies in the panel) which contains all six mutations at the three different locations. ADCC activity was most affected by the CH2 deleted hBR96-2 molecule (Figure 21).
hBR96-2B and -2H lost between 100 and 1000 fold activity to kill in the presence 30 of effector cells. In the ADCC assay the hBR96-2B molecule also lost approximately 10 fold activity (Figure 21).
Figures 26-28 provide the amino acid sequences for the heavy chain variable region for both chimeric and humanized BR96 having the HI, H2, and H3 mutations. The amino acid sequence for the light chain variable region is known and methods for generating it are found in PCT Application No. 95/305444. Additionally provided is the amino acid sequence for the IgG1 constant region. Mutations in the constant region are marked.
*4 *o*o Page(s)'IC' are claims pages they appear after the sequence listing SEQUENCE LISTING GEN4ERAL INFORM.ATION )iJ) APP7LI-CANT: Yelzon, Dale E.
Rosok, Mae Joanne (ii) TITLE OF THE INVENTION: A METHOD FOR INHIBITING I>MMUNOGLOBUL IN- INDUCED TOXICITY RESULTING 'FROM THE USE OF I-MMUNOGLOBULINS IN THERAPY AND IN VIVO DIAGNOSIS (iii) NUMBER OF SEQUENCES: 27 (iv) CORRESPONDENCE
ADDRESS:
ADDRESSEE: Merchant, Gould, Smith, Edell, Welter Schmidt STREET: 11150 Santa Monica Boulevard, Suite 400 CITY: Los Angeles STATE: CA COUNTRY: USA ZIP: 90025 COMPUTER READABLE FORM: MEDIUM TYPE: Diskette COMPUTER: IBM Compatible OPERATING SYSTEM: DOS SOFTWARE: FastrSEQ for Windows Version (vi CUR-ENT APPLICATION
DATA:
APPLICATION NUMBER: PCT US97/13562 FIL7ING DATE: 0l1-AUG-1997 CLASSIFI7CATICN: (v44) PRIOR APPLICATION
DATA:
APPLICATION NUMBER: 60/023,033 FI7LING DATE: 02-AUG-1996 tzii ATTORNEY/AGENT
INFORMATION:
CA, NAM.E: Canady, Karen S.
RE3I1S7RATION NUMBER: 39,927 REFERENCE/DOCCKET NUMB ER: 30436.43WoUl T L iz =2CMUN !CAT: ON INFORMATION: TELE7PuONE: 310-445-1140 TELEFAX: 310-445-9031
TELE-X:
INFORMATION FOR SEQ ID NO:1: 0*.0 SEQUENCE
CHARACTERISTICS:
LENGTH: 36 base pairs ()TYPE: nucleic aci STRANDEDNESS: single ID) TOPOLOGY: linear 9 900 Mi)SOLECUJLE TYPE: cDNA :00. 60 SEQUENCE DESCRI7PTION: SEQ ID NO:l1: *.TGGCACCGAA AGCTTTCTGG GGCAGGCCAG GCCTGA 36 65(2) INFORY-ATION FOR SEQ ID NO:2: SEQUENCE CHARACTERISTICS: LENGTH: 57 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: CCNA (Xi) SEQUENCE DESCRIPT-CN: SEQ TZ) NO:2: TCCGGACATG TTGGTACCCA CGTGGTGGTC GACGCTGAGC CTGGCTTCGA GCAGACA 57 INFORMATION FOR SEQ ID NO:3: SEQUENCE CHARACTERISTICS: LENGTH: 55 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cONA (xi) SEQUENCE DESCRIPTION: SEQ TO NO:3: GTCGACCACC ACGTGGGTAC CAACATGTCC GGAGCCACAT GGACAGAGGC COOCT INFORM-ATION FOR SEQ ID NO:4: SEQUENCE CHARACTERISTICS: LENGTH: 30 base pairs TY?E: nucleic acid STRP14CEDNESS: single TOPOLOGY: linear ,ii) MOLECULE TYPE: cDnNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: CTGGTTCTTG_ TTCATCTCCT CTCTAGATGG 7NFORMATO FOR SEQ 1D NO S i)SEQUENCE CHA;RAC-ER:STICS: LENGTH: 36 base pairs 7Y7E: nucleic acia S-RNDEDNESS: singl.e TC=?O''GY linear M~OLECULE TYPE: CCNA (xi) SEQUENCE DESCRITION: SEQ ID ACCATGGTCG ACCTCAGACC TGCCAAGAGC CATATC 36 INFOMAIO FR SEQ ID NO: 6: iSEQUENCE CHARACTERISTICS: LENGTH: 40 base pairs TY?7: nucleic acid STRAINDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: CATGGTCACG TGGTGTS7CC CTGGATGCAG GCTACTCTAG !NFORMATION FCR SEQ I D NO: 7: SEQUENCE CHARACTERISTICS: LENGTH: 49 base pairs nucleic acid STRANDECNESS: single TOPOLCGY: linear (ii) MOLECJLE TYPE: cDNA (Xi) SEQUENCE DESCRIPTICN: SEQ 1D 140:7: CAGGGAGGGA GGGTGTCTGC TGGAAGCCAG GCTCAGCGCT GACCTCAGA :NFORAMATION FOR SEQ 1D NO:8: SEQUENCE CHARACTERISTICS: LENGTH: 50 base pairs TYPE: nuclei;c acid STRANDEDNESS: single TOPOLCGY: linear (11i) MOLECULE TYPE: cONA (xi) SEQUENCE DESCRIPTION: SEQ ID N0:8: GGAAAGAACC ATCACAGTCT Cc-CAGGGGCC CAGGGCAGCG CTGGGTGCTT (2,1 INFCRMAT7ION OR SEQ 7D NO:9: SEQUENCE CHARACTERTST:S: -ENGT 8691 base pai4rs YPE:nucleic acid STRANLDEDNESS: single TOPOLOGY: linear ii)' X-GLECULE TYPE: cDNA (xi) SZEQUZNCE DESCRIPTION: SEQ ID NO:9: GAC-?C- C 45 CAAnooC;A'-1.
TGC:TCGCOA
AGTAIATCA.AT
T-ACGGTAAA
TGACGTATGT
50 ATTTACGGTA
CTATTGACGT
GGGACTTTCC
GGTTT-TGGCA
TCOACCCCAT
55 AATGTCGT.AA T zrA:ATAAG
TTAATACGAC
AC OT GAG 60 GTGAAGTGAA
TCTCCTGTGT
CTCCAGAGAA
ATCCAC-ACAC
ACCTGCAAAT
7GGACGACGG
CTAGCACCAA
GC:.AGCSGC
G=3CTCTC TAC GGTOA
-CCA:'AGTA
AACTGCCCAC
CAATGACGGT
TACTTGGCAG
=TCATCAAT
TGACGTCAAT
CAACTCCGCC
TOAC7ATACGG 7CTCGA-A
TTG-TGGTTAA
T'r TGGTGAG
GAGGCTGGAG
TGTAAAGGGT
CAGCCGTCTG
GGCCTC-'T
OGCCAT CO
AG-GTGACCTG
AG-ACAATCT
GAGGTCGCTG
AATTGCATG.:
AGATATACGC
TT-AGTTCATAk
GGCTGACCGC
ACGCCATAG
TTGGCAGTAC
AA.ATGGCCCG
TACATCTACG
GCGTGGAT
GGGAGTTTGT
CCATTGACGC
TGGCTAACTA
GAGACCCAAG
ACCGGTCAAT
GCTTGGTCCT
TCTGGGGGAG
TTCACTTTCA
TGGGTCGCAT
CGATTCACCA
AAGTCTGAOG
GCTTACTGGG
GTCTTCCCCC
CTGGTCAAGG
AGCCGC C-C
TTTGACOATG
GCT CTCATGC
AGTAGT-GOC
AGAATCTGCT
GTTGACA-TTG
GCCCATATAT
CCAACGACCC
GGACTTTCCA
ATCAAGTGTA
CCTGGCATTA
TATTAGTCAT
AGCGGTTTGA
TTTGGCACCA
AZAATGGGCGG
GAGAACCO-AC
CTT GGTACCA
CGATTGGAAT
TCCTTGTCCT
GCTTAGTGCA
GTGACTATTA
ACATTAGTCA
TCTCCAGAGA
ACACAGCCAT
GCCAAGGGAC
TGGCACCCTC
ACT ACTTCCC
GCTTCGAATA
AGITTTGGCGC
0CCATAG'TA
GAGCAAAATT
TAGGGTTAGG
ATTATT GACT
C-GAGTTCCGC
CCGCCCATTG
TTGACGTCAA
TCATATGCCA
TGCCCAGTAC
CGCTATTACC
CTCACGGGGA
AAATCAACGG
TAGGCGTGTA
TGCTTACTGG
ATTTAAATTG
TCTTGCGGCC
TGTTTTAA.AA
GCCTGGAGGG
CATGTATTGG
AGGTGGTGAT
CAATGCCAAG
GTATTACTGT
TCTGGTCACG
CTCCAAGAOC
C::XACCGGTG
GCCAGAGT A.A
CGATCTCC
AGCCAGTATC
TAAGCTrACAA
CGTTT-TGCGO
AGTT.MTTAA'T
GTTACATAAC
ACGTCAATAA
TGGOTGGACT
AGTACGCCCC
ATGACCTTAT
ATGGTOATGC
TTTCCAAGTC
GACTTTCCAA
CGGTGGGAGG
C T T AT CGAAA
ATATCTCCTT
GCTTGCTAGC
OGTGTCCAGT
TCCCTGAAAG
GTTCGCCAGA
ATAACCGACT
AACACCCTGT
GCAAGA-GCC
GTCTCTGTAG
ACCTCTOGO
ACGGTGTCGT
2410 320 360 420 480 540 600 660 720 940 9 00 960 :32C 138 0 200 1260 "320 2.380 1440 15 00 156 0 :620
GGAACTCAGG
GACTCTACTC
ACATCTGCAA
GGCCAGCACA
CATCCCGGCT
CGGAGGCCTC
GCTCTGGGCA
GCTGGGCTCA
CCCCAAAGGC
GTAACTCCCA
CCGTGCCCAG
AGAGTAGCCT
TTCCTCAGCA
GGACACCCTC
CGAAGACCCT
GACAAAGCCG
CCTGCACCAG
CCCAGCCCCC
GCCACATGGA
CCTCTGTCCC
ATGAGCTGAC
ACATCGCCGT
CCGTGCTGGA
GGTGGCAGCA
ACACGCAGAA
GCTCCCCGGG
CCGGGCGCCC
ATGGTTCTTT
GGGTCCCACT
GGGCTCAGCC
AGCAGCACCT
CAGCCCCTGC
CATGCCCACT
CTACCCCCAC
AACCGACTCC
CACACACTCA
CACCACACAC
CCCAGACCAIG
CCCCACGCGG
TCAGACAAAC
GGATCACACA
CAGGACGGAT
CCCGTGCCTT
GAAATTGCATr
GACAGCAAGG
ATGGCTTCTG
AGCGGCGCAT
AGCGCCCTAG
CCTCTCAAAA
CTAACTCCGC
TGACTAATTT
AAGTAGTGAG
GCTGCGATTT
CCCGCTGCCA
ATTGGCAAGA
AGAATGACCA
ACCTGGTTCT
AGTAGAGAAC
GCCTTAAGAC
GGAGGCAGTT
ACAAGGATCA
TATAAACTTC
AAGTATAAGT
GCTCCCCTCC
TCTTTGTGAA
TTTAAAGCTC
TAATTGTTTG
CGCCCTGACC AGCGGCGTGC CCTCAGCAGC GTGGTCACCG CGTGAATCAC AAGCCCAGCA GGGAGGGAGG GTGTCTGCTG ATGCAGCCCC AGTCCAGGGC TGCCCGCCCC
ACTCATGCTC
GGCACAGGCT
AGGTGCCCCT
GACCTGCCAA GAGCCATATC CAAACTCTCC ACTCCCTCAG ATCTTCTCTC
TGCAGAGCCC
GTAAGCCAGC CCAGGCCTCG GCATCCAGGG ACAGGCCCCA CCTGAACTCC TGGGGGGACC ATGATCTCCC
GGACCCCTGA
GAGGTCAAGT TCAACTGGTA CGGGAGGAGC AGTACAACAG GACTGGCTGA ATGGCAAGGA ATCGAGAAAA CCATCTCCAA CAGAGGCCGG CTCGGCCCAC TACAGGGCAG CCCCGAGAAC CAAGAACCAG GTCAGCCTGA GGAGTGGGAG AGCAATGGGC CTCCGACGGC TCCTTCTTCC GGGGAACGTC TTCTCATGC*.
GAGCCTCTCC
CTGTCTCCGG
CTCTCGCGGT
CGCACGAGGA
AGCATGGA.AA T.AAAGCACCC CCACGGGTCA GGCCGAGTCT 6 0*@ :.,so
GTCCCCACAC
AGGGGCTGCC
GCCCTGGGCT
CTCTGTAGGA
CGGC-GGCATG
GGCACTAACC
GGC-GACATGC
GCCCAGACCC
ACACGTGCAC
AGCAAGGTCC
CACCTCAAGG
CC-AGCCCTCC
C-ACGTCACG
CAGCfCTCGAC
CCTTGACCCT
CGCATTGTCT
GGGAGGATTG
AGGCGGAAAG
TAkAGCGCGGC
CGCCCGCTCC
AAGGGAAAAA
CCATCCCGCC
TTTTTATTTA
GAGGCTTTTT
CGCGCCAAAC
TCATGGTTCG
ACGGAGACCT
CAACCTCTTC
CCATTCCTGA
TCAAAGAACC
TTATTGAACA
CTGTTTACCA
TGCAGGAATT
TCCCAGAATA
TTGAAGTCTA
TAAAGCTATG
GGAACCTTAC
TAAGGTAAAT
TGTATTTTAG
TGGCCCAGGC
CTCGGCAGGG
GGGCCACGGG
GACTGTCCTG
CCTAGTCCAT
CCTGGCTGCC
ACTCTCGGGC
GTTCAACAAA
GCCTCACACA
TCGCAC.NCG-T
CCCACGAGCC
TCTCACAAGG
T'CCCTGGCCC
TGTGCCTTCT
GGAAGGTGCC
GAGTAGGTGT
GGAAGACA.AT
AACCAGCTGG
GGGTGTGGTG
TTTCGCTTTC
AAGCATGCAT
CCTAACTCCG
TGCAGAGGCC
TGGAGGCCTA
TTGACGGCAA
ACCATTGAAC
ACCCTGGCCT
AGTGGAAGGT
GAAGAATCGA
ACCACGAGGA
ACCGGAATTG
GGAAGCCATG
TGAAAGTGAC
CCCAGGCGTC
CGAGAAGAAA
CATTTTTATA
TTCTGTGGTG
ATAAAATTTT
ATTCCAACCT
ACACCTTCCC
TGCCCTCCAG
ACACCAAGGT
GAAGCCAGGC
AGCAAGGCAG
AGGGAGAGGG
AACCCAGGCC
CGGGAGGACC
CTCGGACACC
AAATCTTGTG
CCCTCCAGCT
GCCGGGTGCT
GTCAGTCTTC
GGTCACATGC
CGTGGACGGC
CACGTACCGT
GTACAAGTGC
AGCCAAAGGT
CCTCTGCCCT
CACAGGTGTA
CCTGCCTGGT
AGCCGGAGAA
TCTACAGCAA
CCC-TGATGCA
GTAAATGAGT
TGCTTGGCAC:
AGCGCTGCCC
GAGGCCTGAG
TGTGCAGGTG
TGGGGGATTTr
AAGCCCTAGG
TTCTGTGAGC
GTGCGTAGGG
CTGCCCAGCC
CCTGTGGAGG
CCCCGCACTG
CGGAGCCTCA
GAACACTCCT
TCTCGGCAGC
GTGCCCCTGQC
TGC-CC-CACTT
AGTTGCCAGC
ACTCCCACTG
CATTCTATTC
AGCAGGCATG
GGCTCTAGGG
GTTACGCGCA
TTCCCTTCCT
CTCAATTAGT
CCCAGTTCCG
GAGGCCGCCT
GGCTTTTGCA
TCCTAGCGTG
TGCATCGTCG
CCGCTCAGGA
AAACAGAATC
CCTTTAAAGG
GCT CATTTTC
GCAAGTAAAG
AATCAACCAG
ACGTTTTTCC
CTCTCTGAGG
GACTAACAGG
AGACCATGGG
TGACATAATT
TAAGTGTATA
ATGGAACTGA
49
GGCTGTCCTA
CAGCTTGGGC
GGACAAGAAA
TCAGCGCTCC
GCCCCGTCTG
TCTTCTGGCT
CTGCACACAA
CTGCCCCTGA
TTCTCTCCTC
ACAAAACTCA
CAAGGCGGGA
GACACGTCCA
CTCTTCCCCC
GTGGTGGTGG
GTGGAGGTGC
GTGGTCAGCG
AAGGTCTCCA
GGGACCCGTG
GAGAGTGACC
CACCCTGCCC
CAAAGGCTTC
CAACTACAAG
GCTCACCGTG
TGAGGCTCTG
GCGACGGCCG
GTACCCCCTG
TGGGCCCCTG
TGGCATGAGG
TGCCTGGGCC
GCCAGCGTGG
AGCCCCTGGG
GCCCCTGTC-
ACAGGCCCTC
TCGCACCCGC
GACTGGTGCA
AGGTTGGCCG
CCCGGGCGAA
CGGACACAGG
TTCT-CACAT
AGCCGCCACA
!ZC-CAGTGCCG
CAT CTGTrTGT
TCCTTTCCTA
TGGGGGGTGG
CTIGGGGATGC
GGTATCCCCA
GCGTGACCGC
T TCTCGCCAC
CAGCAACCAT
CCCATTCTCC
CGGCCTCTGA
AAAAGCTTGG
AAGGCTGGTA
CCGTGTCCCA
ACGAGTTCAA
TGGTGATTAT
ACAGAATTAA
TTGCCAAAAG
TAGACATGGT
GCCACCTTAG
CAGAAATTGA
TCCAGGAGGA
AAGATGCTTT
ACTTTTGCTG
GGACAAACTA
ATGTGTTAAA
TGAATGGGAG
CAGTCCTCAG
ACCCAGACCT
GTTGGTGAGA
TGCCTGGACG
CCTCTTCACC
TTTTCCCCAG
AGGGGCAGGT
CCTAAGCCCA
CCAGATTCCA
CACATGCCCA
CAGGTGCCCT
CCTCCATCTC
CAAAACCCAA
ACGTGAGCCA
ATAATGCCAA
TCCTCACCGT
ACAAAGCCCT
GGGTGCGAGG
GCTGTACCAA
CCATCCCGGG
TATCCCAGCG
ACCACGCCTC
GACAAGAGCA
CACAACCACT
GCAAGCCCCC
TACATACTTC
CGAGACTGTG
GAGGCAGAGC
CCCTAGGGTG
CCCTCCCTCC
GACAGACACA
TCCCGACCTC
CCTCACCCAT
ATGGGGACAC
GATGCCCACA
GCCACACGGC
CTGCACAGCA
CCCCCACGAG
GCTGACCTGC
CACJACACAGG
CCCTTCCCTG
TTGCCCCTCC
ATAAAATGAG
GGTGGGGCAG
GGTGGGCTCT
CGCGCCCTGT
TACACTTGCC
GTTCGCCGGG
AGTCCCGCCC
GCCCCATGGC
GCTATTCCAG
ACAGCTCAGG
GGATTTTATC
AAATATGGGG
GTACTTCCAA
GGGTAGGAAA
TATAGTTCTC
TTTGGATGAT
TTGGATAGTC
ACTCTTTGTG
TTTGGGGAAA
AAAAGGCATC
CAAGTTCTCT
GCTTTAGATC
CCTACAGAGA
CTACTGATTC
CAGTGGTGGA
1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 ATGCCTTT.
TGAGGAAAAC
CTACTGCTGA
CTCTCAACAT
AGGACTTTCC
TTCAGAATTG
TTGCTTGCTT
TGCTATTTAC
TGGAAAAATA
TTCTGTAACC
TTTTTCTTAC
TCCACACAGG
GTACCTTTAG
CTTTTTAATT
TGACTAGAGA
TCATAATCAG
CTCCCACACC
TCCCCCTGA
TTTATTGCAG
CTTATAATGG
GCATTTTTTT
CACTGCATTC
GTCTGGATCG
GCTGGATGAT
CCCAACTTGT
TTATTGCAGC
ACAAATAAAG
CATTTTTTTC
TCTTATCATG
TCTGTATACC
CTGTTTCCTG
TGTGAAATTG
ATAAAGTGTA
AAGCCTGGGG
TCACTGCCCG
CTTTCCAGTC
CGCGCGGGGA
GAGGCGGTTT
CTGCGCTCGG
TCGTTCGGCT
TTATCCACAG
AATCAGGGGA
GCCAGGAACC
GTAAAAAGGC
GAGCATCACA
AAAATCGACG
TACCAGGCGT
TTCCCCCTGG
ACCGGATACC
TGTCCGCCTT
TGTAGGTATC
TCAGTTCGGT
CCCGTTCAGc
CCGACCGCTG
AGACAGGACT
TATCGCCACT
GTAGGCGGTG
CTACAGAGTT
GTATTTGGTA
TCTGCGCTCT
TGATCCGGCA
AACAAACCAC
ACGCGCAGAA JAAAAAGGATC CAGTGGAACG
AAAACTCACG
ACCTAGATCC
TTTTAAATTA
ACTTGGTCTG
ACAGTTACCA
TTTCGTTCAT
CCATAGTTGC
TTACCATCTG
GCCCCAGTGC
TTATCAGCAA
TAAACCAGCC
TCCGCCTCCA.
TCCAGTCTAT
40 AATAGTTTGC
GCAACGTTGT
GGTATGGCTT
CATTCAGCTC
TTGTGCAAAA
AAGCGGTTAG
GCAGTGTTAT CACTCATG3GT GTAAGATGCT
TTTCTGTGAC
45 CGGCGACCGA
GTTGCTCTTG
ACTTTAAAAG
TGCTCATCAT
CCGCTGTTGA
GATCCAGTTC
TTTACTTTCA
CCAGCGTTTC
GGAATAAGGG CGACACGGAA AGCATTTATC
AGGGTTATTG
AAACAAATAG GGGTTCCGCG
CTGTTTTGCT
TCTACTCCTC
CTAAGTTTTT
ACCACAAAGG
TTTATAAGTA
CATAGAGTGT
TGTAAAGGGG
CCATACCACA
CCTGAAACAT
TTACAAATAA
TAGTTGTGGT
CCTCCAGCGC
TTATAATGGT
ACTGCATTCT
GTCGACCTCT
TTATCCGCTC
TGCCTAATGA
GGGAAACCTG
GCGTATTGGG
GCGGCGAGCG
TAACGCAGGA
CGCGTTGCTG
CTCAAGTCAG
AAGCTCCCTC
TCTCCCTTCG
GTAGGTCGTT
CGCCTTATCC
GGCAGCAGCC
CTTGAAGTGG
GCTGAAGCCA
CGCTGGTAGC
TCAAGA.AGAT
TTAAGGGATT
AAAATGAAGT
ATGCTTAATC
CTGACTCCCC
TGCAATGATA
AGCCGGA.AGG
TAATTGTTGC
TGCCATTGCT
CGGTTCCCAA
CTCCTTCG-T
TATGGCAGCA
TGGTGAGTAC
CCCGGCGTCA
TGGAAAACGT
GATGTAACCC
TGGGTGAGCA
ATGTTGAATA
TCTCATGAGC
CACATTTCCC
CAGAAGAAAT
CAAAAAAGAA
TGAGTCATGC
AAAAAGCTGC
GGCATAACAG
CTGCTATTAA
TTAATAACGA
TTTGTAGAGG
AAAATGAATG
AGCAATAGCA
TTGTCCAAAC
GGGGATCTCA
TACAAATAAA
AGTTGTGGTT
AGCTAGAGCT
ACAATTCCAC
GTGAGCTAAC
TCGTGCCAGC
CGCTCTTCCG
GTATCAGCTC
AAGAACATGT
GCGTTTTTCC
AGGTGGCGA
GTGCGCTCTC
GGAAGCGTGG
CGCTCCAAGC
GGTAACTATC
ACTGGTAACA
TGGCCTAACT
GTTACCTTCG
GGTGGTTTTT
CCTTTGATCT
TTGGTCATGA
TTTAAATCAA
AGTGAGGCAC
GTCGTGTAGA
CCGCGAGACC
GCCGAGCGCA
CGGGAAGCTA
ACAGGCATCG
CGATCAAGGC
CCTCCGATCG
CTGCATAATT
TCAACCAAGT
ATACGGGATA
TCTTCGGGGC
ACTCGTGCAC
AAAACAGGAA
CTCATACTCT
GGATACATAT
CGAA.AAGTGC
GCCATCTAGT
GAGAAAGGTA
TGTGTTTAGT
ACTGCTATAC
TTATAATCAT
TAACTATGCT
ATATTTGATG
TTTTACTTGC
CAATTGTTGT
TCACAAATTT
TCATCAATGT
TGCI'GGAGTT
GCAATAGCAT
TGTCCAAACT
TGGCGTAATC
ACAACATACG
TCACATTAAT
TGCATTAATG
CTTCCTCGCT
ACTCAAAGGC
GAGCAAAAGG
ATAGGCTCCG
ACCCGACAGG
CTGTTCCGAC
CGCTTTCTCA
TGGGCTGTGT
GTCTTGAGTC
GGATTAGCAG
ACGGCTACAC
GAAAAAzGADGT
TTGTTTGCAA
TTTCTACGGG
GATTATCAAA
TCTA-AAGTAT
CTATCTCAGC
TA-ACTACGAT
CACGCTCACC
GAAGTGGTCC
GAGTAAGTAG
TGGTGTCACG
GAGTTACATG
TTGTCAGAAZG
CTCTTACTGT
CATTCTGAGA
ATACCGCGCC
GAAAACTCTC
CCAACTGATC
GGC:AAA-ATGC
TCCTTTTTCA
TTGAATGTAT
CACCTGACGT
GATGATGAGG
GAAGACCCCA~
AATAGAACTC
AAGAAAATTA
AACATACTGT
CAAAAATTGT
TATAGTGCCT
TTTAAAAAAC
TGTTAACTTG
CACAAATWA
ATCTTATCAT
CTTCGCCCAC
CACAAATTTC
CATCAATGTA
ATGGTCATAG
AGCCGGAAGC
TGCGTTGCGC
AATCGGCCAA
CACTGACTCG
GGTA.ATACGG
CCAGCAAAAG
CCCCCCTGAC
ACTATAAA-A
CCTGCCGCTT
ATGCTCACGC
GCACGAACCC
CAACCCGGTA
AGCGAGGTAT
TAGAAGGACA
TGGTAGCTCT
GCAGCAGATT
GTCTGACGCT
AAGGATCTTC
ATATGACTAA
GATCTGTCTA
ACGGGAGGGC
GGCTCCAGAT
TGCAACTTTA
TTCGCCAGTT
CTCGTCGTTT
ATCCCCCATG
TAAGTTGGCC
CATGCCATCC
ATAGTGTATG
ACATAGCAGA
AAGGATCTTA
TTCAGCATCT
CGCAAAAAAG
ATATTATTGA
TTAGAAAAAT
C
5700 5760 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 6540 6600 6660 6720 6780 6840 6900 6960 7020 7080 7140 7200 7260 7320 7380 '744 0 7500 7560 7620 7680 7740 7800 7860 7920 7980 8040 8100 8160 8220 8280 8340 8400 8460 8520 8580 8640 8691 6O S. t 000S 6O*w es..
0 *See 0S OS 0 0 0* S. 0
S
0@055@
S
S
0 S. eS
S
0 0O S *5 0O INFORMATION FOR SEQ ID NO: SEQUENCE CHARACTERISTICS: LENGTH: 8321 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID GACGGATCGG GAGATCTGCT AGGTGACCTG AGGCGCGCCG GCTTCGAATA GCCAGAGTAA CCTTTTTTTT TAATTTTATT TTATTTTATT TTTGAGATGG AGTTTGGCGC CGATCTCCCG ATCCCCTATG GTCGACTCTC AGTACAATCT GCTCTGATGC CGCATAC-TTA AGCCAGTATC
TGCTCCCTGC
CAAGGCAAGG
TGCTTCGCGA
AGTAATCAAT
TTACGGTAAA
TGACGTATGT
ATTTACGGTA
CTATTGACGT
GGGACTTTCC
GGTTTTGGCA
TCCACCCCAT
AATGTCGTAA
TCTATATAAG
TTAATACGAC
AGGTCTCGAG
CACCATGGAG
GTGAAGTGAA
TCTCCTGTGT
CTCCAGAGAA
ATCCAGACAC
ACCTGCAAAT
TGGACGACGG
CTAGCACCAA
GCACAGCGGC
GGALACTCAGG
GACTCTACTC
ACATCTGCAA
GGCCAGCACA
CATCCCGGCT
CGGAGGCCTC
GCTCTGGGCA
GCTGGGCTCA
CCCCAAAGGC
GTAACTCCCA
CCGTGCCCAG
AGAGTAGCCTr
CAGAGGCCGG
TACAGGGCAG
CAAGAACCAG
GGAGTGGGAG
CTCCGACGGC
GGGGAACGTC
CAGcc~rTcc
CTCTCGCGGT
45 AGCATGGAAA
CCACGGGTCA
GTCCCCACAC
AGGGGCTGCC
GCCCTGGGCT
50 CTCTGTAGGA
CGGGGGCATG
GGCACTAACC
GGGGACATGC
GCCCAGACCC
55 ACACGTGCAC
AGCAAGGTCC
CACCTCAAGG
CC-AGCCCTCC
CCACGTCACG
60 CAGCCTCGAC
CCTTGACCCT
CGCATTGTCT
GGGAGGATTG
AGGCGGAAAG
65 TAAGCGCGGC
CGCCCGCTCC
AAGGGAAAAA
TTGTGTGTTG
CTTGACCGAC
TGTACGGGCC
TACGGGGTCA
TGGCCCGCCT
TCCCATAGTA
AACTGCCCAC
CAATGACGGT
TACTTGGCAG
GTACATCAAT
TGACGTCAjAT
CAACTCCGCC
CAGAGCTCTC
TCACTATAGG
TCTCTAGATA
TTGTGGTTAA
TCTGGTGGAG
AACCTCTGGA
GAGGCTGGAG
TGTAAAGGGT
GAGCCGTCTG
GGCCTGGTTT
GGGCCCATCG
CCTGGGCTGC
CGCCCTGACC
CCTCAGCAGC
CGTGAATCAC
GGGAGGGAGG
ATGCAGCCCC
TGCCCGCCCC
GGCACACGCT
GACCTGCCAA
CAAACTCTCC
ATCTTCTCTC
GTAAGCCAGC
GCATCCAGGG
CTCGGCCCAC
CCCCGAGAAC
-TCAGCCT-A
AGCAATGGGC
TCCTTCTTCC
T-ICTCATGCT
CTGTCTCCGG
CGCACGAGGA
TAA.AGCACCC
GGCCGAGTCT
TGGCCCAGGC
CTCGGCAGGG
GGGCCACGGG
GACTGTCCTG
CCTAGTCCAT
CCTGGCTGCC
ACTCTCGGGC
GTTCAACAAA
GCCTCACACA
TCGCACACGT
CCCACGAGCC
TCTCACAAGG
TCCCTGGCCC
TGTGCCTTCT
GGAAGGTGCC
GAGTAGGTGT
GGAAGACAAT
AACCAGCTGG
GGGTGTGGTG
TTTCGCTTTC
AAGCATGCAT
GAGGTCGCTG
AATTGCATGA
AGATATACGC
TTAGTTCATA
GGCTGACCGC
ACGCCAATAG
TTGGCAGTAC
AAATGGCCCG
TACATCTACG
GGGCGTGGAT
GGGAGTTTGT
CCATTGACGC
TGGCTAACTA
GAGACCCAAG
ACCGGTCAAT
GCTTGGTCCT
TCTGGGGGAG
TTCACTTTCA
TGGGTCGCAT
CGATTCACCA
AAGTCTGAGG
GCTTACTGGG
GTCTTCCCCC
CTGGTCAAGG
AGCGGCGTGC
GTGGTCACCG
AAGCCCAGCA
GTGTCTGCTG
AGTCCAGGGC
ACTCATGCTC
AGGTGCCCCT
GAGCCATATC
ACTCCCTCAG
TGCAGAGCCC
CCAGGCCTCG
ACACACCACG
CCTCTGCCCT
CAC-AGGTGTA
CCTGCCTGGT
AGCCGGAGAA
TCTACAGCAA
CCGTGATGCA
GTAAATGAGT
TGCTTGGCAC
AG CGCTGCC C
GAGGCCTGAG
TGTGCAGGTG
TGGGGGATTT
AAG-CCTAGG
TTCTGTGAGC
GTGCGTAGGG
CTGCCCAGCC
CCTGTGGAGG
CCCCGCACTG
CGGAGCCTCA
GAACACTCCT
TCTCGGCAGC
GTGCCCCTGC
TGGCCCACTT
AGTTGCCAGC
ACTCCCACTG
CATTCTATTC
AGCAGGCATG
GGCTCTAGGG
GTTACGCGCA
TTCCCTTCCT
CTCAATTAGT
AGTAGTGCGC
AGAATCTGCT
GTTGACATTG
GCCCATATAT
CCAACGACCC
GGACTTTCCA
ATCAAGTGTA
CCTGGCAT-TA
TATTAGTCAT
AGCGGTTTGA
TTTGGCACCA
AAATGGGCGG
GAGA.ACCCAC
CTTGGTACCA
CGATTGGAAT
TCCTTGTCCT
GCTTAGTGCA
GTGACTATTA
ACATTAGTCA
TCTCCAGAGA
ACACAGCCAT
GCCAAGGGAC
TGGCACCCTC
ACTACTTCCC
ACACCTTCCC
TGCCCTCCAG
ACACCAAGGT
GAAGCCAGGC
AGCAAGGCAG
AGGGAGAGGG
AACCCAGGCC
CGGGAGGACC
CTCGGACACC
AAATCTTGTG
CCCT;CCAGCT
TGGGTACCAA
GAGAGTGACC
CACCCTGCCC
CAAAGGCTTC
CAACTACAAG
GCTCACCGTG
TGAGGCTCTG
GCGACGGCCG
GTACCCCCTG
TGGGCCCCTG
TGGCATGAGG
TGCCTGGGCC
GCCAGCGTGG
AGCCCCTGGG
GCCCCTGTCC
ACAGGCCCTC
TCGCACCCGC
GACTGGTGCA
AGGTTGGCCG
CCCGGGCGAA
CGGACACAGG
TTCTCCACAT
AGCCGCCACA
CCCAGTGCCG
CATCTGTTGT
TCCTTTCCTA
TGGGGGGTGG
CTGGGGATGC
GGTATCCCCA
GCGTGACCGC
TTCTCGCCAC
CAGCAACCAT
GAGCAAAATT
TAGGGTTAGG
ATTATTGACT
GGAGTTCCGC
CCGCCCATTG
TTGACGTCAA
TCATATGCCA
TGCCCAGTAC
CGCTATTACC
CTCACGGGGA
AAATCAACGG
TAGGCGTGTA
TGCTTACTGG
ATTTAAATTG
TCTTGCGGCC
TGTTTTAAAA
GCCTGGAGGG
CATGTATTGG
AGGTGGTGAT
CAATGCCAAG
GTATTACTGT
TCTGGTCACG
CTCCAAGAGC
CGAACCGGTG
GGCTGTCCTA
CAGCTTGGGC
GGACAAGAAA
TCAGCGCTC
GCCCCGTCTG
TCTTCTGGCT
CTGC.:CA2CAA
CTGCCCCTGA
TTCTCTCCTC
ACAP.AACTCA
C-AAGGCGGGA
CATGTCCGGA
GCTGTACCAA
CCATCCCGGG
TATCCCAGCG
ACCACGCCTC
GACAAGAGCA
CACAACCACT
GCAAGCCCCC
TACATACTTC
CGAGACTGTG
GAGGCAGAGC
CCCTAGGGTG
CCCTCCCTCC
GACAGACACA
TCCCGACCTC
CCTCACCCAT
ATGGGGACAC
GATGCCCACA
GCCACACGGC
CTGCACAGCA
CCCCCACGAG
GCTGACCTGC
CACACACAGG
CCCTTCCCTG
TTGCCCCTCC
ATAAAATGAG
GGTGGGGCAG
GGTGGGCTCT
CGCGCCCTGT
TACACTTGCC
GTTCGCCGGG
AGTCCCGCCC
TAAGCTACAA
CGTTTTGCGC
AGTTATTAAT
GTTACATAAC
ACGTCAATAA
TGGGTGGACT
AGTACGCCCC
ATGACCTTAT
ATGGTGATGC
TTTCCAAGTC
GACTTTCCAA
CGGTGGGAGG
CTTATCGAAA
ATATCTCCTT
GCTTGCTAGC
GGTGTCCAGT
TCCCTGAAAG
GTTCGCCAGA
ATAACCGACT
AACACCCTGT
GCAAGAGGCC
GTCTCTGTAG
ACCTCTGGGG
ACGGTGTCGT
CAGTCCTCAG
ACCCAGACCT
GTTGGTGAG-A
TGCCTGGACG
CCTCTTCACC
TTTTCCCCAG
AGGGGCAGGT
CCTAAGCCCA
CCAGATTCCA
CACATGCCCA
CAGGTGCCCT
GCCA.CATGGA
CCTCTGTCCC
ATGAGCTGAC
ACATCGCCGT
CCGTGCTGGA
GGTGGCAGCA
ACACGCAGAA
GCTCCCCGGG
CCGGGCGCCC
ATGGTTCT'T
GGGTCCCACT
GGGCTCAGCC
AGCAGCACCT
CAGCCCCTGC
CATGCCCACT
CTACCCCCAC
AACCGACTCC
CACACACTCA
CACCACACAC
CCCAGACCAG
CC-CCACGCGG
TCAGACAAAC
GGATCACACA
CAGGACGGAT
CCCGTGCCTT
GAAATTGCAT
GACAGCAAGG
ATGGCTTCTG
AGCGGCGCAT
AGCGCCCTAG
CCTCTCAAAA
CTAACTCCGC
240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200
CCATCCCGCC
TTTTTATTTA
GAGGCTTTTT
CGCGCCAAAC
TCATGGTTCG
ACGGAGACCT
CAACCTCTTC
CCATTCCTGA
TCAAAGAACC
TTATTGAACA
CTGTTTACCA
TGCAGGAATT
TCCCAGAATA
TTGAAGTCTA
TAAAGCTATG
GGAACCTTAC
TAAGGTAAAT
TGTATTTTAG
TGAGGAAAAC
cCTTCAACAT
TTCAGAATTG
TGCTATTTAC
TTCTGTAACC
TCCACACAGG
CTTTTTAATT
TCATAATCAG
TCCCCCTGAA
CTTATAATGG
CACTGCATTC
GCTGGATGAT
TTATTGCAGC
CATTTTTTTC
TCTGTA:TACC
TGTGAAATTG
AAGCCTGGGG
CTTTCCAGTC
GAC-GCGGTTT
TCGTTCGGCT
AATCAGGGGA
GTAAAAAGGC
AAAATCGACG
TTCCCCCTGG
TGTCCGCCTT
TCAGTTCGGT
CCGACCGCTG
TATCGCCACT
CTACAGAGTT
TCTGCGCTCT
AACAAACCAC
50 AAAAAGGATC
AAAACTCACG
TTTTAAATTA
ACAGTTACCA
CCATAGTTGC
GCCCCAGTGC
TAAACCAGCC
TCCAGTCTAT
GCAACGTTGT
CATTCAGCTC
AAGCGGTTAG
CACTCATGGT
TTTCTGTGAC
GTTGCTCTTG
TGCTCATCAT
65 GATCCAGTTC
CCAGCGTTTC
CGACACGGAA
CCTAACTCCG
TGCAGAGGCC
TGGAGGCCTA
TTGACGGCAA
ACCATTGAAC
ACCCTGGCCT
AGTGGAAGGT
GAAGAATCGA
ACCACGAGGA
ACCGGAATTG
GGAAGCCATG
TGAAAGTGAC
CCCAGGCGTC
CGAGAAGAAA
CATTTTTATA
TTCTGTGGTG
ATAAAATTTT
ATTCCAACCT
CTGTTTTGCT
TCTACTCCTC
CTAAGTTTTT
ACCACAAAGG
TTTATAAGTA
CATAGAGTGT
TGTAAAGGGG
CCATACCACA
CCTGAAACAT
TTACAAATAA
TAGTTGTGGT
CCTCCAGCGC
TTATAATGGT
ACTGCATTCT
GTCGACCTCT
TTATCCGCTC
TGCCTAATGA
GGGAhAACCT-G
GCGTATTGGG
GCGGCGAGCG
TAACGCAGGA
CGCGTTGCTG
C-.CAAr.TCAG AAG CTC CCT C
TCTCCCTTCG
GTAkGGTCGTT
CGCCTTATCC
GGCAGCAGCC
CTTGAAGTGG
GCTGAAGCCA
CGCTGGTAGC
TCAAGAAGAT
TTAAGGGATT
AAAATGAAGT
ATGCTTAATC
CTGACTCCCC
TGCAATGATA
AGCCGGAAGG
TAATTGTTGC
TGCCATTGCT
CGGTTCCCAA
CTCCTTCGGT
TATGGCAGCA
TGGTGAGTAC
CCCGGCGTCA
TGGAAAACGT
GATGTAACCC
TGGGTGAGCA
ATGTTGAATA
CCCAGTTCCG
GAGGCCGCCT
GGCTTTTGCA
TCCTAGCGTG
TGCATCGTCG
CCGCTCAGGA
AAACAGAATC
CCTTTAAAGG
GCTCATTTTC
GCAAGTAAAG
AATCAACCAG
ACGTTTTTCC
CTCTCTGAGG
GACTAACAGG
AGACCATGGG
TGACATAATT
TAAGTGTATA
ATGGAACTGA
CAGAAGAAAT
CAAAAAAGAA
TGAGTCATGC
AAAAAGCTGC
GGCATAACAG
CTGCTATTAA
TTAATAAGGA
TTTGTAGAGG
AAAATGAATG
AGCAATAGCA
TTGTCCAAAC
GGGGATCTCA
TACAAATAAA
AGTTGTGGTT
AGCTAGAGCT
ACAATTCCAC
GTGAGCTAPC
TCGTGCCAGC
CGCTCTTCCG
GTATCAGCTC
A-AGAACATGT
GCGTTTTTCC
AGGTGGCGAA
GTGCGCTCTC
GGAAGCGTGG
CGCTCCAAGC
GGTAACTATC
ACTGGTAACA
TGGCCTAACT
GTTACCTTCG
GGTGGTTTTT
CCTTTGATCT
TTGGTCATGA
TTTAAATCAA
AGTGAGGCAC
GTCGTGTAGA
CCGCGAGACC
GCCGAGCGCA
CGGGAAGCTA
ACAGGCATCG
CGATCAAGGC
CCTCCGATCG
CTGCATAATT
TCAACCAAGT
ATACGGGATA
TCTTCGGGGC
ACTICGTGCAC
AAAACAGGAA
CTCATACTCT
CCCATTCTCC
CGGCCTCTGA
AAAAGCrroo
AAGGCTGGTA
CCGTGTcCCCA
ACGAGT"ICA
TGGTGATTAT
ACAGAATvL
TTGCCAAAAG
TAGACATGGT
GCCACCTTAG
CAGAAATTGA
TCCAGGAGGA
AAGATGCTTT
ACTTTTGCTG
GGACAA-ACTA
ATGTGTTAAA
TGAATGGGAG
GCCATCTAGT
GAGAAAGGTA
TGTGTTTAGT
ACTGCTATAC
TTATAATCAT
TAACTATGCT
ATATTTGATG
TTTTACTTGC
CAATTGTTGT
TCACAAATTT
TCATCAAkTGT
TGCTGGAGTT
GCAATAGCAT
TGTCCAAACT
TGGCGTAATC
ACAACATACG
TCACATTAAT
TGCATTALATG
CTTCCTCGCT
ACTCAAAGGC
GAGCAAAAGG
ATAGGC'rCCG
ACCCGACAGG
CTGTTCCGAC
CGCTTTCTCA
TGGGCTGTGT
GTCTTGAGTC
GGATTAGCAG
ACGGCTACAC
GAAAAAGAGT
TTGTTTGCAA
TTTCTACGGG
GATTATCAAA
TCTAAAGTAT
CTATCTCAGC
TAACTACGAT
CACGCTCACC
GAAGTGGTCC
GAGTAAGTAG
TGGTGTCACG
GAGTTACATG
TTGTCAGAAG
CTCTTACTGT
CATTCTGAGA
ATACCGCGCC
GAAAACTCTC
CCAACTGATC
GGCAAAATGC
TCCTTTTTCA
GCCCCATGGC
GCTATTCCAG
ACAGCTCAGG
GGATTTTATC
AAATATGGGG
GTACTTCCAA
GGGTAGGAAA
TATAGTTCTC
TTTGGATGAT
TTGGATAGTC
ACTCTTTGTG
TTTGGGGAAA
AAAAGGCATC
CAAGTTCTCT
GCTTTAGATC
CCTACAGAGA
CTACTGATTC
CAGTGGTGGA
GATGATGAGG
GAAGACCCCA
AATAGAACTC
AAGAAAATTA
AACATACTGT
CAAAAATTGT
TATAGTGCCT
TTTAAAAAAC
TGTTAACTTG
CACAAATAAA
ATCTTATCAT
CTTCGCCCAC
CACA-AATTTC
CATCAATGTA
ATGGTCATAG
AGCCGC-AAGC
TGCGTTGCGC
AATCGGCCAA
CACTGACTCG
GGTAATACGG
CCAGCAAAAG
CCCCCCTGAC
ACTATAAAGA
CCTGCCGCTT
ATGCTCACGC
GCACGAACCC
CAACCCGGTA
AGCGAGGTAT
TAGAAGGACA
TGGTAGCTCT
GCAGCAGATT
GTCTGACGCT
AAGGATCTTC
ATATGAGTAA
GATCTGTCTA
ACGGGAGGGC
GGCTCCAGAT
TGCAACTTTA
TTCGCCAGTT
CTCGTCGTTT
ATCCCCCATG
TAAGTTGGCC
CATGCCATCC
ATAGTGTATG
ACATAGCAGA
AAGGATCTTA
TTCAGCATCT
CGCAAAAAAG
ATATTATTGA
TGACTAATTT
AAGTAGTGAG
GCTGCGATTT
CCCGCTGCCA
ATTGGCAAGA
AGAATGACCA
ACCTGGTTCT
AGTAGAGAAC
GCCTTAAGAC
GGAGGCAGTT
ACAAGGATCA
TATAAACTTC
AAGTATAAGT
GCTCCCCTCC
TCTTTGTGAA
TTTAAAGCTC
TAATTGTTTG
ATGCCTTTAA
CTACTGCTGA
AGGACTTTCC
TTGCTTGCrT
TGGAAAAATA
TTTTTCTTAC
GTACCTTTAG
TGACTAGAGA
CTCCCACACC
TTTATTGCAG
GCATTTTTT1
GTCTGGATCG
CCCAACTTGT
ACAAATAAJAG
TCTTATCATG
CTGTTTCCTG
ATAAAGTGTA
TCACTGCCCG
CGCGCGGGGA
CTGCGCTCGG
TTATCCACAG
GCCAGGAACC
GAGCATCACA
TACCAGGCGT
ACCGGATACC
TGTAGGTATC
CCCGTTCA.GC
AGACACGACT
GTAGGCGGTG
GTATTTGGTA
TGATCCGGCA
ACGCGCAGAA
CAGTGGAACG
ACCTAGATCC
ACTTGGTCTG
TTTCGTTCAT
TTACCATCTG
TTATCAGCAA
TCCGCCTCCA
AATAGTTTGC
GGTATGGCTT
TTGTGCAAAA
GCAGTGTTAT
GTAAGATGCT
CGGCGACCGA
ACTTTAAAAG
CCGCTGTTGA
TTTACTTTCA
GGAATAAGGG
AGCATTTATC
4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 6540 6600 6660 6720 6780 6840 6900 6960 7020 7080 7140 7200 7260 7320 7380 7440 7500 7560 7620 7680 7740 7800 7860 7920 7980 8040 8100 8160 8220
S
~4 AGGGTTATTG TCTCATGAGC GGATACATAT TTGAALTGTAT TTAGAAAAAT
AAACAAATAG
GGGTTCCGCG CACATTTCCC CGAAAAGTGC CACCTGACGT
C
INFORMATION FOR SEQ ID NO:11: SEQUENCE
CHAR.ACTERISTICS:
LENGTH: 8897 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cONA (xi) SEQUENCE DESCRIPTION: SEQ ID No:l1: 8280 8321
GGTACCAATT
TGTTGGTGCT
CAGTCTCCCT
TCATTGTACA
CTCCACAGCT
GCGGCAGTGG
TGGGAGTTTA
AGTTGGAAAT
AAACTCTGAG
AGGTCAGAAA
AGAACTTTAT
TACGCTTCTT
CCTAACATGC
CATCCTGTTT
CATCTGATGA
ATCCCAGAGA
AGGAGA.GTGT
CGCTGAGCAA.
GCCTGAGCTC-
CCCACCTGCT
CCACAGGGGA
CCTCCTTGGC
CACCTGTGGT
CAATTTCTCT
kATCATCCTT
ACAAGCCTTC
TCCCCTCCTC
TCCTTTGATT
TATAAAGAGA
45 ATAAZACAAAC
ATGCCTTATT
GAGTACTTTC
AAATGTTGCA
ACTTCTAGAT
50 CTTTATTTAC
TTAA.ACTGTG
TATACCTACT
AAAAGATATG
TAGAAATTTG
55 ACAAGAAGGG
ATGATCTGTG
TCTTATACCC
GTAAGTGGGG
TGAGTCTGCC
60 CATCTGTGCC
CTTCAGCAAG
AACACTCACA
ATGGGGCACT
ACCTCTCTCT
65 CAAATGACTG
TGGGGAAGGA
GAATGTTGAT
TAAATTGATA
GATGTTCTGG
GCCTGTCAGT
TAATAATGGC
CCTGATCTAC
ATCAGGGACA
TTACTGCTTT
AAAACGTAAG
GGGGTCGGAT
AGCATGCAAA
TAJAGGAATAG
GGTCTCCTTG
CCTTATCCGC
GCTTCTrTTCC
GCAGTTGAAA
GGCCAAAGTA
CACAGAGCAG
AGCAGACTAC
GCCCGTCACA
CCTCAGTTCC
CCTACCCCTA
TTTAATTATG
TTCTCTCTTT
TATAAGGGAC
CATTCTATTT
TGTCCTCACA
AGCAAGCCCT
CAATTCCCTG
ATCATTCATT
ATAGGGGAAA
TACATTTTTA
CACAACCTA
AAGGTTCTAT
GACTGAGTGT
AAAAGCCAAA
GTATGTTTAT
CACACAGATG
TTCTGTATGT
GATGGAAATT
GCTTCTGGGG
CACTGTTCTG
AGTTAATAGA
GCCTGGGATC
TTCCAGGGCT
CTGTTTGGCT
GGGACAGAGG
TGTTTGGGAA
CTGGCCCTGC
GCCTACACTC
ACAATCCCTT
CAGTCATGGA
GAGTATCAAA
TCTCCTTAGG
ATTCCTGCTT
CTTGGAGATC
AACACCTATT
AAAGTTTCCA
GATTTCACAC
CAAGGTTCAC
TCTCGAGTCT
GACGTGGCCA
GCCCTCAGAA
GGGGAAGCTA
CTATA.ATTAT
AAACAACACA
TCAGGAACTG
TCTGGAACTG
CAGTGGAAGG
GAGAGCAA.GG
GAGA.AACACA
AAGAGCTTCA
AGCCTGACCC
TTGCGGTCCT
CTAATGTTGG
CCTCATTTAA.
i AA.ATATGTA
TACCCTATCA
GTCCCCTGGG
CATAGTCCTT
AGAATCAACC
GCAACATGAT
TGTTTAAGTT
AACAGGTACT
TTTAATCCAC
AAAGCTGAGA
CCCCACCCAC
AATTGGAAAT
ACATTAGAAT
AATCTCATAA
TTTCATCCAT
ACTCTTAGCT
TCTTGGTAAT
TATACACATT
TAGAAGAGGA
AAATAGCTAC
CAAGGTGCTC
AGCTAGGAGC
ACAGAATTAA
GGGGGAAGGG
CCCTCTCAGC
TGAAGGGGTT
TGTCCTGCTT
GAAACTACAT
TCTTTCAA.AC
TCTCGAGCAC
CCAGCAGTGAL
AAGCGTCCAT
TAGAATGGTA
ACCGATTTTC
TCAAGATCAG
ATGTTCCATT
CTAGATAACC
TTCTTTGCCT
TGGCTGCAAA
GGA.AGAAACT
CTGGGAZTAAG
CCCAAGGGCA
TGGCTGCACC
CCTCTGTTGT
TGGATAACGC
ACAGCACCTA
AAGTCTACGC
ACAGGizGAGA
CCTCCCATCC
CCAGCTCATC
AGGAGAATGA
TAATTATTAT
GTCATCCTA.A
TCCTCTGCAA
CCATGGTAGG
TTTA.A-GGGTG
AAAGCAAAzTT
ATAAAATAAC
CATCATGGTA
GAGGGACTCC
ACTATACTGT
GACAAA-TATA
CAAAAAACTA
AGCCCGATTG
ACCCAATGAG
AAATA.ATGTT
ATAAAGTTCA
GGGGGTGGGC
GTTCTI:TTCC
ATGCTTCAAA
ATAAGTAATA
CTGCCTAATC
AACAAAACAA
ACACATACAT
CCTTGCCCAG
CACATGTAAA
TACTCATCCA
CAGGAGTAAC
TGTTTTTCTT
AAGGAAGCAC
TTTGGAGGTT
CATGAAGTTG
TGTTTTGATG
CTCTTGCAGA
CCTGCAGAA.
TGGGGTCCCA
CAGAGTGGAG
CACGTTCGGC
GGTCAATCGA
AP.AGCATTGA
GAGCTCCAAC
CAAAACATCA.
CATGCTGTTT
GAACTTTGTT
ATCTGTCTTC
GTGCCTGCTG
CCTCCAATCG
CAGCCTCAGC
CTGCGAAGTC
GTGTTAGAGG
TTTGGCCTCT
TT.TCACCTCA
ATA-AATAAAG
CTGTTGTTTT
GGCACGTAAC
GACAGTCCTC
AGAGACTTCC
ACAGGTCTTA
TTTCAAkAAGA
AJACACAATA-A
CTTAGACTTA
TGTCTGCCAA
GAGATTAAAA
TTCTATAACT
TGCAAGAATG
TCCAACAATA
GAGAATTAAC
ACATAAGAGA
AAACCAGGTA
GAGTTAGTGC
TCGTGTGGGG
ATAACTTCAC
GGTCAAGACC
CTGCCCWCTT
CAGGCCTGCT
AGAAATTAAA
ACACTGGAAA
TGAGGACTCT
TCCAACACAC
TAACACAGCA
TCCAGTCAGT
CTTGCCCTTC
TGAGTAGGGG
CCTGTTAGGC
ACCCAAATTC
TCTAGTCAGA
CCAGGCCAGT
GACAGGTTCA
GCTGAGGATC
TCGGGGACAA
TTGGAATTCT
GTTTACTGCA
AAAACAATTT
AGATTTTAAA
TCTGTCTGTC
ACTTAAACAC
ATCTTCCCGC
AATAACTTCT
GGTAACTCCC
AGCACCCTGA
ACCCATCAGG
GAGAAGTGCC
GACCCTTTTT
CCCCCCTCCT
TGAATCTTTG
ACCAACTACT
CATTTATAAA
CCTCAAACCC
TTCC-TTGTTT
CAGTCATATA
AGAAACCTGC
AAGCAATTAA
ATGGAATGTC
GGGCCGTATT
ACATTCATTA
CAGCAATCCC
TTCAAAGCAG
GAATGAGTTA
AAGCTACAAC
AACTCAATGC
AAAATAAkAGT
CTGGGAGAAG
TTGTGCAGTT
ATAAAGAACA
AACGCAGCTG
GAGCCCTGAA
ATTTTCCTGG
TGAAACAGAC
CCCATGTATG
TCCTCATTCT
CTTTCTAAGT
TCCCTTCCCT
ACTGGGAAAG
TGCCTCTTGA
TGAGACTCAG
120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1 620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120
TAATGTCCCT
CAAAGGCAGG
ATCCAACCGC
GCCTCGACTG
TTGACCCTGG
CATTGTCTGA
GAGGATTGGG
GCGGAAAGAA
AGCGCGGCGG
CCCGCTCCTT
GGGAAAAAAA
ATCCCGCCCC
TTTATTTATG
GGCTTTTTTG
CGCCAAACTT
ATGGTTCGAC
GGAGACCTAC
ACCTCTTCAG
ATTCCTGAGA
AAAGAACCAC
ATTGAACAAC
GTTTACCAGG
CAGGAATTTG
CCAGAATACC
GAAGTCTACG
AAGCTATGCA
AACCTTACTT
AGGTAAATAT
TATTTTAGAT
AGGAAAACCT
CTCAACATTC
CAGAATTGCT
CTATTTACAC
CTGTAACCTT
CACACAGGCA
TTTTAATTTG
ATAATCAGCC
CCCCTGAACC
TATAATGGTT
CTGCATTCTA
TGGATGATCC
ATTGCAGCTT
TTTTTTTCAC
TGTATACCGT
45 TGAAATTGTT
GCCTGGGGTG
TTCCAGTCGG
GGCGGTTTGC
GTTCGGCTGC
50 TCAGGGGATA
AAAAAGGCCG
AATCGACGCT
CCCCCTGGAA
TCCGCCTTTC
55 AGTTCGGTGT
GACCGCTGCG
TCGCCACTGG
ACAGAGTTCT
TGCGCTCTGC
60 CAAACCACCG
AAAGGATCTC
AACTCACGTT
TTAAATTAAA
AGTTACCAAT
65 ATAGTTGCCT
CCCAGTGCTG
AACCAGCCAG
TCCAATGACA
CATAATCCAG
GGAAGGGCCC
TGCCTTCTAG
AAGGTGCCAC
GTAGGTGTCA
AAGACAATAG
CCAGCTGGGG
GTGTGGTGGT
TCGCTTTCTT
GCATGCATCT
TAACTCCGCC
CAGAGGCCGA
GAGGCCTAGG
GACGGCAATC
CATTGAACTG
CCTGGCCTCC
TGGAAGGTAA
AGAATCGACC
CACGAGGAGC
CGGAATTGGC
AAGCCATGAA
AAAGTGACAC
CAGGCGTCCT
AGAAGAAAGA
TTTTTATAAG
CTGTGGTGTG
AAAATTTTTA
TCCAACCTAT
GTTTTGCTCA
TACTCCTCC-A
AAGTTTTTTG
CACAAAGGAA
TATAAGTA.GG
TAGAGTGTCT
TIAAAGGGGTT
ATACCACATT
TGAAACATAA
ACAAATAAAG
GTTGTGGTTT
TCCAGCGCGG
ATA-ATGGTTA
TGCATTCTAG
CGACCTCTAG
ATCCGCTCAC
CCTLATGAGT
G-AAACCTGTC
GTATTGGGCG
GGCGAGCGGT
ACGCAGGAAA
CGTTGCTGGC
CAAGTCAGAG
GCTCCCTCGT
TCCCTTCGGG
AGGTCGTTCG
CCTTATCCGG
CAGCAGCCAC
TGAAGTGGTG
TGAAGCCAGT
CTGGTAGCGG
AAGAAGATCC
AAGGGATTTT
AATGAAGTTT
GCTTAATCAG
GACTCCCCGT
CAATGATACC
CCGGAAGGGC
TGAACTTGCT
TTATGAATTC
TATTCTATAG
TTGCCAGCCA
TCCCACTGTC
TTCTATTCTG
CAGGCATGCT
CTCTAGGGGG
TACGCGCAGC
CCCTTCCTTT
CAATTAGTCA
CAGTTCCGCC
GGCCGCCTCG
CTTTTGCAAA
CTAGCGTGAA
CATCGTCGCC
GCTCAGGAAC
ACAGAATCTG
TTTAAAGGAC
TCATTTTCTT
AAGTAAAGTA
TCAACCAGGC
GTTTTTCCCA
CTCTGAGGTC
CTAACAGGAA
ACCATGGGAC
ACATAATTGG
AGTGTATAAT
GGAACTGATG
GAAGAAATGC
AAAAAGAAGA
AGTCATGCTG
AAAGCTGCAC
CATAACAGTT
GCTATTAATA
AATAAGGAAT
TGT-ACAGGTT
AATGAATGCA
CAAT.AGCATC
GTCCAAACTC
GGATCTCATG
CAAATAAAGC
TTGTGGTTTG
CTAGAGCTTG
AATTCCACAC
GAGCTAACTC
GTGCCAGCTG
CTCTTCCGCT
ATCAGCTCAC
GAACATGTGA
GTTTTTCCAT
GTGGCGAAAC
GCGCTCTCCT
AAGCGTGGCG
CTCCAAGCTG
TAACTATCGT
TGGTAACAGG
GCCTAACTAC
TACCTTCGGA
TGGTTTTTTT
TTTGATCTTT
GGTCATGAGA
TAAATCAATC
TGAGGCACCT
CGTGTAGATA
GCGAGACCCA
CGAGCGCAGA
CACTCATCCC
TTGCGGCCGC
TGTCACCTAA
TCTGTTGTTT
CTTTCCTAAT
GGGGGTGGGG
GGGGATGCrG
TATCCCCACG
GTGACCGCTA
CTCGCCACGT
GCALACCATAG
CATTCTCCGC
GCCTCTGAGC
AAGCTTGGAC
GGCTGGTAGG
GTGTCCCAAA
GAGTTCAAGT
GTGATTATGG
AGAATTAATA
GCCAAAAGTT
GACATGGTTT
CACCTTAGAC
GAAATTGATT
CJAGGAGGAAA
GATGCTTTCA
TTTTGCTGGC
ACAAACTACC
GTGTTAAACT
AATGGGAGCA
CATCTAGTGA
GAAAGGTAGA
TGTTTAGTAA
TGCTATACAA
ATAATCATAA
ACTATGCTCA
ATTTGATGTA
TTACTTGCTT
ATTGTTGTTG
ACAAA-TTTCA
ATCAATGTAT
CTGGAGTTCT
AATACICATCA
TCCAAACTCA
GCGTAATCAT
AACATACGAC-
ACATTAATTG
CATTAATGAA
TCCTCGCTCA
TCAAAGGCGG
GCAAAAGGCC
AGGCTCCGCC
CCGACAGGAC
GTTCCGACCC
CTTTCTCAAT
GGCTG7rGTGC
CTTGAGTCCA
ATTAGCAGAG
GGCTACACTA
AAAAGAGTTG
GTTTGCAAGC
TCTACGGGGT
TTATCAAAAA
TAAAGTATAT
ATCTCAGCGA
ACTACGATAC
CGCTCACCGG
AGTGGTCCTG
TGGGGGCCAA
TTGCTAGCTT
ATGCTAGAGC
GCCCCTCCCC
AAAkATGAGGA
TGGGGCAGGA
TGGGCTCTAT
CGCCCTGTAG
CACTTGCCAG
TCGCCGGGCC
TCCCGCCCCT
CCCATGGCTG
TATTCCAGAA
AGCTCAGGGC
ATTTTATCCC
ATATGGGGAT
ACTTCCAAAG
GTAGGAAAAC
TAGTTCTCAG
TGGATGATGC
GGATAGTCGG
TCTTTGTGAC
TGGGGAAATA
AAGGCATCA.A
AGTTCTCTGC
TTTAGATCTC
TACAGAGATT
ACTGATTCTA
GTGGTGGAAT
TGATGAGGCT
AGACCCCAAG
TAGAJACTCTT
GAAAATTATG
CATACTGTTT
AP.AATTGTGT
TAGTGCCTTG
TAAAAAACCT
TTAACTTGTT
rC.A.ATAP.GC
CTTA-TCATGT
TCG-CCCACCC
C-AAATTTCAC
TCAATGTATC
GGTCATAGCT
CCGGAAGCAT
CGTTGCGCTC
TCGGCCAACG
CTGACTCGCT
TAATACGGTT
AGCAAAAGGC
CCCCTGACGA
TATAAAGATA
TGCCGCTTAC
GCTCACGCTG
ACGAACCCCC
ACCCGGTAAG
CGAGGTATGT
GAAGGACAGT
GTAGCTCTTG
AGCAGATTAC
CTGACGCTCA
GGATCTTCAC
ATGAGTAAAC
TCTGTCTATT
GGGAGGGCTT
CTCCAGATTT
CAACTTTATC
ATTGAACAAT
CACGTGTTGG
TCGCTGATCA
CGTGCCTTCC
AATTGCATCG
CAGCAAGGGG
GGCTTCTGAG
CGGCGCATTA
CGCCCTAGCG
TCTCAAAAAA
AACTCCGCCC
ACTAATTTTT
GTAGTGAGGA
TGCGATTTCG
CGCTGCCATC
TGGCAAGAAC
AATGACCACA
CTGGTTCTCC
TAGAGAACTC
CTTAAGACTT
AGGCAGTTCT
AAGGATCATG
TAAACTTCTC
GTATAAGTTT
TCCCCTCCTA
TTTGTGAAGG
TAAAGCTCTA
ATTGTTTGTG
GCCTTTAATG
ACTGCTGACT
GACTTTCCTT
GCTTGCTTTG
GAAAAATATT
TTTCTTACTC
ACCTTTAGCT
ACTAGAGATC
CCCACACCTC
TATTGCAGCT
ATTTTTTTCA
CTGGATCGGC
CA.ACT?-GLTT
AAATAAAGCA
TTATCATGTC
GTTTCCTGTG
AAAGTG-iAAA
ACTGCCCGCT
CGCGGGGAGA
GCGCTCGGTC
ATCCACAGAA
CAGGAACCGT
GCATCACAAA
CCAGGCGTTT
CGGATACCTG
TAGGTATCTC
CGTTCAGCCC
ACACGACTTA
AGGCGGTGCT
ATTTGGTATC
ATCCGGCAAA
GCGCAGAAAA
GTGGAACGAA
CTAGATCCTT
TTGGTCTGAC
TCGTTCATCC
ACCATCTGGC
ATCAGCAATA
CGCCTCCATC
3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 6540 6600 6660 6720 6780 6840 6900 6960 7020 7080 7140
CAGTCTATTA
AACGTTGTTG
TTCAGCTCCG
GCGGTTAGCT
CTCATGGTTA
TCTGTGACTG
TGCTCTTGCC
CTCATCATTG
TCCAGTTCGA
AGCGTTTCTG
ACACGGAAAT
GGTTATTGTC
GTTCCGCGCA
GCCCGGGTGA
TATTTTATTT
TCTCAGTACA
GTTGGAGGTC
CGACAATTGC
GGCCAGATAT
GTCATTAGTT
GCCTGGCTGA
AGTAACGCCA
CCACTTGGCA
CGGTAAATGG
GCAGTACATC
CAATGGGCGT
CAATGGGAGT
CGCCCCATTG
TCTCTGGCTA
TAGGGAGACC
ATTGTTGCCG
CCATTGCTAC
GTTCCCAACG
CCTTCGGTCC
TGGCAGCACT
GTGAGTACTC
CGGCGTCAAT
GAAAACGTTC
TGTAACCCAC
GGTGAGCAAA
GTTGAATACT
TCATGAGCGG
CATTTCCCCG
CCTGAGGCGC
TATTTTTGAG
ATCTGCTCTG
GCTGAGTAGT
ATGAAGAATC
ACGCGTTGAC
CATAGCCCAT
CCGCCCAACG
ATAGGGACTT
GTACATCAAG
CCCGCCTGGC
TACGTATTAG
GGATAGCGGT
TTGTTTTGGC
ACGCAAATGG
ACTAGAGAAC
CAAGCTT
GGAAGCTAGA
AGGCATCGTG
ATCAAGGCGA
TCCGATCGTT
GCATAATTCT
AACCAAGTCA
ACGGGATAAT
TTCGGGGCGA
TCGTGCACCC
AACAGGAAGG
CATACTCTTC
ATACATATTT
AAAAGTGCCA
GCCGGCTTCG
ATGGAGTTTG
ATGCCGCATA
GCGCGAGCAA
TGCTTAGGGT
ATTGATTATT
ATATGGAGTT
ACCCCCGCCC
TCCATTGACG
TGTATCATAT
ATTATGCCCA
TCATCGCTAT
TTGACTCACG
ACCAAAATCA
GCGGTAGGCG
CCACTGCTTA
GTAAGTAGTT
GTGTCACGCT
GTTACATGAT
GTCAGAAGTA
CTTACTGTCA
TTCTGAGAAT
ACCGCGCCAC
AAACTCTCAA
AACTGATCTT
CAAAATGCCG
CTTTTrCAAT
GAATGTATTT
CCTGACGTCG
AATAGCCAGA
GCGCCGATCT
GTTAAGCCAG
AATTTAAGCT
TAGGCGTTTT
GACTAGTTAT
CCGCGTTACA
ATTGACGTCA
TCAATGGGTG
GCCAAGTACG
GTACATGACC
TACCATGGTG
GGGATTTCCA
ACGGGACTTT
TGTACGGTGG
CTGGCTTATC
CGCCAGTTAA
CGTCGTTTGG
CCCCCATGTT
AGTTGGCCGC
TGCCATCCGT
AGTGTATGCG
ATAGCAGAAC
GGATCTTACC
CAGCATCTTT
CAAAAAAGGG
ATTATTGAAG
AGAAAAATAA
ACGGATCGGG
GTAACCTTTT
CCCGATCCCC
TATCTGCTCC
ACAACAAGGC
GCGCTGCTTC
TAATAGTAAT
TAACTTACGG
ATAATGACGT
GACTATTTAC
CCCCCTATTG
TTATGGGACT
ATGCGGTTTT
AGTCTCCACC
CCAAAATGTC
GAGGTCTATA
GAAATTAATA
TAGTTTGCGC
TATGGCTTCA
GTGCAAAAAA
AGTGTTATCA
AAGATGCTTT
GCGACCGAGT
TTTAAAAGTG
GCTGTTGAGA
TACTTTCACC
AATAAGGGCG
CATTTATCAG
ACAAATAGGG
AGATCTGCTA
TTTTTAATTT
TATGGTCGAC
CTGCTTGTGT
AAGGCTTGAC
GCGATGTACG
CAATTACGGG
TAAATGGCCC
ATGTTCCCAT
GGTAAACTGC
ACGTCAATGA
TTCCTACTTG
GGCAGTACAT
CCATTGACGT
GTAACAACTC
TAAGCAGAGC
CGACTCACTA
7200 7260 7320 7380 7440 7500 7560 '7620 7680 7740 7800 7860 7920 7980 8040 8100 8160 8220 9280 8340 8400 8460 8520 8580 8640 8700 8760 8820 8880 8897 INFORMATION FOR SEQ ID NO:12: SEQUENCE CHARACTERISTICS: LENGTH: 832'1 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:
GGTACCAATT
45 TTGGAATTCT
TGTCCTTGTT
AGTGCAGCCT
CTATTACATG
TAGTCAAGAT
50 CAGAGACAAT
AGCCGTGTAT
AGGGACTCTG
ACCCTCCTCC
CTTCCCCGAA
55 CTTCCCGGCT
CTCCAGCAGC
CAAGGTGGAC
CCAGGCTCAG
AGGCAGGCCC
60 AGAGGGTCTT
CAGGCCCTGC
AGGACCCTGC
GACACCTTCT
CTTGTGACAA
65 CCAGCTCAAG
TACCAACATG
GTGACCGCTG
TA-A.TTGATA
TGCGGCCGCT
TTAAAAGGTG
GGAGGGTCCC
TATTGGGTTC
GGTGATATAA
GCAAAGAACA
TACTGTGCAA
GTCACGGTCT
AAGAGCACCT
CCGGTGACGG
GTCCTACAGT
TTGGGCACCC
AAGAAAGTTG
CGCTCCTGCC
CGTCTGCCTC
CTGGCTTTTT
ACACAAAGGG
CCCTGACCTA
CTCCTCCCAG
AACTCACACA
GCGGGACAGG
TCCGGAGCCA
TACCAACCTC
TCTCCTTAGG
TGCTAGCCAC
TCCAGTGTGA
TGCGACTTTC
GCCAGGCTCC
CCGACTATGC
GCCTGTACCT
GAGGCCTGGC
CTTCCGCTAG
CTGGGGGCAC
TGTCGTGGAA
CCTCAGGACT
AGACCTACAT
GTGAGAGGCC
TGGACGCATC
TTCACCCGGA
CCCCAGGCTC
GCAGGTGCTG
AGCCCACCCC
ATTCCAGTAA
TGCCCACCGT
TGCCCTAGAG
CATGGACAGA
TGTCCCTACA
TCTCGAGTCT
CATGGAGTTG
AGTGCAACTG
CTGTGCTGCA
AGGCAAGGGA
AGACTCCGTA
GCAAATGAAC
GGACGGGGCC
CACCAAGGGC
AGCGGCCCTG
CTCAGGCGCC
CTACTCCCTC
CTGCAACGTG
AGCACAGGGA
CCGGCTATGC
GGCCTCTGCC
TGGGCAGGCA
GGCTCAGACC
AAAGGCCAAA
CTCCCAATCT
GCCCAGGTAA
TAGCCTGCAT
GGCCGGCTCG
GGGCAGCCCC
CTAGATAACC
TGGTTAAGCT
GTGGAGTCTG
TCTGGATTCC
CTGGAGTGGG
AAGGGTCGAT
AGCCTGAGGG
TGGTTTGCTT
CCATCGGTCT
GGCTGCCTGG
CTGACCAGCG
AGCAGCGTGG
AATCACAAGC
GGGAGGGTGT
AGCCCCAGTC
CGCCCCACTC
CAGGCTAGGT
TGCCAAGAGC
CTCTCCACTC
TCTCTCTGCA
GCCAGCCCAG
CCAGGGACAC
GCCCACCCTC
GAGAACCACA
C-GTCAATCGA
TGGTCTTCCT
GGGGAGGCTT
CGTTCAGTGA
TCTCATACAT
TCACCATCTC
ACGAGGACAC
ACTGGGGCCA
TCCCCCTGGC
TCAAGGACTA
GCGTGCACAC
TCACCGTGCC
CCAGCAACAC
CTGCTGGAAG
CAGGGCAGCA
ATGCTCAGGG
GCCCCTAACC
CATATCCGGG
CCTCAGCTCG
GAGCCCAAAT
GCCTCGCCCT
ACCACGTGGG
TGCCCTGAGA
GGTGTACACC
120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440
CTGCCCCCAT
GGCTTCTATC
TACAAGACCA
ACCGTGGACA
GCTCTGCACA
CGGCCGGCAA
CCCCTGTACA
CCCCTGCGAG
ATGAGGGAGG
TGGGCCCCCT
GCGTGGCCCT
CCTGGGGACA
CTGTCCTCCC
GCCCTCCCTC
ACCCGCATGG
GGTGCAGATG
TGGCCGGCCA
GGCGAACTGC
CACAGGCCCC
CCACATGCTG
GCCACACACA
GTGCCGCCCT
TGTTGTTTGC
TTCCTAATAA
GGGTGGGGTG
GGATGCGGTG
TCCCCACGCG
GACCGCTACA
CGCCACGTTC
AACCATAGTC
TTCTCCGCCC
CTCTGAGCTA
GCTTGGACAG
CTGGTAGGAT
GTC:CCAAAAT
GTTCA-AGTAC
GATTA.TGGGT
AATTIAAATA
CAAAAGTTTG
CATC-GTTTGG
CCTTAC-ACTC
AATTGATTTG
GGAGGA-AA.AA
TGCTTTCAAG
TTGCTGGCTT
AAACTACCTA
GTTAAACTAC
TGGGAGCAGT
TCTAGTGATG
50 AAGGTAGAAG
TTTAGTAATA
CTATACAAGA
AATCATAACA
TATGCTCAAA
55 TTGATGTATA
ACTTGCTTTA
TGTTGTTGTT
AAATTTCACA
CAATGTATCT
60 GGAGTTCTTC
TAGCATCACA
CAAACTCATC
GTAATCATGG
CATACGAGCC
65 ATTAATTGCG
TTAATGAATC
CTCGCTCACT
CCCGGGATGA
CCAGCGACAT
CGCCTCCCGT
AGAGCAGGTG
ACCACTACAC
GCCCCCGCTC
TACTTCCCGG
ACTGTGATGG
CAGAGCGGGT
AGGGTGGGGC
CCCTCCAGCA
GACACACAGC
GACCTCCATG
ACCCATCTAC
GGACACAAC
CCCACACACA
CACGGCCACC
ACAGCACCCA
CACGAGCCCC
ACCTGCTCAG
CACAGGGGAT
TCCCTGCAGG
CCCTCCCCCG
AATGAGGAAA
GGGCAGGACA
GGCTCTATGG
CCCTGTAGCG
CTTGCCAGCG
GCCGGGCCTC
CCGCCCCTAA
C.ATGGCTGAC
TTCCAGAAGT
CTCAGGGCTG
TTTATCCCCG
ATGGGGATTG
TTCC:AAAGAA
AGGAAAACCT
GTTCTCAGTA
GATGATGCCT
ATAGTCGGAG
TTTGTGACAA
GGC-AAATATA
GGCATCAAGT
TTCTCTGCTC
TAGATCTCTT
CAGAGATTTA
TGATTCTAAT
GGTGGAATGC
ATGAGGCTAC
ACCCCAAGGA
GAACTCTTGC
AAATTATGGA
TACTGTTTTT
AATTGTGTAC
GTGCCTTGAC
AAAAACCTCC
AACTTGTTTA
AATAAAGCAT
TATCATGTCT
GCCCACCCCA
AATTTCACAA
AATGTATCTT
TCATAGCTGT
GGAAGCATAA
TTGCGCTCAC
GGCCAACGCG
GACTCGCTGC
GCTGACCAAG
CGCCGTGGAG
GCTGGACTCC
GCAGCAGGGG
GCAGAAGAGC
CCCGGGCTCT
GCGCCCAGCA
TTCTTTCCAC
CCCACTGTCC
TCAGCCAGGG
GCACCTGCCC
CCCTGCCTCT
CCCACTCGGG
CCCCACGGCA
GACTCCGGGG
CACTCAGCCC
ACACACACAC
GACCAGAGCA
ACGCGGCACC
ACAAACCCAG
CACACACCAC
ACGGATCAGC
TGCCTTCCTT
TTGCATCGCA
GCAAGGGGGA
CTTCTGAGGC
GCGCATTAAG
CCCTAGCGCC
TCAAAAAAGG
CTCCGCCCAT
TAATTTTTTT
AGTGAGGAGG
CGATTTCGCG
CTGCCATCAT
GCAAGAACGG
TGACCACAAC
GGTTCTCCAT
GAGAACTCAA
TAAGACTTAT
GCAGTTCTGT
GGATCATGCA
AACTTCTCCC
ATAAGTTTGA
CCCTCCTAAA
TGTGAAGGAA
AAGCTCTAAG
TGTTTGTGTA
CTTTAATGAG
TGCTGACTCT
CTTTCCTTCA
TTGCTTTGCT
AAAATATTCT
TCTTACTCCA
CTTTAGCTTT
TAGAGATCAT
CACACCTCCC
TTGCAGCTTA
TTTTTTCACT
GGATCGGCTG
ACTTGTTTAT
ATAAAGCATT
ATCATGTCTG
TTCCTGTGTG
AGTGTAAAGC
TGCCCGCTTT
CGGGGAGAGG
GCTCGGTCGT
AACCAG4GTCA
TGGGAGAGCA
GACGGCTCCT
AACGTCCT
CTCTCCCTGT
CGCGGTCGCA
TGGAAATAAA
GGGTCAGGCC
CCACACTGGC
GCTGCCCTCG
TGGGCTGGGC
GTAGGAGACT
GGCATGCCTA
CTAACC:CCTG
ACATGCACTC
AGACCCGTTC
GTGCACGCCT
AGGTCCTCGC
TCAAGGCCCA
CCCTCCTCTC
GTCACGTCCC
CTCGACTGTG
GACCCTGGAA
TTGTCTGAGT
GGATTGGGAA
GGAAAGAACC
CGCGGCGGGT
CGCTCCTTTC
GAAAAAAAGC
CCCGCCCCTA
TATTTATGCA
CTTTTTTGGA
CCAAACTTGA
GGTTCGACCA
AGACCTACCC
CTCTTCAGTG
TCCTGAGAAG
AGAACCACCA
TGAACAACCG
TTACCAGGAA
GGAATTTGAA
AGAATACCCA
AGTCTACGAG
GCTATGCATT
CCTTACTTCT
GTAAATATAA
TTTTAGATTC
GAAAACCTGT
CAACATTCTA
GAATTGCTAA
ATTTACACCA
GTAACCTTTA
CACAGGCATA
TTAATTTGTA
ALATCAGCCAT
CCTGAACCTG
TAATGGTTAC
GCATTCTAGT
GATGATCCTC
TGCAGCTTAT
TTTTTCACTG
TATACCGTCG
AAATTGTTAT
CTGGGGTGCC
CCAGTCGGGA
CGGTTTGCGT
TCGGCTGCGG
GCCTGACCTG
ATGGGCAGCC
TCTTCCTCTA
CATGCTCCGT
CTCCGGGTAA
CGAGGATGCT
GCACCCAGCG
GAGTCTGAGG
CCAGGCTGTG
GCAGGGTGGG
CACGGGAAGC
GTCCTGTTCT
GTCCATGTGC
GCTGCCCTGC
TCGGGCCCTG
AACAAACCCC
CACACACGGA
ACACGTGAAC
CGAGCCTCTC
ACAAGGGTGC
TGGCCCTGGC
CCTTCTAGTT
GGTGCCACTC
AGGTGTCATT
GACAATAGCA
AGCTGGGGCT
GTGGTGGTTA
GCTTTCTTCC
ATGCATCTCA
ACTCCGCCCA
GAGGCCGAGG
GGCCTAGGCT
CGGCAATCCT
TTGAACTGCA
TGGCCTCCGC
GAAGGTAAAC
AATCGACCTT
CGAGGAGCTC
GAATTGGCAA
GCCATGAATC
AGTGACACGT
C-GCGTCCTCT
AAGAAAGACT
TTTATAAGAC
GTGGTGTGAC
AATTTTTAAG
CAACCTATGG
TTTGCTCAGA
CTCCTCCAAA
GTTTTTTGAG
CAAAGGAAAA
TAAGTAGGCA
GAGTGTCTGC
AAGGGGTTAA
ACCACATTTG
AAACATAAAA
AAATAAAGCA
TGTGGTTTGT
CAGCGCGGGG
AATGGTTACA
CATTCTAGTT
ACCTCTAGCT
CCGCTCACAA
TAATGAGTGA
AACCTGTCGT
ATTGGGCGCT
CGAGCGGTAT
CCTGGTCAAA
GGAGAACAAC
CAGCAAGCTC
GATGCATGAG
ATGAGTGCGA
TGGCACGTAC
CTGCCCTGGG
CCTGAGTGGC
CAGGTGTGCC
GGATTTGCCA
CCTAGGAGCC
GTGAGCGCCC
GTAGGGACAG
CCAGCCTCGC
TGGAGGGACT
GCACTGAGGT
GCCTCACCCG
ACTCCTCGGA
GGCAGCTTCT
CCCTGCAGCC
CCACTTCCCA
GCCAGCCATC
CCACTGTCCT
CTATTCTGGG
GGCATGCTGG
CTAGGGGGTA
CGCGCAGCGT
CTTCCTTTCT
ATTAGTCAGC
GTTCCGCCCA
CCGCCTCGGO
TTTGCAAAA
AGCGTGAAGG
TCGTCGCCGT
TCAGGAACGA
AGAATLCTGGT
TAAAGGACAG
ATTTTCTTGC
GTAAAGTAGA
AACCAGGCCA
TTTTCCCAGA
CTGAGGTCCA
AACAGGAAGA
CAT GGGACTT
ATAATTGGAC
TGTATAATGT
AACTGATGAA
AGAAATGCCA
AAAGAAGAGA
TCATGCTGTG
AGCTGCACTG
TAACAGTTAT
TATTAATAAC
TAAGGAATAT
TAGAGGTTTT
TGAATGCAAT
ATAGCATCAC
CCAAACTCAT
ATCTCATGCT
AATAAAGCAA
GTGGTTTGTC
AGAGCTTGGC
TTCCACACAA
GCTAACTCAC
GCCAGCTGCA
CTTCCGCTTC
CAGCTCACTC
1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 a a a a. a.
a a a. a a.
a a.
AALAGGCGGTA
AAAAGGCCAG
GCTCCGCCCC
GACAGGATA
TCCGACCCTG
TTCTCAATGC
CTGTGTGCAC
TGAGTCCAAC
TAGCAGAGCG
CTACACTAGA
AAGAGTTGGT
TTGCAAGCAG
TACGGGGTCT
ATCAAAAAGG
AAGTATATAT
CTCAGCGATC
TACGATACGG
CTCACCGGCT
TGGTCCTGCA
AAGTAGTTCG
GTCACGCTCG
TACATGATCC
CAGAAGTAAG
TACTGTCATG
CTGAGAATAG
CGCGCCACAT
ACTCTCAAGG
CTGATCTTCA
AAATGCCGCA
TTTTCAATAT
ATGTATTTAG
TGACGTCGAC
AGAGTAACCT
TCTCCCGATC
CAGTATCTGC
GCTACA.ACAA
TTTGCGCTGC
TATTAATAGT
ACATAACTTA
TCA,.AATGA.
GTGGACTATT
ACGCCCCCTA
ACCTTATGGG
GTGATGCGGT
45 CCAAGTCTCC
TTTCCAAA.AT
TGGGAGGTCT
ATCGAAATTA
ATACGGTTAT
CAAAAGGCCA
CCTGACGAGC
TAAAGATACC
CCGCTTACCG
TCACGCTGTA
GAACCCCCCc
CCGGTAAGAC
AGGTATGTAG
AGGACAGTAT
AGCTCTTGAT
CAGATTACGC
GACGCTCAGT
ATCTTCACCT
GAGTAAACTT
TGTCTATTTC
GAGGGCTTAC
CCAGATTTAT
ACTTTATCCG
CCAGTTAATA
TCGTTTGGTA
CCCATGTTGT
TTGGCCGCAG
CCATCCGTAA
TGTATGCGGC
AGCAGAACTT
ATCTTACCGC
GCATCTTTTA
AAAAAGGGA.A
TATTGAAGCA
AAAAATAAAC
GGATCGGGAG
TTTTTTTTAA.
CCCTATGGTC
TCCCTGCTTG
GGCAAGGCTT
TTCGCGATGT
A!ATCAATk1TAC
CGGTAAATGG
CGTATGTTCC
TACGGTAAAC
TTGACC.TCAA
ACTTTCCTAC
TTTGGCAGTA
ACCCCATTGA
GTCGTAACAA
ATATA.AGCAG
ATACGACTCA
CCACAGAATC
GGAACCGTAA
ATCACAAAAA
AGGCGTTTCC
GATACCTGTC
GGTATCTCAG
TTCAGCCCGA
ACGACTTATC
GCGGTGCTAC
TTGGTATCTG
CCGGCAAACA
GCAGAAAAAA
GGAACGAAAA
AGATCCTTTT
GGTCTGACAG
GTTCATCCAT
CATCTGGCCC
CAGCAATAAA
CCTCCATCCA
GTTTGCGCAA
TGGCTTCATT
GCAAAAAAGC
TGTTATCACT
GATGCTTTTC
GACCGAGTTG
TAAAAGTGCT
TGTTGAGATC
CTTTCACCAG
TAAGGGCGAC
TTTATCAGGG
AAATAGGG-T
ATCTGCTAGG
TTTTATTTTA
GACTCTCAC-T
TGTGTTGGAG
GACCGACAAT
ACGGGCCAGA
GGGGTCATTA
CCCGCCTGGC
CATAGTAAMCG
TGCCOACTTG
TGACGGrA-AA
TTGGCAGTAC
CATCAATGGG
CGTCA.ATGGG
CTCCGCCCCA
AGCTCTCTGG
CTATAGGGAG
AGGGGATAAC
AAAGGCCGCG
TCGACGCTCA
CCCTGGAAGC
CGCCTTTCTC
TTCGGTGTAG
CCGCTGCGCC
GCCACTGGCA
AGAGTTCTTG
CGCTCTGCTG
AACCACCGCT
AGGATCTCAA
CTCACGTTAA
AAATTAAAAA
TTACCAATGC
AGTTGCCTGA
CAGTGCTGCA
CCAGCCAGCC
GTCTATTAAT
CGTTGTTGCC
CAGCTCCGGT
GGTTAGCTCC
CATGGTTATG
TGTGACTGGT
CTCTTGCCCG
CATCATTGGA
CAGTTCGATG
CGTTTCTGGG
ACGGAAATGT
TTATTGTCTC
TCCGCGCACA
TGACCTGAGG
TTTTATTTTT
ACAATCTGCT
GTCGCTGAGT
TGCATGAAGA
TATACGCGT-1
GTTCATAGCC
TGACCGCCCA
CCAATAGGGA
GCAGTACATC
TGGCCCGCCT
ATCTACGTAT
CGTGGATAGC
AGTTT-GTTTT
TTGACGCAAA
CTAACTAGAG
ACCCPLAGCTT
GCAGGAAAGA
TTGCTGGCGT
AGTCAGAGGT
TCCCTCGTGC
CCTTCGGGAA
GTCGTTCGCT
TTATCCGGTA
GCAGCCACTG
AAGTGGTGGC
AAGCCAGTTA
GGTAGCGGTG
GAAGATCCTT
GGGATTTTGG
TGAAGTTTTA
TTAATCAGTG
CTCCCCGTCG
ATGATACCGC
GGAAGGGCCG
TGTTGCCGGG
ATTGCTACAG
TCCCAACGAT
TTCGGTCCTC
GCAGCACTGC
GAGTACTCAA
GCGTCAATAC
AAACGTTCTT
TAACCCACTC
TGAGCAAAAA
TGAATACTCA
ATGAGCGGAT
TTTCCCCGA.A
CGCGCCGGCT
GAGATGGAGT
CTGATGCCGC
AGTGCGCGAG
ATCTAGCTTAG
GACATTGATT
CATATATGGA
ACGACCCCCG
CTTTC^-ATTG
AAGTGTATCA
GjGCAT-TATGC
TAGTCATCGC
GGTTTGACTC
GGCACCAAAA
TGGGCGGTAG
AACCCACTGC
G
ACATGTGAGC
TTTTCCATAG
GGCGAAACCC
GCTCTCCTGT
GCGTGGCGCT
CCAAGCTGGG
ACTATCGTCT
GTAACAGGAT
CTAACTACGG
CCTTCGGAA.A
GTTTTTTTGT
TGATCTTTTC
TCATGAGATT
AATCAATCTA
AGGCACCTAT
TGTAGATAAC
GAGACCCACG
AGCGCAGAAG
AAGCTAGAGT
GCATCGTGGT
CAAGGCGAGT
CGATCGTTGT
ATAATTCTCT
CCAAGTCATT
GGGATAATAC
CGGGGCGAAA
GTGCACCCA.A
CAGGAAGGCA
TACTCTTCCT
ACATATTTGA
AAGTGCCACC
TCGA.ATAGCC
TTGGCGCCGA
ATAGTTAAGC
CAAA.ATTTAA
GGTTAGGCGT
ATTGACTAGT
GTTCCGCGTT
CCCATTGACG
ACGTCAATGG
TATGCCAAGT
CCAGTACATG
TATTACCATG
ACGGGGATTT
TCAACGGGAC
GCGTGTACGG
TTACTGGCTT
5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 6540 6600 6660 6720 6780 6840 6900 6960 7020 7080 7140 7200 7260 7320 7380 7440 7500 7560 7620 7680 7740 7800 7860 7920 7980 8040 8100 8160 8220 8280 8321 9 999.
*99* .9 *9 9 INFORMATION FOR SEQ ID NO:l13: SEQUENCE CHARACTERISTICS: LENGTH: 8897 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13: 9 9999 9 9. *9 9 9 9 .9 9 99
GACGGATCGG
AGTAACCTTT
TCCCGATCCC
65 GTATCTGCTC
TACAACAAGG
TGCGCTGCTT
GAGATCTGCT
TTTTTTAATT
CTATGGTCGA
CCTGCTTGTG
CAAGGCTTGA
CGCGATGTAC
AGCCCGGGTG
TTATTTTATT
CTCTCAGTAC
TGTTGGAGGT
CCGACAATTG
GGGCCAGATA
ACCTGAGGCG
TTATTTTTGA
AATCTGCTCT
CGCTGAGTAG
CATGAAGA.AT
TACGCGTTGA
57
CGCCGGCTTC
GATGGAGTTT
GATGCCGCAT
TGCGCGAGCA
CTGCTTAGGG
CATTGATTAT
GAATAGCCAG
GGCGCCGATC
AGTTAAGCCA
AAATTTAAGC
TTAGGCGTTT
TGACTAGTTA
TTAATAGTAA TCAATTACGG ATAACTTACG GTAAATGGCC AATAATGACG TATGTTCCCA GGACTATTTA CGGTAAACTG GCCCCCTATT GACGTCAATG CTTATGGGAC TTTCCTACTT GATGCGGTTT TGGCAGTACA AAGTCTCCAC CCCATTGACG TCCAAAATGT CGTAACAACT GGAGGTCTAT ATAAGCAGAG CGAAATTAAT ACGACTCACT TCCTTAGGTC TCGAGCACCA TCCTGCTTCC AGCAGTGATG TGGACAACCT GCGTCCATCT CACCTATCTG GAATGGTACC AGTTTCCAAC CGATTTTCTG TTTCACACTC AAGATCAGCA GGGTTCACAT GTTCCATTCA TCGAGTCTCT AGATAACCGG CGTGGCCATT CTTTGCCTlAA CCTCAGAATG GCTGCAAAGA GGAAGCTAGG AAGAAACTCA ATAATTATCT GGGATAAGCA ACAACACACC CAAGGGCAGA AGGAACTGTG GCTGCACCAT TGGAACTGCC TCTGTTGTGT GTGGAAGGTG GATAACGCCC GAGCAAGGAC AGCACCTACA GAAACACAAA GTCACGCCT %GAGCTTCAAC AC-GGGAGAGT CCTC-ACCCCC TCCCATCCTT GCGGTCCTCC AGCTCATCTT AATGTTGGAG GAGAATGAkAT TCATTTA.ATA ATTATTATCT PLATATGTAGT CATCCTAAGG CCCTATCATC CTCTGCAAGA CCCCTGGGCC ATGGTAGGAG TAGTCCTTTT TAAGGGTGAC AATCALACCAA AGCAAATTTT AACATGATAT AAAATAACAA TTTAAGTTCA TCATGGTACT CAGGTACTGA GGGACTCCTG TAATCCACAC TATACTGTGA AGCTGAGAGA CAAATATATT 45 CCACCCACCA AV.AAACTATG TTGGAAATAG CCCGATTGTC ATTAGAATAC CCAATGAGGA TCTCATAAAA ATAATGTTAC TCATCCATAT AAAGTTCAAA 50 TCTTAGCTGG GGGTGGGCGA TTGGTAATGT TCTGTTCCTC TACACATTAT GCTTCAAAAT GAAGAGGAAT AAGTAATAGG ATAGCTACCT GCCTAATCCT 55 AGGTGCTCAA CAAAACAACA CTAGGAGCAC ACATACATAG AGAATTAACC TTGCCCAGAC GGGAAGGGCA CATGTAAATG CTCTCAGCTA CTCATCCATC 60 AAGGGGTTCA GGAGTAACTA TCCTGCTTTG TTTTTCTTTC AACTACATAA GGAAGCACCT TTTCAAACTT TGGAGGTTTG ALACTTGCTCA CTCATCCCTG 65 ATGAATTCTT GCGGCCGCTT TTCTATAGTG TCACCTAAAT GCCAGCCATC TGTTGTTTGC
GGTCATTAGT
CGCCTGGCTG
TAGTAACGCC
CCCACTTGGC
ACGGTAAATG
GGCAGTACAT
TCAATGGGCG
TCAATGGGAG
CCGCCCCATT
CTCTCTGGCT
ATAGGGAGAC
TGAAGTTGCC
TTGTCATGAC
CTTGCAGATC
AGCAGAGACC
GGGTCCCAGA
GAGTGGAGGC
CGTTCGGCCA
TCAATCGATT
AGCATTGAGT
GCTCCAACAA
AAACATCAAG
TGCTGTTTTC
ACTTTGTTAC
CTGTCTTCAT
GCCTGCTGAA
TCCAATCGGG
GCCTCAGCAG
GCGAAGTCAC
GTTAGAGGGA
TGGCCTCTGA
TCACCTCACC
AAkATAAAGTG
GTTGTTTTAC
CACGTAACCA
CAGTCCTCCC
AGACTTGCTT
AGGTCTTACA
TCAAAAGAAG
CACAATAAAA
TAGAC-TTAAT
TCTGCCAAGG
C-ATTAAAAAC
CTATAACTCA
CAAGAATGTT
CAACAATAGA
GAATTAACAA
ATAAGAGAAA
ACCAGGTAAA
GTTAGTGCCT
GTGTGGGGTT
AACTTCACAT
TCAAGACCAA
GCCCWRCTTGA
GGCCTGCTAT
AAATTAAATG
ACTGGAAACC
AGGACTCTTC
CAACACACCT
ACACAGCATC
CAGTCAGTAC
TGCCCTTCTG
AGTAGGGGTG
GGGGCCAAAT
GCTAGCTTCA
GCTAGAGCTC
CCCTCCCCCG
TCATAGCCCA
ACCGCCCAAC
AATAGGGACT
AGTACATCAA
GCCCGCCTGG
CTACGTATTA
TGGATAGCCG
TTTGTTTTGG
GACGCAAATG
AACTAGAGPA
CCAAGCTTGG
TGTTAGGCTG
CCAAACCCCA
TAGTCAGATC
AGGGCAGTCT
CAGGTTCAGC
TGAGGATGTG
AGGGACAAAG
GGAATTCTAA
TTACTGCAAG
AACAATTTAG
ATTTTAAATA
TGTCTGTCCC
TTAAACACCA
CTTCCCGCCA
TAACTTCTAT
TAACTCCCAG
CACCCTGACG
C-CATCAGGGC
GAAGTGCCCC
CCCTTTTTCC
CCCCTCCTCC
AATCTTTGCA
CAACTACTCA
TTTATAAA.AA
TCAAACCCAC
CCTTGTTTTC
GTCATATATC
AAACCTGCTA
GCAATTAAMT
GGAATGTCAT
GCCGTATTGA
ATTCATTAA
GCAATCCCAC
CAAAGCAGCT
ATGAGTTATT
GCTACAACTA
CTCAATGCAA
AATAAAGTTA
GGGAGAAGAC
GTGCAGTTAT
AAAGAACATC
CGCAGCTGGT
GCCCTGAATG
TTTCCTGGCA
AAACAGACCT
CATGTATGAA
CTCATTCTAT
TTCTAAGTAC
CCTTC:CCTCA
TGGGAAAGTG
CCTCTTGAGA
AGACTCAGTA
TGAACAATCA
CGTGTTGGAT
GCTGATCAGC:
TGCCTTCCTT
58
TATATGGAGT
GACCCCCGCC
TTCCATTGAC
GTGTATCATA
CATTATGCCC
GTCATCGCTA
TTTGACTCAC
CACCAAAATC
GGCGGTAGGC
CCCACTGCTT
TACCAATTTA
TTGGTGCTGA
CTGTCCAGTC
ATTGTACATA
CCACGGCTCC
GGCAGTGGAG
GGAGTTTACT
TTGGAAATCA
ACTCTGAGGG
GTCAGAAAAG
AACTTTATTA
CGCTTCTTGG
TAACATGCCC
TCCTGTTTGC
TCTGATGAGC
CCCAGAGAGG
GAGAGTGTCA
CTGAGCAAAG
CTGAGCTCGC
CACCTGCTCC
ACAC-GGGACC
TCCTTGGCTT
CCTGTGGTTT
ATTTCTCTTA
TCATC'CTTCA
AAGCCTTCTG
CCCTCCTCAG
CTTTGATTCA
TAAAGAGAAT
AAACAAACAA
GCCTTATTTA
GTACTTTCCA
ATGTTGCAA-A
TTCTAGATGA
TTATTTACA
AAACTGTGGT
TACCTACTCA
AAGATATGTT
GAA.ATTTGGA
AAGAAGGGGC
GATCTGTGCA
TTATACCCAG
AAGTGGGGGC
AGTCTGCCTT
TCTGTGCCCT
TCAGCAAGGG
CACTCACATG
GGGGCACTCT
CTCTCTCTGC
AATGACTGAC
GGGAAGGACA
ATGTTGATGA
ATGTCCCTTC
AAGGCAGGCA
CCAACCGCGG
CTCGACTGTG
GACCCTGGAA
TCCGCGTTAC
CATTGACGTC
GTCAATGGGT
TGCCAAGTAC
AGTACATGAC
TTACCATGGT
GGGGATTTCC
AACGGGACTT
GTGTACGGTG
ACTGGCTTAT
AATTGATATC
TGTTCTGGAT
CTGTCACGCT
ATAATGGCAA
TGATCTACAA
CTGGGACAGA
ACTGCTTCCA
AACGTAAGTC
GGTCGGATGA
CATGCAAAGC
AGGAATAGGG
TCTCCTTGCT
TTATCCGCAA
TTCTTTCCTC
AGTTGAAATC
CCAAAGTACA
CAGAGCAGGA
CAGACTAGGA
CCGTCACAAA
TCAGTTCCAG
TACCCCTATT
TAATTATGCT
CTCTCTTTCC
TAAGGGACTA
TTCTATTTTA
TCCTCACAGT
CAAGCCCTCA
ATTCCCTGAG
CATTCATTGC
TAGGGAAATG
CATTTTTAAA
CAACCTAA-T
GGTTCTATAA
CTGAGTGTCC
AAGCCAAAAA
ATGTTTATAC
CACAGATGAA
CTGTATGTTT
TGGAAATTAC
TTCTGGGGTC
CTGTTCTGTA
TTAATAGATA
CTGGGATCAA
CCAGGGCTCA
GTTTGGCTAG
GACAGAGGAC
TTTGGGAAGG
GGCCCTGCCC
CTACACTCTG
AATCCCTTTG
GTCATGGAGA
GTATCAAATC
CAATGACATG
TAATCCAGTT
AAGGGCCCTA
CCTTCTAGTT
GGTGCCACTC
420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380
C
a a a. a.
a a a a.
CCACTGTCCT
TTCCTAATAA
CTATTCTGGG
GGGTGGGGTG
GGCATGCTGG
GGATGCGGTG
CTAGGGGGTA
TCCCCACGCG
CGCGCAGCGT
GACCGCTACA
CTTCCTTTCT
CGCCACGTTC
ATTAGTCAGC
AACCATAGTC
GTTCCGCCCA
TTCTCCGCCC
CCGCCTCGGC
CTCTGAGCTA
TTTGCAAAAA
GCTTGGACAG
AGCGTGAAGG
CTGGTAGGAT
TCGTCGCCGT
GTCCCAAAAT
TCAGGAACGA
GTTCAAGTAC
AGAATCTGGT
GATTATGGGT
TAAAGGACAG
AATTAATATA
ATTTTCTTGC
CAAAAGTTTG
GTAAAGTAGA
CATGGTTTGG
AACCAGGCCA
CCTTAGACTC
TTTTCCCAGA
AATTGATTTG
CTGAGGTCCA
GGAGGAAA
AACAGGAAGA
TGCTTTCAAG
CATGGGACTT
TTGCTGGCTT
ATAATTGGAC
AAACTACCTA
TGTATAATGT
GTTAAACTAC
AACTGATGAA
TGGGAGCAGT
AGAAATGCC-A
TCTAGTGATG
AAAGAAGAGA
AAGGTAGAAG
TCATGCTGTG
TTTAGTAATA
AGCTGCACTG
CTATACA.GA
TAACAGTTAT AATCATlAACA TATTAATAAC
TATGCTCAA
TAAGGAATAT
TTGATGTATA
TAGAGGTTTT
ACTTGCTTTA
TGAATGCAAT
TGTTGTTGTT
ATAGCATCAC
AAATTTCACA
CCAAACTCAT
CAATGTATCT
ATCTCATGCT
GGAGTTCTTC
AATAAACAA-Z
TAGCATCACA
GTGGTTTGTC
CAAACTCATC
AGAGCTTGGC GTAiATCATGG TTCCACACAA
CATACGAGCC
GCTAACTCAC
ATTAATTGCG
GCCAGCTGCA
TTAATGAATC
CTTCCGCTTC
CTCGCTCACT
45 CAGCTCACTC
AAAGGCGGTA
ACATGTGAGC-
AAAAGGCCAG
TTTTCCATAG
GCTCCGCCCC
GGCGAACCC
GACAGGACTA
GCTCTCCTGT
TCCGACCCTG
50 GCGTGGCGCT
TTCTCAATGC
CCAAGCTGGG
CTGTGTGCAC
ACTATCGTCT
TGAGTCCAAC
GTAACAGGAT
TAGCAGAGCG
CTAACTACGG
CTACACTAGA
CCTTCGGAAA
AAGAGTTGGT
GTTTTTTTGT
TTGCAAGCAG
TGATCTTTTC
TACGGGGTCT
TCATGAGATT
ATCAAAAAGG
AATCAATCTA
AAGTATATAT
60 AGGCACCTAT
CTCAGCGATC
TGTAGATAAC
TACGATACGG
GAGACCCACG
CTCACCGGCT
AGCGCAGAAG
TGGTCCTGCA
AAGCTAGAGT
AAGTAGTTCG
65 GCATCGTGGT
GTCACGCTCG
CAAGGCGAGT
TACATGATCC
CGATCGTTGT
CAGAAGTAAG
*AATGAGGWAA
GGGCAGGACA
GGCTCTATGG
CCCTGTAGCG
CTTGCCAGCG
GCCGGGCCTC
CCGCCCCTA
CATGGCTGAC
TTCCAGAAGT
CTCAGGGCTG
TTTATCCCCG
ATGGGGATTG
TTCCAAAGAA
AGGAAAACCT
GTTCTCAGTA
GATGATGCCT
ATAGTCGGAG
TTTGTGACAA
GGGAAATATA
GGCATCAAGT
TTCTCTGCTC
TAGATCTCTT
CAGAGATTTA
TGATTCTAAT
GGTGGAATGC
ATGAGGCTAC
ACCCCAAGGA
GAkACTCTTGC
AAATTATGGA
TACTGTTTTT
AATTGTGTAC
GTGCCTTGAC
AAAAACCTCC
AACTTGTTTA
AATAAAGCAT
TATCATGTCT
GCCCACCCCA
AATTTCACAA
AATGTATCTT
GCTAGCTGT
-GGAGCATMA
TTGCGCTCAC
GGCCAACGCG
GACTGCTGC
ATACGGTTAT
AAAAGGCCA
CCTGACGAGC
TAAAGATACC
CCGCTTACCG
TCACGCTGTA
GAACCCCCCG
CCGGTAAGAC
AGGTATGTAG
AGGACAGTAT
AGCTCTTGAT
CAGATTACGC
GACGCTCAGT
ATCTTCACCT
GAGTAAACTT
TGTCTATTTC
GAGGGCTTAC
CCAGATTTAT
ACTTTATCCG
CCAGTTAATA
TCGTTTGGTA
CCCATGTTGT
TTGGCCGCAG
TTGCATCGCA
GCAAGGGGGA
CTTCTGAGGC
GCGCATTAAG
CCCTAGCGCC
TCAAAAAAGG
CTCCGCCCAT
TAATTTTTTT
AGTGAGGAGG
CGATTTCGCG
CTGCCATCAT
GCAAGAACGG
TGACCACAAC
GGTTCTCCAT
GAGAACTCAA
TAAGACTTAT
GCAGTTCTGT
GGATCATGCA
AACTTCTCCC
ATAAGTTTGA
CCCTCCTAAA
TGTGAAGGAA
AAGCTCTAAG
TGTTTGTGTA
CTTTAATGAG
TGCTGACTCT
CTTTCCTTCA
TTGCTTTGCT
-AAAATATTCT
TCTTACTCCA
CTTTAGCTTT
TAGAGATCAT
CACACCTCCC
TTGCAGCTTA
TTTTTTCACT
GGATCGGCTG
ACTTGTTTAT
ATAAAGCATT
ATCATC-TCTG
TTCCTGTGTG
AGTGT-AAIAGC
TGC'CC3CTTT
CGGGGAGAGG
GCTCGGTCGT
CCACAGAATC
GGAACCGTAA
ATCACAAAAA
AGGCGTTTCC
GATACCTGTC
C-GTATCTCAG
TTCAGCCCGA
ACGACTTATC
GCGGTGCTAC
TTGGTATCTG
CCGGCAAACA
GCAGAAAAAA
GGAACGAAAA
AGATCCTTTT
GGTCTGACAG
GTTCATCCATr
CATCTGGCCC
CAGCAATAAA
CCTCCATCCA
GTTTGCGCAA
TGGCTTCATT
GCAAAAAAGC
TGTTATCACT
*TTGTCTGAGT
GGATTGGGAA
GGAAAGAACC
CGCGGCGGGT
*CGCTCCTTTC
GAAAAAAAGC
CCCGCCCCTA
TATTTATGCA
CTTTTTTGGA
CCAAACTTGA
GGTTCGACCA
AGACCTAcCCC
CTCTTCAGTG
TCCTGAGAAG
AGAACCACCA
TGAA.CAACCG
TTACCAGGA
GGAATTTGA
AGAATACCCA
AGTCTACGAG
GCTATGCATT
CCTTACTTCT
GTAAATATAA
TTTTAGATT-
GAAAACCTGT
CAACATTCTA
GAATTGCTAA
ATTTACACCA
GTAACCTTTA
CACAGGCATA
TTAATTTGTA
AATCAGCCAT
CCTGAACCTG
TAATGGTTAC
GCATTCTAGT
GATG-ATCCTC
TGCAGCrTTAT
TTTTTC-ACTG
TATACCGTCG
AAATTGTTAT
CTGGGGTGCC
CCAGTCGGGA
CGGTTTGCGT
TCGGCTGCGG
AGGGGATAAC
AAA-GGCCGCG
TCGACGCTCA
CCCTGGAAGC
CGCCTTTCTC
TTCGGTGTAG
CCGCTGCGCC
GCCACTGGCA
AGAGTTCTTG
CGCTCTGCTG
A-ACCACCGCT
AGGATCTCAA
CTCACGTTAA
AAATTAAAAA
TTACCAATGC
AGTTGCCTGA
CAGTGCTGCA
CCAGCCAGCC
GTCTATTAAT
CGTTGTTGCC
CAGCTCCGGT
GGTTAGCTCC
CATGGTTATG
AGGTGTCATT
GACAATAGCA
AGCTGGGGCT
GTGGTGGTTA
GCTTTCTTCC
ATGCATCTCA
ACTCCGCCCA
GAGGCCGAGG
GGCCTAGGCT
CGGCAATCCT
TTGAACTGCA
TGGCCTCCGC
GAAGGTAAAC
AATCGACCTT
CGAGGAGCTC
GAATTGGCAA
GCCATGAATC
AGTGACACGT
GGCGTCCTCT
AAGAAAGACT
ITTATAAGAC
GTGGTGTGAC
AATTTTTAAG
CAACCTATGG
TTTGCTCAGA
CTCCTCCAAA
GTTTTTTGAG
CAAAGGAAAA
TAAGTAGGC&A
GAGTGTCTGC
AAGGGGTTA-A
ACCACATTTG
AAACATAAAA
AAATAAAGCA
TGTGGTTTGT
CAC-CGCC-GGG
AATGGTTACA
CATTCTAGTT
ACCTCTAGCT
CCGCT.CAC.A
TA-ATC-AGTGA
AACCTGTCGT
ATTCGGCc:r
CGAGCGGTAT
GCAGGAAAGA
TTGCTGGCGT
AGTCAGAGGT
TCCCTCGTGC
CCTTCGGGPA
GTCGTTCGCT
TTATCCGGTA
GCAGCCACTG
AAGTGGTGGC
AAGCCAGTTA
GGTAGCGGTG
GAAGATCCTT
GGGATTTTGG
TGAAGTTTTA
TTAATCAGT'
CTCCCCGTCG
ATGATACCGC
GGAAGGGCCG
TGTTGCCGGG
ATTGCTACAG
TCCCAACGAT
TTCGGTCCTC
GCAGCACTGC
4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 6540 6600 6660 6720 6-380 6840 6900 6960 7020 708 0 7140 7200 7260 7320 7380 7440 7500 7560 7620 7,680 7740 7800 7860 7920 7980 8040 8100 8160 8220 8280 8340 8400 ATAATTCTCT TACTGTCATG CCATCCGTA GATGCTTTTC TGTGACTGGT GAGTACTCAA 8460 CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG CTCTTGCCCG GCGTCAATAC 8520 GGGATAATAC CGCGCCACAT AGCAGACTT TAAAAGTGCr CATCATTGGA AAACGTTCTT 8580 CGGGGCGAAA ACTCTCAAGG ATCTTACCGC TGTTGAGATC C-AGTTCGATG TAACCCACTC 8640 GTGCACCCA CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA 8700 CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT TGAATACTCA 8760 TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG TTATTGTCTC ATGAGCGGAT 8820 ACATATTTGA ATGTATTTAG AAAAATAAAC AAATAGGGGT TCCGCGCACA TTTCCCCGAA 8880 AAGTGCCACC TGACGTC 8897 INFORMATION FOR SEQ ID NO:14: SEQUENCE
CHARACTERISTICS:
LENGTH: 44 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14: GAAGAGGAAG ACTGACGGTG CCCCCGCGAG TTCAGGTGCT GAGG 44 INFORMATION FOR SEQ ID SEQUENCE
CHARACTERISTICS:
LENGTH: 44 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cONA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: CCTCAGCACC TGA"CCCG GGGGCACCGT CAGTCTTCCT CTTC 44 INFORM-ATION FOR SEQ ID NO: 16: SEQUENCE
CH.ARACTERISTICS:
LENGTH: 51 base pairs TYPE: nucleic acid STRANDEDNESS: single 45 TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: CTGGGAGGGC TTTGTTGGAG ACCGAGCACG AGTACGACTT GCCATTCAGC C 51 INFORMATION FOR SEQ ID NO:17: 555 SEQUENCE CHARACTERISTICS: S LENGTH: 30 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17: .65 GATGGTTTTC TCGATGGCGG CTGGGAGGGC INFORMATION FOR SEQ ID NO: 18: SEQUENCE CHARACTERISTICS: LENGTH: 30 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: GCCCTCCCAG CCGCCATCGA GAAAACCATC INFORMATION FOR SEQ ID NO:19: SEQUENCE CHARACTERISTICS: LENGTH: 34 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: GATGGTTTTC TCGATAGCGG CTGGGAGGGC TTTG 34 INFORMATION FOR SEQ ID SEQUENCE CHARACTERISTICS: LENGTH: 81 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MCLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID GATGGTTTTC TCGATGGCGG CTGGGAGGGC TTTGTTGGAG ACCGAGCACG AGTACGACTT GCCATTCAGC CAGTCCTGGT G 81 INFORMATION FOR SEQ ID NO:21: 45 SEQUENCE CHARACTERISTICS: e* LENGTH: 81 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: CACCAGGACT GGCTGAATGG CAAGTCGTAC TCGTGCTCGG TCTCCAACAA AGCCCTCCCA GCCGCCATCG AGAAAACCAT C 81 INFORMATION FOR SEQ ID NO:22: 60 SEQUENCE CHARACTERISTICS: LENGTH: 8690 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22: GGTACCAATT TAAATTGATA TTGGAATTCT TGCGGCCGCT TGTCCTTGTT TTAAAAGGTG AGTGCAGCCT GGAGGGTCCC CTATTACATG TATTGGGTTC TAGTCAAGAT GGTGATATAA CAGAGACAAT GCAAAGAACA AGCCGTGTAT TACTGTGCAA AGGGACTCTG GTCACGGTCT ACCCTCCTCC AAGAGCACCT CTTCCCCGAA CCGGTGACGG CTTCCCGGCT GTCCTACAGT CTCCAGCAGC TTGGGCACCC CAAGGTGGAC AAGAAAGTTG CCAGGCTCAG CGCTCCTGCC AGGCAGGCCC CGTCTGCCTC AGAGGGTCTT CTGGCTTTTT CAGGCCCTGC ACACAAAGGG AGGACCCTGC CCCTGACCTA GACACCTTCT CTCCTCCCAG CTTGTGACAA AACTCACACA CCAGCTCAAG GCGGGACAGG GGTGCTGACA CGTCCACCTC GTCTTCCTCT TCCCCCCAAA ACATGCGTGG TGGTGGACGT GACGGCGTGG AGGTGCATAA TACCGTGTGG TCAGCGTCCT AAGTGCAAGG TCTCCAACAA AAAGGTGGGA CCCGTGGGGT TGCCCTGAGA GTGACCGCTG GGTGTACACC CTGCCCCCAT CCTGGTCAAA GGCTTCTATC GGAGAACAAC TACAAGACCA CAGCAAGCTC ACCGTGGACA G-ATGCATG-AG GCTCTGCACA ATGAGTGCGA CGGCCGGCAA TGGC.ACGTAC CCCCTGTACA CTGCCCTGGG CCCCTGCGAC- CCTGAGTGGC ATGAGGGAGG CAGGTGTGCC TGGGCCCCCT GGATTTGCCA GCGTGGCCCT CCTAGGAC-CC CCTGGGGACA 45 GTGAGCGCCC CTGTCCTCCC GTAGGGACAG GCCCTCCCTC CCAGCCTCGC ACCCGCATGG TGGAGGGACT GGTGCAGATG GCACTGAGGT TGGCCGGCCA 50 GCCTCACCCG GGCGAACTGC ACTCCTCGGA CACAGGCCCC GGCAGCTTCT CCACATGCTG CCCTGCAGCC GCCACACACA CCACTTCCCA GTGCCGCCCT GCCAGCCATC TGTTGTTTGC CCACTGTCCT TTCCTAATAA CTATTCTGGG GGGTGGGGTG GGCATGCTGG GGATGCGGTG CTAGGGGGTA TCCCCACGCG 60 CGCGCAGCGT GACCGCTACA CTTCCTTTCT CGCCACGTTC ATTAGTCAGC AACCATAGTC GTTCCGCCCA TTCTCCGCCC CCGCCTCGGC CTCTGAGCTA 65 TTTGCAAAAA GCTTGGACAG AGCGTGAAGG CTGGTAGGAT TCGTCGCCGT GTCCCAAAAT
TCTCCTTAGG
TGCTAGCCAC
TCCAGTGTGA
TGCGACTTTC
GCCAGGCTCC
CCGACTATGC
GCCTGTACCT
GAGGCCTGGC
CTTCCGCTAG
CTGGGGGCAC
TGTCGTGGAA
CCTCAGGACT
AGACCTACAT
GTGAGAGGCC
TGGACGCATC
TTCACCCGGA
CCCCAGGCTC
GCAGGTGCTG
AGCCCACCCC
ATTCCAGTAA
TGCCCACCGT
TGCCCTAGAG
CATCTCTTCC
ACCCAAGGAC
GAGCCACGAA
TGCCAAGACA
CACCGTCCTG
AGCCCTCCCA
GCGAGGGCCA
TACCAACCTC
CCCGGGATGA
CC.NGCGACAT
CGCCTCCCGT
AGAGCAGGTG
ACCACTACAC
GCCCCCGCTC
TACTTCCCGG
ACTGTGATGG
CAGAGCGGGT
AGGGTGGGGC
CCCTCCAGCA
GACACACAGC
GACCTCCATG
ACCCATCTAC
GGACACAACC
CCCACACACA
CACGGCCACC
ACAGCACCCA
CACGAGCCCC
ACCTGCTCAG
CACAGGGGAT
TCCCTGCAGG
CCCTCCCCCG
AATGAGGAAA
GGGCAGGACA
GGCTCTATGG
CCCTGTAGCG
CTTGCCAGCG
GCCGGGCCTC
CCGCCCCTAA
CATGGCTGAC
TTCCAGAAGT
CTCAGGGCTG
TTTATCCCCG
ATGGGGATTG
TCTCGAGTCT
CATGGAGTTG
AGTGCAACTG
CTGTGCTGCA
AGGCAAGGC-M
AGACTCCGTA
GCAAATGAAC
GGACGGGGC
CACCAAGGGC
AGCGGCCCTG
CTCAGGCGCC
CTACTCCCTC
CTGCAACGTG
AGCACAGGGA
CCGGCTATGC
GGCCTCTGCC
TGGGCAGGCA
GGCTCAGACC
AAAGGCCAAA
CTCCCAATCT
GCCCAGGTA-A
TAGCCTGCAT
TCAGCACCTG
ACCCTCATGA
GAC-CCTGAGG
AAGCCGCGGG
CACCAGGACT
GCCCCCATCG
CATGGACAGA
TGTCCCTACA
GCTGACCAAG
CGCCGTGGAG
GCTGGACTCC
GCAGCAGGGG
GCAGAAGAGC-
CCCGGGCTCT
GCGCCCAZGCA
TTCTTTCCAC
CCCACTGTC-C
TCAGCCAGGG
GCACCTGCCC
CCCTGCCTCT
CCCACTCGGG
CCCCACGGCA
GACTCCGGGG
CACTCAGCCC
ACACACACAC
GACCAGAGCA
ACGCGGCACC
ACAAACCCAG
CACACACCAC
ACGGATCAGC
TGCCTTCCTT
TTGCATCGCA
GCAAGGGGGA
CTTCTGAGGC
GCGCATTAAG
CCCTAGCGCC
TCAAAAAAGG
CTCCGCCCAT
TAATTTTTTT
AGTGAGGAGG
CGATTTCGCG
CTGCCATCAT
GCAAGAACGG
CTAGATAACC
1'GGTTAAGCT
GTGGAGTCTG
TCTGGATTCC
CTGGAGTGGG
AAGGGTCGAT
AGCCTGAGGG
TGGTTTGCTT
CCATCGGTCT
GGCTGCCTGG
CTGACCAGCG
AGCAGCGTGG
AATCACAAGC
GGGAGGGTGT
AGCCCCAGTC
CGCCCCACTC
CAGGCTAGGT
TGCCAAGAGC
CTCTCCACTC
TCTCTCTGCA
GCCAGCCCAG
CCAGGGACAG
AACTCCTGGG
TCTCCCGGAC
TCAAGTTCAA
AGGAGCAGTA
GGCTGAATGG
AGAAAACCAT
GGCCGGCTCG
GGGCAGCCCC
AACCAGGTCA
TGGGAGAGCA
GACGGCTCCT
AACGTCTTCT
CTC7CCCTGT
CGCGGTCGCA
TGGAAATAAA
GGGTCAGGCC
CCACACTGGC
GCTGCCCTCG
TGC-GCTGGGC
GTAGGAGACT
GGCATGCCTA
CTAACCCCTG
ACATGCACTC
AGACCCGTTC
GTGCACGCCT
AGGTCCTCGC
TCAAGGCCCA
CCCTCCTCTC
GTCACGTCCC
CTCGACTGTG
GACCCTGGAA
TTGTCTGAG-T
GGATTGGGAA
GGAAAGAACC
CGCGGCGGGT
CGCTCCTTTC
GAAAAAAAGC
CCCGCCCCTA
TATTTATGCA
CTTTTTTGGA
CCAAACTTGA
GG-TTCGACCA
AGACCTACCC
GGTCAATCGA
TGGTCTTCCT
GGGGAGGCTT
CGTTCAGTGA
TCTCATACAT
TCACCATCTC
ACGAGGACAC
ACTGGGGCCA
TCCCCCTGGC
TCAAGGACTA
GCGTGCACAC
TCACCGTGCC
CCAGCAACAC
CTGCTGGAAG
CAGGGCAGCA
ATGCTCAGGG
GCCCCTAACC
CATATCCGGG
CCTCAGCTCG
GAGCCCAAAT
GCCTCGCCCT
GCCCCAGCCG
GGGACCGTCA
CCCTGAGGTC
CTGGTACGTG
CAACAGCACG-
CAAGGAGTAC
CTCCAAAGCC
GCCCACCCTC
GAGAACCACA
GCCTGACCTG
ATGGGCAGCC
TCTTCCTCTA
CATGCTCCGT
CTCCGGGTA-A
CGAGGATGCT
GCACCCAGCG
GAGTCTG-AGG
CCAGGCTGTG
GCAGGGT'GG
CACGGGAAGC
GTCCTGTTCT
GTCCATGTGC
GCTGCCCTGC
TCGGGCCCTG
AACAAACCCC
CACACACGGA
ACACGTGAAC
CGAGCCTCTC
ACAAGGGTGC
TGGCCCTGGC
CCTTCTAGTT
GGTGCCACTC
AGGTGTCATT
GACAATAGCA
AGCTGGGGCT
GTGGTGGTTA
GCTTTCTTCC
ATGCATCTCA
ACTCCGCCCA
GAGGCCGAGG
GGCCTAGGCT
,CGGCAATCCT
TTGAACTGCA
TGGCCTCCGC
120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900
TCAGGAACGA
AGAATCTGGT
TAAAGGACAG
ATTTTCTTGC
GTAAAGTAGA
AACCAGGCCA
TTTTCCCAGA
CTGAGGTCCA
AACAGGAAGA
CATGGGACTT
ATAATTGGAC
TGTATAATGT
AACTGATGAA
AGAAATGCCA
AAAGAAGAGA
TCATGCTGTG
AGCTGCACTG
TAACAGTTAT
TATTAATAAC
TAAGGAATAT
TAGAGGTTTT
TGAATGCAAT
ATAGCATCAC
CCAAACTCAT
ATCTCATGCT
AATAAAGCAA
GTGGTTTGTC
AGAGCTTGGC
TTCCACACAA
GCTAACTCAC
GCCAGCTGCA
CTTCCGCTTC
CAGCTCACTC
ACATGTGAGC
TTTTCCATAG
GGCGAAACCO
GCTC-TCCTGT
GCGTGGCGCT1
CCAAGCTGG
ACTATCGTCT
GTAACAGGAT
CTAACTACGG
CCTTCGGAAA
GTTTTTTTGT
T-GATCTTTTC
TCATGAGATT
AATCAATCTA
AGGCACCTAT
TGTAGATAAC
GAGACCCACG
AGCGCAGAAG
AAGCTAGAGT
GCATCGTGGT
CAAGGCGAGT
CGATCGTTGT
ATAATTCTCT
CCAAGTCATT
GGGATAATAC
CGGGGCGAAA
60 GTGCACCCAA
CAGGAAGGCA
TACTCTTCCT
ACATATTTGA
AAGTGCCACC
TCGAATAGCC
TTGGCGCCGA
ATAGTTALAGC
GTTCAAGTAC
GATTATGGGT
AATTAATATA
CAAAAGTTTG
CATGGTTTGG
CCTTAGACTC
AATTGATTTG
GGAGGAAAAA
TGCTTTCAG
TTGCTGGCTT
AAACTACCTA
GTTAAACTAC
TGGGAGCAGT
TCTAGTGATG
AAGGTAGAAG
TTTAGTAATA
CTATACAAGA
AATCATAACA
TATGCTCAAA
TTGATGTATA
ACTTGCTTTA
TGTTGTTGTT
AAATTTCACA
CAATGTATCT
GGAGTTCTTC
TAGCATCACA
CAAACTCATC
GTAATCATGG
CATACGAGCC
ATTAATTGCG
TTAATGAATC
CTCGCTCACT
AAAG.GCGGTrA
AAAAGGCCAG
GCTCCGCCCC
GACAGGACTA
TCCGACCCTG
TTCTCAATGC
CTGTGTGCAC
TGAGTCCAAC
TAC-CAG.AGCG
CTACACTAGA
AAGAGTTGGT
TTGCAAGCAG
TACGGGGTCT
ATCAAAAAGG
AAGTATATAT
CTCAGCGATC
TACGATACGG
CTCACCGGCT
TGGTCCTGCA
AAGTAGTTCG
GTCACGCTCG
TACATGATCC
CAGAAGTAAG
TACTGTCATG
CTGAGAATAG
CGCGCCACAT
ACTCTCAAGG
CTGATCTTCA
AAATGCCGCA
TTTTCAATAT
ATGTATTTAG
TGACGTCGAC
AGAGTAACCT
TCTCCCGATC
CAGTATCTGC
TTCCAAAGAA
AGGAAAACCT
GTTCTCAGTA
GATGATGCCT
ATAGTCGGAG
TTTGTGACAA
GGGAAATATA
GGCATCAAGT
TTCTCTGCTC
TAGATCTCTT
CAGAGATTTA
TGATTCTAAT
GGTGGAATGC
ATGAGGCTAC
ACCCCAAGGA
GAACTCTTGC
AAATTATGGA
TACTGTTTTT
AATTGTGTAC
GTGCCTTGAC
AAAAACCTCC
AACTTGTTTA
AATAAAGCAT
TATCATGTCT
GCCCACCCCA
AATTTCACAA
AATGTATCTT
TCATAGCTGT
GGAAGCATAA
TTGCGCTCAC
GGCCAACGC-G
GACTCGCTGC
ATACGGTTAT
CAAAAGGCCA
CCTGACGAGC
TJAAAGATACC
CCGCTTACCG
TCACGCTIGTA
GAACCCCCCG
CCGGTA.AGAC
A~GATGTAG
AGGACAGTAT
AGCTCTTGAT
CAGATTACGC
GACGCTCAGT
ATCTTCACCT
GAGTAAACTT
TGTCTATTTC
GAGGGCTTAC
CCAGATTTAT
ACTTTATCCG
CCAGTTAATA
TCGTTTGGTA
CCCATGTTGT
TTGGCCGCAG
CCATCCGTAA
TGTATGCGGC
AGCAGAACTT
ATCTTACCGC
GCATCTTTTA
AAAAAGGGAA
TATTGAAGCA
AAAAATAAAC
GGATCGGGAG
TTTTTTTTAA
CCCTATGGTC
TCCCTGCTTG
TGACCACAAC
GGTTCTCCAT
GAGAACTCAA
TAAGACTTAT
GCAGTTCTGT
GGATCATGCA
AACTTCTCCC
ATAAGTTTGA
CCCTCCTAAA
TGTGAAGGAA
AAGCTCTAAG
TGTTTGTGTA
CTTTAATGAG
TGCTGACTCT~
CTTTCCTTCA
TTGCTTTGCT
AAAATATTCT
TCTTACTCCA
CTTTAGCTTT
TAGAGATCAT
CACACCTCCC
TTGCAGCTTA
TTTTTTCACT
GGATCGGCTG
ACTTGTTTAT
ATAAAGCATT
ATCATGTCTG
TTCCTGTGTG
AGTGTAAAGC
TGCCCGCTTT
CGGGGAGAGG
GCTCGGTCGT
CCACAGAATC
C-GAACCGTAA
ATCACAAAAA
AGGCGTTTCC
GATACCTGTC
GGTATCTCAG
TTCAG-CCCGA
ACGACTTATC
GCGGTIGCTAC
TTGGTATCTG
CCGGCAAACA
GCAGAAAAAA
GGAACC-AAAA
AGATCCTTTT
GGTC-TGACAG
GTTCATCCAT
CATCTGGCCC
CAGCAATAAA
CCTCCATCCA
GTTTGCGCAA
TGGCTTCATT
GCAAAAAAGC
TGTTATCACT
GATGCTTTTC
GACCGAGTTG
TAAAAGTGCT
TGTTGAGATC
CTTTCACCAG
TAAGGGCGAC
TTTATCAGGG
AAATAGGGGT
ATCTGCTAGG
TTTTATTTTA
GACTCTCAGT
TGTGTTGGAG
CTCTTCAGTG GAAGGTAAAC TCCTGAGAAG AATCGACCTT AGAACCACCA CGAGGAGCTC TGAACAACCG GAATTGGCAA TTACCAGGAA GCCATGAATC
GGAATTTGAA
AGAATACCCA
AGTCTACGAG
GCTATGCATT
CCTTACTTCT
GTAAATATAA
TTTTAGATTC
GAAAACCTGT
CAACATTCTA
GAATTGCTAA
ATTTACACCA
GTAACCTTTA
CACAGGCATA
TTAATTTGTA
AATCAGCCAT
CCTGAACCTG
TAATGGTTAC
GCATTC7AGT
GATGATCCTC
TGCAGCTTAT
TTTTTCACTG
TATACCGTCG
AAATTGTTAT
CTGGGGTGCC
CCAGTCGGGA
CGGTTTGCGT
TCGGCTGCGG
AGGGGATAAC
AAAGGCCGCG
TCGACGCTCA
CCCTGGAADGC
CGCCTLTTCTC
TTCGGTGTAG
CCGCTGCGCC
GCCACTGGCA
AGAGTTCTTG
CGCTCTGCTG
AACCACCGCT
AGGATCTCAA
CTCACGTTAA
AAATTAAAAA
TTACCAATGC
AGTTGCCTGA
CAGTGCTGCA
CCAGCCAGCC
GTCTATTAAT
CGTTGTTGCC
CAGCTCCGGT
GGTTAGCTCC
CATGGTTATG
TGTGACTGGT
CTCTTGCCCG
CATCATTGGA
CAGTTCGATG
CGTTTCTGGG
ACGGAAATGT
TTATTGTCTC
TCCGCGCACA
TGACCTGAGG
TTTTATTTTT
ACALATCTGCT
GTCGCTGAGT
AGTGACACGT
GGCGTCCTCT
AAGAAAGACT
TTTATAAGAC
GTGGTGTGAC
AATTTTTAAG
CAACCTATGG
TTTGCTCAGA
CTCCTCCAAA
GTTTTTTGAG
CAAAGGAAAA
TAAGTAGGCA
GAGTGTCTGC
AAGGGGTTAA
ACCACATTTG
AAACATAAAA
AAATAAAGCA
TGTGGTTTGT
CAGCGCGGGG
AATGGT'TACA
CATTCTAGTT
ACCTCTAGCT
CCGCTCACAA
TAATGAGTGA
AACCTGTCGT
ATTGGGCGCT
CGAGCGGTAT
GCAGGAAAGA
TTGCTGGCGT
AGTCAGAGGGT
TCCCTCGTGC
CCTTCGGGAA
GTCGTTCGCT
TTATCGGTA
GCAGCCACTG
AAGTGGTGGC
AAGCCAGTTA.
GGTAGCGGTG
C-AAGATCCTT
GGGATTTrGG
TGAAGTTT;TA
TTAATCAGTG
CTCCCCGTCG
ATGATACCGC
GGALAGCGCCG
TGTTGCCGGG
ATTGCTACAG
TCCCAACGAT
TTCGGTCCTC
GCAGCACTGC,
GAGTACTCAA
GCGTCAATAC
AAACGTTCTT
TAACCCACTC
TGAGCAAAAA
TGAATACTCA
ATGAGCGGAT
TTTCCCCGAA
CGCGCCGGCT
GAGATGGAGT
CTGATGCCGC
AGTGCGCGAG
3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 618C 6240 6300 6360 6420 6480 6540 6600 6660 6720 6780 6840 6900 6960 7020 7080 7140 7200 7260 7320 7380 7440 7500 7560 7620 7680 7740 7800 7860 7920 be.* 0..0 a. CAAAA1
GGTTAC
ATTGAC
GTTCCG
CCCATT
ACGTC
TATGCC
CCAGTA
TATTAC
ACGGGG
TCAACG
GCGTGI
TTACTG
TTAA
~GCGT
'TAGT
ICGTT
GACG
.ATGG
:AAGT
LCATG
.CATG
~ATTT
GGAC
ACGG
;GCTT
GCTACAACAA
TTTGCGCTGC
TATTAATAGT
ACATAACTTA
TCAATAATGA
GTGGACTATT
ACGCCCCCTA
ACCTTATGGG
GTGATGCGGT
CCAAGTCTCC
TTTCCAAAAT
TGGGAGGTCT
ATCGAAATTA
GGCAAGGCTT
TTCGCGATGT
AATCAATTAC
CGGTAAATGG
CGTATGTTCC
TACGGTAAAC
TTGACGTCAA
ACTTTCCTAC
TTTGGCAGTA
ACCCCATTGA
GTCGTAACAA
ATATAAGCAG
ATACGACTCA
GACCGACAAT
ACGGGCCAGA
GGGGTCATTA
CCCGCCTGGC
CATAGTAACG
TGCCCACTTG
TGACGGTAAA
TTGGCAGTAC
CATCAATGGG
CGTCAATGGG
CTCCGCCCCA
AGCTCTCTGG
CTATAGGGAG
TGCATGAAGA
TATACGCGTT
GTTCATAGCC
TGACCGCCA
CCAATAGGGA
GCAGTACATC
TGGCCCGCCT
ATCTACGTAT
CGTGGATAGC
AGTTTGTTTT
TTGACGCAA
CTAACTAGAG
ACCCAAGCTT
ATCTGCTTAG
GACATTGATT
CATATATGGA
ACGACCCCCG
CTTTCCATTG
AAGTGTATCA
GGCATTATGC
TAGTCATCGC
GGTTTGACTC
GGCACCAAAA
TGGGCGGTAG
AACCCACTGC
7980 8040 8100 8160 8220 8280 8340 8400 8460 8520 8580 8640 8690 INFORMATION FOR SEQ ID NO:23: SEQUENCE
CHARACTERISTICS:
LENGTH: 7874 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23: me:* to 0 0*
GGTACCAATT
TTGGAATTCT
-o TCCTCCAAGA
CCCGAACCGG
CCGGCTGTCC
AGCAGCTTGG
GTGGACAAGA
35 GCTCAGCGCT
AGGCCCCGTC
GGTCTTCTGG
CCCTGCACAC
CCCTGCCCCT
CCTTCTCTCC
TGACAAAACT
CTCAAGGCGG
CTGACACGTC
TCCTCTTCCC
GCGTGGTGGT
45 GCGTGGAGGT
GTGTGGTCAG
GCAAGGTCTC
GTGGGACCCG
CTGAGAGTGA
50 TACACCCTGC
GTCAAAGGCT
AACAACTACA
AAGCTCACCG
CATGAGGCTC
GTGCGACGGC
ACGTACCCCC
CCTGGGCCCC
AGTGGCATGA
TGTGCCTGGG
TTGCCAGCGT
GGAGCCCCTG
GCGCCCCTGT
CTATGGCTTC
GTAGCGGCGC
CCAGCGCCCT
GCTTTCCCCG
GGCACCTCGA
TAAATTGATA
TGCGGCCGCT
GCACCTCTGG
TGACGGTGTC
TACAGTCCTC
GCACCCAGAC
AAGTTGGTGA
CCTGCCTGGA
TGCCTCTTCA
CTTTTTCCCC
AAAGGGGCAG
GACCTAAGCC
TCCCAGATTC
CACACATGCC
GACAGGTGCC
CJACCTCCATC
CCCAAAACCC
GGACGTGAGC
GCATAATGCC
CGTCCTCACC
CAACAAAGCC
TGGGGTGCGA
CCGCTGTACC
CCCCATCCCG
TCTATCCCAG
AGACCACGCC
TGGACAAGAG
TGCACAACCA
CGGCAAGCCC
TGTACATACT
TGCGAGACTG
GGGAGGCAGA
CCCCCTAGGG
GGCCCTCCCT
GGGACAGACA
CCTCCCGACC
TGAGGCGGAA
ATTAAGCGCG
AGCGCCCGCT
TCAAGCTCTA
CCCCAAAAAA
TCTCCTTAGG
TGCTAGCACC
GGGCACAGCG
GTGGAACTCA
AGGACTCTAC
CTACATCTGC
GAGGCCAGCA
CGCATCCCGG
CCCGGAGGCC
AGGCTCTGGG
GTGCTGGGCT
CACCCCAAAG
CAGTAACTCC
CACCGTGCCC
CTAGAGTAGC
TCTTCCTCAG
AAGGACACCC
CACGAAGACC
AAGACAAAGC
GTCCTGCACC
CTCCCAGCCC
GGGCCACATG
AACCTCTGTC
GGATGAGCTG
CGACATCGCC
TCCCGTGCTG
CAGGTGGCAG
CTACACGCAG
CCGCTCCCCG
TCCCGGGCGC
TGATGGTTCT
GCGGGTCCCA
TGGGGCTCAG
CCAGCAGCAC
CACAGCCCCT
TCCATGCCCA
AGAACCAGCT
GCGGGTGTGG
CCTTTCGCTT
AATCGGGGCA
CTTGATTAGG
TCTCGAGTCT
AAGGGCCCAT
GCCCTGGGCT
GGCGCCCTGA
TCCCTCAGCA
AACGTGAATC
CAGGGAGGGA
CTATGCAGCC
TCTGCCCGCC
CAGGCACAGG
-AGACCTGCC
GCCAAACTCT
CAATCTTCTC
AGGTAAGCCA
CTGCATCCAG,
CACCTGAACT
TCATGATCTC
CrGAGGTCAA
CGCGGGAGGA
AGGACTGGCT
CCATCGAGAA
GACAGAGGCC
CCTACAGGGC
ACCAAGAACC
GTGGAGTGGG
GACTCCGACG
CAGGGGAACG
AAGAGCCTCT
GGCTCTCGCG
CCAGCATGGA
TTCCACGGGT
CTGTCCCCAC
CCAGGGGCTG
CTGCCCTGGG
GCCTCTGTAG
CTCGGGGGCA
GGGGCTCTAG
TGGTTACGCG
TCTTCCCTTC
TCCCTTTAGG
GTGATGGTTC
CTAGATAACC
CC-GTCTTCCC
GCCTGGTCA
CCAGCGGCGT
GCGTGGTCAC
ACAAGCCCAG
GGGTGTCTGC
CCAGTCCAGG
CCACTCATGC
CTAGGTGCCC
AAGAGCCATA
CCACTCCCTC
TCTGCAGAGC
GCCCAGGCCT
GGACAGGCCC
CCTGGGGGGA
CCGGACCCCT
GTTCAACTGG
GCAGTACAAC
GAATGGCAAG
AACCATCTCC
GGCTCGGCCC
AGCCCCGAGA
AGGTCAGCCT
AGAGCAATGG
GCTCCTTCTT
TCTTCTCATG
CCCTGTCTCC
GTCGCACGAG
AATAAAGCAC
CAGGCCGAGT
ACTGGCCCAG
CCCTCGGCAG
CTGGGCCACG
GAGACTGTCC
TGCTGGGGAT
GGGGTATCCC
CAGCGTGACC
CTTTCTCGCC
GTTCCGATTT
ACGTAGTGGG
GGTCAAkTCGA
CCTGGCACCO
GGACTACTTC
GCACACCTTC
CGTGCCCTCC
CAACACCAAG
TGGAAGCCAG
GCAGCAAGGC
TCAGGGAGAG
CTAACCCAGG
TCCC-GGAGGA
AGCTCGGACA
CCAAATCTTG
CGCCCTCCAG
CAGCCGGG-G
CCGTCAGTCT
GAGGTCACAT
TACGTGGACG
AGCACGTACC
GAGTACAAGT
AAAGCCAA-AG
ACCCTCTGCC
ACCACAGGTG
GACCTGCCTG
GCAGCCGGAG
CCTCTACAGC
CTCCGTGATG
GGGTAALATGA
GATGCTTGGC
CCAGCGCTGC
CTGAGGCCTG
GCTGTGCAGG
GGTGGGGGAT
GGAAGCCCTA
TGTTCTGTGA
GCGGTGGGCT
CACGCGCCCT
GCTACACTTG
ACGTTCGCCG
AGTGCTTTAC
CCATCGCCCT
120 180 240 300 360 420 480 540 600 660 720 780 84U 900 960 102 0 1080 1140 1200 ,260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460
GATAGACGGT
TCCAAACTGG
TGGGGATTTC
AATTCTGTGG
GAAGTATGCA
CCATCCCGCC
TTTTTATTTA
GAGGCTTTTT
CGCGCCAAAC
TCATGGTTCG
ACGGAGACCT
CAACCTCTTC
CCATTCCTGA
TCAAAGAACC
TTATTGAACA
CTGTTTACCA
TGCAGGAATT
TCCCAGAATA
TTGAAGTCTA
TAAAGCTATG
GGAACCTTAC
TAAGGTAAAT
TGTATTTTAG
TGAGGAAAAC
CTCTCAACAT
TTCAGAATTG
TGCTATTTAC
TTCTGTAACC
TCCACACAGG
CTTTTTAATT
TCATAATCAG
TCCCCCTGAA
CTTATAATGG
CACTGCATTC
GCTGGATGAT
TTATTGCAGC
CATTTTTTTC
-TCTGTATACC
TGTGAAATTG
APAGCCTGCGGG
CTTTCCAGTC
GAGC-CGGTTT
TCGTrCGGCT
P-ATCAGGGGA
45 GTAAAAAGGC AkAAATCGACG
TTCCCCCTGG
TGTCCGCCTT
TCAGTTCGGT
50 CCGACCGCTG
TATCGCCACT
CTACAGAGTT
TCTGCGCTCT
AACAAACCAC
55 AAAAAGGATC
AAAACTCACG
TTTTAAATTA
ACAGTTACCA
CCATAGTTGC
60 GCCCCAGTGC
TAAACCAGCC
TCCAGTCTAT
GCAACGTTGT
CATTCAGCTC
65 AAGCGGTTAG
CACTCATGGT
TTTCTGTGAC
TTTTCGCCCT
AACAACACTC
GGCCTATTGG
AATGTGTGTC
AAGCATGCAT
CCTAACTCCG
TGCAGAGGCC
TGGAGGCCTA
TTGACGGCAA
ACCATTGAAC
ACCCTGGCCT
AGTGGAAGGT
GAAGAATCGA
ACCACGAGGA
ACCGGAATTG
GGAAGCCATG
TGAAAGTGAC
CCCAGGCGTC
CGAGAAGAAA
CATTTTTATA
TTCTGTGGTG
ATAAAATTTT
ATTCCAACCT
CTGTTTTGCT
TCTACTCCTC
CTAAGTTTTT
ACCACAAAGG
TTTATAAGTA
CATAGAGTGT
TGTAAAGGGG
CCATACCACA
CCTGAAACAT
TTACAAATAA
TAG7TTGTGGT
CCTCCAGCGC
TTATAATGGT
ACTGCATTCT
GTCGACCTCT
TTATCCGCTC
TGCCTAATGA
GGGAAACCTG
GCGTATTGGG
GCGGCG.AGCG
TAACGCAGGA
CGCGTTGCTG
CTCAAGTCAG
AAGCTCCCTC
TICTCCCTTCG
GTAGGTCGTT
CGCCTTATCC
GGCAGCAGCC
CTTGAAGTGG
GCTGAAGCCA
CGCTGGTAGC
TCAAGAAGAT
TTAAGGGATT
AAAATGAAGT
ATGCTTAATC
CTGACTCCCC
TGCAATGATA
AGCCGGAAGG
TAATTGTTGC
TGCCATTGCT
CGGTTCCCAA
CTCCTTCGGT
TATGGCAGCA
TGGTGAGTAC
TTGACGTTGG
AACCCTATCT
TTAAAAAATG
AGTTAGGGTG
CTCAATTAGT
CCCAGTTCCG
GAGGCCGCCT
GGCTTTTGCA
TCCTAGCGTG
TGCATCGTCG
CCGCTCAGGA
AAACAGAATC
CCTTTAAAGG
GCTCATTTTC
GCAAGTAAAG
AATCAACCAG
ACGTTTTTCC
CTCTCTGAGG
GACTAACAGG
AGACCATGGG
TGACATAATT
TAAGTGTATA
ATGGAACTGA
CAGAAGAAAT
CAAAAAAGAA
TGAGTCATGC
AAAAAGCTGC
GGCATAACAG
CTGCTATTAA
TTAATAAGGA
TTTGTAGAGG
AAAATGAATG
AGCAATAGCA
TTGTCCAAAC
GGGGATCTCA
TACAA.ATAAA
AGTTGTGGTT
AGCTAGAGCT
ACAATTCCAC
GTGAGCTAAC
TCGTGCCAGC
CGCTCTTCCG
GTATCAGCTC
AAGAACATGT
GCGTTTTTCC
AGGTGGCGAA
GTGCGCTCTC
GGAAGCGTGG
CGCTCCAAGC
GGTAACTATC
ACTGGTAACA
TGGCCTAACT
GTTACCTTCG
GGTGGTTTTT
CCTTTGATCT
TTGGTCATGA
TTTAAATCAA
AGTGAGGCAC
GTCGTGTAGA
CCGCGAGACC
GCCGAGCGCA
CGGGAAGCTA
ACAGGCATCG
CGATCAAGGC
CCTCCGATCG
CTGCATAATT
TCAACCAAGT
AGTCCACGTT
CGGTCTATTC
AGCTGATTTA
TGGAAAGTCC
CAGCAACCAT
CCCATTCTCC
CGGCCTCTGA
AAAAGCTTGG
AAGGCTGGTA
CCGTGTCCCA
ACGAGTTCAA
TGGTGATTAT
ACAGAATTAA
TTGCCAAAAG
TAGACATGGT
GCCACCTTAG
CAGAAATTGA
TCCAGGAGGA
AAGATGCTTT
ACTTTTGCTG
GGACAAACTA
ATGTGTTAAA
TGAATGGGAG
GCCATCTAGT
GAGAAAGGTA
TGTGTTTAGT
ACTGCTATAC
TTATAATCAT
TAACTATGCT
ATATTTGATG
TTTTACTTGC
CAATTGTTGT
TCACAAATTT
TCATCAATGT
TGCTGGAGTT
GCAATAGCAT
TGTCCAAACT
TGGCGTAATC
ACAACATACG
TCACATTAAT
TGCATTAATG
CTTCCTCGCT
ACTCAAAGGC
GAGCAAAAGG
ATAGGCTCCG
ACCCGACAGG
VI'GTTCCGAC
CGCTTTCTCA
TGGGCTGTGT
GTCTTGAGTC
GGATTAGCAG
ACGGCTACAC
GAP.AAAGAGT
TTGTTTGCAA
TTTCTACGGG
GATTATCAAA
TCTAAAGTAT
CTATCTCAGC
TAACTACGAT
CACGCTCACC
GAAGTGGTCC
GAGTAAGTAG
TGGTGTCACG
GAGTTACATG
TTGTCAGAAG
CTCTTACTGT
CATTCTGAGA
CTTTAATAGT
TTTTGATTTA
ACAAAAATTT
CCAGGCTCCC
AGTCCCGCCC
GCCCCATGGC
GCTATTCCAG
ACAGCTCAGG
GGATTTTATC
AAATATGGGG
GTACTTCCAA
GGGTAGGAAA
TATAGTTCTC
TTTGGATGAT
TTGGATAGTC
ACTCTTTGTG
TTTGGGGAAA
AAAAGGCATC
CAAGTTCTCT
GCTTTAGATC
CCTACAGAGA
CTACTGATTC
CAGTGGTGGA
GATGATGAGG
GAAGACCCCA
AATAGAACTC
AAGAAA-ATTA
AACATACTGT
CAAAAATTGT
TATAGTGCCT
TTTAAAAAAC
TGTTAAkCTTG
CACAAATAAA
ATCTTATCAT
CTTCGCCCAC
CACAAATTTC
CATCAATGTA
ATGGTCATAG
AGCCGGikAGC
TGCGTTGCGC
AATCGGCCAA
CACTGACTCG
GGTAATACGG
CCAGCAAAPAG
CCCCCCTGAC
ACTATAAAGA
CCTGCCGCTT
ATGCTCACGC
GCACGAACCC
CAACCCGGTA
AGCGAGGTAT
TAGAAGGACA
TGGTAGCTCT
GCAGCAGATT
GTCTGACGCT
AAGGATCTTC
ATATGAGTAA
GATCTGTCTA
ACGGGAGGGC
GGCTCCA.GAT
TGCAACTTTA
TTCGCCAGTT
CTCGTCGTTT
ATCCCCCATG
TAAGTTGGCC
CATGCCATCC
ATAGTGTATG
GGACTCTTGT
TAAGGGATTT
AACGCGAATT
CAGGCAGGCA
CTAACTCCGC
TGACTAATTT
AAGTAGTGAG
GCTGCGATTT
CCCGCTGCCA
ATTGGCAAGA
AGAATGACCA
ACCTGGTTCT
AGTAGAGAAC
GCCTTAAGAC
GGAGGCAGTT
ACAAGGATCA
TATAAACTTC
AAGTATAAGT
GCTCCCCTCC
TCTTTGTGAA
TTTAAAGCTC
TAATTGTTTG
ATGCCTITTAA
CTACTGCTGA
AGGACTTTCC
TTGCTTCTT
TGGAAAAATA
TTTTTCTTAQ-
GTACCTTTAG
TGACTAG;ZA
CTCCCACACC
TTTATTGCAG
GCATTTTTTT
GTCTGGATCG
CCCAACTT-T
ACAAATA,4AG
TCTATCATG
CTGTTTCCTG
ATAAAC-TGTA
TCACTGCCCG
CGCGCGGGGA
CTGCGCTCG
TTATCCACAG
GCCAGGAACC
GAGCATCACA
TACCAGGCGT
ACCGGATACC
TGTAGGTATC
CCCGTTCAGC
AGACACGACT
GTAGGCGGTG
GTATTTGGTA
TGATCCGGCA
ACGCGCAGAA
CAGTGGAACG
ACCTAGATCC
ACTTGGTCTG
TTTCGTTCAT
TTACCATCT-
TTATCAGCAA
TCCGCCTCCA
AATAGTTTGC
GGTATGGCTT
TTGTGCAAAA
GCAGTGTTAT
GTAAGATGCT
CGGCGACCGA
2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 0O
S
S
S. St S S
S
*5SS
S*
S. S 55*555
S
t*5*
S
.55.
SSSSS
S
555555
S
*5 @5 5 5 S S 55 5 S S
S.
GTTGCTCTTG
TGCTCATCAT
GATCCAGTTC
CCAGCGTTTC
CGACACGGAA
AGGGTTATTG
GGGTTCCGCG
TAGGTGACCT
TTTATTTTAT
CAGTACAATC
GGAGGTCGCT
CAATTGCATG
CAGATATACG
ATTAGTTCAT
TGGCTGACCG
AACGCCAATA
CTTGGCAGTA
TAAATGGCCC
GTACATCTAC
TGGGCGTGGA
TGGGAGTTTG
CCCATTGACG
CTGGCTACT
GGAGACCCAA
CCCGGCGTCA
TGGAAAACGT
GATGTAACCC
TGGGTGAGCA
ATGTTGAATA
TCTCATGAGC
CACATTTCC
GAGGCGCGCC
TTTTGAGATG
TGCTCTGATG
GAGTAGTGCG
AAGAATCTGC
CGTTGACATT
AGCCCATATA
CCCAACGACC
GGGACTTTCC
CATCAAGTGT
GCCTGGCATT
GTATTAGTCA
TAGCGGTTTG
TTTTGGCACC
CAAATGGGCG
AGAGAACCCA
GCTT
ATACGGGATA ATACCGCGCC TCTTCGGGGC GAAAACTCTC ACTCGTGCAC CCAACTGATC AAAACAGGAA GGCAAAATGC CTCATACTCT TCCTTTTTCA GGATACATAT TTGAATGTAT CGAAAAGTGC CACCTGAcCCT GGCTTCGAAT AGCCAGAGTA GAGTTTGGCG CCGATCTCCC CCGCATAGTT AAGCCAGTAT CGAGCAAAAT TTAAGCTACA TTAGGGTTAG GCGTTTTGCG GATTATTGAC TAGTTATTAA TGGAGTTCCG CGTTACATA CCCGCCCATT GACGTCAATA ATTGACGTCA ATGGGTGGAC ATCATATGCC AAGTACGCCC ATGCCCAGTA CATGACCTTA TCGCTATTAC CATGGTGATG ACTCACGGGG ATTTCCAAGT AAAATCAACG GGACTTTCCA GTAGGCGTGT ACGGTGGGAG CTGCTTACTG GCTTATCGAA
ACATAGCAGA
AAGGATCTTA
TTCAGCATCT
CGCAAAAAAG
ATATTATTGA
TTAGAAAAAT
CGACGGATCG
ACCTTTTTTT
GATCCCCTAT
CTGCTCCCTG
ACAAGGCAAG
CTGCTTCGCG
TAGTAATCAA
CTTACGGTAA
ATGACGTATG
TATTTACGGT
CCTATTGACG
TGGGACTTTC
CGGTTTTGGC
CTCCACCCCA
AAATGTCGTA
GTCTATATAA
ATTAATACGA
ACTTTAAAAG
CCGCTGTTGA
TTTACTTTCA
GGAATAAGGG
AGCATTTATC
AAACAAATAG
GGAGATCrGC
TTAATTTTAT
GGTCGACTCT
CTTGTGTGTT
GCTTGACCGA
ATGTACGGGC
TTACGGGGTC
ATGGCCCGCC
TTCCCATAGT
AAACTGCCCA
TCAATGACGG
CTACTTGGCA
AGTACATCAA
TTGACGTCAA
ACAACTCCGC
GCAGAGCTCT
CTCACTATAG
6540 6600 6660 6720 6780 6840 6900 6960 7020 7080 7140 7200 7260 7320 7380 7440 7500 7560 7620 7680 7740 7800 7860 7874 INFORMATION FOR SEQ ID NO:24: SEQUENCE CHARACTERISTICS: LENGTH: 119 amino acids TYPE: amino acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: Val Gln Letu Val Glu Ser Gly Leu Arg Leu Ser Cys Ala Ala Gly Gly 10 Ser Gly 25 Pro Gly ile Thr Leu Val GIn Pro Phe Pro Phe Ser Lys Gly Leu Giu Asp Tyr Ala Asp Gly Asp Trp Tyr Met Tyr Ser Tvr Ile Trp Val Arg Gin Ala 40 Ser Gin Asp Gly Asp Ser Val 0@ a. a 0@O@ 0 S. 00 S 0 ~0 a. 0 45 Lys 65 Leu Arg Phe Thr Ile Ser Arg Asp Asn Ala 70 75 Leu Arg Asp Glu Asp Thr Lys Asn Ser Leu Ala Val Tyr Tyr Gin Met Asn Ty r Cys Gly Ala Arg Gly Leu 50 100 Thr Leu Val Thr 115 Asp Gly Ala Ala Tyr Trp Gin Val Ser Ser INFORMATION FOR SEQ ID SEQUENCE CHARACTERISTICS: LENGTH: 330 amino acids TYPE: amino acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 0O a@ 0 S 6 S. S
OS
a.
Se r Phe Gly Leu Tyr Lys Pro Lys Val1 145 Tyr Giu His Lys Gin.
225 Leu Pro As n Leu Val1 305 Gin Thr Ser Pro Glu Val His Ser Ser Ile Cys Val Giu Ala Pro 115 Pro Lys 130 Val Val Val Asp Gin Tyr Gin Asp 195 Ala Leu 210 Pro Arg Thr Lys Ser Asp Tyr Lys 275 Tyr Ser 290 Phe Ser Lys Ser Gly Gly Pro Val Thr Phe Val Val Asn Val 85 Pro Lys 100 Glu Leu Asp Thr Asp Vai Gly Val 165 Asn Ser 180 Trp Leu Pro Ala Giu Pro Asn G 1.n 245 Ile Ala 260 Thr Thr Lys Leu Cys Ser Leu Ser 325 Ala Se r 40 Val1 Pro Lys Asp Gly 120 Ile Giu His Arg Lys 200 Giu Tyr Leu T rp Val1 280 Asp His Pro Leu Gly 25 Trp Asn Leu Gin Ser Ser Pro Ser 90 Lys Thr 105 Pro Ser Ser Arg Asp Pro Asn Aia 170 Vai Val 185 Glu Tyr Lys Thr Thr Leu Thr Cys 250 Giu Ser 265 Leu Asp Lys Ser GIu Ala Gly Lys 330 Cys Ser Ser Ser 75 Asn His Val Thr Giu 155 Lys Ser Lys Ile Pro 235 Leu Asn Ser Arg Leu 315 Leu Gly Ser 60 Leu Thr Thr Phe Pro 140 Val Thr Val1 Asp Ser 220 Pro Val Gly Asp T rp 300 His Ty r Ser Se r Thr Lys Cys Pro Cys T rp 160 Giu Leu Asn Gly Giu 240 Tyr As n ?he Asn Thr 320 INFORMATION FOR SEQ ID \0:26: 000.
0000* Ala 1 Ser ?he Gly Leu 65 Tyr Lys SEQUENCE CHARACTERISTICS: LENGTH: 220 amino acids TYPE: amino acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID Ser Thr Lys Gly Pro Ser Val Phe Pro 5 Thr Ser Gly Giy Thr Aia Ala Leu Gly 25 Pro Giu Pro Val Thr Val Ser Trp Asn 40 Val His Thr Phe Pro Ala Val Leu Gin 50 55 Ser Ser Val Val Thr Vai Pro Ser Ser 70 Ile Cys Asn Val Asn His Lys Pro Ser 85 Val Giu Pro Lys Ser Cys Asp Lys Thr 100 105 NO: 2 6: Leu Ala Cys Leu Ser Gly Ser Ser Ser Leu Asn Thr His Thr Pro Gly Gin Pro Arg Giu Pro Gin Val Tyr Thr Leu Pro Pro Ser Arg 115 120 125 Asp Giu Leu Thr Lys Asn Gin Val Ser Leu Thr Cys Leu Val Lys Gly 130 135 140 Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gin Pro 145 150 155 160 Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 165 170 175 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gin Gin 180 185 190 Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 195 200 205 Tyr Thr Gin Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220 INFORMATION FOR SEQ ID NO:27: SEQUENCE CHARACTERISTICS: LENGTH: 339 amino acids TYPE: amino acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: Giu Val Asn Leu Val Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 1 5 10 Ser Leu Lys Val Ser Cys Val Thr Ser Gly Phe Thr Phe Ser Asp Tyr 25 Tyr Met Tyr Trp Val Arg Gin Thr Pro Glu Lys Arg Leu Glu Trp Val 40 Ala Tyr Ile Ser Gin Gly Gly Asp Ile Thr Asp Tyr Pro Asp Thr Val 50 55 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 7 0 75 Leu Gin Met Ser Arg Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys 90 Ala Arg Gly Leu Asp Asp Gly Ala Trp Phe Ala Tyr Trp Gly Gin Gly 100 105 1.10 Thr Leu Val Thr Val Ser Val Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140 Gly Cys Leu Val Lys Asp Tyr Phe Pro Giu Pro Val Thr Val Ser Trp 145 150 155 160 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Vai Val Thr Val Pro Ser *180 185 190 *Ser Ser Leu Gly Thr Gin Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 215 220 Thr His Thr Cys Pro Pro Cys Pro Gly Gin Pro Arg Glu Pro Gin Val *225 230 235 240 Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gin Val Ser 245 250 255 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Vai Glu *260 265 270 Trp Glu Ser Asn Gly Gin Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 275 280 285 *Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 290 295 300 Asp Lys Ser Arg Trp Gin Gin Gly Asn Val Phe Ser Cys Ser Val Met *305 310 315 320 :68 His Glu Ala Leu His Asn His Tyr Thr Gin Lys Ser Leu Ser Leu Ser 325 330 335 Pro Gly Lys 69

Claims (13)

  1. 21-- 0aiim Ifinin JTi Irrti~c Are As RO1kQ, 1. A method of inhibiting immunoglobulin-induced toxicity resulting from immunoglobulin immunotherapy in a subject comprising a9 administering an immunoglobulin molecule to the subject, the immunoglobulin molecule having a variable region and a constant region, the immunoglobulin molecule being modified prior to administration by structurally altering multiple toxicity-associated domains in the constant regions of the immunoglobulin so that immunoglobulin-induced toxicity is inhibited, the modified immunoglobulin molecule including at least a portion of the Fc region that is lacking in F(ab') 2 or Fab fragments. 2. The method of claim 1 wherein the multiple toxicity associated domains in the constant region are modified so as to render the constant region unable to mediate an ADCC response or activate complement. 3. A method for inhibiting immunoglobulin-induced toxicity resulting from immunotherapy in a subject comprising administering an Ig fusion protein to the subject, the Ig fusion protein having multiple structurally altered Stoxicity-associated domains in the constant region, .the Ig fusion protein being derived from an IgGI immunoglobulin molecule and including at least a portion of the Fc region that is lacking in F(ab') 2 or Fab fragments. 25 4. The method of claim 3 wherein the multiple structurally altered toxicity associated domains are located within the CH 2 domain. The method of claim 1 wherein the method prevents immunoglobulin-induced toxicity resulting from immunotherapy for a disease, and 30 the antibody is administered to the subject under conditions such that the structurally altered immunoglobulin recognizes and binds a target, thereby alleviating symptoms associated with the disease. 6. The method of claim 4 wherein immunoglobulin-induced toxicity resulting from immunotherapy for a disease is prevented, the Ig fusion protein administered is selected to recognize and bind the target, the target being associated with a disease, and the structurally altered Ig fusion protein is administered to the subject under conditions that the structurally altered Ig fusion protein recognizes and binds the target, thereby alleviating symptoms associated with the disease. 7. The method of claim 1, 2, 3, or 5, wherein the portion of the constant region that is structurally altered is the CH 2 domain. 8. The method of claim 1 or 5, wherein the immunoglobulin molecule is IgG. 9. The method of claim i or 5, wherein the immunoglobulin molecule is IgM. The method of claim 1 or 5, wherein the immunoglobulin molecule is IgA. 11. The method of claim 2, wherein the antibody recognizes and 25 binds to the antigen Le y 12. The method of claim 2, wherein the antibody recognizes and binds to the antigen Lex. 13. The method of claim 2 wherein the antibody administered is an antibody modified from a monoclonal antibody having the amino acid sequence 71 of the antibody BR96, produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC. 14. The method of claim 2, wherein the antibody administered is an antibody modified from an antibody having the amino acid sequence of chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC. The method of claim 1 or 5, wherein the immunoglobulin recognizes and binds to the antigen Le y 16. The method of claim 1 or 5, wherein the immunoglobulin recognizes and binds to the antigen Lex. 17. The method of claim 1 or 5, wherein the immunoglobulin is an antibody modified from a monoclonal antibody having the amino acid sequence of monoclonal antibody BR96 produced by the hybridoma having the identifying characteristics of HB 10036 as deposited with the ATCC. 18. The method of claim 1 or 5, wherein the immunoglobulin is an antibody modified from a chimeric antibody having the amino acid sequence of ChiBR96 produced by the hybridoma having the identifying characteristics of HB10460 as deposited with the ATCC. 19. The method of claim 3, 4, or 6, wherein the Ig fusion protein recognizes and binds to the antigen Le y 20. The method of claim 3, 4, or 6, wherein the Ig fusion protein recognizes and binds to the antigen Lex o* 21. The method of claims3, 4, or 6, wherein the Ig fusion protein has an amino acid sequence altered from the amino acid sequence of a monoclonal 72 antibody BR96 produced by the hybridoma having the identifying characteristics of HB10036 as deposited with the ATCC by one or more conservative amino acid substitutions, the conservative amino acid substitutions being selected from the group consisting of: any of isoleucine, valine, and leucine for any other of these hydrophobic amino acids; aspartic acid for glutamic acid and vice versa; (3) glutamine for asparagine and vice versa; and serine for threonine and vice versa.
  2. 22. The method of claim 3, 4, or 6, wherein the Ig fusion protein has ah amino acid sequence altered from the amino acid sequence of chimeric antibody ChiBR96 produced by the hybridoma having the identifying characteristics of HB 10460 as deposited with the ATCC by one or more conservative amino acid substitutions, the conservative amino acid substitutions being selected from the group consisting of: any of isoleucine, valine, and leucine for any other of these hydrophobic amino acids; aspartic acid for glutamic acid and vice versa; (3) glutamine for asparagine and vice versa; and serine for threonine and vice versa.
  3. 23. A pharmaceutical composition comprising a pharmaceutically effective amount of a structurally altered immunoglobulin and an acceptable carrier, wherein the structurally altered immunoglobulin: recognizes and binds a target associated with cancer and has a CH2 domain altered to inhibit immunoglobulin- induced toxicity resulting from administration of the immunoglobulin in the pharmaceutical composition.
  4. 24. A pharmaceutical composition comprising a pharmaceutically 25 effective amount of a structurally altered Ig fusion protein and an acceptable carrier, wherein the structurally altered Ig fusion protein: recognizes and binds a target associated with cancer and has a CH2 domain altered to inhibit immunoglobulin- induced toxicity resulting from administration of the structurally altered fusion protein. 73 A method of blocking or inhibiting the growth of carcinomas in vivo comprisingapd'administering to a subject a pharmaceutically effective amount of the composition of claim 23 or 24.
  5. 26. The composition of claim 23, wherein the immunoglobulin in the composition is labeled so as to directly or indirectly produce a detectable signal with a compound selected from the group consisting of a radiolabel, an enzyme, a chromophore, a chemiluminescer, and a fluorescer.
  6. 27. The composition of claim 24, wherein the Ig fusion protein in the composition is labeled so as to directly or indirectly produce a detectable signal with a compound selected from the group consisting of a radiolabel, an enzyme, a chromophore, a chemiluminescer, and a fluorescer.
  7. 28. The method of claim 2 or 5, wherein the antibody is conjugated to a cytotoxic agent.
  8. 29. The method of claim 1, wherein the immunoglobulin is conjugated to a cytotoxic agent. The method of claim 3, 4, or 6, wherein the Ig fusion protein is conjugated to a cytotoxic agent.
  9. 31. The method of claim 28, 29, or 30, wherein the cytotoxic 25 agent is selected from the group consisting of alkylating agents, anthracyclines, antibiotics, and anti-mitotic agents.
  10. 32. A method for killing cancer cells, the cancer cells being characterized as a group of cells having a tumor associated antigen on their cell surface, which method comprises of administering to a subject harboring the cancer an amount of the composition of claim 23 or 24 joined to a Eytotoxic agent in an S* amount sufficient to kill cancer cells under conditions that permit the molecule so 74 L_ A plasmid which comprises a nucleic acid molecule of claim s
  11. 48.
  12. 51. A host vector system comprising the plasmid of claim 50 in a suitable host cell.
  13. 52. A method for producing a protein comprising allowing the host cell of the host vector system of claim 50 to replicate under conditions that the protein encoded by the plasmid of claim 50 is expressed so as to produce the protein in the host and then recovering the protein so produced. DATED: 23 November 2001 PHILLIPS CRMONDE FITZPATRICK Attorneys for: BRISTOL-MYERS SQUIBB COMPANY MAE JOANNE RSOK a .o C...0 oC... o4 a. 4e 'eeg C•
AU93406/01A 1996-08-02 2001-11-23 A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis Ceased AU775429B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60023033 1996-08-02
PCT/US1997/013562 WO1998005787A1 (en) 1996-08-02 1997-08-01 A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
AU39688/97A AU3968897A (en) 1996-08-02 1997-08-01 A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU39688/97A Division AU3968897A (en) 1996-08-02 1997-08-01 A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis

Publications (2)

Publication Number Publication Date
AU9340601A true AU9340601A (en) 2002-01-17
AU775429B2 AU775429B2 (en) 2004-07-29

Family

ID=32739134

Family Applications (1)

Application Number Title Priority Date Filing Date
AU93406/01A Ceased AU775429B2 (en) 1996-08-02 2001-11-23 A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis

Country Status (1)

Country Link
AU (1) AU775429B2 (en)

Also Published As

Publication number Publication date
AU775429B2 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
WO1998005787A1 (en) A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
WO1998005787A9 (en) A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
CA2464239C (en) Psma antibodies and protein multimers
CN101553506B (en) Lingo binding molecules and pharmaceutical use thereof
CA2612762C (en) Psma antibody-drug conjugates
US20040161776A1 (en) PSMA formulations and uses thereof
KR102587838B1 (en) Hybrid immunoglobulin containing non-peptidyl linkage
DK2395018T3 (en) HUMAN BINDING MOLECULES with killer activity against staphylococci and uses thereof
FI119374B (en) Recombinant IL-5 Antagonists Useful in the Treatment of IL-5 Related Diseases
KR100511544B1 (en) Recombinant il-5 antagonists useful in treatment of il-5 mediated disorders
WO1997048418A1 (en) Improved method for treatment and diagnosis of il-5 mediated disorders
TW202216777A (en) Tetrahedral antibodies
AU775429B2 (en) A method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
CN116745416A (en) Compositions and methods for controlled protein degradation in neurodegenerative diseases