AU785322B2 - Antioxidant enhancement of therapy for hyperproliferative conditions - Google Patents

Antioxidant enhancement of therapy for hyperproliferative conditions Download PDF

Info

Publication number
AU785322B2
AU785322B2 AU52761/02A AU5276102A AU785322B2 AU 785322 B2 AU785322 B2 AU 785322B2 AU 52761/02 A AU52761/02 A AU 52761/02A AU 5276102 A AU5276102 A AU 5276102A AU 785322 B2 AU785322 B2 AU 785322B2
Authority
AU
Australia
Prior art keywords
acid
mono
ester
cells
hydrochloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU52761/02A
Other versions
AU5276102A (en
Inventor
Daniel R. Beauchamp
Rebecca Chinery
Robert J. Coffey
Russell M Medford
Brian Wadsinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atherogenics Inc
Original Assignee
Atherogenics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atherogenics Inc filed Critical Atherogenics Inc
Priority to AU52761/02A priority Critical patent/AU785322B2/en
Publication of AU5276102A publication Critical patent/AU5276102A/en
Application granted granted Critical
Publication of AU785322B2 publication Critical patent/AU785322B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

AUSTRALIA
Patents Act 1990 ATHEROGENICS, INC.
COMPLETE SPECIFICATION STANDARD PATENT Invention Title: ANTIOXIDANT ENHANCEMENT OF THERAPHY FOR HYPERPROLIFERATIVE CONDITIONS The following statement is a full description of this invention, including the best method of performing it known to us: 141360998 ANTIOXIDANT ENHANCEMENT OF THERAPY FOR HYPERPROLIFERATIVE
CONDITIONS
This application is a divisional of AU-82827/98, the entire contents of which is incorporated herein.
This invention was developed in part using funds from the federal government under National Institute of Health grant Nos. CA4613 and GM53319 and CA-69457. The United States government, therefore, has certain rights in this invention.
Field of the Invention This invention is in the field of medicinal chemistry, and more specifically, describes methods and compositions for antioxidant enhancement of therapy for hyperproliferative conditions.
BACKGROUND OF THE INVENTION A wide range of disorders involve the hyperproliferation of cells, ranging from psoriasis to benign and malignant tumors. These disorders are generally caused by a loss of control over normal cell growth, differentiation, or the process of programmed cell death (apoptosis). Many of the abnormalities that underlie these disorders, particularly cancer, occur at the genetic level. Antineoplastic agents (also known as cytotoxic agents) are often used in the treatment of hyperproliferative conditions.
Therapy with antineoplastic agents is successful in the treatment of a number of malignant conditions; however, in most it is used to palliate the symptoms and to prolong life in patients with advanced disease. Two groups of drugs used in the treatment of hyperproliferative conditions are antimetabolites and alkylating agents.
Antimetabolites can be subdivided into folic acid, purine, and pyrimidine derivatives.
In addition, several natural products, or their derivatives, have been used as mitotic inhibitors. These include vinca alkaloids, and the derivatives of podophyllotoxin.
There remains an effort in the research community to understand the genetic basis for abnormal cell hyperproliferation, which can vary among its various manifestations, and to develop therapeutic methods to successfully treat these serious conditions.
For about four decades, the antimetabolite 5-fluorouracil and nucleosides which include this base 5-fluoro-2'-deoxyuridine or FdUrd), have remained among the few "standard" drugs effective against solid tumors in man. Fluorouracil is used mainly for the treatment of colorectal, ovarian, renal, breast and head and neck cancers. 5-Fluoro-2'-deoxyuridine is used for the treatment of solid tumors, including hepatic metastases of advanced gastrointestinal adenocarcinomas, renal cell carcinomas, advanced ovarian cancer, and squamous cell carcinomas of the head and neck. The clinical utility of the fluoropyrimidines is limited by the hosttoxicity induced by the administration of these compounds. Manifestations of the host-toxicity of the fluoropyrimidines include mainly gastrointestinal epithelial ulceration, myelosuppression and, to a lesser extent, cardiotoxicities, hepatotoxicities and neurotoxicities.
A population of cancer patients is intolerant to treatment with and 5-fluoro-2'-deoxyuridine. The intolerance to 5-fluorouracil was initially attributed to a deficiency or low activity of dihydrouracil dehydrogenase (DHUDase, EC the first enzyme in the catabolic pathway of 5-fluorouracil. However, it appeared that not all intolerant patients showed reduced dihydrouracil dehydrogenase 2 activities. Moreover, it has also been shown that cancers, treated with fluoropyrimidines, become resistant, develop tolerance towards these drugs.
Colorectal cancer (CRC) is a multi-step process resulting from the accumulation of mutations in clonal populations of colonocytes. Mutations of the p53 tumor suppressor gene are a relatively late, yet common event in the pathogenesis of colorectal cancer, occurring in over 80% of late adenomas and carcinomas (Fearon, et al., FASEB J. 6, 2789 (1992); Srivastarva, et al., Contemp. Oncol. April 63 (192); Kline, et al., Cancer (Phila. 73, 28 (1994). Conventional therapy for advanced disease, such as cytotoxic chemotherapy and gamma-irradiation, induce DNA damage in proliferating cells. This damage, through undefined mechanism(s), signals the induction of p53, which, in turn, leads to inhibition of cellular proliferation by induction of G, cell cycle arrest and, in some instances, apoptosis. Thus, tumors lacking functional p53 are frequently refractory to such therapies Righetti et al., Cancer Res. 56, 689 (1996); J. S. Kovack et al., Proc. Natl. Acad, Sci. U.S.A. 93, 1093 (1996)), emphasizing the importance of developing treatments for advanced colorectal cancer that do not rely on functional p53.
The most effective single chemotherapeutic agent for advanced colorectal cancer to date remains 5-FU. The active metabolite of 5-FU, monophosphate (FdUMP), forms a complex with thymidylate synthase (TS) in the presence of reduced folate, thereby inhibiting enzyme activity, and depleting precursors for DNA synthesis. 5-FU is also incorporated into RNA, altering its processing and function, although how this correlates with cytotoxicity is unknown.
3 Previous data suggest that 5-FU can utilize both p 5 3-dependent and independent pathways (Pritchard, et al., Pharmacol. Ther. 72, 149 (1996)), although a loss of p53 function dramatically reduces 5-FU efficacy Cohen et al., Cancer (Phila.) 67, 1859 (1991); Advanced Cancer Meta-Analysis Project, J. Clin. Oncol. 10, 896 (1992)).
In view of the lack of successful treatments for many hyperproliferative conditions, it would be of benefit both to identify important biological pathways which mediate the loss of normal cell function, including programmed cell death apoptosis), and to identify compositions and methods for the treatment of these disorders.
U.S. Patent Nos. 5,035,878 and 5,294,430 disclose that dithiocarbamates can reverse the damage to the blood-forming function of the bone marrow (myelosuppression) caused by treatment with antineoplastic agents.
It is therefore an object of the invention to provide a method and composition for the treatment of abnormal cell proliferative conditions, including benign and malignant tumors.
It is another object of the present invention to provide a method and composition for the treatment of colon cancer.
It is a further object of the present invention to provide a method and composition for the treatment of solid tumors.
It is yet another object of the present invention to provide a method and composition for the treatment of diffuse tumors.
sL'LkRY OF TE E INVhT ot a tbe discovenr'd uhat antoxidants, including zhose c zfc~i icoe here-in, iriduce ei cycle arrestk G2, S and Nf type), and thus art uiseful to enihance the efficacy of aritineonlas-tic drugs for tfr treatment of abnormal czll proliferation.
one embodiment, thercforc, the invention is a method to enrhance the cytotoxic activity of an antineoplastic drug comnprisilng- admiisterig an effective amount of the antineoulastic drug, to a host exhibiting abnormal cell proliferation in combination with an effective cytotoxicity-increasing amount of an antioxidanL- It ha-s further been discovered that antioxidants not only induce cell cycle arrst, to but can cause the cell to maintain the state of arrest, and perhaps, induce apoptosis, by inhibiting enzymes which would otherwise turn off the process of cell cycle arrest- Importantly, it has also beenu discovered that not only do antioidants increase the cy-totox-iciry of antineoplastic agents to abnormally proLiferating cells, they also decrease the toxicity of antineoplastic agents to normal cells. Therefore, antioxidanits is both increase the effectiveness; and decrease the toxicity of antineoplastic agents. TFae palliative effect on normal cells is pronounced in epitheclial cells. It has, in particular, been discovered that antioxidants exhibit this effect on cells other than white blood cells, as previously reported by Borch in U.S. Patent Nos. 5,035,878 and 5,294,430.
A4 1 141458737 The present invention provides a use of an effective cytotoxicity-increasing amount of an antioxidant in combination with an effective amount of an antineoplastic drug in the preparation of a medicament for the treatment of a disorder of abnormal cell proliferation, wherein the antioxidant is selected from: a dithiocarbamate of the structure A-SC(S)-B, wherein A is physiologically cleavable leaving group selected from acyl, alkyl, phosphate, sulfate or sulfonate and B is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, haloalkyl, haloalkenyl, haloalkynyl, aryl, alkaryl, hydrogen, C 6 alkoxy-Cl.io alkyl, C., 6 allkmylthio-Cl.io alkyl, NR'R 3 wherein n is 0, 1, 2, 3, 4, 5 or 6, -(CH 2
),,CO
2
R
1
-(CH
2 )nCO 2
R
4 hydroxy(C, 6 alkenyl(CO2), alkynyl(COzH), or aryl, optionally substituted with a NO 2 CH3, t-butyl, CO 2 H, halo, or p- OH group; or R 2 and R 3 can together constitute a bridge such as -(CH 2 wherein m is 3, 4, 6, 7, 8, 9, or 10, and wherein R 4 is alkyl, aryl, alkaryl, or wherein B can be a heterocyclic or alkylheterocyclic group, which can be partially or totally hydrogenated; (ii) probucol and derivatives thereof (iii) N-acetylcysteine and derivatives thereof (iv) catalase pyruvate (vi) dithiothreitol (vii) 2-mercaptoethanol; and (viii) 2,6-dialkyl-4-silylphenol.
Another aspect of the invention is a use of an effective amount of an antioxidant to decrease the toxicity to an antineoplastic agent in the preparation of a medicament for the treatment of a solid growth of abnormally proliferating cells, wherein the medicament is 25 administered prior to, with, or following antineoplastic treatment, wherein the antioxidant is selected from: a dithiocarbamate of the structure A-SC(S)-B, wherein A is physiologically cleavable leaving group selected from acyl, alkyl, phosphate, sulfate, or sulfonate and B is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, haloalkyl, haloalkenyl, haloalkynyl, aryl, alkaryl, hydrogen, CI- 6 alkoxy-CI.o 1 alkyl, C 1 6 allkmylthio-C.
1 0 o alkyl, NR 2
R
3 wherein n is 0, 1, 2, 3, 4, 5, or 6, -(CH 2 )nCO 2
-(CH
2
),CO
2
R
4 hydroxy(C 6 alkenyl(CO 2 alkynyl(CO 2 or aryl, optionally substituted with a NO 2 CH3, t-butyl, CO 2 H, halo, or p- OH group; or R 2 and R 3 can together constitute a bridge such as wherein m is 3, Sa 141458737 4, 5, 6, 7, 8, 9, or 10, and wherein R 4 is alkyl, aryl, alkaryl, or wherein B can be a heterocyclic or alkylheterocyclic group, which can be partially or totally hydrogenated; (ii) probucol and derivatives thereof (iii) N-acetylcysteine and derivatives thereof (iv) catalase pyruvate (vi) dithiothreitol (vii) 2-mercaptoethanol; and (viii) 2,6-dialkyl-4-silylphenol.
A further aspect of the invention is a use of an effective amount of an antioxidant to increase the therapeutic index of an antineoplastic agent in the preparation of a medicament for the treatment of a solid growth of abnormally proliferating cells, wherein the medicament is administered prior to, with, or following antineoplastic treatment, and wherein the antioxidant is selected from: a dithiocarbamate of the structure A-SC(S)-B, wherein A is physiologically cleavable leaving group selected from acyl, alkyl, phosphate, sulfate or sulfonate and B is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, haloalkyl, haloalkenyl, haloalkynyl, aryl, alkaryl, hydrogen, C.
6 alkoxy-Ci-,, alkyl, C-. allkmylthio-Ci.- 1 alkyl, NR'R 3
(CHOH),CH
2
OH,
wherein n is 0, 1, 2, 3, 4, 5, or 6, -(CH 2
),CO
2
-(CH
2
),,CO
2
R
4 hydroxy(C.
6 alkenyl(CO), alkynyl(CO 2 or aryl, optionally substituted with a NO 2
CH
3 t-butyl, CO 2 H, halo, or p- OH group; or R 2 and R 3 can together constitute a bridge such as -(CH 2 wherein m is 3, 4, 6, 7, 8, 9, or 10, and wherein R 4 is alkyl, aryl, alkaryl, or wherein B can be a heterocyclic or S..alkylheterocyclic group, which can be partially or totally hydrogenated; (ii) probucol and derivatives thereof (iii) N-acetylcysteine and derivatives thereof (iv) catalase pyruvate (vi) dithiothreitol (vii) 2-mercaptoethanol; and (viii) 2,6-dialkyl-4-silylphenol.
e 141458737 The invention also includes a method to decrease the toxicity of an antineoplastic agent administered for the treatment of a solid growth of abnormally proliferating cells, comprising administering an antioxidant prior to, with, or following the antineoplastic treatment, as well as a method to increase the therapeutic index of o* an antineoplastic agent administered for the treatment of a solid growth of abnormally proliferating cells, comprising administering an antioxidant prior to, with, or following the antineoplastic treatment.
At least in certain cell lines, it has been discovered that antioxidants increase the cytotoxicity of antineoplastic drugs by affecting a post translational modification of C/EBPP (CCAAT/Enhancer Binding Protein (C/EBP) also known as NF_IL6, AGP/EBP, LAP, IL-6DBP, rNFIL6, and CRP2(5-11)), which is a member of a diverse group of nuclear transcription factors that contain a leucine zipper motif required for dimer formation and a basic DNA binding domain which facilitates the interactions between these factors and the regulatory domains of promoters and/or enhancers of target genes. C/EBP[ activates several acute-phase protein genes through the NF_IL6 responsive elements, implying that it has a nuclear target(s).
C/EBPP also has been shown to be responsible for the regulation of genes encoding albumin, c-fos, and several adipocyte-specific proteins. Furthermore, C/EBP3 has been implicated in the activation of various genes involved in inflammatory and immune responses, including the interleukin-1 (IL-1) and interleukin-8 (IL-8), granulocyte macrophage/colony-stimulating factor, and immunoglobulin genes. Thus, C/EBPP is a pleiotropic transactivator involved in a myriad of signal transduction and cell differentiation events.
In one pathway which may not be exclusive, it has been discovered that antioxidants increase the cytotoxicity of antineoplastic drugs through a cascade of events that include: increasing the level of cAMP, which causes the activation of 6 protein kinase A, an enzyme which phosphorylates C/EBPp, which on phosphorylation is then translocated from the cytosol to the nucleus of the cell wherein it mediates the induction of p21, which causes an arrest of cell growth; and (ii) preventing the dephosphorylation of C/EBP3 in the nucleus (and thus deactivation and delocalization) through the inhibition of protein phosphatase 2A (PP2A). The inhibition of PP2A activity is caused by a decrease in methyltransferase activity, an enzyme which carboxymethylates the catalytic subunit of PP2A, which is involved in maintaining PP2A in an active form. Decreased methylcarboxylation results in decreased PP2A enzymatic dephosphorylation of C/EBPP as a substrate. By simultaneously inducing the phosphorylation of C/EBP3 and inhibiting the dephosphorylation of C/EBPp, antioxidants maintain C/EBPP in an active state in the nucleus of the cell, which induces the continued expression of a cyclin-dependent kinase inhibitor, p21WAF l
/CIP
l and subsequent cell cycle arrest.
Therefore, more generally, the invention includes a method for increasing the localization of the C/EBPp protein in the nucleus of a cell that includes the step of administering an antioxidant to the interior of the cell. It has been discovered that this method maintains the C/EBPP protein in an active, phosphorylated state, which induces cell growth arrest and apoptosis.
As one nonlimiting example, the present invention demonstrates that compounds exhibiting antioxidant properties (for example, pyrrolidinedithiocarbamate ("PDTC") and the vitamin E analogue, Trolox®) decrease DNA replication in human colorectal cancer cells by the induction of GI cell cycle arrest and/or apoptosis.
However, antioxidant compounds have no effect on normal human colonocytes, keratinocytes or mammary epithelial cells (see Table Cell cycle perturbations were more pronounced in colorectal cancer cells expressing mutant p53 compared to wild type p53. Induction of cell cycle arrest and apoptosis correlated with sustained induction of the cyclin-dependent kinase inhibitor, p21 W^FICIP. Treatment with antioxidants in combination with 5-FU significantly reduced anchorage-independent colorectal cancer cell growth. Furthermore, antioxidants alone significantly reduced growth of established colorectal cancer tumors in athymic mice, and the combination of 5-FU and antioxidant either arrested tumor growth (Trolox®) or caused tumor regression (pyrrolidinedithiocarbamate).
DKO-I cells (a human colorectal cancer cell line) constitutively expressing an epitope-tagged C/EBPB protein were used to further investigate whether a posttranslational modification (phosphorylation) of C/EBPB is responsible for the observed increase in C/EBPB activity. In vivo labeling with ["P]orthophosphate followed by immunoprecipitation revealed a four to six fold increase in the phosphorylation of epitope tagged C/EBPB in response to PDTC or forskolin (3R- 3 a,4ap,5p,6p.6aa, 10a, 10ap, -5-(acetyloxy)-3-ethenyldodecahydro-6,10,1 Ob-trihydroxy-3,4a,7,7,1 a-pentamethyl- 1H-naphtho[2,1-b]pyran-l-one) with no change in the amount of protein. As a means of mapping the in vitro phosphorylation site(s) within C/EBPB, deletion analysis of C/EBPB was performed. Truncated versions of C/EBPB that contained only the 160 or 200 COOH-terminal amino acids were poor substrates for PDTC-induced 8 phosphorylation, whereas mutant C/EBPB that contained the 305 COOH-terminal amino acids was phosphorylated by PDTC as efficiently as the full-length C/EBPB.
Closer inspection of the primary amino acid sequence between 236 and 305 revealed that this region contained a consensus PKA phosphorylation site (Arg-X-Ser 2 99 It appears that phosphorylation of Ser 99 of C/EBPB following activation of the cAMP-dependent protein kinase-mediated pathway, is critical for nuclear translocation of this protein and subsequent transactivation of genes in response to an altered intracellular redox status.
The deactivation of C/EBP8 in the nucleus occurs by dephosphorylation of this transcriptional factor by protein phosphatase 2A (PP2A). This enzyme is activated by carboxymethylation of the catalytic subunit of PP2A by methyltransferase. In further experiments, it was established that carboxymethylation of the catalytic subunit of protein phosphatase 2A is inhibited by PDTC as an exemplary antioxidant, and further that the loss of carboxymethylation is caused by an inhibition of activity of methyltransferase. These results support the fact that antioxidants prevent the dephosphorylation of C/EBPP in the nucleus (and thus deactivation) by protein phosphatase 2A (pp2A) by inhibition of methyltransferase which is involved in maintaining protein phosphatase 2A in an active form. Decreased methylcarboxylation results in decreased PP2A enzymatic dephosphorylation of C/EBPP as a substrate. It was further discovered that the evaluated antioxidants have little or no effect on protein phosphatase 1 (PP1).
BRIEF DESCRIPTION OF THE FIGURES The figures presented herein illustrate preferred embodiments of the invention and are not considered to limit the scope of the invention.
Figure 1A is a graph of the concentration of PDTC versus soft-agar forming units x 106 HCT 15 and HCT 116 cells (as a percent of control). The graph shows that pyrrolidinedithiocarbamate (PDTC) and vitamin E inhibit anchorage-independent growth in vitro. Soft-agar colony formation was measured by seeding HCT 116 or HCT 15 cells in soft agar supplemented with either medium alone (control), or increasing concentrations of pyrrolidinedithiocarbamate (25-200 RM) or vitamin E (0.1-10 mM). Colonies were scored at the end of 10 days incubation at 37°C. Values are representative of three experiments carried out in quadruplicate.
Figure 1B is a series of flow cytometric analyses that indicate that antioxidants induce G, cell cycle arrest and apoptosis in CRC cells. Unsynchronized HCT 116 or HCT 15 cells are grown either in the presence or absence of pyrrolidinedithiocarbamate (70 or vitamin E (3 mM). Twenty-four hours following antioxidant exposure, cells were harvested and flow cytometric analysis performed.
Figure IC is a bar graph of the hours after test compound treatment versus intracellular H 2 0, levels. Figure 1C illustrates the negative association between intracellular redox status and cell cycle perturbations. Changes in the intracellular redox status were determined by the measurement of endogenous H 2 0 2 levels.
Background fluorescence was subtracted from each reading. Values are expressed as corrected DHR mean per 104 cells s.e.m. The percentage of G, (circle) or apoptotic (TUNEL-positive: square) cells by flow cytometric analysis.
Figure 1D shows the effect of N-acetylcysteine, vitamin C and catalase on endogenous H 2 zO levels and cell cycle progression. HCT 15 cells were incubated with pyrrolidinedithiocarbamate (70 IiM), vitamin E (3 mM), N-acetylcysteine (50 gM) or vitamin C (200 tM) for 24 hours. Endogenous H 2 0 2 levels and cell cycle changes were measured as described in Figure 1C. In addition, cells were transiently transfected with an empty plasmid or an expression plasmid for human catalase and assayed 24 hours later as above. Values from cells transfected with the empty plasmid were subtracted from those obtained from the catalase-containing cells and were expressed as mean s.e.m. from duplicate dishes.
Figure IE shows that pyrrolidinedithiocarbamate and vitamin E augment or doxorubicin induced growth inhibition in vitro. HCT 116 and HCT 15 cells were seeded in soft agar as described above containing increasing concentrations of either 5-FU (5 X 10 8 -5 X 10-s M) or doxorubicin (1 X 10- 9 -1 X 10-6 in the presence or absence of pyrrolidinedithiocarbamate (70 g.M) or vitamin E (3 mM). Colonies were scored after 10 days and ICso values were calculated as the concentration of 5-FU or doxorubicin required to reduce basal colony formation by 50% Values are representative of three experiments carried out in quadruplicate.
Figure 2A is a graph and associated photographs of tumor-bearing mice which indicate that pyrrolidinedithiocarbamate and vitamin E enhance 5-FU efficacy in wild type p53 human CRC tumor xenografts. HCT 116 CRC cells were injected subcutaneously between the scapula of nu/nu mice. Once tumors reached approximately 150 mm 3 the animals either received weekly i.p. injections of pyrrolidinedithiocarbamate (70 tM) or vitamin E (3 mM), 5-FU (40 mg/kg) or saline, or both an antioxidant and 5-FU. Tumor volume was calculated weekly. The photograph shows the effect of indicated treatments on gross tumor size after 4 weeks of treatment.
Figure 2B is a graph of the weeks of treatment with various test materials versus tumor volume (mm 3 shows that the enhanced efficacy of pyrrolidinedithiocarbamate and 5-FU as primary treatment and as a salvage regimen for mutant p53 tumors. HCT 15-derived tumors were generated as described above.
Animals were then treated with pyrrolidinedithiocarbamate, in the presence or absence of 5-FU, for 3 weeks. At this point, treatments were discontinued in animals receiving the combined treatment of pyrrolidinedithiocarbamate and 5-FU for 2 months. All other treatment groups received both 5-FU and pyrrolidinedithiocarbamate for the remaining 3 weeks.
Figures 3A-3C show that pyrrolidinedithiocarbamate bypasses p53 to induce p21 WAFICIPI expression.
Figure 3A shows that p2 1 WA F
I/C
IP
I protein levels were increased in human CRC cells expressing functional (HCT 116) and mutant (HCT 15) p53 following pyrrolidinedithiocarbamate treatment. CRC cells were treated as indicted with pyrrolidinedithiocarbamate (70 uM) and subjected to Western blot analysis.
Figure 3B shows p53-independent induction of p21WAFl/CIP1 mRNA by pyrrolidinedithiocarbamate in human CRC cells. Exponentially growing, asynchronous human CRC cells were incubated in serum-containing medium with gM pyrrolidinedithiocarbamate. In addition, HCT 116 cells containing HPV16 E6 to target degradation of p53 were analyzed. Cells were collected at indicated time points and prepared for poly(A)' mRNA isolation. Samples (3 gg) were electrophoresed through a 1% formaldehyde/agarose gel and transferred onto nitrocellulose membranes. Northern blotting hybridization was performed at 43 °C with a "p_ labeled p21 WAF 1 c 0 P probe. IB15 is shown as a control for equivalent loading and transfer.
Figure 3C shows that antioxidant-induced apoptosis requires p21 WAFlCIPI expression. HCT 116 cells, containing either functional (p21 or deleted p2 1 WAFI/CIPI, were treated with the indicated concentrations of pyrrolidinedithiocarbamate or vitamin E for 24 hours and apoptosis was determined by TUNEL analysis. Values are expressed as percent TUNEL positive cells and represent mean s.e.m. of triplicate measurements.
Figure 4A shows that pyrrolidinedithiocarbamate induces p21 WAFt/ c I
P
transcriptional activity via the NF_IL6 consensus sequence. A 2.4 kilobase pair p21WAFI/CIPi promoter sequence and mutants were fused to a luciferase reporter gene.
TATA represents the p21 WAFclPI TATA box located 45 bp from the transcription start site (defined as -2280, -2198, -2078, -1838, -1428, and 1138 define 5' end points for terminal deletion constructs. The -2280 ANFIL6 construct contains the intact 13 promoter with a two base pair mutation at the NFIL6 site. All reporter constructs were transfected into HCT 116 or HCT 15 cells, and antioxidant-induced luciferase activity was measured in relative light units (RLU) after 24 hours. Luciferase activity was normalized to CAT activity, and results were reported as fold activation above basal levels.
Figure 4B shows that pyrrolidinedithiocarbamate treatment induces C/EBP3 DNA binding activity. Left panel: HCT 116 and HCT 15 cells were treated with gM pyrrolidinedithiocarbamate for the indicated times, nuclear extracts were incubated with a y-"P-labeled p21-NF_IL6 oligonucleotide. Right panel: Lanes 1-3, competition controls were performed on a nuclear extract derived from HCT 116 cells treated with pyrrolidinedithiocarbamate for 12 hours (lane with excess unlabeled wild-type (lane 2) and mutant (lane 3) oligonucleotide. Lanes 4-6, supershift analysis were performed with C/EBPa (lane P(lane or 6 (lane 6) polyclonal antibodies.
Figure 4C and D shows that C/EBP/ can stimulate p21
W
AF
l IP promoter activity. HCT 116 (Fig. C) or HCT 15 (Fig. D) cells were transfected with the indicated amounts of cytomegalovirus (CMV) expression plasmids, containing C/EBPar, P or 8 cDNAs, and 3 gg of p21WAFl/C I P t-luciferase. A control plasmid was included in Figure 4A.
Figure 4E shows that C/EBP[ regulates cellular sensitivity to antioxidantinduced apoptosis. Control HCT 15 cells and sense or antisense C/EBP3 cell lines were grown in the presence or absence of 10 P M muristerone A and/or pyrrolidinedithiocarbamate (70 pM) or vitamin E (3 mM) for 24 hours. The apoptotic 14 indices were estimated by the percentage of TUNEL-positive cells scored under a light microscope at 200-fold magnification and values are expressed as mean s.e.m. for triplicate samples. The inset shows a representative Western blot for p21 ^WAF/CPI protein levels in both transfected cell lines, grown in the presence or absence of 10 gM muristerone A.
Figure 4F shows that elevated C/EBP8 protein levels enhance chemotherapeutic agent cytotoxicity in vitro. Control HCT 15 cells and the sense C/EBP3 cell line were induced with 10 tM muristerone A and exposed to either gM) or doxorubicin (0.1 uiM) for 24 hours. The apoptotic index was calculated as described in Figure 4C.
Figures 5a and 5b are bar graphs of the growth of BrDU-labelled cells (percent of total cell nuclei; BrDU refers to bromodeoxyuridine) from colorectal cell xenografts derived from athymic mice treated with saline, vitamin E, PDTC, and the combination of vitamin E and 5-FU, as a measure of the effect of the test compound on proliferation of HCT 116 and HCT 15 cells.
Figures 6a and 6b are bar chart graphs of TUNEL-positive cells from colorectal cell xenografts derived from athymic mice (percent of total cell nuclei; TUNEL REFERS TO TdT-mediated dUTP-nick-end-labeling) treated with saline, vitamin E, PDTC, 5-FU, and the combination of vitamin E and 5-FU, as a measure of the effect of the test compound on apoptosis. Tumor tissues were fixed overnight in 4% paraformaldehyde and embedded in paraffin according to standard histological procedures. Sections were pretreated with 10 mM citrate buffer (pH and incubated with PC 10 monoclonal antibody against BrDU (Boehringer Mannheim). TdT labeling of fragmented DNA (TUNEL) was performed according to manufacturer's instructions. The proliferative index (percent of total BrDU cell nuclei) and the apoptotic index (TUNEL) were estimated by the percentage of cells scored under a microscope at 200-fold magnification.
Figures 7A-7D illustrate that PDTC treatment induces C/EBPB DNA binding activity via a post-translational modification. DKO-1 cell were treated with PDTC for the indicated times, nuclear extracts were prepared with a [y- 3 P]-labeled p21-NF_IL6 oligonucleotide (Lanes Specificity assays: Lanes 10-12, competition controls were performed on a nuclear extract derived from DKO-1 cells treated with PDTC for 3 hours (lane with excess unlabeled wild-type (lane 11) and mutant (lane 12) oligonucleotide. Lanes 13-15, supershift analyses were performed with C/EBPa (lane 13), P (lane 14), or 6 (lane 15) polyclonal antibodies. Parallel DKO-1 cell cultures were treated with PDTC (70 pM) for the indicated times.
Poly(A) was isolated and treatment-related variations in C/EBPP mRNA levels were evaluated by Northern blot analysis. IB15 is shown as a control for equivalent loading and transfer. Parallel DKO-1 cultures were treated with PDTC (704M) in the presence of [nP]orthophosphate. C/EBPP from cytosolic and nuclear fractions were purified by immunoprecipitation from cells before (time 0) or at the indicated times after PDTC treatment. Treatment-related variations in the localization of C/EBPP were analysed by SDS-PAGE followed by autoradiography or Western blot analysis (100 gg of total cellular protein lane). DKO-1 cells were cultured in the 16 presence of PDTC (70 IM) for 1 hour and then processed for immunocytochemistry to detect treatment-related differences in the compartmentalization of C/EBP[ protein.
In all experiments, parallel cultures treated with preimmune sera or primary anti- C/EBPp antisera that had been preincubated with in vitro translated C/EBP3 protein demonstrated no fluorescent signal after treatment with the secondary Cy3-conjugated antibody. Representative photomicrographs show anti-C/EBPP stained cells before and after PDTC treatment.
Figures 8A-8B illustrate the effect of PDTC on endogenous cAMP levels and PKA activity. DKO-1 cells were treated with 70.M PDTC for the indicated times.
Cell lysates were prepared and assayed for endogenous cAMP levels or PKA activity. The values are expressed as pmol mean per Lg protein s.e.m. and are representative of three experiments carried out in quadruplicate.
Figures 9A-9C illustrate that PDTC phosphorylates C/EBPP at Ser 9
(A)
Endogenous C/EBP[ from 3 P]orthophosphate-labeled DKO-1 cells (2 mCi/ml. 3 h) that were treated with either 0 piM (lane 70 4M PDTC (lane 2) or 50 4M forskolin were immunoprecipitated with anti C/EBP[ antibodies. Labeled proteins were visualized by SDS-PAGE followed by autoradiography. Tryptic phosphopeptide maps of in vivo labeled epitope-tagged C/EBPp. Wild type (WT) and mutant (Ala 2 9 C/EBPP, immunoprecipitated from PDTC treated or untreated DKO-1 cells with the antibody to the FLAG-epitope, were digested with trypsin and the phosphopeptides separated by electrophoresis and thin-layer chromatography and visualized by autoradiography, X1. were constitutively phosphorylated. The level of 17 phosphopeptide
X
3 was increased after PDTC treatment in cells transfected with the wild type, but not mutant, protein. The circle indicates the origin. Comparison of the in vivo phosphorylation of wild type and Ala substitution mutants of C/EBPP from untreated cells and cells treated with PDTC. Autoradiography (top) and C/EBPP immunoblot (bottom) are shown.
Figures 10A-10B illustrate that PKA phosphorylation of C/EBPP is required for nuclear translocation. Parallel DKO-1 cell cultures were treated with PDTC (0 or 70 gM) for 3 hours. Poly(A) mRNA and protein were isolated from each group and treatment-related variations in C/EBPP mRNA and protein levels were evaluated by Northern or Western blot analysis. IB15 is shown as a control for equivalent loading and transfer. DKO-1 cells were treated with PDTC (0 or 70tM) or PDTC and mPKI (myristylated protein kinase A inhibitor; 1 gM) for 3 hours. Cells were fixed with paraformaldehyde and C/EBP3 protein visualized by immunofluorescence staining. Treatment of cells with mPKI alone failed to induce nuclear translocation of C/EBPP (data not shown).
Figure 11 illustrates that carboxymethylation of the catalytic subunit of protein phosphatase 2A is inhibited by PDTC. DKO-1 cells were incubated in serumcontaining media containing [methyl-'H]S-adenosyl methionine and/or 70 gM PDTC for three hours. Cytosolic or nuclear fractions were prepared and C/EBPP immunoprecipitated using standard methods. Antibody/antigen complexes were resolved by SDS-PAGE and the presence of PP2Ac was detected by fluorography.
PDTC inhibited carboxymethylation of PP2A subunit in nuclear fractions and to a lesser extent, in cytosolic fractions.
Figure 12 illustrates that PDTC inhibits methyltransferase activation of PP2Ac. PP2A (a and c dimer) was incubated in the presence of [methyl- 3
H]S-
adenosyl methionine, increasing concentrations of PDTC and partially purified rat methyltransferase for thirty minutes at 37 degrees C. The reaction was terminated by the addition of SDS-sample buffer. Samples were resolved by SDS-PAGE and the presence of methylated PP2A catalytic subunit visualized by fluorography. As indicated, PDTC selectively inhibits the ability of methyltransferase to carboxymethylate the catalytic subunit of PP2A in a dose dependent manner.
Figure 13 is a graph of time in hours versus percent radioactivity remaining on the protein substrate. The figure indicates that PDTC inhibits PP2A, but not PP1, activity. The activity of PDTC is compared to 12 (a selective PP1 inhibitor), okadaic acid (an inhibitor of both PP2A and PP1), 12 and PDTC, and okadaic acid and PDTC.
DKO-1 cells were grown in the presence of PDTC (test) or not (control). The cells were lysed, and then radioactive phosphorylated C/EBP3 was added. The test compounds were then added, and incubated with the lysate. The protein was collected and the amount of radioactive phosphate remaining in the protein measured.
Figure 14 illustrates that the transcription factor C/EBPP is complexed with the PP2Ac protein phosphatase. Rat brain soluble extracts were fractionated by phenyl- Sepharose and analyzed for methyltransferase activity using exogenous PP2A heterodimer (a-c complex). The peak of methyltransferase activity was further 19 fractionated by Source Q, a strong anion exchange, and gel filtration chromatography.
The partially purified methyltransferase illustrated in Figure 14 represents the peak methyltransferase activity from the gel filtration column. This peak fraction of methyltransferase activity is taken further to DEAE, a weak anion exchange, and MonoQ, a different strong anion exchange resin, columns. Both C/EBPb and PP2A are detectable following these additional steps. Rat brain extracts are shown as a positive control (C/EBP3 and PP2Ac migrate at approximately 45 and 36 kDa on
SDS-PAGE).
DETAILED DESCRIPTION OF THE INVENTION It has been discovered that antioxidants induce cell cycle arrest and apoptosis in abnormally proliferating cells through a mechanism mediated by the activation of the transcription factor C/EBP3 that binds to a specific site in the p21 promoter to induce p21 expression independent of p53. It has also been discovered that a site-selective phosphorylation at Ser 9 9 of C/EBPP by protein kinase A following antioxidant treatment is essential for the observed nuclear translocation of this protein.
It has also been discovered that antioxidants prevent the dephosphorylation of C/EBPP in the nucleus (and thus deactivation and delocalization) through the inhibition of PP2A. The inhibition of PP2A activity is caused by a decrease in methyltransferase activity, an enzyme which carboxymethylates the catalytic subunit of PP2A, which is involved in maintaining PP2A in an active form. Decreased methylcarboxylation results in decreased PP2A enzymatic dephosphorylation of C/EBPp as a substrate. By simultaneously inducing the phosphorylation of C/EBP3 and inhibiting the dephosphorylation of C/EBPP, antioxidants maintain C/EBPP in an active state in the nucleus of the cell, which induces the continued expression of p21WAFI/CIPI and subsequent cell cycle arrest.
The methyltransferase responsible for PP2A subunit carboxymethylation in vivo and in vitro represents a unique type of carboxyl methyltransferase. The mammalian type II and type III carboxyl methyltransferases appear to have substantially different properties from the enzyme that carboxymethylates the PP2Ac subunit. Protein carboxyl methyltransferase type II modifies D-aspartyl and Lisoaspartyl residues that accumulate in proteins with aging, and, therefore methylates a different protein containing these amino acids. Carboxyl methyltransferase type III modifies proteins at cysteine, proceeding to the carboxyl terminus of proteins (Gproteins), and requires isoprenylation of cysteine and proteolytic cleavage of the last three carboxyl-terminal residues. Activity of this carboxyl methyltransferase is not altered by antioxidant treatment of colorectal cancer cell line DKO-1 in vitro.
Therefore, in vitro data suggests that antioxidants selectively inhibit the methyltransferase responsible for PP2Ac, but not G-protein, methylation.
A novel higher order protein complex has also been identified that consists of C/EBPP, PP2A, and methyltransferase. Thus, another embodiment of this invention is this novel complex in isolated form, for example in at least 70%, and preferably 80 or 90% purity. A method for isolating this enzyme is provided in Example 27.
I. Embodiments of the Invention Based on the fundamental discoveries described herein, a method for increasing the localization of the C/EBP3 protein in the nucleus of a cell is presented that includes the step of administering an antioxidant to the interior of the cell. It has been discovered that this method maintains the C/EBP[ protein in an active, phosphorylated state, which induces cell growth arrest and apoptosis.
In one embodiment, the invention is a method to enhance the cytotoxic activity of an antineoplastic drug comprising administering an effective amount of the antineoplastic drug to a host in need of treatment in combination with an effective cytotoxicity-increasing amount of an antioxidant. It has been discovered that antioxidants, including those specifically disclosed herein, induce cell cycle arrest (Gl, G2, S and M type), and thus are useful to enhance the efficacy of antineoplastic drugs for the treatment of disorders associated with abnormal cell proliferation. It has been discovered that this method maintains the C/EBPP protein in an active, phosphorylated state, which induces cell growth arrest and apoptosis. In an alternative embodiment, a method is presented to increase the cytotoxicity of an antineoplastic or chemotherapeutic agent against a disorder of abnormal cell hyperproliferation, that includes increasing the phosphorylation state of C/EBPP protein in a host, for example, an individual or animal in need of such treatment, comprising the step of administering to said individual or animal a cytotoxicity-increasing dose of an antioxidant in combination or alternation with a pharmacologically effective dose of a chemotherapeutic agent.
In another embodiment, the invention is directed to a method of treating a host having a neoplastic condition, comprising the step of administering to the host a therapeutically effective dose of a cytotoxic chemotherapeutic therapy and an antioxidant, wherein the cytotoxic chemotherapeutic therapy is selected from the group consisting of cancer chemotherapeutic agents and radiation therapy.
Representative cancer chemotherapeutic agents and antioxidants are listed below.
Any radiation therapy that ameliorates a condition of abnormal cellular proliferation is appropriate for use in this method, including ionizing radiation that is particulate or electromagnetic. Suitable and effective dosages of radiation therapy for a wide variety of neoplastic conditions are well known. In one nonlimiting embodiment, radiation therapy is gamma irradiation given at a dose of from about 3,000 centigrey to about 5,000 centigrey over an appropriate time frame, for example, up to six weeks.
The present invention is also directed to a method of increasing expression of the p21 protein as a means to arrest cell growth and induce apoptosis in an individual in need of such treatment, comprising the step of administering to said individual a pharmacologically effective dose of an antioxidant, or a combination of an antioxidant and an antineoplastic agent.
The present invention is further directed to a method of regulating cell cycle arrest G2, S or M) and apoptosis in an individual in need of such treatment, comprising the step of administering to said individual a pharmacologically effective dose of an antioxidant or a combination of an antioxidant and a antineoplastic agent.
In another embodiment, therapeutic efficacy may be achieved by administration of an effective amount of C/EBPp, or a protein with substantial homology to C/EBPP, to achieve the effects described in detail herein. The protein or protein analog can be administered alone or as an adjunct to antineoplastic therapy. A protein with substantial homology to C/EBPP is defined herein as consisting of or containing a peptide sequence of the form -X1-Arg-X2-Ser-X3 wherein X2 is the C/EBPP amino acid at position 298, and X1 and X3 represent flanking peptide sequences with substantial homology to those of C/EBPP. The term substantial homology refers to a protein or peptide sequence that performs substantially the same function as the parent sequence and has at least 60%, or more preferably, 75%, and most preferably, 90% or 95% or greater, sequence identity. Methods for the effective delivery of proteins are known and can be employed in conjunction with this embodiment to enhance the efficacy of this therapy.
In another embodiment, a synthetic Ser299 phosphorylated C/EBP3 analog can be administered that has a stabilized phosphate bond that is resistant to dephosphorylation. Such stabilized phosphates include, but are not limted to, phosphoroamidates and phosphonate analogs.
The invention also provides a method of inhibiting protein phosphatase 2A (PP2A) in a cell that includes administering to the interior of the cell a protein phosphatase-inhibiting amount of an antioxidant. In an alternative embodiment of this aspect of the invention, a method of decreasing the carboxymethylation status of the catalytic subunit of PP2A is provided that includes contacting a cell with a methyltransferase- or methylesterase-inhibiting amount of an antioxidant.
In one pathway which may not be exclusive, it has been discovered that antioxidants increase the cytotoxicity of antineoplastic drugs through a cascade of events that include: increasing the level of cAMP, which causes the activation of protein kinase A, an enzyme which phosphorylates C/EBP3, which on phosphorylation is then translocated from the cytosol to the nucleus of the cell wherein it mediates the induction of p21, which causes an arrest of cell growth; and (ii) preventing the dephosphorylation of C/EBP in the nucleus (and thus deactivation and delocalization) through the inhibition of PP2A. The inhibition of PP2A activity is caused by a decrease in methyltransferase activity, an enzyme which carboxymethylates the catalytic subunit of PP2A, which is involved in maintaining PP2A in an active form. Decreased methylcarboxylation results in decreased PP2A enzymatic dephosphorylation of C/EBPP as a substrate. By simultaneously inducing the phosphorylation of C/EBPP and inhibiting the dephosphorylation of C/EBPP, antioxidants maintain C/EBPP in an active state in the nucleus of the cell, which induces the continued expression of p21WAFI/CIPI and subsequent cell cycle arrest.
Based on this discovery, a method for the identification of therapeutically effective compounds for the treatment of abnormal cell proliferation is presented that includes assessing the compound's ability to increase the localization of the C/EBPP protein in the nucleus of a cell. In an alternative embodiment, a method for the identification of therapeutically effective compounds for the treatment of abnormal cell proliferation is presented that includes assessing the compound's ability to increase the phosphorylation at Ser9 9 of C/EBPP. This method includes incubating a selected cell line with a test compound for a predetermined time (for example three hours) at 37 degrees C followed by immunoprecipitation of C/EBPP from the nuclear fraction. Tryptic digestion and thin layer chromatography is then carried out to confirm phosphorylation of C/EBPP.
Based on the discoveries described in detail herein, one of ordinary skill will understand that the invention further includes, but is not limited to the following aspects.
A method for the identification of therapeutically effective compounds by assessing the ability of the compound to alter the phosphorylation status of C/EBPP at Ser 2 In this method, the test compound is included in a solution that contains at least phosphorylated C/EBPP, a dimeric form of protein phosphatase 2A containing a and c subunits, methyltransferase and [methyl-'H]S-adenosyl methionine.
(ii) A method for the identification of therapeutically effective compounds by assessing the ability of the compound to inhibit protein phosphatase 2a activity, using the method described in or another protocol known or obvious to those skilled in the art.
(iii) A method for the identification of therapeutically effective compounds by assessing the ability of the compound to alter the carboxymethylation status of protein phosphatase 2a.
(iv) A method for the identification of therapeutically effective compounds by assessing the ability of the compound to alter the activity of methyltransferase.
A peptide sequence of the form -X1-Arg-X2-Ser-X3 wherein X2 is the C/EBP-P amino acid at position 298, and X1 and X3 represent flanking peptide sequences with substantial homology to C/EBPP.
(vi) A method for the enhancement the phosphorylation status and functionality of C/EBPP induced by mediators including, but not limited to, cAMP dependent protein kinases, protein kinase C, ras-dependent MAP kinase and calcium-calmodulin dependent kinase, in an individual or animal in need of such treatment comprising the step of administering to said individual or animal a pharmacologically effective dose of an antioxidant that increases the nuclear residence time and functionality of C/EPB-P.
(vii) A method for the enhancement of the phosphorylation status and functionality of C/EBP-P induced by, but not limited to, cAMP dependent protein kinases, protein kinase C, ras-dependent MAP kinase and calcium-calmodulin dependent kinase, in an individual or animal in need of such treatment comprising the step of administering to said individual or animal a pharmacologically effective dose of an antioxidant.
(viii) A method for the treatment of a host, for example, an individual or animal, at risk for developing or exhibiting a neoplastic condition comprising the step of administering to said individual or animal a pharmacologically effective dose of an 27 antioxidant.
(ix) A method for the the treatment of individuals or animals at risk for developing a neoplastic condition that includes increasing the nuclear localization of C/EBPP expression and function.
A method for the treatment of individuals with a disorder of abnormal cell proliferation, including but not limited to benign and malignant tumors, that includes the step of administering to said individual or animal a pharmacologically effective dose of a therapeutic that increases the nuclear residence time of C/EPBP, and wherein the therapeutic is either an antioxidant alone or a combination of an antioxidant and antineoplastic agent.
(xi) A method for the diagnosis and assessment of response to treatment of individuals with neoplastic and cell proliferative diseases through the measurement either alone or in combination, of C/EBPP activation, phosphorylation and nuclear residence time of C/EBPp, PP2A inhibition of carboxymethylation of the catalytic subunit of PP2A, and inhibition of methyltransferase or methylesterase activity.
II. ANTIOXIDANTS As used herein, the term antioxidant refers to a substance that prevents the oxidation of an oxidizable compound under physiological conditions. In one embodiment, a compound is considered an antioxidant for purposes of this disclosure if it reduces endogenous oxygen radicals in vitro. The antioxidant can be added to a cell extract under oxygenated conditions and the effect on an oxidizable compound 28 evaluated. As nonlimiting examples, antioxidants scavenge oxygen, superoxide anions, hydrogen peroxide, superoxide radicals, lipooxide radicals, hydroxyl radicals, or bind to reactive metals to prevent oxidation damage to lipids, proteins, nucleic acids, etc. The term antioxidant includes, but is not limited to, the following classes of compounds.
A) Dithiocarbamates Dithiocarbamates have been extensively described in patents and in scientific literature. Dithiocarbamates and related compounds have been reviewed extensively for example, by G. D. Thorn et al entitled "The Dithiocarbamates and Related Compounds," Elsevier, New York, 1962. U.S. Patent Nos. 5,035,878 and 5,294,430 disclose that dithiocarbamates can reverse the damage to the blood-forming function of the bone marrow (myelosuppression) caused by treatment with antineoplastic agents. All of the pharmaceutically acceptable dithiocarbamates disclosed in these two patents which increase the nuclear localization of C/EBPP are suitable for use in this invention, and are incorporated herein by reference.
Active Compounds Dithiocarbamates are transition metal chelators clinically used for heavy metal intoxication. Baselt, F.W.J. Sunderman, et al. (1977), "Comparisons of antidotal efficacy of sodium diethyldithiocarbamate, D-penicillamine and triethylenetetramine upon acute toxicity of nickel carbonyl in rats." Res Commun Chem Pathol Pharmacol 18(4): 677-88; Menne, T. and K. Kaaber (1978), "Treatment of pompholyx due to 29 nickel allergy with chelating agents." Contact Dermatitis 289-90; Sunderman, F.W. (1978), "Clinical response to therapeutic agents in poisoning from mercury vapor" Ann Clin Lab Sci 259-69; Sunderman, F.W. (1979), "Efficacy of sodium diethyldithiocarbamate (dithiocarb) in acute nickel carbonyl poisoning." Ann Clin Lab Sci 1-10; Gale, A.B. Smith, et al. (1981), "Diethyldithiocarbamate in treatment of acute cadmium poisoning." Ann Clin Lab Sci 11(6): 476-83; Jones, M.M. and M.G. Cherian (1990), "The search for chelate antagonists for chronic cadmium intoxication." Toxicology 62(1): 1-25; Jones, S.G., M.A. Basinger, et al. (1982), "A comparison of diethyldithiocarbamate and EDTA as antidotes for acute cadmium intoxication." Res Commun Chem Pathol Pharmacol 38(2): 271-8; Pages, J.S. Casas, et al. (1985), "Dithiocarbamates in heavy metal poisoning: complexes of N,N-di(l-hydroxyethyl)dithiocarbamate with Zn(II), Cd(II), Hg(II), CH3Hg(II), and C6H5Hg(II).: J. Inorg Biochem 25(1): 35-42; Tandon, S.K., N.S. Hashmi, et al. (1990), "The lead-chelating effects of substituted dithiocarbamates." Biomed Environ Sci 299-305.
Dithiocarbamates have also been used adjunctively in cis-platinum chemotherapy to prevent renal toxicity. Hacker, W.B. Ershler, et al. (1982).
"Effect of disulfiram (tetraethylthiuram disulfide) and diethyldithiocarbamate on the bladder toxicity and antitumor activity of cyclophosphamide in mice." Cancer Res 42(11): 4490-4. Bodenner, 1986 #733; Saran, M. and Bors, W. (1990). "Radical reactions in vivo--an overview." Radiat. Environ. Biophys. 29(4):249-62.
A dithiocarbamate currently used in the treatment of alcohol abuse is disulfiram, a dimer of diethyldithiocarbamate. Disulfuram inhibits hepatic aldehyde dehydrogenase. Inoue, and Fukunaga, et al., (1982). "Effect of disulfiram and its reduced metabolite, diethyldithiocarbamate on aldehyde dehydrogenase of human erythrocytes." Life Sci 30(5): 419-24.
It has been reported that dithocarbamates inhibit HIV virus replication, and also enhance the maturation of specific T cell subpopulations. This has led to clinical trials of diethyldithiocarbamate in AIDs patient populations. Reisinger, et al., (1990).
"Inhibition of HIV progression by dithiocarb." Lancet 335: 679.
Dithiocarboxylates are compounds of the structure A-SC(S)-B, which are members of the general class of compounds known as thiol antioxidants, and are alternatively referred to as carbodithiols or carbodithiolates. It appears that the SC(S)- moiety is essential for therapeutic activity, and that A and B can be any group that does not adversely affect the efficacy or toxicity of the compound.
In an alternative embodiment, one or both of the sulfur atoms in the dithiocarbamate is replaced with a selenium atom. The substitution of sulfur for selenium may decrease the toxicity of the molecule in certain cases, and may thus be better tolerated by the patient.
A and B can be selected by one of ordinary skill in the art to impart desired characteristics to the compound, including size, charge, toxicity, and degree of stability, (including stability in an acidic environment such as the stomach, or basic environment such as the intestinal tract). The selection of A and B will also have an 31 important effect on the tissue-distribution and pharmacokinetics of the compound.
The compounds are preferably eliminated by renal excretion.
An advantage in administering a dithiocarboxylate pharmaceutically is that it does not appear to be cleaved enzymatically in vivo by thioesterases, and thus may exhibit a prolonged halflife in vivo.
In a preferred embodiment, A is hydrogen or a pharmaceutically acceptable cation, including but not limited to sodium, potassium, calcium, magnesium, aluminum, zinc, bismuth, barium, copper, cobalt, nickel, or cadmium; a salt-forming organic acid, typically a carboxylic acid, including but not limited to acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, or polygalacturonic acid; or a cation formed from ammonia or other nitrogenous base, including but not limited to a nitrogenous heterocycle, or a moiety of the formula NR 4
RSR'R
7 wherein R 4
R
5
R
6 and R 7 are independently hydrogen, C, 6 linear, branched, or (in the case of C6) cyclic alkyl, hydroxy(C,.,)alkyl (wherein one or more hydroxyl groups are located on any of the carbon atoms), or aryl, N,N-dibenzylethylene-diamine, D-glucosamine, choline, tetraethylammonium, or ethylenediamine.
In another embodiment, A can be a physiologically cleavable leaving group that can be cleaved in vivo from the molecule to which it is attached, and includes but is not limited to acyl (including acetyl, propionyl, and butyryl), alkyl, phosphate, sulfate or sulfonate.
In one embodiment, B is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, haloalkyl, haloalkenyl, haloalkynyl, aryl, alkaryl, hydrogen, alkoxy-C.
0 alkyl, C,.
6 alkylthio-Cl.to alkyl, NR 2
R
3 -(CHOH),CHzOH, wherein n is 0, 1, 2, 3, 4, 5, or 6,
(CH
2 ),COzR', including alkylacetyl, alkylpropionyl, and alkylbutyryl, or hydroxy(C,.
6 )alkyl- (wherein one or more hydroxyl groups are located on any of the carbon atoms).
In another embodiment, B is NR'R 3 wherein R 2 and R 3 are independently alkyl;
-(CHOH),(CH
2 )nOH, wherein n is 0, 1, 2, 3, 4, 5, or 6; -(CH 2
),COR
4 hydroxy(C.6)alkyl-; alkenyl (including but not limited to vinyl, allyl, and
CH
3
CH=CH-CH
2
.CH
2 alkyl(COzH), alkenyl(COzH), alkynyl(COzH), or aryl, wherein the aryl group can be substituted as described above, notably, for example, with a NO 2
CH
3 t-butyl, CO,H, halo, or p-OH group; or R 2 and R 3 can together constitute a bridge such as -(CH 2 wherein m is 3, 4, 5, 6, 7, 8, 9, or 10, and wherein
R
4 is alkyl, aryl, alkaryl, or aralkyl, including acetyl, propionyl, and butyryl.
In yet another embodiment, B can be a heterocyclic or alkylheterocyclic group.
The heterocycle can be optionally partially or totally hydrogenated. Nonlimiting examples are those listed above, including phenazine, phenothiazine, pyridine and dihydropyridine.
In still another embodiment, B is the residue of a pharmaceutically-active compound or drug. The term drug, as used herein, refers to any substance used internally or externally as a medicine for the treatment, cure, or prevention of a disease 33 or disorder. The -C(S)SA group can be directly attached to the drug, or attached through any suitable linking moiety.
In another embodiment, the dithiocarbamate is an amino acid derivative of the structure AO 2
C-R
9 -NR'o-C(S)SA, wherein R, is a divalent B moiety, a linking moiety, or the internal residue of any of the naturally occurring amino acids (for example,
CH
3 CH for alanine, CH 2 for glycine, CH(CH 2 for lysine, etc.), and R i0 is hydrogen or lower alkyI.
B can also be a polymer to which one or more dithiocarbamate groups are attached, either directly, or through any suitable linking moiety. The dithiocarbamate is preferably released from the polymer under in vivo conditions over a suitable time period to provide a therapeutic benefit. In a preferred embodiment, the polymer itself is also degradable in vivo. The term biodegradable or bioerodible, as used herein, refers to a polymer that dissolves or degrades within a period that is acceptable in the desired application (usually in vivo therapy), usually less than five years, and preferably less than one year, on exposure to a physiological solution of pH 6-8 having a temperature of between 25 and 37°C. In a preferred embodiment, the polymer degrades in a period of between 1 hour and several weeks, according to the application.
A number of degradable polymers are known. Nonlimiting examples are peptides, proteins, nucleoproteins, lipoproteins, glycoproteins, synthetic and natural polypeptides and polyamino acids, including but not limited to polymers and copolymers of lysine, arginine, asparagine, aspartic acid, cysteine, cystine, glutamic 34 acid, glutamine, hydroxylysine, serine, threonine, and tyrosine; polyorthoesters, including poly(a-hydroxy acids), for example, polylactic acid, polyglycolic acid, poly(lactide-co-glycolide), polyanhydrides, albumin or collagen, a polysaccharide containing sugar units such as lactose, and polycaprolactone. The polymer can be a random or block copolymer.
B can also be a group that enhances the water solubility of the dithiocarbamate, for example, -lower alkyl-O-R 8 wherein R 8 is -PO 2 (OH)-M'or PO3(M) 2 wherein M' is a pharmaceutically acceptable cation; 2
CO
2 or -SOM; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,Ndi-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl-; imidazolyl-lower alkyl-; imidazolyl-Ylower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl-; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrryl; piperazinyl-lower alkyl; N-substituted piperazinyl-lower alkyl, wherein the substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylamino-lower alkyl; or thiazolyl-lower alkyl.
In an alternative embodiment, a dimer such as B-C(S)S-SC(S)-B can be administered.
The term "alkyl," as used herein, unless otherwise specified, refers to a saturated straight, branched, or cyclic (in the case of C, or greater) hydrocarbon of C, to Co (or lower alkyl, C, to which specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3dimethylbutyl. The alkyl group can be optionally substituted on any of the carbons with one or more moieties selected from the group consisting of hydroxyl, amino, or mono- or disubstituted amino, wherein the substituent group is independently alkyl, aryl, alkaryl or aralkyl; aryl, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., "Protective Groups in Organic Synthesis," John Wiley and Sons, Second Edition, 1991.
The term "alkenyl," as referred to herein, and unless otherwise specified, refers to a straight, branched, or cyclic hydrocarbon of C 2 to Co with at least one double bond.
The term "alkynyl," as referred to herein, and unless otherwise specified, refers to a C 2 to Co straight or branched hydrocarbon with at least one triple bond.
The term "aralkyl" refers to an aryl group with at least one alkyl substituent.
The term "alkaryl" refers to an alkyl group that has at least one aryl substituent.
The term "halo (alkyl, alkenyl, or alkynyl)" refers to an alkyl, alkenyl, or alkynyl group in which at least one of the hydrogens in the group has been replaced with a halogen atom.
The term "aryl," as used herein, and unless otherwise specified, refers to phenyl, biphenyl, or napthyl, and preferably phenyl. The aryl group can be optionally substituted with one or more moieties selected from the group consisting of alkyl, 36 hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, CO 2 H, or its pharmaceutically acceptable salt, C0 2 (alkyl, aryl, alkaryl or aralkyl), or glucarnine, either unprotected, or protected as neccesary, as known to those skilled in the art, for example, as taught in Greene, et al., "Protective Groups in Organic Synthesis," John Wiley and Sons, Second Edition, 1991.
The term "alkoxy," as used herein, and unless otherwise specified, refers to a moiety of the structure -0-alkyl.
The term "acyl", as used herein, refers to a group of the formula C(O)R', wherein R' is an alkyl, aryl, alkaryl or aralkyl group.
The term "heterocyclic" as used herein, refers to an aromatic moiety that includes at least one sulfur, oxygen, or nitrogen in the aromatic ring. Nonlirniting examples are phenazine, phenothiazine, furyl, pyridyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, benzofuranyl, benzothiophenyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, isoindolyl, benzimnidazolyl, purinyl, morpholinyl, carbozolyl, oxazolyl, thiazolyl, isothiazolyl, I ,2,4-thiadiazolyl, isooxazolyl, pyrrolyl, pyrazolyl, quinazolinyl, pyridazinyl, pyrazinyl, cinnolinyl, phthalazinyl, quinoxalinyl, xanthinyl, hypoxanthinyl, pteridinyl, 5-azauracilyl, tiiazolopyridinyl, imidazolopyridinyl, pyrrolopyrirnidinyl, pyrazolopyrimidinyl, adenine, N 6 -alkylpurines, N 6 -benzylpurine,
N
6 -halopurine, N 6 -vinylpurine, acetylenic purine, N 6 -acyl purine, N 6 hydroxyalkyl purine, N'-thioalkyl purine, thymine, cytosine, 6-azapyrimidine, 2- 37 mercaptopyrmidine, uracil, Ns-alkylpyrimidines,
N
5 -benzylpyrimidines,
N
5 halopyrimidines, Ns-vinylpyrimidine, Ns-acetylenic pyrimidine, N'-acyl pyrimidine,
N
s -hydroxyalkyl purine, and N 6 -thioalkyl purine, and isoxazolyl. The heterocyclic group can be optionally substituted as described above for aryl. The heterocyclic group can be partially or totally hydrogenated as desired. As a nonlimiting example, dihydropyridine can be used in place ofpyridine. Functional oxygen and nitrogen groups on the heterocyclic base can be protected as necessary or desired during the reaction sequence. Suitable protecting groups are well known to those skilled in the art, and include trimethylsilyl, dimethylhexylsilyl, t-butyldimethylsilyl, and tbutyldiphenylsilyl, tritylmethyl, alkyl groups, acyl groups such as acetyl and propionyl, methylsulfonyl, and p-toluylsulfonyl.
The term "hydroxyalkyl," as used herein, refers to a C, to C 6 alkyl group in which at least one of the hydrogens attached to any of the carbon atoms is replaced with a hydroxy group.
The term "pharmaceutically acceptable derivative" refers to a derivative of the active compound that upon administration to the recipient, is capable of providing directly or indirectly, the parent compound, or that exhibits activity itself.
The term "pharmaceutically acceptable cation" refers to an organic or inorganic moiety that carries a positive charge and that can be administered in association with a pharmaceutical agent, for example, as a countercation in a salt Pharmaceutically acceptable cations are known to those of skill in the art, and include but are not limited to sodium, potassium, and quaternary amine.
38 The term "physiologically cleavable leaving group" refers to a moiety that can be cleaved in vivo from the molecule to which it is attached, and includes but is not limited to an organic or inorganic anion, a pharmaceutically acceptable cation, acyl (including but not limited to (alkyl)C(O), including acetyl, propionyl, and butyryl), alkyl, phosphate, sulfate and sulfonate.
The term "enantiomerically enriched composition or compound" refers to a composition or compound that includes at least 95%, and preferably at least 97, 98, 99, or 100% by weight of a single enantiomer of the compound.
The term "amino acid" includes synthetic and naturally occurring amino acids, including but not limited to, for example, alanyl, valinyl, leucinyl, isoleucinyl, prolinyl, phenylalaninyl, tryptophanyl, methioninyl, glycinyl, serinyl, threoninyl, cysteinyl, tyrosinyl, asparaginyl, glutaminyl, aspartoyl, glutaoyl, lysinyl, argininyl, and histidinyl.
A "linking moiety" as used herein, is any divalent group that links two chemical residues, including but not limited to alkyl, alkenyl, alkynyl, aryl, polyalkyleneoxy (for example, -[(CH 2 -CI,,alkoxy-Cl.oalkyl-, -C,,alkylthio-C.-o alkyl-, and -(CHOH),CH 2 OH, wherein n is independently 0, 1, 2, 3, 4, 5, or 6.
As explained in Chapter 2 of Thorn et al, the preparation of dithiocarbamates is very simple. The compounds of the formula RIRNCSSH or RR 2 NSSNa can be formed by reaction of carbon disulfide with a secondary amine, typically in alcoholic or aqueous solution. The usual practice is to carry out this reaction in the presence of NaOH, so that the sodium dithiocarbamate salt is formed. Thus, for example, sodium 39 dimethyl dithiocarbamate is formed from CS,NaOH and dimethylamine. See Thorn et al, page 14, and the references cited therein. Other typical dithiocarbamic compounds disclosed and characterized in Thorn et al include: N-methyl, Nethyldithiocarbamates, hexamethylenedithiocarbamic acid, sodium di(betahydroxyethyl) dithiocarbamate, sodium N-methyl, N-cyclobutylmethyl dithiocarbamate, sodium N-allyl-N-cyclopropylmethyl-dithiocarbamate, cyclohexylamyldithiocarbamates, dibenzyl-dithiocarbamates, sodium dimethylenedithiocarbamate, various pentamethylene dithiocarbamate salts, sodium pyrrolidine-Ncarbodithioate, sodium piperidine-N-carbodithioate, sodium morpholine-N-carbodithioate, alpha-furfuryl dithiocarbamates and imidazoline dithiocarbamates.
B) Probucol and its Derivatives Probucol is chemically related to the widely used food additives 2,[3]-tertbutyl-4-hydroxyanisole (BHA) and 2,6-di-tert-butyl-4-methyl phenol (BHT). Its full chemical name is 4,4'-(isopropylidenedithio) bis(2,6-di-tert-butylphenol). U.S. Patent No. 5,262,439 to Parthasarathy, incorporated herein by reference, discloses soluble analogs of probucol in which one or both of the hydroxyl groups are replaced with ester groups that impart water solubility to the compound. In one embodiment, the soluble derivative is selected from the group consisting of a mono- or di- succinic acid ester, glutaric acid ester, adipic acid ester, suberic acid ester, sebacic acid ester, azelaic acid, or maleic acid ester of probucol. In another embodiment, the probucol derivative is a mono- or di- ester in which the ester contains an alkyl or alkenyl group that contains a functionality selected from the group consisting of a carboxylic acid group.
Any of the compounds described in the '439 patent can be used in this invention.
U.S. Patent No. 5,155,250, also incorporated herein by reference, discloses that 2,6-dialkyl-4-silylphenols are antiatherosclerotic agents. The same compounds are disclosed as serum cholesterol lowering agents in PCT Publication No. WO 95/15760, published on June 15, 1995. U.S. Patent No. 5,608,095, incorporated by reference, discloses that alkylated-4-silyl-phenols inhibit the peroxidation of LDL, lower plasma cholesterol, and inhibit the expression of VCAM-1, and thus are useful in the treatment of atherosclerosis. Any of these compounds can also be used in this invention.
C) N-Acetyl Cysteine and its Derivatives Cysteine is an amino acid with one chiral carbon atom. It exists as an Lenantiomer, a D-enantiomer, or a racemic mixture of the L- and D-enantiomers. The L-enantiomer is the naturally occurring configuration.
N-acetylcysteine (acetamido-mercaptopropionic acid, NAC) is the N-acetylated derivative of cysteine. It also exists as an L-enantiomer, a D-enantiomer, an enantiomerically enriched composition of one of the enantiomers, or a racemic mixture of the L and D enantiomers. The term "enantiomerically enriched composition or compound" refers to a composition or compound that includes at least and preferably, at least 97% by weight of a single enantiomer of the compound.
Any'of these forms of NAC can be delivered as an antioxidant in the present 41 invention. In one embodiment, a single isomer of a thioester or thioether of NAC or its salt, and most preferably, the naturally occurring L-enantiomer, is used in the treatment process.
N-acetylcysteine exhibits antioxidant activity (Smilkstein, Knapp, Kulig and Rumack, N. Engl. J. Med. 1988, Vol. 319, pp. 1557-62; Knight, MacPhadyen, Lepore, Kuwata, Eadie, O'Brien, B. Clinical Sci., 1991, Vol. 81, pp. 31-36; Ellis, Dodson, Police, J. Neurosurg., 1991, Vol. 75, pp.
774-779). The sulfhydryl functional group is a well characterized, highly reactive free radical scavenger. N-acetylcysteine is known to promote the formation of glutathione (a tri-peptide, also known as g-glutamylcysteinylglycine), which is important in maintaining cellular constituents in the reduced state (Berggren, Dawson, J., Moldeus, P. FEBSLett., 1984, Vol. 176, pp. 189-192). The formation ofglutathione may enhance the activity of glutathione peroxidase, an enzyme which inactivates hydrogen peroxide, a known precursor to hydroxyl radicals (Lalitha, Kerem, D., Yanni, Pharmacology and Toxicology, 1990, Vol.66, pp. 56-61) N-acetylcysteine exhibits low toxicity in vivo, and is significantly less toxic than deprenyl (for example, the LD 50 in rats has been measured at 1140 and 81 mg/kg intravenously, for N-acetylcysteine and deprenyl, respectively).
N-acetyl cysteine and derivatives thereof are described, for example, in WO/95/26719. Any of the derivatives described in this publication can be used in accordance with this invention.
D) Scavengers of Peroxides, including but not limited to catalase and pyruvate E) Thiols including dithiothreitol and 2-mercaptoethanol F) Antioxidants which are inhibitors of lipid peroxidation, including but not limited to TroloxTM, BHA, BHT, aminosteroid antioxidants, tocopherol and its analogs, and lazaroids G) Dietary antioxidants, including antioxidant vitamins (vitamin C or E or synthetic or natural prodrugs or analogs thereof), either alone or in combination with each other, flavanoids, phenolic compounds, caratenoids, and alpha lipoic acid H) Inhibitors of lipoxygenases and cyclooxygenases, including but not limited to nonsteriodal antiinflammatory drugs, COX-2 inhibitors, aspirin-based compounds, and quercetin I) Antioxidants manufactured by the body, including but not limited to ubiquinols and thiol antioxidants, such as, and including glutathione, Se, and lipoic acid J) Synthetic Phenolic Antioxidants: inducers of Phase I and II drugmetabolizing enzymes IH. ANTINEOPLASTIC AGENTS The term "antineoplastic agents," as used herein, refers to any substance that decreases abnormal cell proliferation. Antineoplastic agents have been described extensively in a number of texts, including Martindale, The Extra Pharmacopoeia, 3 1 Edition, Royal Pharmaceutical Society (1996).
Antineoplastic agents include: antifolates; (ii) antimetabolites (including purine antimetabolites, cytarabine, fudarabine, floxuridine, 6 -mercaptopurine, methotrexate, 5-fluoropyrimidine, including fluorouracil, cytidine analogues such as 3-L-1,3-dioxolanyl cytidine and 6thioguanine); (iii) hydroxyurea; (iv) mitotic inhibitors (including CPT-11, Etoposide( VP-21)), taxol, and vincristine, alkylating agents (including but not limited to busulfan, chlorambucil, cyclophosphamide, ifofamide, mechlorethamine, melphalan, and thiotepa); (vi) nonclassical alkylating agents, platinum containing compounds, bleomycin, anti-tumor antibiotics, anthracycline, anthracenedione, topoisomerase 11 inhibitors, hormonal agents (including but not limited to corticosteroids (dexamethasone, prednisone, and methylprednisone); and androgens such as fluoxymesterone and methyltestosterone, estrogens such as diethylstilbesterol, antiestrogens such as tamoxifen, LHRH analogues such as leuprolide, antiandrogens such as flutamide, aminoglutethimide, megestrol acetate, and medroxyprogesterone), asparaginase, carmustine, lomustine, hexamethylmelamine,.dacarbazine, mitotane, streptozocin, cisplatin, carboplatin, levamasole, and leucovorin.
A more comprehensive list of antineoplastic agents includes Aceglatone; Aclarubicin; Altretamine; Aminoglutethimide; 5-Aminogleavulinic Acid; Amsacrine; Anastrozole; Ancitabine Hydrochloride; 17- 1 A Antibody; Antilymphocyte Immunoglobulins; Antineoplaston A 10; Asparaginase; Pegaspargase; Azacitidine; Azathioprine; Batimastat; Benzoporphyrin Derivative; Bicalutamide; Bisantrene Hydrochloride; Bleomycin Sulphate; Brequinar Sodium; Broxuridine; Busuiphan; Campath-IH; Caracemide; Carbetimer; Carboplatin; Carboquone; Carmofur, Carmustine; Chiorambucil; Chiorozotocin; Chromomycin; Cisplatin; Cladribine; Corynebacterium parvum; Cyclophosphamide; Cyclosporin; Cytarabine; Dacarbazine; Dactinomycin; Daunoi-ubicin Hydrochloride; Decitabine; Diaziquone; Dichlorodiethylsulphide; Didemnin Docetaxel; Doxifluridine; Doxorubicin Hychloride; Droloxifene; Echinomycin; Edatrexate; Elliptinium; Elmustine; Enloplatin; Enocitabine; Epirubicin Hydrochloride; Estramustine Sodium Phosphate; Etanidazole; Ethoglucid; Etoposide; Fadrozole Hydrochloride; Fazarabine; Fenretinide; Floxuridine; Fludarabine Phosphate; Fluorouracil; Flutamide; Formestane; Fotemustine; Gallium Nitrate; Gencitabine; Gusperimus; Homoharringtonine; Hydroxyurea; Idarubicin Hydrochloride; Ifosfamide; Ilmofosine; Improsulfan Tosylate; Inolimomnab; Interleukin-2; Irinotecan; JM-2 16; Letrozole; Lithium Gamolenate; Lobaplatin; Lomustine; Lonidamine; Mafosfamide; Meiphalan; Menogaril; Mercaptopurine; Methotrexate; Methotrexate Sodium; Miboplatin; Miltefosine; Misonidazole; Mitobronitol; Mitoguazone Dihydrochioride; Mitolactol; Mitornycin; Mitotane; Mitozanetrone Hydrochloride; Mizoribine; Mopidamol; Multialchilpeptide; Muromonab-CD3; Mustine Hydrochloride; Mycophenolic Acid; Mycophenolate Mofetil; Nedaplatin; Nilutamide; Nimustine Hydrochloride; Oxaliplatin; Paclitaxel; PCNUJ; Penostatin; Peplornycin Sulphate; Pipobroman; Pirarubicin; Piritrexim Isethionate; Piroxantrone Hydrochloride; Plicamycin; porfirner Sodium; Prednimustine; Procarbazine Hydrochloride; Raltitrexed; Ranimustine; Razoxane; Rogletimide; Roquinimex; Sebriplatin; Semustine; Sirolimus; Sizofiran; Sobuzoxane; Sodium Bromebrate; Sparfosic Acid; Sparfosate Sodium; Sreptozocin; Sulofenur; Tacrolimus; Tamoxifen; Tegafur; Teloxantrone Hydrochloride; Temozolomide; Teniposide; Testolactone; Tetrasodium Mesotetraphenylporphinesulphonate; Thioguanine; Thioinosine; Thiotepa; Topotecan; Toremifene; Treosulfan; Trimetrexate; Trofosfamide; Tumor Necrosis Factor; Ubenimex; Uramustine; Vinbiastine Sulphate; Vincristine Sulphate; Vindesine Sulphate; Vinorelbine Tartrate; Vorozole; Zinostatin; Zolimomab Aritox; and Zorubicin Hydrochloride.
IV. ABNORMAL CELL HYPERPROLIFERATIVE
CONDITIONS
Antioxidants can be used to increase the cytotoxicity of antineoplastic agents to disorders of abnormal cellular proliferation, including, but not limited to: benign tumors, including, but not limited to papilloma, adenoma, firoma, chondroma, osteoma, lipoma, hemangioma, lymphangioma, leiomyoma, 46 rhabdomyoma, meningioma, neuroma, ganglioneuroma, nevus, pheochromocytoma, neurilemona, fibroadenoma, teratoma, hydatidiform mole, granuosa-theca, Brenner tumor, arrhenoblastoma, hilar cell tumor, sex cord mesenchyme, interstitial cell tumor, and thyoma; malignant tumors (cancer), including but not limited to carcinoma, including renal cell carcinoma, prostatic adenocarcinoma, bladder carcinoma,and adenocarcinoma, fibrosarcoma, chondrosarcoma, osteosarcoma, liposarcoma, hemangiosarcoma, lymphangiosarcoma, leiomyosarcoma, rhabdomyosarcoma, myelocytic leukemia, erythroleukemia, multiple myeloma, glioma, meningeal sarcoma, thyoma, cystosarcoma phyllodes, nephroblastoma, teratoma choriocarcinoma, cutaneous T-cell lymphoma (CTCL), cutaneous tumors primary to the skin (for example, basal cell carcinoma, squamous cell carcinoma, melanoma, and Bowen's disease), breast and other tumors infiltrating the skin, Kaposi's sarcoma, and premalignant and malignant diseases of mucosal tissues, including oral, bladder, and rectal diseases, central nervous system tumors (glioblastomas), meningiomas, and astrocytomas; hyperproliferative and preneoplastic lesions, including mycosis fungoides, psoriasis, dermatomyositis, rheumatoid arthritis, viruses (for example, warts, herpes simplex, and condyloma acuminata), molluscum contagiosum, remalignant and malignant diseases of the female genital tract (cervix, vagina, and vulva).
Of these, particular conditions which can be treated using this method include colorectal cancer, ovarian cancer, bone cancer, renal cancer, breast cancer, gastric 47 cancer, pancreatic cancer, melanoma, hematopoietic tumors such as lymphoma, leukemia, plasma cell dyscrasias, and multiple meyloma and amylodosis.
Antioxidants can also be used in combination with antineoplastic agents to treat cardiovascular proliferative disease such as post-angioplasty restenosis and atherosclerosis.
V. PHARMACEUTICAL COMPOSITIONS A host, including mammals, and specifically humans, suffering from any of the above-described conditions can be treated by the topical or systemic administration to the patient of an effective amount of an antioxidant, optionally in combination with an antineoplastic agent, in the presence of a pharmaceutically acceptable carrier or diluent. The antioxidant can be administered prior to, in combination with, or following treatment with an antineoplastic agent when used to increase the cytotoxic effect of the antineoplstic agent. Methods and dosages for the administration of antineoplastic agents are known to those skilled in the art, and are described in a number of texts, including the The Physician's Desk Reference, Martindale's The Extra Pharmacopeia, and Goodman Gilman's The Pharmacological Basis of Therapeutics, or can be easily determined using standard methods.
The antioxidant can be administered subcutaneously, intravenously, intraperitoneally, intramuscularly, parenterally, orally, submucosally, by inhalation, transdermally via a slow release patch, or topically, in an effective dosage range to treat the target condition. Typical systemic dosages for all of the herein described 48 conditions are those ranging from 0.01 mg/kg to 500 mg/kg of body weight per day as a single daily dose or divided daily doses. Typical dosages for topical application are those ranging from 0.001 to 100% by weight of the active compound.
The compound is administered for a sufficient time period to alleviate the undesired symptoms and the clinical signs associated with the condition being treated.
The active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutic amount of compound in vivo in the absence of serious toxic effects.
The concentration of active compound in the drug composition will depend on absorption, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
A preferred mode of administration of the active compound for systemic delivery is oral. Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the 49 purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or other enteric agents.
The compound or its salts can be administered as a component of an elixir, suspension, syrup, wafer, lozenge, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
The compound can also be mixed with other active materials which do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, antiinflammatories, antivirals, or other immunosuppressive agents.
Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
If.administered intravenously, preferred carriers are physiological saline,bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ) or phosphate buffered saline (PBS).
In a preferred embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and 51 Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) are also preferred as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No.
4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the compound is then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
Suitable vehicles or carriers for topical application can be prepared by conventional techniques, such as lotions, suspensions, ointments, creams, gels, tinctures, sprays, powders, pastes, slow-release transdermal patches, suppositories for application to rectal, vaginal, nasal or oral mucosa. In addition to the other materials listed above for systemic administration, thickening agents, emollients, and stabilizers can be used to prepare topical compositions. Examples of thickening agents include petrolatum, beeswax, xanthan gum, or polyethylene, humectants such as sorbitol, emollients such as mineral oil, lanolin and its derivatives, or squalene. A number of solutions and ointments are commercially available, especially for ophthalmic applications.
VI. ILLUSTRATIVE EXAMPLES The following examples are provided for the purpose of illustrating various embodiments of the invention and are not intended to limit the scope of the present invention.
EXAMPLE 1 HCT 116 and HCT 15 human CRC cells were obtained from the American type Culture Collection. p2 1 WAF'/CIPl-/- cancer cells generated from HCT 116 cells by T. Waldman were provided by J. Pietenpol (Vanderbilt University, TN) and HPV E6-transfected HCT 116 by W. S. El-Deiry (University of Pennsylvania, PA) El-Deiry et al., Cell 75, 817 (1993)]. All cancer cell lines used in these studies were grown in Dulbecco's modified Eagle's medium (DMEM) (GIBCO BRL) with high glucose and supplemented with 10% heat-activated fetal bovine serum (FBS), non-essential amino acids, L-glutamine, and penicillin G Sodium (100 U/ml) and streptomycin sulfate (100 mg/ml) at 37°C in 5%CO in air.
To determine the effect of pyrrolidinedithiocarbamate (Sigma Chemical Co., MA), a vitamin E analogue (6-hydroxy-2.5,7,8-tetramethylchroman-2-carboxylic acid: vit E) (Aldrich), 5-FU (Hoffmann-LaRoche Inc. Nutley, NJ) or doxorubicin (Sigma) on anchorage-independent growth, HCT 15 and HCT 116 cells were plated at 10 X10' cells/35 mm plate in DMEM supplemented with 1% FBS and 0.4% agar along with the factor to be tested. The number of colonies was quantified under days using the Omnicon image analyzer. Colonies greater than 50 microns in diameter 53 (approximately 50 cells) were scored as positive after 10 days. Preliminary studies indicated that pyrrolidinedithiocarbamate and vitamin E had no significant effect on CRC cell plating efficiency, at concentrations between 25-200 M and 0.1-10 mM, respectively. Higher concentrations resulted in non-specific cytotoxicity.
EXAMPLE 2 DNA Content of nuclei was determined as described Nicoletti et al., J.
Immunol. Methods. 139, 271 (1991)] by lysing plasma membranes, staining nuclear DNA with propidium iodide (50 mg/ml), and quantitating the relative DNA content of nuclei using the Becton Dickinson FACSORT fluorescence-activated cell sorter. The proportion of nuclei in each phase of the cell cycle was determined using MODFIT DNA analysis software. Detection ofapoptotic cells either by fluorescence microscopy or by flow cytometry was performed using the ApopTag Plus In Situ Apoptosis Detection Kit (Oncor, Gaithersburg, MD) as described in the manufacturer's protocol. Briefly, gigoxygenin-labeled nucleotides were added to free 3'OH groups of DNA produced by DNA fragmentation during apoptosis by terminal deoxynucleotidyl transferase (TdT). Digoxygenin was detected by a FTC-conjugated anti-digoxygenin antibody. Analysis was carried out using the fluorescence-activated cell sorter and FITC staining visualized using a fluorescence microscope (Zeiss).
EXAMPLE 3 Intracellular HzO 2 levels were analyzed by flow cytometry using dihydrorhodamine 1234 (DHR) as a specific fluorescent dye probe Rothe, A.
Emmendorffer, A. Oser, J. Roesler, G. Valet, J. Immun. Methods 138, 133 (1991); J.
54 A. Royall, H. Ischiropoulos, Arch. Biochem. Biophysics 302, 348 (1993)]. CRC cells were grown in DMEM containing 1 mM DHR and pyrrolidinedithiocarbamate pM) or vit E (3 mM) for up to 24 hours. Following trypinization, trypsin activity was quenched with 2% FBS in phosphate buffered saline and cells fixed in 1% paraformaldahyde (Sigma). Cellular rhodamine 123 fluorescence intensity of 1 x 104 cells was measured for each sample using a Becton-Dickenson FACS Vantage flow cytometer with the excitation source at 488 nm and emission wave length of 580 nm.
Histograms were analyzed with the software program PC-Lysis (Becton Dickenson).
Background fluorescence from blank wells was subtracted from each reading.
EXAMPLE 4 Male athymic Balb/c nu/nu mice were obtained from the Harlan Sprague- Dawley Company at 4-6 weeks of age and were quarantined for at least 2 weeks before the study. Animal experiments were carried out in accordance with both institutional and federal animal care regulations. HCT 116 and HCT 15 CRC cell lines were grown in DMEM supplemented with 10% FBS as described above. Cells were harvested through two consecutive trypsinizations, centrifuged at 300g for minutes, washed twice, and resuspended in sterile phosphate buffered saline. One X 6 cells in 0.2 ml were injected subcutaneously between the scapula of 7- to old male nude mice.
EXAMPLE Tumor volumes were estimated weekly by measuring the maximal length, width, and height. Once tumors reached a mean size of 120 to 150 mm 3 animals received either weekly i.p. injections of pyrrolidinedithiocarbamate (70 gM) or vitamin E (3 mM), 5-FU (40 mg/kg) or saline, or a combination of pyrrolidinedithiocarbamate or vitamin E and 5-FU or 6 weeks. In cross-over experiments, animals received the above treatments for three weeks (with the exception of vitamin and then were crossed-over to either the combination treatment of pyrrolidinedithiocarbamate and 5-FU (saline, pyrrolidinedithiocarbamate or 5-FU alone) or discontinued treatment pyrrolidinedithiocarbamate and 5-FU) for the remaining three weeks of the experiment. In preliminary experiments, a series of single doses of pyrrolidinedithiocarbamate, vitamin E or 5-FU were administered over a 30 day period to establish LDo 5 and effective route of administration (data not shown). Tumor volumes were recorded weekly until termination of the study.
EXAMPLE 6 Tumor tissues were fixed overnight in 4% paraformaldehyde and embedded in paraffin according to standard histological procedures. BrDU staining was performed as described [Holmgren, et al., Nature Med. 1, 149 (1955)]. TdT labeling of fragmented DNA (TUNEL) was performed as described. The proliferative index (BrDU) and the apoptotic index (TUNEL) were estimated by the percentage of cells scored under a microscope at 200-fold magnification. The proliferative indices for HCT 116 and HCT 15-derived tumors (irrespective of treatments) were 53.1 5.2 and 63.1± 7.2, respectively.
EXAMPLE 7 For Western blot analysis, cells were lysed in 50 mM Tris-Cl. pH7.4, 300 mM NaCI, 2 mM EDTA, 0.5% Nonidet-40, 05 mM phenylmethysulfonyl fluoride aprotinin (1 pepstatin (lg/ml), and leupeptin (2 g/ml). One hundred mg of extract (as determined by Bradford analysis) was applied to 12% SD-PAE gels and transferred to 0.2 p.M pore nitrocellulose membranes (Schleicher and Schuell). Blots were probed with antibodies raised against p21 WAFl/CIPI, p53, p27 or C/EBP3 (Santa Cruz) at a final concentration of 0.1 g.g/ml. After washing, blots were incubated with donkeyanti-rabbit or goat-anti-mouse IgG-horseradish peroxidase conjugates, and developed using Enhanced Chemiluminescence (amersham, Arlington Heights, IL).
EXAMPLE 8 RNA was extracted as described Schwab, K. Alitalo, H. E. Varmus, J.M.
Bishop, Nature (Lond.) 303, 497 (1983)]. Poly mRNA was separated by electrophoresis through 1% agaroseformaldehyde gels, and northern blotting was performed as previously described (Coffey, et al., Cancer Res. 47, 4590 (1987)].
A human p21 wAFIICIPI cDNA probe was provided by B. vogelstein (John Hopkins Oncology Center, Baltimore, MD) and labeled with [32 P]dCTP by the random primer extension method. Hybridization and posthybridization washes were carried out at 43 C. IB15 was used as a control for equivalent loading and transfer E.
Danielson, et al., DNA 7, 261 (1988)].
EXAMPLE 9 The human p21 wAFc'I' promoter construct (WWP-luc) was provided by B.
Vogelstein El-Deiry, et al., Cell 75, 817 (1993)]. CRC cell lines were grown to confluence prior to transfection with CELLFECTIN per manufacturer's instructions (GIBCO BRL). For all luciferase assays, total DNA transfected was kept constant with addition of pBSKII or pCMV-basic. All pCMV-C/EBP expression vectors were provided by L. Sealy (Vanderbilt University, TN). pCMV-CAT was transfected as an internal control for gene expression. At 12 hours posttransfection, selected cells were treated with 70 uM pyrrolidinedithiocarbamate. After 24 hours of treatment, cell lysates were prepared and luciferase activity was assayed as described Misra-Press, C. S. Rim, H. Yao, M. S. Roberson, P. J. S. Stork, J. Biol.
Chem. 270, 14587 (1995)]. Luciferase activity was normalized to CAT activity, and results were reported as fold activation above basal levels.
EXAMPLE The 2.4 kilobase pair genomic gragment containg the p 2 1
WAF
ICI
P
cDNA start site at its 3' end was subcloned into the Hind III site of the luciferase reporter vector, pGL2-basic (Promega). p21W deletion mutants (D2198 to D 1138) were generated by PCR using internal p21 WAICIP' primers designed against the published p21WAFI/CIPI promoter sequence (GenBank). In each case, PCR products were subcloned into pGL2-basic and the sequences verified by double-stranded DNA sequencing. Mutagenesis of the NF_IL6 recognition site was performed using the Muta-Gene M13 In vitro mutagenesis kit (Bio-Rad, Hercules, CA).
58 The presence of the desired TT to AA base pair change was verified by DNA sequencing.
EXAMPLE 11 Complementary oligonucleotides corresponding to bases -1884 through -1904 in the wild type and the NF_IL6 mutant p21 W^F'IIPI promoter suquence were synthesised (wild type, GTACTTAAGAAATATTGAAT and ATTCAATATTTCTTAAGTAC; mutant; GTACAAAAGAAATATTGAAT and ATCAATATTTCTTTTGTAC). Two hundred ng of each oligo was end-labeled with 200 uCi y-32P-labeled ATP and T4 polynucleotide kinase. The resulting end-labeled oligos were then annealed and gel purified. Preparation of nuclear extract from CRC cells treated with antioxidants and the conditions for electrophoretic shift mobility assays (EMSA) were as described [Kailoff, et al., Science 253, 786 (1991)]. When antisera were added, nuclear extracts and 2 jl of C/EBP a, P, or 6 polyclonal antibody (Santa Cruz) were incubated for 10 minutes at room temperature before the addition of the radiolabeled probe.
EXAMPLE 12 Two human colorectoal cancer cell lines, HCT 116 (wild type p 5 3 and HCT (mutant p53), were treated with increasing amounts of either pyrrolidinedithiocarbamate or vitamin E in a soft agar ex vivo model of tumorigenicity. Both pyrrolidinedithiocarbamate and vitamin E caused a dosedependent reduction in anchorage-independent growth of HCT 116 and HCT 15 cells (Figure 1A). This analysis was extended to a variety of tumor cell lines derived from 59 the colon (HCA-7, Difi, RKO, SW620), breast (MCF-7, MDA-MB231), and stomach (Hs 746T). At these concentratons, both antioxidants were effective in inhibiting anchorage-independent growth of all tumor cell lines tested, independent of their p53 status (Difi, RKO, data not shown).
Treatment of HCT 116 or HCT 15 CRC cells with either pyrrolidinedithiocarbamate (70 gM) or vitamin E (3 mM) for 24 hours, followed by propidium iodide staining of cells and subsequent flow cytometric analysis, revealed that both compounds induced a significant accumulation of cells in the G, peak, suggesting that the observed growth inhibitory effects of pyrrolidinedithiocarbamate or vitamin E in soft agar were due to cell cycle arrest and/or apoptosis (Figure IB).
To determine whether these cell cycle perturbations could be correlated with the antioxidant properties of these compounds, both the intracellular redox status (by endogenous H 2 0 2 levels) and the percentage of cells undergoing G, cell cycle arrest or apoptosis (by flow 25cytrometric analysis) were quantified over a 24 hour period in antioxidant-treated cells.
As shown in Figure 1C, both pyrrolidinedithiocarbamate and vitamin E significantly reduced endogenous H 2 0 2 levels in both cell lines, with pyrrolidinedithiocarbamate being the more effective reducing agent. Furthermore, this decrease in H 2 0 2 levels correlated with the induction of G, cell cycle arrest and the appearance of TUNEL-positive nuclei in these cells. Treatment of HCT 15 cells with the membrane-permeant antioxidant N-acetyl-L-cysteine (NAC) and the dietary antioxidant, vitamin C, showed a similar reduction in H 2 0 2 levels and the induction of apoptosis (Figure 1D), supporting a role for reactive oxygen species in cell cycle progression. Since antioxidants may alter the intracellular redox milieu through reactive oxygen species other than H 2 0 2 HCT 15 cells were transiently transfected with an expression plasmid encoding human catalase. Overexpression of catalase markedly reduced H 2 0 2 levels and induced cell cycle arrest and apoptosis in these cells, thus directly implicating H 2 0 2 as an important mediator of the observed cell cycle effects in these antioxidant-treated cells.
To demonstrate further that antioxidants enhance the cytotoxic efficacy of and doxorubicin, the IC 50 value of each drug was derermined for HCT 116 and HCT 15 cells grown in soft agar in the presence or absence of 70 uM pyrrolidinedithiocarbamate or 3 mM vitamin E (the approximate IC 5 0 values for these compounds in both cell lines). Pyrrolidinedithiocarbamate or vitamin E decreased the
IC
50 for both 5-FU and doxorubicin compared to cells treated with either of the individual drugs alone (Figure 1E). These effects were more pronounced with pyrrolidinedithiocarbamate, perhaps reflecting its more potent reducing ability.
Mechanisms of cellular uptake and metabolism of 5-FU and doxorubicin differ significantly. Thus, it is unlikely that pyrrolidinedithiocarbamate or vitamin E modulate the cytotoxicity of 5-FU or doxorubicin via alterations in these pathways.
EXAMPLE 13 The therapeutic efficacy of pyrrolidinedithiocarbamate or vitamin E was next examined in vivo by growing HCT 116 or HCT 15 cells as tumor zenografts in athymic mice. Agter establishment of palable tumors (mean tumor volume 150 mm3) 61 animals either received weekly i.p. injections ofpyrrolidinedithiocarbamate, vitamin E, and/or 5-FU or saline as a negative control. The results with HCT 116 cells are shown in Figure 2A. After 4 weeks, tumor volumes in control mice necessitated sacrifice in accordance with institutional protocol. Individually, pyrrolidinedithiocarbamate, vitamin E and 5-FU significantly reduced tumor volume over the 6-weeks compared to saline-treated controls. Addition of pyrrolidinedithiocarbamate or vitamin E significantly enhanced the effect of 5-FU. In all nine animals with complete abolishment of tumors, no sign of tumor has been observed following discontunuation of combined treatment for 2 months.
Similar results were seen in HCT 15-derived xenografts with the exception that the combination regimens were more effective in these mutant p53 CRC cells.
To further explore the in vivo efficacy ofpyrrolidinedithiocarbamate and in established HCT 15-derived tumors, mice were crossed over to combined treatment once significant differences in single agent therapies were established (Figure 2B).
Mice which initially received no treatment developed large tumors (2780 257 mm 3 by 3 weeks. Treatment of these mice with 5-FU and pyrrolidinedithiocarbamate at this time reduced the size of even these advanced lesions (week 6: 1184 96 mm 3 Cross-over to combined treatment (5-FU and pyrrolidinedithiocarbamate) also reduced tumor size in mice initially treated with a single agent. Tumors decreased in size from 1864 190 mm 3 to 660 82 mm 3 and 1325 210 mm 3 to 637 231 mm 3 for animals treated initially with 5-FU and pyrrolidinedithiocarbamate alone, respectively. These results complement the in vitro findings, and indicate that antioxidants can significantly enhance the efficacy of 5-FU in CRC cells.
No signs of agent-induced toxicity were observed in the mice, as judged by changes in body weight or gross anatomical and microscopic examination of major organs. At necropsy, all tumors exhibit central necrosis grossly, irrespective of tumor size or treatment regimen. Since tumors from mice treated with pyrrolidinedithiocarbamate and 5-FU were no longer present, this treatment group was omitted from these analyses. Immunohistochemical analysis of residual tumors demonstrated a high proliferative index, irrespective of the treatment regimen. However, the apoptotic index increased approximately 5-fold following vitamin E, in both xenograft models (Figure 2C). In contrast, the apoptotic index of 5-FU-treated tumors was markedly higher in cells expressing wild type p53 (HCT 116) compared to mutant p53 (HCT supporting a role for p53-mediated apoptosis in 5-FU cytotoxicity. Combined vitamin E and 5-FU treatment was able to further increase the apoptotic index in these tumors, even in a mutant p53 genetic background. The apparent synergy between vitamin E and 5-FU-induced apoptosis in mutant p53 HCT 15 cells suggests that antioxidants may re-establish the apoptotic signaling pathway.
EXAMPLE 14 Regulation of G, cell cycle arrest and subsequent apoptosis has been attributed to a number of cellular proteins, including p53 and the cyclin-dependent kinase inhibitors, such as p21WAFI/CPI and p27. Pyrrolidinedithiocarbamate had no effect on p53 or p27 protein levels in either HCT 116 or HCT 15 cells over a 24 hour period, as 63 determined by Western blot analysis (Figure 3A). In contrast,p2 1WAFl/PI protein and mRNA levels increased within one hour after pyrrolidinedithiocarbamate treatment and persisted for 24 hours (Figure 1B).
Induction of p21 WAFI/CIP mRNA by pyrrolidinedithiocarbamate appeared to be p53 independent, as the antioxidant effect was not attenuated in HCT 116 cells expressing human papillomavirus (HPV) E6, which inactivates p53 through ubiquitinmediated protein degradation (Figure 3B) (Scheffner, et al, Proc. Natl.Acad. Sci.
U.S.A. 88, 5523 (1991); Crook, et al, Oncogene 6, 873 (1991)). Similar increases in p21 WA^F/CIPI expression were observed in HCT 116 and HCT 15 cells treated with vitamin E.
To confirm that the induction of p2 1
WA
Fi IP by antioxidants was required for these cell cycle disruptions, parental HCT 116 cells or cells were treated with a targeted disruption of p21WAFI/CIPI by pyrrolidinedithiocarbamate or vitamin E for 24 hours (Fig. 3C). In both cells types, there was a significant attenuation ofantioxidantmediated apoptosis, suggesting that p21 WAF/CIPI plays a pivotal role in antioxidantmediated cell death.
EXAMPLE To confirm that induction of p2 1
WAF
I/CIP was dependent on the transcriptional activity of antioxidants, HCT 116 and HCT 15 cells were transfected with a 2.4 kilobase pair fragment of the p21 WAF'/PI promoter linked to a luciferase reporter gene.
Treatment of transfected cells with pyrrolidinedithiocarbamate led to an approximate five-fold induction of the p21 WAFIC c PI promoter activity in both HCT 116 and HCT 64 cells, again consistent with a p53-independent induction of p21 WAF/CIPI mRNA and protein (Figure 4A). Serial deletions of this promoter demonstrated that the pyrrolidinedithiocarbamate responsive element(s) of the p 2 1 WAFt CIP promoter was located between nucleotide-2078 and -1874. Disruption of this site by site-directed mutagenesis abolished pyrrolidinedithiocarbamate induction ofluciferase activity, demonstrating that the NF_IL6 site is required for pyrrolidinedithiocarbamate-induced p21 WAFI/CIP transcription.
The NF_IL6 consensus sequence is recognized by members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors Akira and T. Kishimoto, Immunol Rev. 127, 25 (1992); Landschulz et al., Genes Dev. 2 786 (1988); Cao, et al., ibid. 5, 1538 (1991); Chang, et al., Mol. Cell. Biol. 10, 6642 (1990); Williams et al., ibid. 5, 1553 (1991); Akira et al., EMBO. J.9, 1897 (1990); Poli, et al., Cell 63, 25 643 (1990)). These factors contain a basic DNA-binding region adjacent to a leucine zipper (bZIP) dimerization domain facilitating the formation of homodimers or heterodimers with other bZIP proteins. Interestingly, C/EBPa has been shown to transcriptionally upregulate p21WAFI/CIP and inhibit cellular proliferation in mouse preadipocytes, although no correlation was shown with apoptosis.
DNA binding activity to the p21WAF'^ F c NF_IL6 site was increased following pyrrolidinedithiocarbamate treatment, as determined by electrophoretic mobility shift 32 assays (EMSA) performed with a P-labeled oligonucleotide containing the p21WAF l CIPI NFIL6 cis element and nuclear extracts from HCT 116 and HCT 15 cells treated over a 24 hour period (Figure 4B: left panel). Shifted complexes were competed by 50-fold molar excess of an unlabeled oligonucleotide containing a consensus NF_L6 sequence (right panel: lane but not by an oligonucleotide containing a mutated NF_IL6 consensus sequence (lane indicating that the induced complex was specific for the NFIL6 cis element. Supershift analysis of the induced complex suggested that shifted complexes were due to the interaction of C/EPB[ (lane with the NF_IL6 cis element and not C/EBPa (lane 4) or C/EBP6 (lane 6).
To confirm that C/EBPP could influence p21 WAF/CIPI transcriptional activity, a eukaryotic expression plasmid encoding C/EBPa,P or 6 was contransfected into either HCT 116 or HCT 15 cells with the full length p21 W F l
P
l -I luciferase promoter construct (Figure 4C and 4D). Transfection of C/EBPP strongly activated p 2 1 WAFl/c"PI promoter activity in a dose-dependent manner, and mutation of the NF IL6 site abolished this stimulation. In contrast, C/EBPa or C/EBP8 failed to stimulate p21 promoter activity.
Finally, the functional role of C/EBPP was examined in the apoptotic signaling pathway by generating lines of HCT 15 cells that were stably transfected with the human C/EBPP cDNA, in both the sense and antisense orientation, under the control of an ecdysone inducible promoter. To avoid the possibility that constitutively expressed C/EBPP might induce cell death, and ecdysone (muristerone A)-inducible expression system (Invitrogen, Carlsbad, CA) was used. Human C/EBPP cDNA was subcloned into pIND at convenient enzyme cleavage sites. Constructs, containing sense and antisense C/EBPP sequences were verified by double-stranded DNA 66 sequencing. Before transfection, pIND-C/EBPP constructs were linearized with Pme I and purified. HCT 15 cells were transfected with 5 pg of pVgRXR (Invitrogen) and pg of plND-C/EBPb using CELLFECTIN according to manufacture's instructions.
After 24 hours, cells were shifted to medium supplemented with 1 mg/ml Geneticin and 10 mg/ml puromycin (GIBCO BRL) to select for transfectant clones. After 2 weeks, antibiotic-resistant cells were subcloned by limiting dilution. The expression of C/EBPp protein and the subsequent induction of p21' ^F 0 ct1 was determined following induction with 10 pM muristerone A for 24 hours and Western blot analysis. Three independent positive clones were used for all assays with essentially the same results.
Representative data from clones derived from each of these cell lines is shown in Figure 4E and F. C/EBPP overexpression elevated p21^wA" t
C
l P protein levels compared to unstimulated basal levels (Figure 4E: inset). Induction of C/EBPP also led to an increase in the apoptotic index of these cells in both the presence and absence of antioxidant. In addition, repression of C/EBPP expression by antisense mRNA induction nearly abolished antioxidant-induced apoptosis in these cells (Figure 4E).
Further evidence that induction of C/EBP3 mediates the effects of antioxidants on colorectal cancer cells was demonstrated by the increased apoptotic index in response to either 5-FU or doxorubicin in the presence of overexpressed C/EBP3 (Figure 4F).
In the absence of C/EBP3 overexpression, 5-FU increased the apoptotic index to whereas doxorubicin did not induce apoptosis. When these cells were induced to overexpress C/EBPb in the presence of either 5-FU or doxorubicin, apoptosis was 67 increased to 70% and 80%, respectively. Taken together, these data demonstrate that the induction of apoptosis by antioxidants is, at least in part, mediated by a p53independent induction of p21WAF
I
C"*I via activation of the transcription factor C/EBPp.
Another transcription factor, NF-kB, has been shown to confer resistance to TNFct-mediated apoptosis, although a recent report has shown that induction of NFkB DNA binding activity in kidney epithelial cells precedes apoptosis following serum-withdrawal. NF-kB activity can be downregulated by pyrrolidinedithiocarbamate through inhibition of the phosphorylation and subsequent proteasome-mediated proteolysis of its inhibitors (IkBs). No reduction in NF-kB DNA binding activity was detected in these CRC cells at the doses of pyrrolidinedithiocarbamate used in these studies. In addition, it has recently been demonstrated that induction of p21WAFI/CIPl can increase NF-kB transcriptional activity, therefore it is unlikely that the antioxidant effect in these cells is mediated by a reduction in NF-kB activity. These studies demonstrate that induction of a transcription factor, C/EBPp, sensitizes CRC cells to chemotherapeutic agentmediated apoptosis.
Activation of C/EBPp, either directly or indirectly, induced p 2 1 WAFI/CIP gene expression, leading to G, cell cycle arrest and apoptosis in two colorectal cancer cell lines. The ability of the antioxidants pyrrolidinedithiocarbamate and vitamin E to induce this transcription factor, independent of functional p53, has important biological consequences on the efficiency of DNA damaging agents. Both 5-FU and doxorubicin exert their cytotoxic effects mainly through the induction of DNA 68 damage. This damage, through undefined mechanism(s), signals the induction ofp53, which, in turn, leads to inhibition of cellular proliferation and apoptosis. Since mutations of p53 occur in over 80% of advanced CRC tumors, these mutations may be responsible for the relatively low response rate of advanced colorectal cancer tumors to DNA-damaging agents, such as 5-FU. Although 5-FU is particularly successful in the treatment of local, wild type p53, colorectal cancer tumors, the success rate falls to 15-20% in patients with advanced, frequently mutant p53-containing colorectal cancer tumors. Thus, the ability of antioxidants (used throughout these studies at doses obtainable in humans) to bypass the requirement of p53-mediated apoptosis demonstrates the utility of combined antioxidants and chemotherapeutic agents for advanced colorectal cancer and other solid tumors.
Example 16 Figures 5a and 5b are bar graphs of the BrDU-labelled cells (percent of total cell nuclei) from colorectal cell xenografts derived from athymic mice treated with saline, vitamin E, PDTC, 5-FU, and the combination of vitamin E and 5-FU, as a measure of the effect of the test compound on proliferation of HCT 116 and HCT cells. Figures 6a and 6b are bar chart graphs of TUNEL-positive cells (percent of total cell nuclei) also from xenografts derived from athymic mice treated with saline, vitamin E, PDTC, 5-FU, and the combination of vitamin E and 5-FU, as a measure of the effect of the test compound on apoptosis. Tumor tissues were fixed overnight in 4% paraformaldehyde and embedded in paraffin according to standard histological procedures. Sections were pretreated with 10 mM citrate buffer (pH 69 and incubated with PC 10 monoclonal antibody against BrDU (Boehringer Mannheim). TdT labeling of fragmented DNA (TUNEL) was performed according to manufacturer's instructions. The proliferative index (BrDU) and the apoptotic index (TUNEL) were estimated by the precentage of cells scored under a microscope at 200fold magnification.
Example 17 As indicated in Figure 7, PDTC treatment induces C/EBPB DNA binding activity via a post-translational modification. DKO-1 cell were treated with PDTC for the indicated times, nuclear extracts were prepared with a [y- 3 P]-labeled p 2 1 -NF_IL6 oligonucleotide (Lanes Specificity assays: Lanes 10-12, competition controls were performed on a nuclear extract derived from DKO-I cells treated with PDTC for 3 h (lane with excess unlabeled wild-type (lane 11) and mutant (lane 12) oligonucleotide. Lanes 13-15, supershift analyses were performed with C/EBPa (lane 13), P (lane 14), or 8 (lane 15) polyclonal antibodies. Parallel
I
DKO-1 cell cultures were treated with PDTC (70 kM) for the indicated times.
Poly(A) was isolated and treatment-related variations in C/EBPP mRNA levels were evaluated by Northern blot analysis. IB15 is shown as a control for equivalent loading and transfer. Parallel DKO-1 cultures were treated with PDTC (70,uM) in the presence of 3 P]orthophosphate. C/EBPP from cytosolic and nuclear fractions were purified by immunoprecipitation from cells before (time 0) or at the indicated times after PDTC treatment. Treatment-related variations in the localization of C/EBPP were analysed by SDS-PAGE followed by autoradiography or Western blot analysis (100 .g of total cellular protein lane). DKO-1 cells were cultured in the presence of PDTC (70 gM) for 1 hour and then processed for immunocytochemistry to detect treatment-related differences in the compartmental-ization of C/EBPP protein. In all experiments, parallel cultures treated with preimmune sera or primary anti-C/EBPP antisera that had been preincubated with in vitro translated C/EBPP protein demonstrated no fluorescent signal after treatment with the secondary Cy3conjugated antibody. Representative photomicrographs show anti-C/EBPP stained cells before and after PDTC treatment.
Example 18 Figure 8 illustrates the effect of PDTC on endogenous cAMP levels and PKA activity. DKO-1 cells were treated with 70gM PDTC for the indicated times. Cell lysates were prepared and assayed for endogenous cAMP levels or PKA activity (see Experimental Procedures). The values are expressed as pmol mean per u±g protein s.e.m. and are representative of three experiments carried out in quadruplicate.
Example 19 Figure 9 illustrates that PDTC phosphorylates C/EBPp at Ser 9
(A)
Endogenous C/EBPP from 3 P]orthophosphate-labeled DKO-1 cells (2 mCi/ml. 3 h) that were treated with either 0 gM (lane 70 tM PDTC (lane 2) or 50 gM forskolin were immunoprecipitated with anti C/EBPP antibodies. Labeled proteins were visualized by SDS-PAGE followed by autoradiography. Tryptic phosphopeptide maps of in vivo labeled epitope-tagged C/EBPP. Wild type (WT) and mutant (Ala 29 9 71 C/EBPP, immunoprecipitated from PDTC treated or untreated DKO-1 cells with the antibody to the FLAG-epitope, were digested with trypsin and the phosphopeptides separated by electrophoresis and thin-layer chromatography and visualized by autoradiography, X.2 were constitutively phosphorylated. The level of phosphopeptide X, was increased after PDTC treatment in cells transfected with the wild type, but not mutant, protein. The circle indicates the origin. Comparison of the in vivo phosphorylation of wild type and Ala substitution mutants of C/EBP[ from untreated cells and cells treated with PDTC. Autoradiography (top) and C/EBPP immunoblot (bottom) are shown. Phosphorylation of Ser 29 within C/EBP3 is essential for protein translocation to the nucleus. DKO-1 cells were transfected with pCMV-C/EBPP (WT) or pCMV-C/EBPP (Ala 29 and treated with PDTC for 3 hours.
C/EBPP protein was visualized by immunocytochemistry as described in Experimental Procedures.
Example Figure 10 illustrates that PKA phosphorylation of C/EBP3 is required for nuclear translocation. Parallel DKO-1 cell cultures were treated with PDTC (0 or gM) for 3 hours. Poly(A)* mRNA and protein were isolated from each group and treatment-related variations in C/EBPP mRNA and protein levels were evaluated by Northern or Western blot analysis. IB 15 is shown as a control for equivalent loading and transfer. DKO-1 cells were treated with PDTC (0 or 70.M) or PDTC and mPKI (myristylated protein kinase A inhibitor, 1 pM) for 3 hours. Cells were fixed with paraformaldehyde and C/EBP3 protein visualized by immunofluorescence 72 staining. Treatment of cells with mPKI alone failed to induce nuclear translocation of C/EBPP (data not shown).
Example 21 Figure 11 illustrates that carboxymethylation of the catalytic subunit of PP2Ac is inhibited by PDTC. DKO-1 cells were incubated in serum-containg media containing [methyl-'H]S-adenosyl methionine and/or 70 LM PDTC for three hours.
Cytosolic or nuclear fractions were prepared and C/EBPP immunoprecipitated using standard methods. Antibody/antigen complexes were resolved by SDS-PAGE and the presece of PP2Ac was detected by fluorography (overnight). PDTC inhibited carboxymethylation of PP2A subunit in nuclear fractions, and to a lesser extent, in cytosolic fractions.
Example 22 Figure 12 illustrates that PDTC inhibits methyltransferase activation of PP2Ac.
PP2A (a and c dimer) was incubated in the presence of [methyl-3H]S-adenosyl methionine, increasing concentrations of PDTC and partially purified rat methyltransferase for thirty minutes at 37 degrees C. The reaction was terminated by the addition of SDS-sample buffer. Samples were resolved by SDS-PAGE and the presence of methylated PP2A catalytic subunit visualized by fluorography. PDTC selectively inhibits the ability of methyltransferase to carboxylate the catalytic subunit of PP2A in a dose dependent manner.
Example 23 To demonstrate a specific and direct inhibitory effect of PDTC on PP2A activity, DKO-I cells were initially treated with 17 pM PDTC for three hours. Cell lysates were prepared and treated with the following reagents in the presence of phosphorylated C/EBPP in which the phosphate is radiolabelled, for ten minutes at 37 degrees C: 12 (a selective PP1 inhibitor), okadaic acid (a selective inhibitor of PP2A and PP1), PDTC, 12 and PDTC, and okadaic acid and PDTC. As shown in Figure 13, PDTC inhibited phosphatase activity in the DKO-1 extract, resulting in maintenance of the C/EBPp in its phosphorylated state. This effect is reversible following removal of the antioxidant. This result is consistent with PDTC inhibition of the PP2A phosphatase. In contrast, a PP 1 phosphastase specific inhibitor, 12, failed to protect C/EBPp from dephosphorylation under the same conditions. As expected, the nonspecific phosphatase inhibitor okadaic acid inhibited all DKO-1 phosphatase activity, thus protecting the C/EBP3 from dephosphorylation. These results demonstrate that antioxidants such as PDTC are specific inhibitors of a class of phosphatases, such as PP2A, that are involved in the dephosphorylation of C/EBPp.
Example 24 The effect of PDTC on cellular proliferation or apoptosis was evaluated in a number of normal and cancer cell lines. The IC, 5 was measured as the concentration of PDTC that inhibited cellular proliferation. The results are provided in Table 1. As indicated, PDTC did not inhibit the cell growth of normal cells, but did substantially inhibit the growth of breast carcinoma cells, gastric carcinoma cells, osteosarcoma cells, and pancreatic carcinoma cells.
TABLE l:Effect of PDTC on Cell Proliferation (ICs 0 required to inhibit cellular proliferation or induce apoptosis) Normal cells Keratinocytes Primary colonocytes Primary mammary epithelia Non-transformed rat intestinal epithelial cells Breast carcinoma cells MCF-7 MDA-MB231 MDA MB-468 Gastric carcinoma cells Hs746T N-87 Osteosarcoma Saos-2 Pancreatic carcinoma cells 600uM 500uM 650UM 450uM 13uM O1uM AsPol PANC-1 BxPc3 100uM Example To evaluate whether antioxidants induce apoptosis in normal cells, normal and cancerous cells were incubated with 70 gM PDTC for 24 hours and DNA fragmentation assessed as a percentage of a control. As indicated in Tables 2 and 3, the normal cell line (primary colonocytes) did not exhibit significant DNA fragmentation after 24 hours of exposure to PDTC, whereas cancerous cells (Wild type p53 HCA-7, HCT 116, mutant p53 HCT 15, DLD-1, and DKO-3 cells) exhibited substantial DNA fragmentation.
TABLE 2: PDTC Induces Apoptosis in CRC Cells but not Normal Cells in vitro Cell Type DNA Fragmentation after PDTC Treatment Control) 3h 6h 12h 24h Primary Colonocvtes 101+10 109+9 107+10 130±16 Wild Type p53 111+13 126+17 154+19 302+35 HCA-7 HCT 116 108+11 131+21 198+23 367+49 bold values: significantly different from untreated cells (P<0.0 as determined by AOVA TABLE 3: PDTC Induces Apoptosis in CRC Cells but not Normal Cells in vitro (HI) Cell Type DNA Fragmentation after PDTC Treatment Control) Primary Colonocytes 101+10 104±9 107+10 130+16 Mutant p53 HCT 15 145+12 259+18 673+34 979+34 DLD-I 213+17 296+21 712+34 876+46 DKO-3 223+11 1478+16 1896+23 1116+54 bold values: significantly different from untreated cells (P<0.0 as determined by AOVA Example 26 As indicated in Tables 4 and 5, PDTC substantially reduces the toxicity of FU in the murine small intestine and the murine colon. These results indicate that PDTC not only increases the cytotoxic effect of antineoplastic agents, it at the same time has a palliative effect on normal cells which are exposed to cytotoxic agents.
Example 27 Isolation of C/EBPP/PP2A methyltransferase complex A novel multicomponent complex consisting of C/EBPI, PP2A and methyltransferase was isolated and initially characterized. This complex appears to play an important role in the regulation of PP2A and downstream transcriptional events including, but not limited to, cell division and apoptosis.
Co-immunoprecipitation techniques demonstrate for the first time that the transcriptional factor C/EBPP is complexed with the PP2Ac protein phosphatase. This novel complex appears to play an important role mechanistically in the control of the phosphorylation status of C/EBPP by PP2A.
Additionally, the C/EBPP/PP2Ac complex has also been shown to consist of the methyltransferase which carboxymethylates the catalytec subunot of C/EBPP.
Rat brain soluble extracts were fractionated by phenyl-Sepharose and analyzed for methyltransferase activity using exogenous PP2A heterodiver (AC complex). The peak of methyltransferase activity was further fractionated by Source Q (strong anion exchange), and gel filtration chromatography. The partially purified methyltransferase in Figure 14 represents the peak methyltransferase activity from the gel filtration 77 column. This peak fraction of methylase activity is taken further to DEAE (weak anion exchange) and MonoQ (a different strong anion exchange resin) columns. Both C/EBPP and PP2A are detectable following these additional steps. Rat brain extracts are shown as a positive control (C/EBPP and PP2Ac migrate at approximately 45 and 36 kDa on SDS-PAGE).
Modifications and variations of the present invention will be obvious to those skilled in the art from the foregoing detailed description. Such modifications an variations are intended to come within the scope of the appended claims.
C.;

Claims (17)

  1. 8-20649 16:10:65 18-12-2006 4/9 The claims defininu the invention ae as roliOws: 1. Use of a therapeutically effective amount of an antioxidant to enhance cytotoxicity of an antineoplastic drug for the treatment of a disorder of abnormal celi proliferation in a patient in riced of such therapy, wherein the antioxidant is a mono-ester or di-ester of probucol. 2. The use of claimn 1, wherein the mono-ester or di-ester of probucol is an ester of succinije acid, gluraric acid, adipic acid, suberic acid, sebacic acid, azelaie acid or maleic acid. 3. The use of claim 1, wherein the antineoplastic agent is selected from the group consisting of Aceglatone, Aclarubicin, Altraamine, Aminogi uteh i m-ide, 5-Amninoglcavul inic Acid; Arnsacrine; Anastrozole; Ancitahirie Hydrochloride; 17-1A Antibody; Antilymphocyte Immurnglobuhns; Anlineopiaston A 10; Asparaginamse; Pogaspargase; Azacitidine; Azathioprine; Batimastat; Benzoporphyrin Denivative; Bicalutamide; Bisantrene; Hydrochloride; Bleomyc in Sulphate; llrccjuinw- Sodium; Broxoridine; Busulphan; C:ampath-IH; Caracemide; Carbetimeg, Carboplarin; Carboquone; Carmofur; Carrnustine; Ch lnrarnbucil; Chilorozotocin; Ch roniomycin; Cisplatin; C ladribine; Coryniebacteri urn parvuni; Cyclophosphamide; Cyclusporin; Cytarahine; Dacarbazine; Dactinoniycin; Daunorubicin H-ydrochlcoride; Docicabine, Diaziquo-ne; lDichlorodiethylsulphide; Didemnin B; Docetaxl; Doxifluridine, Doxoruhicin Hychioride; Droloxifonec; :Echinomycin; Edatrexa~e llpiu;Fmsine; Enloplatin; Enocitabine; l-pinubicin Hydrochloride; Estraynustine Sodium Popae tnd~l;Ehgui Eooie Padrozole f lydro-chluride; Fazarabine; Fenretinide;, Floxoridine; Fludarabine Phosphate; t Flurnuracil; Flutam ide; Formestane; Poternosti ne; Gallium Nitrate; Gencirabine; *Gusperimus; llomnoharringtonine; Hydroxyurea;, IdaWrabicin hy drochloride, Ifosfainide; Ilmofosine; Improsultan Tosylate;, Inolimomnab; Interleukin-2; Irinotecan; JM-21 6; Letrozole; l-ithiumn Gamolenate; Lohbaplatin; Lumustinc; LAonidamine; Mafosfamide; Mve Iphalan; Menogaril; Mercaptopurine; Methotrexate; Methotrexate Sodium; Mi boplatin; Mi! tefosine; Mi sunidazole; Mitrc, ronitol; Mi toguazone Di hydrochlo-ide; Mitre] actol; Mitomycin; Mitotane; Mi tozanerrome Hydrochloride, Mizoibine: NMopridamol; Mu ltialchipeptide; Muromanob-CD3; Mustine Hydrochloride; Mycophonolic Acid; MycuphrjIate MofetiL III; INedapiatin; N iuranide; Nimustine Hydrochloride; Oxaliplatin: Paclitaxci; PC N U; Penostarin; Peplomnycin Sulphate; Pipobrornan; Pi rarubicin; Pinrexin Isothionate: Piroxantrone I lydrochloride; Pilcanyci n; porfimner Sodium; Prednimustine; Procarbazine; Hydrochloride; R altrinuxed: Ranimustine; Razoxane; Rogictimide; 201705335 1 79 COMS ID No: SBMI-05700483 Received by lP Australia: lime 16:12 Date 2006-12-18 0396743111' Blake DawsonWaldron 16:11:18 18-12-2006 6/9 Roquinimex; Sebriplatin; Semustinc; Sirolimus: Sizofiran; Sobuzoxome; Sodium Bromebrate; Sparfosic Acid; Sparfosate Sodium; Sreptozocin; Sulofenur; Tacrolimus; Tamoxifen; Tegafur; Teloxan-trone Hydrochloride; ''ernozolomide; Teniposide; 'T'estolactone, Testrasodium Mesotorraphenylporphine-sulphnate; Thioguanine; 'T'hioinosine; Thiotepa; Topotecan; Toremifene; Trcosulfan; Trimetrexate Trofosfamide Tumor Nccrosis Factor, Ubenimex; Uamnustine; Vinblastine Sulphate; Vincristine Sulphate; Vinorelbine Tartrate; Vorozole; Zinostatin; Zibiostatin; Solimomab Aritox; and Zorubicin Hydrochloride. 4. 'T'he use of claim 1, where the abnormal cell proliferation is a hyperprolifterative or prneoplastic lesion. The use of claim 1, wherein the antincoplastic drug is cartoplain. 6. The use of claim 1, wherein the antineoplastic drug is cisplatin. 7. The use of claim 1, wherein the antineoplastic drug is doxorubicin. 8. TIhe use of claim I, whrein the antincoplastic drug is daunorubicin.
  2. 9. The use of claim 1, wherein the mono- or di-ester of probucol is the mono-succinic acid estcr. The use of claim I, wherein the mono- or di-ester of probucol is the mono-glutaric acid *es=. 0(1. The use of claim 1. whercin the mono- or di-ester of probucol is the mom>-adipic acid ester. S12. The use of claim 1. whercin the mono- or di-ester of probucol is the mono-subcric acid ester.
  3. 13. The use of claim 1, wherein the mono- or di-ester of probucol is the mon-abclaic acid ester.
  4. 14. The use of claim 1, wherein the mono- or di-ester of probucol is the mono-malcic acid ester. A method to enhance the cytotoxicity of an antineoplastic drug for the treatment of a disorder of abnormal cell proliferation, the method comprising administering an effective 201705335 1 COMS ID No: SBMI-05700483 Received by IP Australia: Time 16:12 Date 2006-12-18 0 3 9679 3111' Blake Dawson Waldron161:4 8-2066/ 16:11:34 18-12-2006 6/9 almount of the antineoplastic drug to a host in need of such treatment in combinatio n with anl effective cytowoxicity-incnzasing amount of an antioxidant, wherein the antioxidant is a mono-ester or di-cste- of pro~bucol.
  5. 16. The method according to claim 15 wherein the mono-ester or di-ester of prubucol is an ester of succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, azelaic acid Or maleic acid.
  6. 17. The method of claim 15 or 16, wherein the antineoplastic agent is selected from the group consisting of Aceglatone; Aclarubicin; Al Iretarnine; Am inoglutethimide; Amin ogleavulinic Acid; Axnsacrine; Anastrozole; Ancitahine Ilydrochloiide: 17-1 A Antibody; Antilymphocyte Immunoglobulins; Antineoplaston A 10; Asparagin ase; Pegaspargase; Azacitidine; Azathioprine; Badimastat; Benzoporphyrin Derivative; J3icalutani de; Bisantrene I lydrochioride; Bleomycin Sulphate; Brequinar Sodium; :Broxuiridine;- Husuiphan; Campathi-IH; Caracenide; Carbetirner; Carboplatin; Carboquone;, Carmofur; Carmustine; Chiorambucil; Chiorozotocin; Chromomnycin; Cisplatin; Cladribine; Corynebacteri tim parvum; Cyclophosphamidc; Cyc losporin; Cytarabine; Dacarbazine; .2Dactinomycin; Daunorubicin Hydrochloride;, Decitabine; Diaziquone; Dichlorodiethylsulphicie; Didemnin 13.; Docetaxel; Doxifluridioc; Doxorubicin Hychioride; Droloxifene; lichinoniycin; F~atrcxate; Elliptinium; E-lmustine; E1-nloplatin; Enocitabine; -Epirubicin Hydro~chloridc; Estrarnustine Sodium Phosphate; Etanidazole; Erhogi ucid; Fsoposide; Fadrozole Hydrochloride; Fazarabine; Fenretinide; Floxuridine; Fludarabine Phosphatc; Fluorouracil; Flutamnido; Formestane; Fotemustine; Gallium Nitrate; Ciencirabine; Clusperimins; Uomoharringtoninie; Hydroxyurea; ldarubicin 'Hydrochloride;. Ifosfamide; JUmofosinc; Improsulfan Tusylate; Inolimornab: Lncerleukin-2; In-notecan; JM- 0. 216; Lclrozole; Lithium Gamolenate; I obaplatin; [-omustine; Lnonidamine; Matbsfamide;, 0 Meiphalaxi; Men ogaril; Mercaptopurine; Methotrexate; Merhotrexate Sodium; NMiboplatin; Miltefosi ne; Misonidazole; Mitubronitol; Mi toguazonc Di hydrochioride;, Mvitolactol; Mitomycin; M itotane; Mitozanerrone Hydrochloride; NMizori bine; Mopidamol;, Muitlaich-ilpepti de; N4uromonab-CD3; Musti ne H-ydrochloride; Mycophenolic Acid:, Mycophenolate Mofeti 1; Nedaplari n; Nihitainide; Nimustine H-ydrochloride, Oxaliplatin; Pac I taxci; 1-CNLJ: Penostatin; Peplomycin Sulphate; *Pipobroman; Piranibicin;, Piritrexiin Isethion ate: Piroxantrone Hydrochloride; Plicamycin; purR mner Sodiurn; Predniinustine; Procarbazine Hiydrochloride; Raltitrexed; Ranimustine; Razoxane; Rogletimi de; 201 70.5335-1 81 COMS ID No: SBMI-05700483 Received by IP Australia: Time 16:12 Date 2006-12-18 03 9679 3111' Blake Dawson Waldron 16:11:56 18-12-2006 719 Roquinimcx; Sebriplatin; Semustine; Sirolimus; Sizofiran; Sobuzoxane: Sodium Bromebrate; Sparfosic Acid; Sparfosate Sodium; Srcptozocin; Sulofenur; T'I'acrolimus; Tamoxifen; Tegafutir; Teloxantrone Hlydrochloride; Tcenozolomide; Teniposide; Testolactone; Tetrasodium Mesoletraphenylporphine-sulphonate; Thioguanine; Thioinosine; Thiotepa; Topotecan; Toremifcnc; Treosulfan; Trimetrexate; Trofosfamidc; Tumor Necrosis Factor; Ubenimex; Uramustine; Vinblastine Sulphate; Vincristine Sulphate; Vindesinc Sulphate; Vinorclbine Tartrate; Vorozole; Zinostatin; Zolimomab Aritox; and Zorubicin Hydrochloride.
  7. 18. The method of claim 15, wherein the abnormal cell proliferation is a hyperproliferative or preneoplastic lesion.
  8. 19. 'The method according to claim 15, wherein the antineoplastic drug is carboplatin. 0606*:
  9. 20. The method according to claim 15, wherein the antincoplastic drug is cisplatin.
  10. 21. Thle method according to claim 15, wherein the antineoplastic drug is doxorubicin.
  11. 22. The method according to claim 15, wherein the antineoplastic drug is daunorubicin.
  12. 23. The method according to claim 15, wherein the mono- or di-estr of probucol is the mono- succinic acid ester.
  13. 24. The method according to claim 15, wherein the mono- or di-cster of probucol is the mono- glutaric acid ester. The method according to claim 15, wherein the mono- or di-estcr of probucol is the mono- adipic acid ester.
  14. 26. The method according to claim 15, wherein the mono- or di-ester of probucol is the mono- suberic acid ester.
  15. 27. The method according to claim 15, wherein the mono- or di-ester of probucol is the mono- azclaic acid ester.
  16. 28. The method according to claim 15, wherein the mono- or di-ester of probucol is the mono- maleic acid ester.
  17. 201705335.1 82 COMS ID No: SBMI-05700483 Received by IP Australia: Time 16:12 Date 2006-12-18
AU52761/02A 1997-07-01 2002-07-02 Antioxidant enhancement of therapy for hyperproliferative conditions Ceased AU785322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU52761/02A AU785322B2 (en) 1997-07-01 2002-07-02 Antioxidant enhancement of therapy for hyperproliferative conditions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08886653 1997-07-01
US08967492 1997-11-11
AU52761/02A AU785322B2 (en) 1997-07-01 2002-07-02 Antioxidant enhancement of therapy for hyperproliferative conditions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU82827/98A Division AU8282798A (en) 1997-07-01 1998-07-01 Antioxidant enhancement of therapy for hyperproliferative conditions

Publications (2)

Publication Number Publication Date
AU5276102A AU5276102A (en) 2004-01-08
AU785322B2 true AU785322B2 (en) 2007-01-18

Family

ID=34120344

Family Applications (1)

Application Number Title Priority Date Filing Date
AU52761/02A Ceased AU785322B2 (en) 1997-07-01 2002-07-02 Antioxidant enhancement of therapy for hyperproliferative conditions

Country Status (1)

Country Link
AU (1) AU785322B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294430A (en) * 1988-09-12 1994-03-15 University Of Rochester Use of dithiocarbamates to treat myelosuppression

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294430A (en) * 1988-09-12 1994-03-15 University Of Rochester Use of dithiocarbamates to treat myelosuppression

Also Published As

Publication number Publication date
AU5276102A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
CA2294247C (en) Antioxidant enhancement of therapy for hyperproliferative conditions
HUT76728A (en) Methods for prediction or assessment of cardiovascular diseases and for screening potential active agents, and dithiocarbamate derivatives and pharmaceutical compositions suitable for treating such diseases
Impicciatore et al. Nutlins and ionizing radiation in cancer therapy
US7943568B2 (en) Antitumor agents
US7105561B2 (en) Use of etodolac for the treatment of prostate cancer
JP2007516227A (en) Pyrrole compounds and uses thereof
WO1997004761A9 (en) Methods and compositions for treating cell proliferative disorders
US7105560B1 (en) Use of etodolac in the treatment of multiple myeloma
Wang et al. YC-1 [3-(5′-Hydroxymethyl-2′-furyl)-1-benzyl Indazole] exhibits a novel antiproliferative effect and arrests the cell cycle in G0-G1 in human hepatocellular carcinoma cells
AU785322B2 (en) Antioxidant enhancement of therapy for hyperproliferative conditions
US8791081B2 (en) MGMT inhibitor combination for the treatment of neoplastic disorders
US6653350B1 (en) Methods of treating osteoarthritis with inducible nitric oxide synthase inhibitors
WO2000027194A9 (en) Method for treating a patient with neoplasia by treatment with a paclitaxel derivative
Levy et al. The effect of changes in thiol subcompartments on T-cell colony formation and cell cycle progression: relevance to AIDS
EP2432480B1 (en) Compositions and methods for treating inflammatory arthritis
KR100413591B1 (en) A method for screening compounds for their potential to inhibit neoplasia and pharmaceutical compositions containging such compounds
CA2526594C (en) Use of tyrosine kinase inhibitors to treat diabetes
Krooth et al. Effect of 6-azauracil, and of certain structurally similar compounds, on three pyridoxal-phosphate requiring enzymes involved in neurotransmitter metabolism
RU2814013C1 (en) METHOD OF USING 4-((5,10-DIMETHYL-6-OXO-6,10-DIHYDRO-5H-PYRIMIDO[5,4-b]THIENO[3,2-e][1,4]DIAZEPIN-2-YL)AMINO)BENZENESULFONAMIDE (XMU-MP-1) TO INHIBIT GROWTH OF BURKITT&#39;S LYMPHOMA CELLS
Prochaska et al. Inhibition of human immunodeficiency virus type 1 replication by 7-methyl-6, 8-bis (methylthio) pyrrolo [1, 2-a] pyrazine, an in vivo metabolite of oltipraz.
Ahmad Preventive and Osteoarthritis Suppressive Effects of Peretinoin
WO2021083912A1 (en) Combination therapy having antioxydant properties
Bevins Potentiation of camptothecin cytotoxicity by the sequential addition of histone deacetylase inhibitors
Yoon The role of the mTOR pathway in mediating the biological effects of arsenic trioxide
WO2001078651A2 (en) Method for treating neoplasmin with topoisomase i inhibitor

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application
NA Applications received for extensions of time, section 223

Free format text: AN APPLICATION TO EXTEND THE TIME FROM 20030701 TO 20040701 IN WHICH TO PAY A CONTINUATION FEE HAS BEEN LODGED

NB Applications allowed - extensions of time section 223(2)

Free format text: THE TIME IN WHICH TO PAY A CONTINUATION FEE HAS BEEN EXTENDED TO 20040701