AU780776B2 - Protective layer for color proofs - Google Patents

Protective layer for color proofs Download PDF

Info

Publication number
AU780776B2
AU780776B2 AU35093/99A AU3509399A AU780776B2 AU 780776 B2 AU780776 B2 AU 780776B2 AU 35093/99 A AU35093/99 A AU 35093/99A AU 3509399 A AU3509399 A AU 3509399A AU 780776 B2 AU780776 B2 AU 780776B2
Authority
AU
Australia
Prior art keywords
protective layer
image
color
bearing surface
support film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU35093/99A
Other versions
AU3509399A (en
Inventor
Manfred Adelhard Josef Sondergeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to AU35093/99A priority Critical patent/AU780776B2/en
Publication of AU3509399A publication Critical patent/AU3509399A/en
Application granted granted Critical
Publication of AU780776B2 publication Critical patent/AU780776B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Laminated Bodies (AREA)

Description

P/00/011 Regulation 3.2
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
a a k "i TO BE COMPLETED BY APPLICANT Jjqme of Applicant: E.I. DU PONT DE NEMOURS AND COMPANY Actual Inventor(s): MANFRED ADELHARD JOSEF SONDERGELD Address for Service: CALLINAN LAWRIE, 711 High Street, Kew, 3101, Victoria, Australia Invention Title: PROTECTIVE LAYER FOR COLOR PROOFS The following statement is a full description of this invention, including the best method of performing it known to me:- 17/06/99,TDI0631.CS,1 GP-1188
TITLE
PROTECTIVE LAYER FOR COLOR PROOFS The invention relates to a protective layer on color proofs. More particularly, this invention relates to a protective polymeric layer for color proofs, a process for applying the protective layer on a color proof, and a color proof provided with a protective layer.
Screened color separations are used in reprography as copy originals for preparing offset or letterpress printing plates. Before the printing plates are exposed, the color separations are checked with the aid of color proofing processes for whether the subsequent printing result is a tonally accurate reproduction of the original.
Such color proofing processes use, for example, photosensitive recording materials with which the image is produced by using adhesion differences in the exposed and unexposed areas of the photosensitive layer. A positive-working S. 15 reproduction process is disclosed in U.S. 3,649,268 in which a tacky photopolymerizable recording material is laminated on an image support and hardened by imagewise exposure. The exposed image areas lose their tackiness.
The image can then be developed by applying colored particulate materials such S: as toners or pigments which selectively adhere to the unexposed tacky image areas. A negative-working process is described in U.S. 4,174,216 which teaches a e** negative-working element a support; a tacky, non-photosensitive contiguous layer; a photohardenable photoadherent layer; and a strippable cover sheet. After imagewise exposure to actinic radiation, the coversheet is peeled away, carrying with it the exposed areas of the photoadherent layer and revealing the tacky 25 contiguous layer beneath. These tacky areas may then be toned with, for example, finely divided particulate material. Different colored layers can be prepared and assembled in register over one another to form multilayer color proofs, as is well know to those skilled in the art. U.S. 4,053,313 describes a siilar negativeworking system which is developed by solvent washout.
Other known photosensitive recording materials for preparing color proofs include precolored layers instead of tonable photosensitive layers, whereby the exposed material is developed by washoff with solvents as well as by peel-apart methods. The prior art also includes systems wherein the tackiness is increased by exposure to actinic radiation instead of being reduced as in the systems described above.
Color proofs are generally provided with an added protective layer to protect against mechanical and chemical interactions. For this purpose, a layer of a photopolymerizable material can be applied and polymerized overall, as described in U.S. 4,174,216. This process has the disadvantage that an additional exposure step is necessary. Further, there are various special protective layers of nonphotosensitive materials. Double layer materials having an antiblocking layer and an adhesion layer are described in EP-B 0 242 655. Similarly, a combination of an actual protective layer of synthetic resin films and an adhesion layer is described in U.S.
4,329,420. Single layer materials are described in EP-B 0 285 039 and EP-B 0 365 355.
According to EP-B 0 285 039, mixtures of special incompatible polymers are used.
According to EP-B 0 365 355, thermoplastic resins having a Tg of 50 to 80 0 C must be used.
The present invention is based on the problem of making available effective protection for color proofs against mechanical and chemical interactions, such protection having properties stable during storage of the color proofs at room temperature, without damaging the resolution or the tonal reproduction of the color proofs, or distorting the color images and without added processing steps or added auxiliary layers being required.
SUMMARY OF THE INVENTION 15 The present invention provides in one form a protected proof of a color image comprising a color image bearing surface having a color separation image formed on the surface by imagewise exposure and development of a photopolymerizable recording material and at least one protective layer on the image bearing surface, the protective layer o* including at least one polymer having a melting point Tm of at least about 50'C and a glass o0o transition temperature Tg of at most about 0°C, and wherein the protective layer protects the color separation image during storage from mechanical and chemical interactions.
In a further embodiment, the invention provides a process for applying a protective layer on an image-bearing surface, the process comprising: providing an 11 element comprising a support film A and a protective layer B including at least one polymer having a melting point Tm of at least about 50'C and a glass transition temperature Tg of at most about 0 0 C, the protective layer B having a free surface and an opposing support surface adjacent to the support film A; adhering the free surface of the protective layer B to the image-bearing surface, the image-bearing surface optionally comprising multiple color separation images; and removing the support film A, whereby the protective layer B is transferred onto the image-bearing surface.
The image itself, together with further objects and attendant advantages, will best be understood by reference to the following detailed description of the preferred embodiment.
17/02/05,atl 063 I.specipgs.doc,2 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Protective Element: The element for application to an image bearing surface comprises a strippable support film and at least one protective layer including at least one polymer having a melting point Tm of at least about 50 0 C and a glass transition temperature Tg of at most about 0°C. Mixtures of polymers having the above characteristics may also be used in the non-photosensitive protective layer. In a preferred embodiment, the protective layer is transparent and non-photosensitive.
The protective element of this invention may be applied to many types of imagebearing surfaces. Some examples of image-bearing surfaces include Cromalin® proofs, Easyprint® proofs, etc.
The protective layer can be prepared by known methods. For this purpose, they can be coated on suitable supports from currently available solvents, preferably organic solvents, such as, for example, methylene chloride, toluene/methanol mixtures, or other 15 mixtures of aromatic solvents and alcohols, esters, or ketones, and subsequently dried.
The thickness of the protective layer is usually about 1-20tm, preferably about 3and particularly preferred at about 5-10gm. A composite of two or more layers is also possible for this protective element. Two or more layers having the above specified thermoplastic polymers can be applied on the support successively or simultaneously by 20 known methods. The layers of such multilayer protective elements can have the same or S different compositions. Single-layer elements are preferred.
Polymer: Useful polymers have a melting point Tm of at least about 50 0 C and a glass transition temperature of at most about 0°C. Preferred polymers have a melting point Tm of about 50-120 0 C, particularly about 50-100 0 C, and a glass transition temperature Tg of at most about -20 0 C, particularly at most about -40 0 C. Suitable polymers include, for example, polyethylene oxides, polypropylene oxides, polytetrahydrofurans, polycaprolactones and combinations thereof. Polycaprolactones, polyethylene oxides and polypropylene oxides are particularly preferred, especially polycaprolactones. The polymer is present in the 17/02/05,atl0631.specipgs.doc,3 amount of from about 80 to about 100% by weight, preferably from about 90 to about 100% by weight, based on the total weight of the layer.
Additives: The protective layer can also contain additives, such as, for example, UV absorbers, optical brighteners, fillers, surfactants, and antistatic agents. In particular, addition of fillers, such as, for example, silicates, aluminum oxides, and silicon dioxides, etc., are advantageous. Pyrogenic and precipitated silicic acids are preferred. Fillers are present in the amount of from 0 to about 15% by weight, preferably from 0 to about 10% by weight, based on the total weight of the layer.
Supports: Suitable supports are, for example, synthetic resin films of polyethylene, polypropylene, polyamides, or polyesters. Polyethylene terephthalate films are particularly preferred. Supports having smooth or rough surfaces can be used.
Support films having release layers or ED-treated support films are also suitable.
15 The thickness of the support is usually at least about 12 pim, preferably about 20-130 um, particularly preferred at about 20-75 pm.
Image Bearing Surfaces: The protective layer is suitable for use on all current proofs. Examples are positive-working recording materials described in U.S. 3,649,268, negative- 20 working materials described in U.S. 4,174,216 and U.S. 4,053,313, and materials having precolored recording layers as described in U.S. 4,260,673. The colored image may optionally include multiple color images.
.The protective layer can also be useful on other image bearing surfaces such as, for example, photographic images, disublimation images, and laser ablation/inkjet images.
Process: The protective layer can be applied with current commercial laminators onto a commercial color proofing material having an image-bearing surface. This image bearing surface may optionally contain multiple color images. Rolls as well as sheet stock can be used. The temperature of the laminator rollers is usually about 60-150°C, preferably about 70-130°C, particularly preferred at about 90-120°C. The support film is stripped off manually or automatically, transferring the protective layer completely onto the image bearing surface of the color proof. The support film is stripped off preferably after the color proof has cooled to room temperature.
The following examples illustrate the invention. Parts and percentages are by weight, unless otherwise stated. The average molecular weights of the polymers are given as weight average {Mw).
EXAMPLE 1 8.28 g Capa® 240, a polycaptolactone polyol manufactured by Solvay Interox, Warrington, Great Britain (Mw 4000, melting range Tm 55-60 0 C, glass transition temperature range Tg -60 to -70 0 C) and 8.28 g Capa® 650, a polycaprolactone polyol manufactured by Solvay Interox, Warrington, Great Britain (Mw 50,000, melting range Tm 58-60 0 C, glass transition temperature range Tg -60 to -70°C) were dissolved at room temperature in a solvent mixture of 71.4g toluene and 30.6g methanol. Then, 1.44g Acematt® OK 607, a finely divided SiO 2 matting agent of median particle size 2gm, manufactured by Degussa, Frankfurt, Germany, were dispersed in this solution with a blade agitator. This coating dispersion was applied on a smooth polyester film that had not been surface-treated (Mylar® 92A, a polyester film, from E.I. du Pont de Nemours and Company, Wilmington, DE) and dried. The dry layer thickness was 5pm. This element was laminated on a four-color Cromalin® proof in a commercial Cromalin® Whiteline laminator from the DuPont Company at 120 0 C roller temperature. After cooling to room temperature, the polyester film was stripped off. A color proof was obtained with a glossy, hard, and nontacky surface. When the color proof was flexed, the protective layer remained elastic and did not flake off.
EXAMPLE
A coating solution was made, as in Example 1, of 16.66g Capa® 650 in 71.4g 20 toluene and 30.6g methanol and applied on a smooth polyester film (Mylar® 92A) having a silicone layer. After drying, the coating thickness was 10p m. This element was laminated on an Easyprint® four-color proof in an Easyprint® laminator from the DuPont Company at 1100C roller temperature. After cooling to room temperature, the polyester film was stripped off. A color print having a glossy, hard, and nontacky surface was obtained. When the color proof was flexed, the protective layer remained elastic and did not flake off.
EXAMPLE3 A coating dispersion was made, as in Example 1, of 16.56g Capa® 650, 1.44g Acematt® OK 607, 71.4g toluene and 30.6g methanol and applied on a smooth polyester film (Mylar® 92A) having a silicone layer. After drying, the coating thickness was This element was laminated on an Easyprint® four-color proof in an Easyprint® laminator from the DuPont Company at 110 0 C roller temperature. After cooling to room temperature, the polyester film was stripped off. A color print having a glossy, hard, and 17/02/05.atl 0631 .specipgs.doc.2 nontacky surface was obtained. When the color proof was flexed, the protective layer remained elastic and did not flake off.
EXAMPLE 4 A coating dispersion was made, as in Example 1, of 9.9g Capag 240, 6.66g 650, 1.44g Acematt& OK 607, 71.4g toluene and 30.6g methanol *6 I 7/02/05 ,at1 06 3 L specipgs.doc,2 and applied on a rough polyester film that had not been surface-treated (Mylar® 92 EB 11 from the DuPont Company). After drying, the coating thickness was 10 jm. This element was laminated on an EasyprintP four-color proof in an Easyprint® laminator from the DuPont Company at 110 0 C roller temperature. After cooling to room temperature, the polyester film was stripped off. A color print having a matte, hard, and nontacky surface was obtained. When the color proof was flexed, the protective layer remained elastic and did not flake off.
EXAMPLE 2.88 g polyethylene glycol PEG 8000 manufactured by Union Carbide, Tarrytown. NY and 5.4 g polyethylene oxide WSRBN 10 manufactured by Union Carbide, Tarrytown, NY were dissolved at room temperature in a solvent mixture of 45.90 g toluene and 5.10 g methanol. This coating solution was applied on a smooth polyester film that had not been surface-treated (Mylar® 92A) and dried.
15 The dry layer thickness was 5 lam. This element was laminated on a four-color Cromalin® proof as described in Example 1. After cooling to room temperature, the polyester film was stripped off. A color proof was obtained with a glossy, hard, and nontacky surface. When the color proof was flexed, the protective layer remained elastic and did not flake off.
EXAMPLE 6 Several of each of the color proofs prepared in Examples 1-5 were stored for 24 hrs. at 40 0 C in a hot box. The color proofs were stored partially front to front and partially front to back. This stack was loaded with a weight of 500 g/dm 2 No changes occurred in the color proof surfaces and the color proofs 25 were separated without difficulty.
Of course, it should be understood that a wide range of changes and modifications can be made to the preferred embodiment described above. It therefore is intended that the foregoing detailed description be regarded as illustrative rather than limiting and that it be understood that it is the following claims, including all equivalents, which are intended to define the scope of this invention.
Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification, they are to be interpreted as specifying the presence of the stated features, integers, steps or components referred to, but not to preclude the presence or addition of one or more other feature, integer, step, component or group thereof.

Claims (12)

1. A protected proof of a color image comprising a color image bearing surface having a color separation image formed on the surface by imagewise exposure and development of a photopolymerizable recording material and at least one protective layer on the image bearing surface, the protective layer including at least one polymer having a melting point Tm of at least about 50C and a glass transition temperature Tg of at most about 0°C, and wherein the protective layer protects the color separation image during storage from mechanical and chemical interactions.
2. The proof according to claim 1, wherein the melting point Tm of the protective layer polymer is from 50 to 100 0 C.
3. The proof according to claim 1 or claim 2, wherein the glass transition temperature Tg of the protective layer polymer is at most about -20 0 C.
4. The proof according to any one of claims 1 to 3, wherein the polymer is selected •from polyethylene oxides, polypropylene oxides, polytetrahydrofurans, polycaprolactones 15 and combinations thereof.
5. The proof according to any one of claims 1 to 4, wherein the protective layer also includes an inert filler.
6. The proof according to any one of claims 1 to 5, wherein the protective layer has a S thickness of from 3 to 15 tm.
7. A process for applying a protective layer on an image-bearing surface, the process comprising: providing an element comprising a support film A and a protective layer B including at least one polymer having a melting point Tm of at least about 50'C and a glass transition temperature Tg of at most about 0°C, the protective layer B having a free surface and an opposing support surface adjacent to the support film A; adhering the free surface of the protective layer B to the image-bearing surface, the image-bearing surface optionally comprising multiple color separation images; and removing the support film A, whereby the protective layer B is transferred onto the image-bearing surface.
8. The process according to claim 7, wherein the support film A has a rough surface adjacent to the support surface.
9. The process according to claim 7, wherein the support film A has a smooth surface adjacent to the support surface. 17/02/05.atl 0631.specipgs.doc.7 The process according to claim 7, wherein the support film A is strippable and the removal step is accomplished by peeling away the support film A.
11. The process according to claim 7, wherein the free surface of the protective layer B is adhered to the image-bearing surface by lamination.
12. A protected proof of a color image as defined in any one of claims 1 to 6 and substantially as hereinbefore described with reference to any one of the examples.
13. A process as defined in any one of claims 7 to 11 and substantially as hereinbefore described with reference to any one of the examples. DATED this 17 th day of February, 2005 V V. V V VV V V. V E.I. DU PONT DE NEMOURS AND COMPANY By their Patent Attorneys: 15 CALNAN LAWRIE BIf 17/02/05,at10 6 3 1.specipgs.doc,8
AU35093/99A 1999-06-17 1999-06-17 Protective layer for color proofs Ceased AU780776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU35093/99A AU780776B2 (en) 1999-06-17 1999-06-17 Protective layer for color proofs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU35093/99A AU780776B2 (en) 1999-06-17 1999-06-17 Protective layer for color proofs

Publications (2)

Publication Number Publication Date
AU3509399A AU3509399A (en) 2000-12-21
AU780776B2 true AU780776B2 (en) 2005-04-14

Family

ID=3722337

Family Applications (1)

Application Number Title Priority Date Filing Date
AU35093/99A Ceased AU780776B2 (en) 1999-06-17 1999-06-17 Protective layer for color proofs

Country Status (1)

Country Link
AU (1) AU780776B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385466A2 (en) * 1989-03-03 1990-09-05 E.I. Du Pont De Nemours And Company Photosensitive reproduction element containing a photorelease layer
EP0554018A1 (en) * 1992-01-27 1993-08-04 Konica Corporation Image-forming material and method for forming transferred image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385466A2 (en) * 1989-03-03 1990-09-05 E.I. Du Pont De Nemours And Company Photosensitive reproduction element containing a photorelease layer
EP0554018A1 (en) * 1992-01-27 1993-08-04 Konica Corporation Image-forming material and method for forming transferred image

Also Published As

Publication number Publication date
AU3509399A (en) 2000-12-21

Similar Documents

Publication Publication Date Title
US4719169A (en) Protective coating for images
US4999266A (en) Protected color image on substrate with thermal adhesive and antiblocking overlayers
US4885225A (en) Color proof with non-blocking thermal adhesive layer with particulate polymer beads
US4656114A (en) Presensitized color-proofing diazo resin sheet with acrylic thermal adhesive layer
JPH02186349A (en) Transferring thermoplastic anti- blocking/adhesive protecting layer for image
US5663033A (en) Peel-apart proofing system comprising a hydrophilic barrier layer
US5232814A (en) Presensitized color-proofing sheet
US5534384A (en) Photosensitive material for the production of a multicolored image
EP0962829B1 (en) Protective layer for color proofs
AU608583B2 (en) Lower gloss protective covering
AU780776B2 (en) Protective layer for color proofs
EP0165031B1 (en) Presensitized color-proofing sheet
EP0446820B1 (en) Polyolefine backside coating for photosensitive reproduction element
US5122437A (en) Overlay proofs comprising precolored and toned images
JP3971820B2 (en) Photosensitive element and method of using the same
US5952151A (en) Photopolymerizable mixture exhibiting low oxygen sensitivity for the production of color proofs
US5001037A (en) Method of making overlay proofs comprising precolored and toned images
US6177234B1 (en) Process and preparation of monochrome and polychromatic color proofs from high resolution color separations using image carriers having a specified roughness
EP0718692B1 (en) Photosensitive films having a thermally sensitive material containing layer and process for using the same
JP2771122B2 (en) Toning-sensitive photosensitive composition and method for producing multicolor image
DE69813780T2 (en) Protective layer for color proofing films
JPH02244049A (en) Color proofing system having resin progressive layer with different degree of solubility