AU774013B2 - Ink container, ink and ink jet recording apparatus using ink container - Google Patents

Ink container, ink and ink jet recording apparatus using ink container Download PDF

Info

Publication number
AU774013B2
AU774013B2 AU29219/02A AU2921902A AU774013B2 AU 774013 B2 AU774013 B2 AU 774013B2 AU 29219/02 A AU29219/02 A AU 29219/02A AU 2921902 A AU2921902 A AU 2921902A AU 774013 B2 AU774013 B2 AU 774013B2
Authority
AU
Australia
Prior art keywords
ink
chamber
container
absorbing material
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU29219/02A
Other versions
AU2921902A (en
Inventor
Tsutomu Abe
Yuji Akiyama
Naohito Asai
Fumihiro Gotoh
Masahiko Higuma
Hiromitsu Hirabayashi
Masami Ikeda
Noribumi Koitabashi
Miyuki Matsubara
Shigeyasu Nagoshi
Hiroshi Sato
Shinichi Sato
Eiichiro Shimizu
Sadayuki Sugama
Hitoshi Sugimoto
Masaya Uetsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU97466/01A external-priority patent/AU774849B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to AU29219/02A priority Critical patent/AU774013B2/en
Publication of AU2921902A publication Critical patent/AU2921902A/en
Application granted granted Critical
Publication of AU774013B2 publication Critical patent/AU774013B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Landscapes

  • Ink Jet (AREA)

Description

MAR. 2002 15:33 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 6/39 S&FRef: 245572D8
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: Canon Kabushiki Kaisba 30-2, Shimomaruko 3-chome, Ohta-ku Tokyo 146 Japan Noribumi Koitabashi, Masami Ikeda, Sadayuki Sugama, Naohito Asai, Hiromitsu Hirabayashi, Tsutomu Abe, Hiroshi Sato, Shigeyasu Nagoshi, Eiichiro Shimizu, Masahiko Higuma, Yuji Aidyama, Hitoshi Sugimoto, Miyuki Matsubara, Shinichi Sato, Fumihiro Gotoh, Masaya Uetsuki Spruson Ferguson St Martins Tower,Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) Ink Container, Ink and Ink Jet Recording Apparatus Using Ink Container
S
S
The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c [R:\LIBF]41392.daC:szc MAR. 2002 15:34 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 7/39 -1- INK CONTAINER, INK AND INK JET RECORDING APPARATUS USING INK CONTAINER FIELD OF THE INVENTION AND RELATED ART The present invention relates to an ink container for containing ink to be supplied to-an ink jet recording head, ink, and an ink jet recording o* apparatus using the ink container.
The ink container used with an ink jet 10 recording apparatus is required to be capable of properly supplying the amount of the ink corresponding to the amount of the ink ejected from a recording head during the recording operation and to be free of ink leakage through the ejection outlets of the recording head when the r9eording operation is not executed.
In the case that the ink container is an exchangeable type, it is required that the ink container can be easily mounted or demounted relative to the recording apparatus without ink leakage, and that the ink can be supplied to the recording head with certainty.
A conventional example of an ink container usable with the ink jet recording apparatus is disclosed in Japanese Laid-Open Patent Application No.
87242/198.8 (first prior art), in.whi'ch the ink jet recording cartridge has an ink containrer containing foamed material and having a plurality of ink ejecting MAR.2002 15:34 SPRUSON FERGUSON 61 2 92615486 NO 6586 P. 8/39 -2orifices. With the ink container, the ink is contained in the porous material such as foamed polyurethane material, and therefore, it is possible to produce negative pressure by the capillary force in the foamed material and to prevent the ink leakage from the ink container.
Japanese Laid-Open Patent Application No.
522/1990 (second prior art) discloses an ink jet recording cartridge in which a first ink container and 10 a second ink container are connected with a porous material, and a second ink container and an ink jet recording head are connected with a porous material.
In this prior art, the porous material is not contained in the ink container, and it is disposed only in the ink passage, by which the use efficiency of the ink is improved. By the provision of the secondary ink containing portion, the ink flowing out of the first ink container due to the air expansion in the first ink container due to the temperature increase (pressure decrease), is stored, by which the vacuum in the recording head during the recording operation is maintained substantially constant.
However, in the first prior art, the foamed material is required to occupy substantially the entire space in the ink container layer, and therefore, the ink capacity is limited, and in addition, the amount of the non-usable remaining ink MAR. 2002 15:34 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 9/39 -3is re-latively large, that is, the use efficiency of the ink is poor. These are the problems therewith- In addition, it is difficult to detect the remaining amount of the ink, and it is difficult to maintain substantially constant vacuum during the ink consumption period. These are additional problems.
In the second prior art, when the recording operation is not carried out, the vacuum producing material is disposed in the ink passage, and therefore, the porous material contains a sufficient amount of the ink, and the production of the negative pressure by the capillary force of the porous material is insufficient, with the result that the ink is leaked through the orifices of the ink jet recording head by small impact or the like. This is a problem.
In the case of an exchangeable ink cartridge in which the ink jet recording head is formed integrally with the ink container, and the ink container is mounted on the ink recording head, the second prior art is not usable. This is another problem.
Japanese Laid-Open Patent Applications Nos.
67269/1981 and 98857/1984 disclose an ink container using-an ink bladder urged by a spring. This is advantageous in that the internal negative pressure is stably produced at the ink supply portion, using the spring force. However, these system involve problems that a limited configuration of the spring is required MAR. 2002 15:34 SPRUSON FERGUSON 61 2 9261t5486 NO. 6506 P. 10/39 -4to provide a desired internal negative pressure, thiat the process of fixing the ink container to the bladder is complicated, and therefore, the manufacturing cost is high. In addition, for a thin ink container, the retaining ratio is small.
Japanese Laid-Open Patent Application No.
::ri.214666/1990 discloses a separated chamber type in which the inside space of the ink container is 4...separated into a plurality of ink chambers, which commnunicate with each other by a fine hole capable of providing the vacuum pressure. In the separate 4: chamber type, the internal negative pressure at the 4 ink supply portion is produced by the capillary force of the fine opening communicating the ink chambers, In this system, the structure of the ink container is 4 simpler than the spring bladder system, and therefore, it is advantageous from the standpoint of the manufacturing cost and the configuration of the ink container is not limited from the structure. However, the separated chamber type involves the problem that when the ink container position is changed, the fine opening becomes short of ink depending on the remainiang amount of the ink with the result of instable internal vacuum pressure even to the extent the ink is leaked, and therefore, the ink container is imposed by limitation in the handling thereof.
SUMMARY OF THE INVENTION In accordance with a first aspect of the invention there is provided an ink container for containing ink to be supplied to an ink jet head, said ink container comprising: a first chamber containing a negative pressure producing member and having an air vent for communication between an inside of said ink container and ambient air and with an ink supply port connectable to the ink jet head for supplying ink to said ink jet head; a second chamber communicating with said first chamber by means of a communication path, except for which said second chamber is substantially hermetically sealed; oo [R:L|OO639.o¢*v a wall extending upwardly from the communication path, for forming a partition between said first chamber and said second chamber; and an ambient air introducing path, in the form of a recess for regulating capillary force, provided in a surface of said wall being in contact with said negative pressure producing member and extending from a point partly up said wall toward said communication path.
*o S *0 I* [R:\LIBOO]6399.doc:avc MAR. 2002 15:35 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 15/39 -7- BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows coupling between a recording head and an ink container according to an embodiment of the present invention.
Figure 2 illustrates a recording head and an ink container according to another embodiment of the present invention.
10 Figure 3 illustrates an ink container accotding to an embodiment of the present 'invention.
Figure 4 is a perspective view of a recording apparatus.
Figure 5 illustrates an ink container according to a further embodiment of the present invention.
Figure 6 illustrates an ink container according to a further embodiment of the present invention.
Figure 7 illustrates an ink container according to a further embodiment of the present invention.
Figure 8 illustrates an ink container according to a further embodiment of the present invention.
Figure 9 illustrates an ink container according to a further embodiment of the present 2002 15:35 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 16/39 -8inven-t ion.
Figure 10 illustrates a model of ink supply.
Figure 11 is a graph showing internal pressure change at the ink supply portion in an ink container according to an embodiment of the present invention.
Figure 12 shows a model of ink supply in a comparison example.
Figure 13 is a graph showing the internal pressure change at the ink supply portion in the comparison example.
Figure 14 illustrates an initial state in which the ink container is filled with the ink.
Figure 15 illustrates a state in which the air-liquid interface starts to be formed.
Figure 16 shows the state about an end of the ink supply.
Figure 17 shows the state in which the ink has been supplied out.
Figure 18 is a perspective view of a device having four heads integrally, and respective ink containers therefor are mountable.
S Figure 19 illustrates an ink container according to a further embodiment of the present invention.
Figure 20 shows a model of ink supply.
Figure 21 is a longitudinal sectional view of MAR. 2002 15:35 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 17/39 -9an ink cartridge main body for an ink jet recording, according to a further embodiment of the present invention.
Figure 22 is a cross-sectional view of an ink cartridge main body for the ink jet recording apparatus of Figure 21.
Figure 23 is a sectional view of an ink S. cartridge main body, particularly showing the surface o of the rib of Figure 21.
se 10 Figure 24 is a sectional view of the ink cartridge main body, showing the surface of the rib *according to a further embodiment of the present invention.
Figure 25 is an enlarged sectional view of a rib according to a further embodiment of the present 0' invention.
Figure 26 is a longitudinal sectional view of an ink cartridge main body of an exchangeable ink jet recording according to a further embodiment of the present invention.
Figure 27 is a cross-sectional view of an ink cartridge main body for the exchangeable ink jet recording, according to a further embodiment of the present invention.
Figure 28 is a sectional view of an ink cartridge main body, showing the surface of the rib according to a further embodiment of the present MAR. 2002 15:36 SPRIJSON FERGUSON 61 292615486 NO. 6586 P. 18/39 invention.
Figure 29 is a longitudinal sectional. view of an ink cartridge main body for the ink jet ,recording in a comparison example.
Figure 30 is a sectional view of an ink cartridge main body for the ink jet recording in the Comparison example.
31 is a scinlview ofthe inlk 90cartridge main body showing the surface of the rib in 10 a comparison example.
0* Figure 32 is an enlarged sectional view, 09 showing the cross-section of the rib in the comparison **to example.
Figure 33 illustrates horizontal printing Position.
Figure 34 illustrates leakage ink buffer function of the compressed ink absorbing material in an ink chamber.
Figure 35 shows an example of compression ratio distribution of the compressed ink absorbing material, according to a further embodiment of the present invention.
n Figure 36 shows another example of the compression ratio distribution of the compressed ink absorbing material in the embodiment of Figure Figure 37 shows a further example of the Compression ratio distribution of the compressed ink MAR. 2002 15:36 SPRUSON FERGUSON 61 2 92615486 11.6586 P. 19/39 absorbing material in the embodiment of Figure Figure 38 shows an example of the compression ratio distribution of the compressed ink absorbing material in a comparison example.
Figure 39 shows a further example of the compression ratio distribution of the compressed ink absorbing material in a comparison example.
Figure 40 shows an example of additional ink *0chamber, according to a further embodiment of the 10 present invention.
Se Figure 41 shows an example of an additional S. S ink chamber in the embodiment of Figure Figure 42 shows an example of the divided compressed ink absorbing material, according to a further embodiment of the present invention.
S SFigure 32 shows an example of the ink absorbing material arrangement in the ink chamber, according to a further embodiment of the present invention.
Figure 44 illustrates problems with the assembling of the apparatus for the Figure 43 embodiment.
Figure 45 illustrates ink consumption in a comparison example.
Figure 46 shows the ink leakage upon pressure reduction in the comparison example of Figure Figure 47 is a modified example according to MAR. 2002 15:36 SPRUSON FERGUSON 61 2 92615485 NO. 6586 P. 20/39 -12a further embodiment of the present invention.
Figure 48 is a modified example of Figure 47 embodiment.
Figure 49 is a sectional view showing the mounting of the exchangeable ink container and the recording head onto the carriage, according to an embodiment of the present invention.
Figure 50 illustrates ink consumption in the apparatus according to the embodiment of Figure 49.
Figure 51 illustrates fundamentals of the exchange between the air and the ink.
Figure 52 illustrates the internal pressure S"of the ink supply portion, according to a further embodiment of the present invention.
15 Figure 53 illustrates the ink buffering function in the apparatus of Figure 52 embodiment.
Figure 54 is a block diagram showing an example of the control system for the apparatus.
Figure 55 shows the state when the remaining amount of the ink is detected, according to a further embodiment of the present invention.
Figure 56 illustrates the internal pressure of the ink supply portion in the container according to Figure 55 embodiment.
Figure 57 shows an example of an ink refilling method.
Figure 58 illustrates ink consumption, MAR. 2002 15:36 SPRUSON FERGUSON 61 2 92615486 NO, 6586 P. 21/39 -13according to a further embodiment of the present invention.
Figure 59 illustrates a further ink consumption according to the embodiment of Figure 58.
Figure 60 shows the state in which the remaining amount of the ink is detected, in the device of the embodiment of Figure 58.
Figure 61 illustrates the state in which the ink is reinjected after the ink in the ink chamber is used out.
Figure 62 illustrates remaining ink amount detection, according to a further embodiment of the present invention.
Figure 63 illustrates a modified ink remaining amount detection, in the embodiment of Figure 62.
Figure 64 illustrates a method of ink refilling, according to a further embodiment of the present invention.
Figure 65 shows the ink flowing amount upon the pressure decrease.
Figure 66 shows a relationship between the remaining amount of the ink and the electric resistance between electrodes.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Figure 1 is a sectional view showing MAR. 2002 15:36 SPRUSON FERGUSON 61 2 92615486 NO, 6586 P. 22/39 -14connection among the recording head, ink container, carriage in an ink jet recording apparatus according to an embodiment of the present invention. The recording head 20 in this embodiment is of an ink jet type using electrothermal transducers for generating thermal energy for causing film boiling in the ink in accordance with electric signal. In Figure 1, major parts of the recording head 20 are bonded or pressed into a laminated structure on a head base plate 111 10 with positioning reference projections 111-1 and 111-2 on the head base plate ill. In the vertical direction on the surface of Figure 1 drawing, the positioning is effected by the head postioning portion 104 of a carriage HC and a projection 111-2. In the vertical 15 direction in the cross-section of Figure 1, a part of the projection 111-2 projects to cover the head positioning portion 104, and the cut-away portion (not shown) of the projection 111-2 and the head positioning portion 104 are used for the correct positioning. The heater board 113 is produced through film formation process, and includes electrothermal transducers (ejection heaters) arranged on a Si substrate and electric wiring for supplying electric power thereto, the wiring being made of aluminum or the like. The wiring is made correspond to the head flexible base (head PCB) having the wiring which has at the end portion pads for receiving electric signals MAR, 2002 15:37 SPRUSON FERGUSON 61 2 92615486 N0, 6586 P. 23/39 from the main assembly. They are connected by wire bonding. A top plate 112 integrally formed of polysulfone or the like comprises walls for separating a plurality of ink passages corresponding to the ejection heaters, a common liquid chamber for receiving ink from an exchangeable ink container through a passage and for supplying the ink into the plurality of ink passages, and orifices for providing the plurality of ejection outlets. The top plate 112 is urged to the heater board 113 by an unshown spring, and it is pressed and shield using a sealing member, thus constituting the ink ejection outlet part.
For the purpose of communication with the exchangeable ink container 1, the passage 115 provided by sealihgly combining with the top plate 112, penetrates through the holes of the head PCB 113 and the head base*plate 111 to the'opposite side of the head base plate 111. In addition, it is bonded and fixed to the head base plate 111 at the penetrating portion. At an end connecting with the ink container 1 of the passage 115, there is provided a filter for preventing introduction of foreign matter or bubble into the ink ejection part.
The exchangeable ink container is connected with the recording head 20 by an engaging guide and pressing means 103, and an ink absorbing material in the ink supplying portion is brought into contact with MAR. 2002 15:37 SPRIJSON FERGUSON 61 292615486 NO. 6586 P. 24/39 the Zilter 25 at an end of the passage 115, by which the mechanical connection is established. After the connection, using a recording head sucking recovery pump 5015 of the main assembly of the recording apparatus, the ink is forcedly supplied f row the exchangeable ink container 1 into the recording head by which the ink is supplied.
In this embodiment, upon the engagement by the Pressing means, the recording head 20 and the exchangeable ink container 1 are connected with each :other, and simultaneously, the recording head 20 and the carriage HC are mechanically and electric ally *444connected in the same direction, and therefore, the positioning between the pad on the head PCB 105 and 15 the head driving electrodes 102, are assuredly effected.
A ring seal is of a relatively thick elastic material ring in this embodiment so that the joint portion with the outer wall of the exchangeable ink container is wide enough to permit play in the ink supply portion.
As described in the foregoing, in this embo.,iment, the exchangeable ink container 1 and the recording head 20 are sufficiently combined, and thereafter, the exchangeable ink container is urged, by which the carriage and the recording head can be assuredly positioned relatively to each other with MAR. 2002 15:37 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 25/39 -17simpl-e structure, and simultaneously, the recording head and the exchangeable ink container are connected outside the main assembly with simple structure, and thereafter, it is mounted to the carriage. Therefore, the exchanging operation is easy. In this embodiment, the electric connection between the carriage (recording apparatus main assembly) and the recording head is simultaneously effected. Therefore, the operativity upon the exchange of the recording head and the exchangeable ink container is good. It is a possible alternative that a separate connector is used t .to establish the electric connection, by which the latitude for the structure to assure the recording head positioning and the connection with the exchangeable ink container. Figure 4 shows a recording apparatus of a horizontal position type.
Referring to this Figure, the arrangement and the operationof the recording head in the ink jet recording apparatus of this embodiment will be described. In this Figure, a recording material P is fed upwardly by a platen roller 5000, and it is urged to the platen roller 5000 over the range in the carriage moving direction by a sheet confining plate 5002. A carriage moving pin of the carriage HC is engaged in a helical groove 5004. The carriage is supported by the lead screw 5005 (driving source) and a slider 5003 extending parallel with the lead screw, MAR. 2002 15:37 SPRUSON FERGUSON 61 292615486 NO. 6586 P. 26/39 and it reciprocates along the surface of the recording material P on the platen roller 5000. The lead screw 5005 is rotated by the forward and backward rotation of the driving roller through a drive transmission gears 5011 and 5009. Designated by reference numerals 5007 and 5008 are photocouplers, which serve to detect the presence of the carriage lever 5006 to switching the direction of the motor 5013 (home position sensor). The recording image signal is transmitted to the recording head in timed relation with the movement of the carriage-carrying the recording head, and the ink droplets are ejected at the proper positions, thus *effecting the recording. Designated by a reference niueral 5016 is a member for supporting a capping member 5022 for capping the front surface of the recording head. Designated by a reference numeral 5015 is a sucking means for sucking the inside of the cap. Thus, it is effective to refresh or recover the recording head by the sucking through the opening 5022 in the cap. A cleaning blade 5017 is supported by a supporting member 5019 for moving the blade to and fro. They are supported on a supporting plate 5018 of the main assembly. The sucking means, the blade or the like may be of another known type. A lever 5012 for determining the sucking and recovery operation timing moves together with the movement of the cam 5020 engaged with the carriage. The driving force MAR. 2002 15:37 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 27/39 -19from -the driving motor is controlled by a known transmitting means such as clutch or the like. The recovery means carries out the predetermined process at the predetermining timing by the lead screw 5005 at the corresponding positions, when the carriage comes into the region adjacent or at the home position.
As shown in Figure 33, the ink jet recording apparatus of this embodiment is operable in the vertical printing position. In the vertical position, 10 the recording scanning operation is carried out while the recording material P is faced to the bottom surface of the recording head 2010. In this case, the sheet feeding, printing and sheet discharging op 6 rations are possible in substantially the same plane, and therefore, it is possible to effect the -printing to a thick and high rigidity recording iaterial such as a post card and an OHP sheet.
o• *Therefore, the outer casing of the position changeable ink jet recording apparatus of this embodiment is provided with four rubber pads on the bottom surface of Figure 4, and with two ribs and retractable auxiliary leg 5018 on the left side surface. By this, the printing apparatus can be stably positioned in the respective printing positions. In the vertical printing position, the exchangeable ink container 2001 is above the ejection part of the recording head 2010 faced to the recording material P, and therefore, it MAR. 2002 15:38 SPRUSON FERGUSON 612 92615486 NO. 6586 P. 28/39 desirable to support the resulting static head of the ink and to maintain slightly Positive, preferably, slightly negative internal pressure of the ink at the ejection part, so that the meniscus of the ink of the ejection part is stabilized.
The rdcording apparatus shown in Figure 4 and Figure 33 is usable with the embodiments of the present invention which will be described hereinafter.
The description will be made in detail as to the ink container of this invention. First, the structure and the operation of the ink container will be described.
x: (Structure) As shown in Figure 2, the main body of the .4.515 ink container comprises an opening 2 for connection with an ink jet recording head, a vacuum producing material chamber or container 4 for accommodating a vacuum producing material 3, and an ink containing chamber or an ink container 6 for containing the ink, the ink container 6 being adjacent to the vacuum producing material container by way of ribs 5 and being in communication with the vacuum producing material container 4 at a bottom portion 11 of the ink container.
Opr9.ation (jtI Figure 2 is a schematic sectional view of the ink container when a joint member 7 for supplying the MAR. 2002 15:38 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 29/39 -21ink i-nto the ink jet recording head is inserted into the ink container, and is urged to the vacuum producing material, and therefore, the ink jet recording apparatus is in the operable state. At the end of the joint member, a filter may be provided to exclude the foreign matter in the ink container.
When the ink jet recording apparatus is operated, the ink is ejected through the orifice or orifices of the ink jet recording head, so that the 10 ink sucking force is produced in the ink container.
The ink 9 is introduced into the joint member 7 by the sucking force from the ink container 6. through the
S
clearance 8 between ends,of the ribs and the bottom 11 of the ink cartridge, and through the vacuum producing 15 material 3 into the vacuum producing material container 4, and thereafter, the ink is supplied into the ink jet recording head. Then, the internal pressure of the ink container 6 which is hermetically sealed except for the clearance 8, decreases with the result of pressure difference between the ink container 6 and the vacuum producing material container 4. With the continued recording operation, the pressure difference continues to increase. Since the vacuum producing material container 4 is opened to the ambient air through an air vent, the air is introduced into the ink container 4 through the clearance 8 between the rib ends 8 and the ink MAR. 2002 15:38 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 30/39 -22cartridge bottom 11 through the vacuum producing material. At this time, the pressure difference between the ink container 6 and the vacuum producing material container 4 is eliminated. During the ink jet recording operation, the above process is repeated, so that substantially a constant vacuum is maintained in the ink cartridge. The ink in the- ink container can be substantially thoroughly used, except for the ink deposited on the internal wall surface of the ink container, and therefore, the ink use efficiency is improved.
Operation (2) The principal operation of the ink container is further described in detail on the basis of a model 15 shown in Figure In Figure 10, an ink container 106 corresponds to the ink container 6 and contains the ink. Designated by reference numerals 102, 103-1 and 103-2 are capillary tubes equivalent to the vacuum producing material 3. By the meniscus force thereof, the vacuum is produced in the ink container. An element 107 corresponds to the joint member 7, and is connected with an ink jet recording head not shown.
It supplies the ink from the ink container. The ink is ejected through the orifices, by which the ink flows as indicated by an arrow Q.
The state shown in this Figure is the state MAR. 2062 15:38 SPRUSON FERGUSON 61 292615486 NO, 6586 P. 31/39 -23in which a small amount of the ink has been supplied out from the vacuum producing material, and therefore, the ink container, from the filled state of the ink container and the vacuum producing material. The balance is established among the static head in the orifice of the recording head, the reduced pressure in the ink container 106 and the capillary forces in the capillary tubes 102, 103-1 and 103-2. When the ink is supplied from this state, the height of the ink level in the capillary tubes 103-1 and 103-2 hardly change, and the ink is supplied from the .ink -container 106 :through a clearance 108 corresponding to the clearance This increases the vacuum in the ink container so that the meniscus of the capillary tube 102 changes to produce air bubble or bubbles. By the breakdown of the meniscus, the air bubble or bubbles are introduced into the ink container 106. In this manner, the consumed amount of the ink is supplied from the ink container 106 without a substantial chan'e 'in the level' in the capillary tubes 103-1 and 103-2, that is, without substantial change in the ink distribution in the vacuum producing material, that iwth the balanced internal pressure maintained.
When an amount Q of the ink is supplied, the volume change appears as the meniscus level change in the capillary tube 102, and the surface energy change of the meniscus thereby increases the negative MAR. 2002 15:39 SPRUSON FERGUSON 61 2 92615486 NO, 6586 P. 32/39 -24pressure of the ink supply portion. However, the break down of the meniscus permits introduction of the air into the ink container, so that the air is exchanged with the ink, and therefore, the meniscus returns to the original position. Thus, the internal pressure of the ink supply portion is maintained at the predetermined internal pressure by the capillary force of the tube 102.
Figure 11 shows the change of the internal pressure at the ink supply portion of the ink container according to this embodiment of the present invention in accordance with the amount of the ink S' supply (consumption amount). At the initial state (Figure 14), the ink supply starts from the vacuum producing material container, as described hereinbefore. More particularly, the ink contained in the vacuum producing material container until the meniscus is formed in the clearance 8 at the bottom portion of the ink container. Therefore, similarly to the ink container according to the first prior art in which the ink container is filled with the absorbing material, the internal pressure in the ink supply portion is produced due to the balance between the capillary force at the ink top surface (air-liquid interface) of the compressed ink absorbing material in the vacuum producing material container and the static head of the ink itself. When the state is reached in MAR. 2002 15:39 SPRUSON FERGUSON 61 292615486 NO. 6586 P. 33/39 which the air-liquid interface is formed at the bottom Portion of the ink container as described in the foregoing due to the reduction of the ink in the vacuum producing material container in accordance with the consumption of the ink (ink supply) (Figure and Figure 11, point the ink supply from the ink container starts. By the capillary force of the compressed ink absorbing material adjacent the bottom portion of the ink chamber, the internal pressure of the ink supply portion is maintained. As long as the ink is supplied from the ink container, the substantially constant internal pressure is maintained. When the further ink consumption results in the decrease of the ink level in the ink container 15 beyond the ink chamber wall bottom, substantially all of the ink container is consumed (Figure 16 and Figure 11, point the air is introduced at once into the ink container with the result of complete communication established between the ink container and the outside air, so that a small amount of the ink remaining in the ink container is absorbed by the compressed ink absorbing material in the vacuum producing material container, and therefore, the amount of.. the ink contained in the vacuum producing mater. ],-container increases. This changes the internal pressure of the ink supply portion slightly toward the positive direction by the amount MAR. 2002 15:39 SPRUSON FERGUSON 612 92615486 NO. 6586 P. 34/39 -26corresponding to the slight rise of the ink top surface (air-liquid interface). When the ink is further consumed, the ink in the vacuum producing material container is consumed. If, however, the airliquid interface lowers beyond the ink supply portion, the recording head starts to receive the air, and therefore, the ink supply system reaches the limit (Figure 17). At this state, the exchange of the ink container is required. The following has been found by the investigations of the inventors. By carrying out sucking recovery operation by sucking means of the :main assembly of the recording apparatus upon the connection with the recording head to remove the air bubbles in the ink passage produced at the time of the 15connecting operation and to flows a slight amount of 4a..ink out of the ink container, it is possible to maintain the stabilized ink internal pressure from the initial stage. In addition, even if the ink is supplied out from the vacuum producing material container at the initial stage and at the stage immediately before the exchange of the ink container, the recording property is not adversely influenced in the ink stabilized supply period shown in Figure 11, and therefore, the proper recording operation has been carried out. In order to establish ink supply through the above'-described mechanism, the following points are considered.
MAR. 2002 15:39 SPRUSON FERGUSON 61 292615485 NO. 6586 P. 35/39 -27- It is desirable that the meniscus is formed stably between the ink and the ambient air at a position very close to the clearance 8. Otherwise, in order to displace the meniscus to the ink container, the ink has to be consumed to such a large extent that aL quite high vacuum is produced in the ink supply portion- Then, a high frequency drive of the recording apparatus becomes difficult, and therefore, it is disadvantageous from the standpoint of high speed recording operation.
Figure 11 shows the change of the internal :pressure at the ink supply portion of the ink container in accordance with the ink supply amount (consumption amount). It shows a so-called static 15 pressure Pill in the state of no ink supply and a socalled dynamic pressure P112 in the state of ink supply being carried out.
The difference between the dynamic pressure P112 and the static pressure Pill, is the pressure loss SP when the ink is supplied. The negative pressure produced at the time of the meniscus displacement is influential.
Accordingly, it is desirable that the break down of the meniscus at this portion occurs without delay. For this purpose, there is provided air introduction passage for forcedly permitting the air introduction adjacent the clearance 8. Embodiments in 30.MAR. 2002 15:39 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 36/39 -28this respect will be described.
Embodiment 1 Figure 3 illustrates a first embodiment. The vacuum producing material 3 in the ink container is an ink absorbing material such as foamed urethane material or the like. When the absorbing material is accommodated in the vacuum producing material container 4, it provides a clearance functioning as an air introduction passage A32 at a part of the vacuum producing material container. The clearance extends to the neighborhood of the clearance 8 between the ink container bottom 11 and the end 8 of the rib 5. Thus, the communication with the air is established by the air vent. When the ink supply from the ink supplying 15 portion is started, the ink is consumed from the absorbing material 3, so that the internal pressure of the ink supply portion reaches a predetermined level.
Then, the ink surface A31 shown in Figure 3 is stably formed in the absorbing material 3, and the meniscus is formed between the ink and the ambient air adjacent the clearance 8. The dimensions of the clearance 8 is preferably not more than 1.5 mm in the height, and is preferably long in its longitudinal direction. When this state is established, the break down of the meniscus at the clearance 8 occurs without delay by the subsequent ink consumption. Therefore, the ink can be supplied stably without increasing the pressure MAR. 2002 15:40 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 37/39 -29loss 6P. Accordingly, the ink ejection is stabilized at high speed printing.
When the recording operation is not carried out, the capillary forces of the vacuum producing material itself (or the meniscus force at the interface between the ink and the vacuum producing material), so that the ink leak from the ink jet recording head can be suppressed.
For the purpose of using the ink container of this invention in a color ink jet recording apparatus, different color inks (black, yellow, magenta and cyan, for example) can be accommodated in separate ink containers. The respective ink cartridges may be S* unified as an ink container. In another form there are provided an exchangeable ink cartridge for black ink which is most frequently used, and an exchangeable ink cartridge unifying other color ink containers.
Other combinations are possible in consideration of ink jet apparatus used therewith.
The present invention will be described in more detail.
In order to control the vacuum in the ink jet recording head when the ink container of this invention is used, the following is preferably optimized: material, configuration and dimensions of the vacuum producing material 3, configuration and dimensions of rib end 8, configuration and dimensions MAR. 2002 15:40 SPRUSON FERGUSON 61 2 92615486 NO. 6586 P. 38/39 of the clearance 8 between the rib end 8 and the ink container bottom 11, volume ratio between the vacuum producing material container 4 and the ink container 6, configuration and dimensions of the joint member 7 and the insertion degree thereof into the ink container, configuration, dimension and mesh of the filter 12, and the surface tension of the ink.
The material of the vacuum producing member may-be any known material if it can retain the ink despite the weight thereof, the weight of the liquid (ink) and small vibration. For example, there are *9ooeo sponge like material made of fibers and porous material having continuous pores. It is preferably in the form of a sponge of polyurethane foamed material S: 15 which is easy to adjust the vacuum and the ink .retaining power. Particularly, in the case of the foamed material, the pore density can be adjusted during the manufacturing thereof. When the foamed material is subjected to thermal compression treatment to adjust the pore density, the decomposition is produced by the heat with the result of changing the nature of the ink with the possible result of adverse influence to the record quality, and therefore, cleaning treatment is desirable. For the purpose meeting various ink cartridges for various ink jet recording apparatuses, corresponding pore density foamed materials are required. It is desirable that a 3111MAR. 2002 15:40 SPRUSON FERGUSON 61 2 92615485 NO, 6586 P. 39/39 foamed material not treated by the thermal compression and having a predetermined number of cells (number of pores per 1 inch) is cut-into a desired dimension, and it is squeezed into the vacuum producing material container so as to provide the desired pore density and the capillary force.
Ambient condition change in the ink jet recording apparatus.
In the ink cartridge having a closed ink container, the ink can leak out. That is, when the ambient condition (temperature rise or pressure :decrease) occurs with the ink cartridge contained in *6 o the ink jet recording apparatus, the air in the ink container expands (the ink expands too), to push out *6*.15 the ink contained in the ink container, with the result of ink leakage. In the ink cartridge of this embodiment, the volume of air expansion (including expansion of the ink, although the amount thereof is 6 small) in the closed ink container is estimated for the predicted worst ambient condition, and the corresponding amount of the ink movement from the ink container thereby is allotted to the vacuum producing material container. The position of the air vent is not limited unless it is at an upper position than the opening for the joint in the vacuum producing material container-. In order to cause the flow of the ink in the vacuum producing material at the Position away MAR. 2002 15:41 SPRUSON FERGUSON 61 292615486 NO. 6587 P. 1/51 -32from the opening for the joint upon the ambient condition change, it is preferably at a position remote from the joint opening. The number, the configuration, the size and the like of the air vent can be properly determined by the ordinary skilled in the art in consideration of the evaporation of the ink.
Transportation of the Ink Cartridge per se During the transportation of the ink cartridge per se., the joint opening and/or the air 9 vent is preferably sealed with a sealing member or :material to suppress the ink evaporation or the expansion of the ink air in the ink cartridge. The sealing member is preferably a single layer barrier C. d15 used in the packing field, multi-layer member 9 9 including it and plastic film, compound barrier material having them and aluminum foil or reinforcing material such as paper or cloth, It is preferable 9 9 9that a bonding layer of the same material or simil'ar material as the ink cartridge main body is used, and it is bonded by heat, thus improving the hermetical sealing property.
In order to suppress the introduction of the air and the evaporation of the ink, it is effective that the ink cartridge is packaged, and then, the air is removed therefrom, and then it is sealed. As for the Packing material, it is preferably selected from MAR. 2002 15:41 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 2/51 -33the above mentioned barrier material in consideration of the air transmissivity and the liquid transmissivity.
by the proper selection as described in the foregoing, the ink leakage can be prevented with high reliability during the transportation of the ink cartridge per se.
Manufacturing Method The material of the main body of the ink cartridge may be any known material. It is desirable that the material does not influence the ink Jet recording ink or that it has been treated for avoiding such influence. It is also preferable that the Sconsideration is paid to the productivity of the ink 15 cartridge. For example, the main body of the ink w* cartridge is separated into the bottom portion 11 and the upper portion, and they are integrally formed respectively from resin material. After the vacuum :producing material is squeezed, the bottom portion 11 and the upper portion are bonded, thus producing the ink cartridge. If the resin material is transparent or semi-transparent, the ink in the ink container can be observed externally, and therefore, the timing of the ink cartridge exchange can be discriminated easily. In order to facilitate the bonding of the above-described sealing materials or the like, the provision of a projection as shown in the Figure is MAR. 2002 15:42 SPRUSON FERGUSON 612 92615486 NO. 6587 P. 3/5 1 -34preferable. From the outer appearance standpoint, the outer surface of the ink cartridge may be grained.
The ink may be filled through pressurization and pressure reduction, It is preferably to provide an ink supply port in either of the containers since the other openings are not contaminated at the time of the ink filling operation. The ink filling port-after the ink filling, is preferably plugged with plastic or metal plug.
The structure and configuration of the ink cartridge can be modified within the spirit of the :present invention.
Others 0eThe ink container (cartridge) of the abovedescribed embodiments, may be exchangeable type, or may be unified with the recording head.
sees When it is exchangeable type, it is SeeS preferable that the main assembly can detect the S. 55exchange of the container and that the recovery S 20 operation such as sucking operation is carried out by the operator.
As shown in Figure 14, the ink container may be used in an ink jet printer in which four recording heads are unified into a recording head 20 connectable with four color ink containers BKla, Clb, Mic, Yid.
Comparison xample 1 A comparison example will be explained with MAR. 2002 15:42 SPRJJSON FERGUSON 612 92615486 NO. 6587 P. 4/51 the change of the internal Pressure at the ink supQJly Portion of the ink container in accordance with the ink supply, There is no air introduction passage in the ink Container, and in the vacuum pressure Producing material container, an absorbing material having substantially uniform pores size distribution iq contained.
At the initial stage, as shown in Figure 14, the ink is substantially fully contained'in the ink cofltainer 6, and a certain amount of the ink is contained in the vacuum producing material container 4. When the ink supply starts from this state, the ink is supplied out from the vacuum producing material cofltainer 4, and therefore, by the balance between the static head of the ink and the capillary force of the ink top surface (air-liquid interface) of the absorbing material 3 in the vacuum producing material container 4, the internal pressure is produced at the ink supply portion- With the continued ink supply, the ink top surface lowers, Therefore, the negative pressure increases substantially linearly in response to the height thereof into the state shown by a in Figure 13. The negative pressure in the ink supply portion continues to increase until the air-Jliqdid interface- (meniscus) is formed at the clearance at the bottom of the ink chamber by the ink supply.
MAR. 2002 15:42 SPRIJSON FERGUSON 612 92615486 NO. 6587 P. 5/51 -36- Until the meniscus-eormed state is established at the clearance, the ink surface in the absorbing material lowers to a substantial extent, and the liquid surface may lower beyond the joint Portion with the recording head, as the case may be.
If this occurs, the air is introduced into the recording head with the result of instable- :ejection or ejection failure.
*Even if this is not rechd it is psil 10 that the internal pressure at the ink supply portion increases beyond a predetermined negative pressure determined by the pore size of the absorbing material a...at the clearance, as shown in b in Figure 13. The reason is considered as follows. The absorbing material is compressed more or less by the internal wall of the vaquum producing material container 4 at the periphery thereof. However, because of the nonexistence of the wall at the clearance, it is not compressed with the result that the compression rati~o thereat is slightly small as compared with the other portion- Therefore, the situation is as shown in Figure 12.
In this Figure, the situation is shown in which the ink is consumed from the vacuum producing material container 4 to some extent. If the ink'is further supplied from this state, the meniscus R4 which corresponds' to the largest pore size among lR2, MAR. 2002 15:42 SPRUSON FERGUSON 61 292615486 NO. 6587 P. 6/51 -37,- R3 anid R4 in the absorbing material 3, is displaced more than the meniscuses at R3 and R4. When the meniscus comes close to the clearance, the meniscus force suddenly decreases with the result that the meniscus moves to the ink container, and the meniscus is broken, by which the air is introduced in the ink container. 'At this time, a small amount of the-ink is consumed from the portions R3 and R4 not only from the portion Rl2. The pressure loss 6P at the time of the meniscus movement is relatively large.
However, the once broken meniscus is reformed by the inertia at the time of the restoring, at the position close to the original position, and therefore, the high pressure loss states continues for a while.
Until the meniscus is stabilized at the portion having the pore size Ri, the similar actions are repeated. Once the meniscus is stabilized at the clearance, the air bubbles enter the ink container until the negative pressure determined by the pore size RI in the clearance is established, so that the stabilization is reached.
The above is shown in Figure 13, b, in which the ink is consumed both from the ink container and the absorbing material. If the-air introduction" passage is not particularly provided, the internal pressure at the ink supply portion is not stabilized, MAR. 2002 15:42 SPRUSON FERGUSON 61 292615486 NO. 6587 P. 7/51 and the pressure loss 62 at the time of the ink supply is increased, and therefore, the ejection property is deteriorated with the result of difficulty of high speed printing.
Embodiment 2 Figure 5 shows a device according to another embodiment.
.*2,In this embodiment, two ribs 61 is Provided :x 'on the partition rib 5 of the vacuum producing material container 4. The air introduction passage A51 is established between the ribs and the absorbing material 3. The bottom end A of the rib 61 is placed above the bottcam end B of the rib, 5, by whc;h clearance 8can be covered by the absorbing material 3 simply by inserting a rectangular parallelopiped absorbing material 3 into the vacuum producing material container 4. Therefore, the air introduction passage A51 can be extended to the Position very close to the clearance 8 without difficulty and with stability. Arrow A52 shows the flow of the air.
Using this ink container, the printing operation is actually carried out, and it has been confirmed that the ink surface and the meniscus as shown in Figure 5 can be quickly established by the ink supply due to the recording operation, and fhe sharp exchange between the air and the ink is carried out by the mneniscus break down, and therefore, the ink 36. MAR. 2602 15:43 SPRUSON FERGUSON 61 292615486 NO, 6587 P. 8/51 can be supplied with small Pressure loss, and therefore, the high speed Printing operation can be carried out with stability.
Embodiment 3 Figure 6 stows the device of the third embodiment in which the number of ribs 71 is increased, thus increasing the number of air introduction passages. The ribs 72 are provided on :the sealing of the vacuum producing material container. According to this embodiment, the S. plurality of air introduction passages A61 can be provided with stability from the air vent 13 to the neighborhood of the clearance 8. and therefore, the ink supply can be carried out with small pressure loss, as in the first and second embodiments, and therefore, a high speed printing operation can be carried out with stability.
In this embodiment, even if the air vent 13 is disposed at a position remote from the clearance 8, the air can be introduced smoothly.
Embodiment 4 Figure 7 shows a device according to a fourth embodiment of the present invention.
In this emabodiment, similarly to the embodiments 2 and 3, ribs 81. are provided on thepartition. rib to provide the air introduction passage A?1. The ribs 81 are asymmetrical about the rib 5. by MAR. 2002 15:43 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 9/51 which the passage for the ink flow from the ink container 6 through the clearance 8 into the vacuum producing material container 4, and the passage of the air flow A73, corresponding to this ink flow A72, along the air introduction passage A71, through the .clearance 8 into the ink container 6, can be made independent relative to the center line A, by which, the pressure loss by the exchange can be reduced.
More particularly, this structure is 10 effecti.ve to reduce the pressure loss 6P required for the exchange between the ink and the air to approx.
one half.
Thus, the ink can be stably ejected from the recording head.
Embodiment Figure 8 shows a device according to a further embodiment. The device is provided with ribs 91. In the embodiments 2 4, the top end of the ribs 91 are extended to the upper part of the internal surface of the wall of the vacuum producing material accommodator 4. However, in this embodiment, they are not extended to such extent. By doing so, the top part of the absorbing material is not compressed by the ribs 91, so that the production of the meniscus force at the compressed portion can be avoided, -thus further stabilizing the vacuum control.
More particularly, the ink is consumed from MAR. 2002 15:43 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 10/51 -41the absorbing material 3 until the ink surface A81 in the absorbing material 3 (vacuum producing material moves to the stabilized ink surface A82 in the initial ink container from which the ink is consumed.
That is, if the air-liquid exchange through the air introduction passage air 82 is promoted too soon, the consumption of the ink from the absorbing material 3 becomes low as a result that the ink is consumed from the ink container. Therefore, the amount of the ink a.
10 capable of moving to the vacuum producing material Sontainer 4 from the ink container 6 at the time of the ambient condition change such as pressure change, a.
is limited. Therefore, the buffering effect of the absorbing material 3 against the ink leakage can be deteriorated. Therefore, in this embodiment, the air introduction passage A83 is provided so that the air is introduced only after the ink is consumed from the absorbing material 3 to a certain extent, by which the ink surface in the absorbing material 3 is controlled, thus increasing the buffering effect against the ink leakage.
Embodiment 6 Figure 9 shows another embodiment.
In this embodiment, the air introduction passage is provided by forming a groove 100 in the partition rib or wall.
According to this embodiment, the AR. 2602 15:43 SPRUSON FERGUSON 612 92615486 NO. 6587 P. 11/51 irregularity of the compressjon ratio of the absorbing Material contained in the vacuum Producing material container is reduced, and therefore, the vacuum control is easy, so that the ink can be supplied stably.
Embodiment 7 Figure 20 shows a further embodiment.
a. The structure is similar to that of Figure 6 embodiment. However, it is different therefrom in :.10 that the air introduction passage extends to the bottom end of the rib.
Similarly to Emnbodiments 5 and 6, the ink is consumed from the absorbing material 3 until the ink surf ace in the absorbing material 3 in the ink container at the initial stage of the ink consumption displaces to the stabilized ink surface position at an end C of the air introduction passage A201.
Thereafter, the ink in the ink container 6 is consumed, while the air-liquid exchange is carried out through the air introduction passage. Since the air introduction passage extends to the bottom end of the ribs, the structure is equivalent to the model shown in Figure 21. The description will be made as to the model of Figure 21 in detail.
The absorbing material 3 is considered as capillary tubes shown in Figure 20. The air introduction passage A201 continues from the portion
C
MAR 2002 15:43 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 12/51 -43to the bottom end of the ribs, and it is considered that the air introduction passage A201 is connected again to the capillary tube at the portion above the portion C.
As described hereinbefore, the ink surface in the absorbing material 3 is at a certain level at the initial stage of the ink consumption. However, -in p accordance with the consumption of the ink, the surface lowers gradually. In accordance with it, the 10 internal pressure in the ink supply portion (negative pressure) increases gradually.
When the ink is consumed to the level C at the top end of the air introduction passage A201, the meniscus is formed at a position D in the capillary tube. When the ink is further received and consumed, the ink meniscus, that is, the ink surface lowers, again. If the position E is reached, the meniscus force of the ink surface in the air introduction passage suddenly reduces, so that the ink can be consumed at once in the air introduction passage.
Thereafter, the ink is consumed from the ink container, with this position maintained. That is, the air-liquid exchange is carried out. In this manner, during the ink consumption, the ink surface is stabilized at a position slightly lower than theheight C, and therefore, the internal pressure in the ink supply portion is stabilized. When the ink supply MAR. 2002 15:44 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 13/51 -44stops, the meniscus in the capillary tube returns from position E to the position D, thus providing the stabilization.
As described in the foregoing, the ink surface in the absorbing material reciprocates between the positions D and E until all of the ink is used up in the ink container. In the Figure, A202 indicates ink supply period, and A203 indicates non-ink-supply period.
Thereafter, the ink is consumed from the ink absorbing material, and therefore, the internal Pressure (vacuum) in the supply portion increases, and the ink becomes non-suppliable.
The internal pressure at the ink supply portion is provided as a difference between the capillary force of the absorbing material 3 (the height to which the absorbing material 3 can suck the ink up) and the ink surface level height in the absorbing material 3, and therefore, the height C is set at a predetermined level relative to the ink supply portion 6. From this standpoint, it is desirable that the pore size of the absorbing material 3 is relatively small.
The reason why the height C is set at a predetermined level relative to the ink supply portion 6 is that if the ink surface is lowerthan the supplying portion 6, the air is introduced with the MAR. 2002 15:44 SPRUSON FERGUSON 612 92615486 11.6587 P. 14/51 result of improper ink ejection.
However, it is not desirable that the height is larger than the Predetermined, because the buffering effect at the time when the ink is overflowed from the ink container to the absorbing material due to the internal pressure change in the ink container attributable to the ambient condition change, is reduced. In consideration of the above, *the volume of the absorbing material above the hih C is selected to the substantially one half the volume of the ink container.
The above-described mechanism will be 0000 explained in further detail.
It is assumed that the absorbing material has 0**15 a uniform density. The internal pressure in the ink supply portion (vacuum or negative pressure) is determined as a difference HI H2 between a height
HI
to which the capillary force of the absorbing material can suck the ink up f rom the ink supply portion level and the height H2 to which the ink has already been sucked up from the height of the ink supply portion'.
For example, the ink sucking force of the absorbing material is 60 mm and that the height of the air introduction passage A from the ink containing portion is 15 mm (H12), the internalpressure of the ink supply portion is 45 mmaq =60 mm 15 mm HI H(2.
MAR. 2002 15:44 SPRUSON FERGUSON 612 92615486 NO0. 6587 P. 15/51 At the initial stage, in accordance with the consumption of the ink from the absorbing material, the height of the liquid surface lowers correspondingly, and the internal pressure lowers substantially linearly.
When the ink Container of the above-described structure is used, the ink can be supplied stablj by 0**the vacuum.
5 The structure itself of the ink container is *10 so simple that it can be easily manufactured using eq**mold or the like, and therefore, a large number of ink containers can be formed stably.
When the ink is consumed to such an extent that the surface level of the liquid in the absorbing material is at the air introduction passage A201, that S. Ceis, C position, in other words, the ink surface is at E, the meniscus in the air introduction passage A201 can not be maintained, and therefore, the ink is absorbed into the absorbing material, and the air introduction passage is formed. Then, the air-liquid exchange occurs at once-. On the other hand, the liquid surface in the absorbing material increases because of the ink absorbed from the ink container, by which the liquid surface D is established, and the air-liquid exchange stops. With this state, the re is no ink in-the air introduction passage A201, and the absorbing material above the air Introduction passage MAR. 2002 15:44 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 16/51 -47in the model, functions simply as a valve.
If the ink is consumed again with this state, the liquid surface in the absorbing material lowers slightly, which corresponds to opening of the valve, so that the air-liquid exchange occurs at once to permit the consumption of the ink from the ink container 6. Upon completion of the ink consumption, *000 S. Sthe liquid surface of the absorbing material increases by the capillary force of the absorbing material.
10 When it reaches to the position D. the air-liquid exchange stops, so that the liquid surface is a stabilized at the position.
0• In this manner, the ink liquid surface can be stably controlled by the height of the air introduction passage A201, that is, the height of the portion C, and the capillary force of the absorbing material, that is, the ink sucking height, is adjusted beforehand, by which the internal pressure of the ink supply portion can be controlled easily.
In order to retain the ink overflowed from the ink container 6 to the absorbing material 4 due' to the internal pressure change in the ink container due to the ambient condition change, the capillary force of the absorbing material, that is, the ink sucking height is increased, by which the overflow of the ink from the ink container can be prevented, and the occurrence of positive pressure at the ink supply MAR. 2002 15:44 SPRUSON FERGUSON 61 292615486 NO. 0587 P. 17/51 -48portion can be prevented.
Embodiment 8 Figure 21 is a longitudinal sectional view of an ink cartridge for an ink jet recording apparatus according to an eighth embodiment of the present invention. Figure 22 is a cross-sectional view of the sane, and Figure 23 is a sectional view showinga surface of the rib.
An air introduction groove 103 and a vacuum~ *10 producing material adjusting chamber 1032 are formed onsa rib 1005 which is a partition wall between the ink container i006 and the vacuum producing material container 1004. The air introduction groove 1031 is formed at the vacuum producing material container 1004 is extended fram the central portion of the rib 1005 to an end of the rib 1005, that is, to the clearance 1008 formed with the bottom 1011. of the ink cartridge. Retween the vacuum producing material 1003 contacted to the neighborhood of the air introduction passage 1.031 of the rib 1005, the vacuum producing material adjusting chambers 1032 are formed, and are in an excavated form.
Since the vacuum producing material 1003 is contacted to the inside surface of the material container l004, and therefore, even if the vacuum prdcn'mtra 1003 is non-uniformly squeezed into the material container 1004, the contact pressure MAR. 2002 15:45 SPRUSON FERGUSON 61 292615486 NO. 658? P. 18/51 (compression) to the vacuum producing material 1003 is Partially eased, as shown in Figures 21 and 22.
Therefore, when the ink Consumption from the head is started, the ink contained in the vacuum Producing material 1003 is consumed, and reaches to the adjusting chamber 1032. If the ink is continued to the consumed, the air can easily break the ink meniscus at the Portion where the contact pressure of the vacuum producing material 1003 is eased by the adjusting chambers 1032, and therefore, the air is quickly introduced into the air introduction passage 1031, thus making the vacuum control easier.
In this embodiment, it is desirable to use an elastic porous material as the vacuum producing material 1003.
when the recording operation is not carried out, the capillary force of the vacuum producing material 1003 itself (the meniscus force at the interface between the ink and the vacuum producing material), can be used to prevent the leakage of the ink from the ink let recording head.
Figures 29 31 show an example of an ink cartridge without the vacuum producing material adjusting chamber, as a Comparison Example.
Even in the ink cartridge of the Comparison Example, the proper operation can be carried out without problem through the mechanism described in the MAR. 2002 15:45 SPRUSON FERGUSON 61 2 9261b486 NO. 658' P. 19/b51 foregoing, in the usual state. The stabilized operation is accomplished because of the provision of the air introduction passage.
However, in order to even further stabilize the operation, or in order to permit use of porous resin material having continuous pores as the negative pressure producing material, the further stabilization 'control is desirable.
As shown in Figure 32 which is an enlarged sectional view, the vacuum or negative pressure producing material 1003 contacts the rib 1005, and partly enters the air introduction groove 1031. If this occurs, the contact pressure (compression force) to the material 1003 is.not eased at the contact 15 portions A. This makes it more difficult that the air breaks the ink meniscus and enters the air introduction passage 1031. If this occurs, the airliquid exchange does not occur even if the ink continues to be consumed, and the effect of the air introduction passage 1031 is not accomplished. There is a liability that the ink becomes non-suppliable from the ink absorbing material 1006.
As contrasted to the Comparison Example 2. as described in the foregoing, this embodiment is advantageous against this problem.
Embodiment 9 Figure 24 is a longitudinal sectional view of MAR, 2002 15:45 SPRUSON FERGUSON 61 2 92615486 NO, 6587 P. 20/51 -51two ribs 1005 having different cross-sectional section. Figure 25 is an enlarged cross-sectional view of a rib.
As shown in the Figure, the configuration of the vacuum producing material adjusting chamber 1032 and the air introduction groove 1031, are different from that in Embodiment 8.
More particularly, the stepped portion of the rib 1005 contacted to the vacuum producing material 1003 is rounded to further enhance the effect of easing the press-contact and compression.
In the neighborhood of the rib 1005 adjacent the material container 1004 having the rounded surface R, the air is introduced into the ink in the material 15 1003, the thus introduced air moves into the ink container 1066. With the movement of the air, the ink in the ink container 1006 is supplied into the material container 1004. In an air-liquid exchangingregion, the air is introduced into the ink contained in the material 1003.
In order to carry out the air-liquid exchange more smoothly, it is desirable that the contact pressure between the material 1003 and the material container at a lower portion of the air-liquid exchanging region than in the upper part of the airliquid exchanging region.
This is because the air can move more MAR. 2002 15:45 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 21/51 -52smoothly from the gas phase to an ink phase through the capillary tube of the vacuum pressure producing material 1003 whose contacting force is eased.
For example, the desired effect can be provided by formation of a partial vacuum producing material adjusting chamber at the central portion of the rib 1005 at the end portion of the air introduction group.
In order to provide the equivalent function 10 to the vacuum producing material adjusting chamber 032 of this embodiment, the configuration of the vacuum producing material 1003 may be changed. The configuration and the dimensions are not limited if the above-described requirements are satisfied.
15 As described in the foregoing, according to this embodiment, the air and the ink in the ink 9 container are stably and smoothly exchanged upon the ink supply operation, and as a result, the internal pressure in the ink supply portion can be stably controlled. This enables the recording head to effect stabilized ink ejection at high speed.
In addition, the ink container is substantially free from the ink leakage even if the internal pressure of the ink container changes due to ambient condition change or the like.
Embodiment The ink container 2001 of this embodiment is MAR. 2002 15:45 SPRUSON FERGUSON 61 292615486 NO. 658? P. 22/51 a hybrid type in which the inside thereof is partitioned into two ink chambers a and b, which communicate with each other at a bottom portion, and wherein an ink absorbing material 2002 having adjusted capillary force is packed in the ink container a substantially without clearance, and there is provided an air vent 2003.
In the state shown in Figure 15, the suppliable ink has been supplied from the ink chanter 4 and one half of the ink in the ink chamber 6 have been consumed from the initial state where the ink chambers 4 and 6 are sufficiently tilled. In Figure the ink in the compressed ink absorbing material 3 is maintained at a height with which the static head from the ink ejection part of the recording head, the vacuum in the ink chamber 6 and the capillary force of the compressed ink absorbing material. When the ink is supplied from the ink supplying portion, the amount of the ink in the ink chamber 4 does not reduce, but the ink is consumed from the ink chamber b. That is, the ink distribution in the ink chamber 4 does not change, and the ink is supplied from the ink chamber 6 into the ink chamber 4 corresponding to the ink consumption with the balanced internal pressure maintained. Correspondingly, the air is introduced *through the ink chamber 4 and through- the air vent.
At this time, as shown in Figure 15, the ink MAR. 2002 15:46 SPRUSON FERGUSON 61 292615486 NO. 6587 P. 23/51 -54and the air are exchanged at the bottom of the ink chamber, and the meniscus formed in the compressed ink absorbing material in the ink chamber 4, is partly blocked from thie portion close to the ink chamber 6, and the pressure of the ink chamber 6 is balanced with the meniscus retaining force of the compressed ink absorbing material, by the introduction of the air into the ink chamber 6. Referring to Figure 2, the ink supply and the production of the ink internal 1 i pressure in the hybrid type, will be described in more detail. The compressed ink absorbing material adjacent the ink chamber wall is in communication with the air venting portion when the ink in the ink chamber 4 has been consumed to a predetermined extent, and therefore, a meniscus is formed against the atmospheric pressure. The ink internal pressure at the ink supply portion is maintained by the compressed ink absorbing material adjacent to the ink chamber wall which is adjusted to the predetermined capillary force by proper compression.- A closed space at the top of the ink chamber 6 before the flow out of the' ink, is balanced with the capillary force of the compressed ink absorbing material adjacent to the ink chamber wall and the static head of the ink remaining in the ink chamber b. and the meniscus of the compressed ink absorbing material is maintained by the reduced pressure. when the ink is supplied to the MAR. 2002 15:46 SPRUSON FERGUSON 61 292615486 NO. 658? P. 24/51 recording head through the ink supply portion in this state, the ink flows out of the ink chamber 6, and the pressure of the ink chamber 6 is further reduced corresponding to the consumption of the ink. At this Stime, the meniscus formed in the compressed ink absorbing material at the bottom of the ink chamber wall is partly broken, by which the air is intro~duced into the ink chamber f rom which the ink is being consumed, so that the pressure of the excessively *10 pressure-reduced ink chamber 6 is balanced with the meniscus retaining force of the compressed ink absorbing material and the static head of the ink itself in the ink chamber b. In this manner, the internal pressure of the ink supoly portion is maintained at a predetermined level by the capillary force of the compressed ink absorbing material at the position adjacent to the bottom end of the ink chamber wall.- Figure 34 illustrates function of the compressed absorbing material as the buffering material. It shows the state in which the ink in the ink chamber 2006 has been flowed out into the ink chamber 2004 due to the expansion of the air in the ink chamtber 2006 due to the temperature rise or the atmospheric pressure reduction or the like, from the state shown ina Figure 15. In this embodiment, the ink flowed into the ink chamber 2004 is retained in the 2002 15:46 SPRIJSON FERGUSON 61 292615486 NO. 658? P. 25/51 -56compressed absorbing material 2003. The relationship between the ink absorbing quantity of the compressed ink absorbing material and the ink chamber is determined from the standpoint of preventing the ink leakage when the ambient pressure oithe temperature changes. The maximum ink absorbing quantity of the ink chamber 2004 is determined in consideration of the quantity of the ink flowed out from the ink chamber 2006 in the predictable worst condition, and the ink *10 quantity retained in the ink chamber 2004 at the time 5: of ink supply from the ink chamber 2006. The ink chamber 2004 has the volume capable of accommodating at least such an ink quantity by the compressed absorbing material. Figure 65 shows a graph in which a solid line shows a relationship between the initial space volume of the ink chamber 2006 before the pressure reduction and the quantity of flowed ink when the pressure is reduced to 0.7 atm- In the graph, thechain line shows the case in which the maximum pressure reduction is 0.5 atm. As for the estimation of the quantity of the ink flowed out of the ink chamber 2006 under the worst condition, the quantity of the ink flow from the ink chamber 206 is maximum with the condition of the maximum reduced pressure is 0.7 atm,-when 30 of the volume VE of the ink chamber 2006 remains in the Ink chamber 2006.. If the ink below the bottom end of the ink chamber wall is also 2002 15:46 SPRUSON FERGUSON 61 292615486 *NO. 6587 P. 26/51 -57absorbed by the compressed absorbing material in the ink chamber 2004, it is considered that all of the ink remaining in the ink chamber 2006 (30 of vB) is leaked out. When the worst condition is 0.5 atm, of the volume of the ink chamber 2006 is flowed out.
The air in the ink chamber 2006 expanding by the pressure reduction is larger if the remaining amount of the ink is smaller. Therefore, a larger ink is pushed out. However, the maximum amount of the flowed ink is lower than the quantity of the ink contained in a a*.the ink chamber 2006. Therefore, when 0.7 atm is assumed, when the amount of the remai nintg ink becomes not more than 30 the remaining amount of the ink becomes lower than the expanded volume of the air, so that the amount of ink flowed into the ink chamber 2004 reduces. Therefore, 30 of the volume of the ink chamber 2006 is the maximum leaked ink quantity at 0.5 atm). The same applies to the case of the temperature change. However, even if the temperature increases by 50 0 C, the amount of the flowed out ink is smaller than the above-described pressure reductioni case.- If, on the contrary; the atmospheric pressure increases, the difference between the air of the low pressure because of the ink static head in the upper portion of the ink chamber 2006 and the Increased ambient Pressure, is too large, and therefore, there JU. MAR. 2002 lb:47 SPRUSUN FKIIUUSN bi Z UZblb4Ub N. bbVi F. H'IMb -58- -is a tendency of returning to the Predetermined pressure difference by introduction of ink or air into the ink chamber 2006. In such a case, similarly to the case of ink supply from the ink chamber 2006, the of the compressed ink absorbing material 2003 adjacent the bottom end portion of the ink chamber wall 2005, is broken, and therefore, the air is-mainly introduced into the ink chamaber 2006 into the pressure balance state, and therefore, the internal pressure of the ink supply portion hardly changes without substantial influence to the recording property. In the foregoing example, when the ambient pressure returns to the original state, the amount of the ink corresponding to the introduced air into the ink 2006 flows from the ink chamber 2006 into the ink chamber 2004, and therefore, similarly to the foregoing embodiment, the amount of the ink in the ink chamber 2004 temporarily increases with the result of rise of the air-liquid interface. Therefore, similarly to the initial state, the ink internal pressure is temporarily slightly positive than that' at the stabilized state, however, the influence to the ink ejection property of the recording head is so small that there is no practical problem. The abovedescribed problem arises when, for example, the recording'apparatu 5 used under the low pressure condition such as a high attitude location is moved to MAR. 2002 15:47 SPRUSON FERGUSON 61 2 92615486 NO, 6b87 P. 28/51 -59a low attitude location of the normal atmospheric pressure. Even in that case, what occurs is only the introduction of the air into the ink chamber 2006.
When it is used after moved to the high attitude location again, what occurs is only the slight increase of the ink internal pressure in the ink supplying portion. Since the use of the apparatus S: under the condition of extremely high pressure over the normal atmospheric pressure is not feasible, and 10 therefore, there is no practical problem.
The ink is assuredly retained in the ink chamber 2004 by the compressed ink absorbing material 2003 in the ink chamber 2004 from the start of the use of the ink container to immediately before the exchange thereof. Since the ink chamber 2006 is closed, there is no ink leakage from the opening (air vent and the ink supply portion) and it permits the easy handling.
The description will be made as to the desirable conditions about the compressed ink absorbing material and the ink chamber structure in the hybrid type ink container.
The relationship between the ink absorbing quantity of the compressed ink absorbing material 2003 and the ink chamber is determined from the standpoint of preventing the ink leakage when the ambient pressure or the temperature changes. The maximum ink MAR. 2002 15:147 SPRUSON FERGUSON 612 92615485 NO. 6587 P. 29/51 absorbing quantity of the ink chanber 2004 is determined in consideration of the quantity of the ink flowed out from the ink chamber 2006 in the predictable worst condition, and the ink quantity retained in the ink chamber 2004 at the time of ink Supply from the ink chanter 2006. The ink chamber 2004 has the volume capable of accommodating at -least 4S00:6 such an ink quantity by the compressed absorbing 00)0 *ease material. As for the estimation of the quantity of the ink flowed out of the ink chamber 2006 under the 0; 0 worst condition, the quantity of the ink flow from the ink chamber 206 is maximum with the condition of the CS maximum reduced pressure is 0.7 atm, when 30 of the volume VB of the ink chamber 2006 remains in the ink s 15 chamber 2006. If the ink below the bottom end of the ink chamber wall is also absorbed by the compressed absorbing material in the ink chamber 2004, it is considered that all of the ink remaining in the ink chamber 2006 (30 of tin) is leaked out. When the worst condition is 0.5 atm, 50 of the volume of the ink chambjer 2006 is flowed out. The air in the ink' chamber 2006 expanding by the pressure reduction is larger if the remaining amount of the ink is smaller.
Therefore, a larger ink is pushed out. However, the maximum amount of the flowed ink is lower than the quantity of the ink contained in the ink chanter 2006.
Therefore, when 0.7 atm is assumed, when the amount of JU. MAR. ZUZ Ilb: 47 SPRUSN FEK~UUN bI Z UZblb4Ub NlU. bbU e. JU/bl -51the remaining ink becomes not more than 30 the remaining amount of the ink becomes lower than the expanded volume of the air, so that the amount of ink flowed into the ink chamber 2004 reduces. Therefore, 30 of the volume of the ink chamber 2006 is the maximum leaked ink quantity (50 at 0.5 atm).
As for the size of the communicating part between the ink chambers formed at the bottom portion of the ink chamber wall 2005 is not less than a size a *:10 incapable of formation, at the communication part, of a. a the ink in the ink chamber 2006 which is closed at the top, as the first condition. The size is selected such that in response to the maximum ink supply speed from the ink supplying portion (ink supply speed at the time of solid black printing or the sucking operation by the main assembly of the recording apparatus), smooth air-liquid exchange is carried out through the communication opening in consideration of the nature of the ink such as viscosity. However, the consideration should be paid to the fact that when the top surface of the ink remaining in the ink chamber 2006 becomes lower than the bottom portion of the ink chamber wall 2005, as described hereinbefore, the internal pressure at the ink supply portion changes temporarily to the positive direction, and therdfore, the size -is selected to avoid the influence of this event to the ink ejection property of the recording 3U. MAR. 2002 15:47! SP1{USON FEI{USUN Ul 2 92b154b NO. bfWI F. 31/51 -62head As described in the description of the operation of the ink container, in the hybrid type ink container, the ink internal Pressure at the ink supply portion is retained by the compressed ink absorbing material 2003 adjacent the ink chamber wall, and therefore, in order to maintain the desired Internal pressure at the time of the ink supply from the ink 9*****chamber 2006, the capillary force of the compressed ink absorbing material 2003 adjacent the bottom end :portion of the ink chamber 2005 is desirably adjusted.
More particularly, the compression ratio or the initial pore size is selected such that the capillary 999* force of the compressed ink absorbing material 2003 adjacent the bottom end of the ink chamber wall 2005 is capable of producing the ink internal pressure required for the recording operation. For example, when the internal ink pressure at the ink supply portion is -h (mmaq), the compressed ink absorbing material 2003 adjacent the bottom end of the ink chamber wall 2005 is satisfactory if it has the capillary force capable of sucking the ink to h mm.
If the structure of the compressed ink absorbing material 2003 is simplified, the fine pore radius
PI.
of the compressed ink absorbing material 2003preferably satisfies: PI 2f'cosG/jogh MAR. 2002 15:48 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 32/51 -63where P is the density of the ink, r is the surface tension of the ink, 0 is a contact angle between the ink absorbing material and the ink, and g is the force of gravity.
During the ink is being supplied from the ink chamber 2006, when the air-liquid interface of the ink in the ink chamber 2004 becomes lower than the top end of the ink supply portion, the air is supplied to the recording head, and therefore, the air-liquid interface adjacent the ink supply portion should be maintained at a position higher than the top end of the ink supply portion. Thus, the compressed ink absorbing material 2003 above the ink supply portion is given the capillary force capable of sucking the 15 ink up to the height wherein i is the height of the air-liquid interface set position (i mm) above the top of the ink supply portion. Similarly to the above, if the structure of the compressed ink absorbing material is simplified, the radius P2 of the fine pores of the compressed ink absorbing material at the top of the ink supply portion is: P2 2rcos6/Pg(h+i) In the above equation, the height (i mm) of the air-liquid interface right above the ink supply portion is satisfactory if it is at a position higher than the top end of the ink supply portion. The ink sucking force (capillary force) is gradually decreased MAR. 2002 15:48 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 33/51 -64- (if the material of the-absorbing material is the same. the radius P3 of the fine pores is gradually increased) (Figure 35). or the capillary force of the compressed ink absorbing material is reduced only adjacent the ink chamber wall 2005 (Figure 36), so that the air-liquid interface gradually decreases toward the ink chamber wall in the further inside portion of the compressed ink absorbing material 2003 in the ink chamber 2004. The capillary force change S. 10 is connected to the capillary force at the bottom end 9* of the ink chamber wall 2005 (if the material is the same, it is PI).
The capillary force of the portion of the compressed ink absorbing material 2003 which is below 15 the air-liquid interface in the compressed ink absorbing material 2003 may be any if the ink container is not subjected to shock, inclination, rapid temperature change or another special external force. However, in order to permit supply of the ink remaining in the ink chamber 2004 even if such external force is imparted or if the ink in the ink chamber 2006 is all consumed, the capillary force is increased (radius P4 of the fine pores) gradually toward the ink supply portion than the capillary force (radius P1 of fine pores) at the bottom end portion of the ink chamber wall 2005, and the capillary force at the ink supply portion is made larger (radius P5 of 2002 15:48 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 34/51 the fine pores) (Figure 37). That is, the adjustment of the capillary force distribution satisfies: (the capillary force at the end portion of the ink chamber wall) (the capillary force right above the ink supply portion) Preferably, (the capillary force at the bottom end portion of the ink chamber wall) (the capillary force at the bottom portion in the middle of the ink chamber) (upper position in the middle of the ink chamber) (right above the ink supply portion) (ink supply portion) If the structure of the compressed ink absorbing material 2003 is simplified, the radii of 15 the bores satisfy: PI P2 Preferably, P1 (P3, P4) (P2, As regards the relation between P3 and P4, and the relation between P2 and P5, may be in accordance with the distribution of the compression ratio such that P3 P4, and P2 P5, or P3 P4, or P2 Referring to Figures 35, 36 and 37, there is shown preferable compression ratio distribution as an example in which the above-described relations are satisfied by adjusting the compression ratio, using 2002 1b:48 SPI{USUtJ 1'EXUSUN bi 2 URblb4Ub NU. bbWI P. b/bi -66the same material as the ink absorbing material 2002.
In these Figures, A351, A361 and A371 indicate the air-liquid interface, and arrows A352, A362 and A372 indicate the compression ratio of the compressed ink absorbing material which is increasing.
Figure 38 shows a comparison example 3, in which the capillary force of the compressed ink.
absorbing material 2003 at the ink supply portion is not larger than that in the neighborhood of the ink chamber wall. The figure shows the state in which the ink has been supplied out to ac.ertain extent from the ink chamber 2004. In this comparison example, an airliquid interface Ai38l is formed adjacent the bottom end portion of the ink chamber wall 2005, and the communication part between the ink-chamber 2004 and the ink chamber 2006 is positioned at the air phase side. In this case, the ink can not be supplied out from the ink chamber 2006, and the air introduced through the air vent portion 2013 is directly supplied into the recording head from the ink supply portion, and the ink container becomes non-operable at that time.
Figure 39 shows a Comparison Example 4, in which, contrary to the embodiment of this invention, the capillary force of the compressed ink absoriiing material 2003 adjacent the bottom end portion (Figure 39(B)) or the ink chamber wall side (Figure 39(A)) 3U. MAR. 2002 15:48 SPRUSON FERUSUN bi 2 92blb48b NO. bWI' F. ib/bI -67than that in the ink supply portion. Similarly to the Comparison Example 3, before the formation of the airliquid interface A391 is formed adjacent the bottom end portion of the ink chamber wall 2005, the airliquid interface decreases beyond the top end of the ink supply portion, and therefore, the ink can not be supplied from the ink chamber 2006, and therefore, the air introduced through the air vent portion 2013 is directly supplied to the recording head from the ink supply portion. At that event, the ink container is :no longer usable.
In the foregoing the description has been made as to a monochromatic recording apparatus having one recording head. However the embodiments are applicable to a color ink jet recording apparatus having four recording heads (BR, C, M and Y, for 6 example) capable of ejecting different color inks or to a single recording head capable of ejecting different color inks. In that case, means are added to limit the connecting position and direction of the exchangeable ink container.
In the foregoing embodiments, the ink container is exchangeable, but these embodiments are appl icable to a recording head cartridge having a unified recording head and ink container.
Embodiment 11 Figures 40 and 41 shows a device according to MAR. 2002 15:49 SPRUSON FERGUSON 51 2 92515485 NO, 5581 P. 37/51 -68an eleventh embodiment. Additional two ink chambers 2008 and 2009 are provided in communication with the ink chamber 2006. In this modified example, the ink is Consumed in the order Of the ink chamber 2006, the ink chamber 2008 and the ink chamber 2009. In this modified example, the ink chamber is separated into four chambers, for the purpose of further betterprevention of the ink leakage upon the ambient pressure reduction and the temperature change which have been described with respect to the foregoing :embodiments. If the air is expanded in the ink chamber 2006 and the ink chamber 2008 in the state of Figure 41, the expanded part of the air in the ink chamber 2006 i5 released through the ink chamber 2004 and through the air vent portion 2013, and the expanded portion of the ink chamber 2008 is released by. the flow of the ink into the ink chamber 2006 and to the ink chamber 2004. Thus, the ink chamber 2004 is given the function of buffering chamber.
Therefore, the ink retention capacity of the compressed ink absorbing material 2003 in the ink chamber 2004 may be determined in consideration of the leakage quantity from one ink chamber. Therefore, the volume of the compressed ink absorbing material 2003 can be reduced as compared with that in Embodimeh-t and therefore, the ink retention ratio can be increased.
JO. ARM ZUZ b:4Y SPI{USON 1'UMUN bi Z UZblb4Ub NO. U5WI F. 38/b51 -69- Embodiment 12 Figure 42 shows a twelfth embodiment, inwhich the compressed ink absorbing material contained in the ink chamber 2004 is separated into three parts, each of which is given particular functions. In Figure 42, the compressed ink absorbing material adjacent the ink supply portion which occupies a, major part of the ink chamber 2004 has been compressed beforehand with relatively high compression ratio in order to increase the capillary force. The compressed ink absorbing material adjacent the end portion of the ink chamber is smaller than that, but it is sufficient .to supply sufficient capillary force to produce the internal pressure of the ink required for the supply thereof (it is relatively low compression ratio (A423)). In addition, along the wall of the ink a chamber, even smaller compression ratio material A424 is disposed to promote the formation of the air-liquid interface A421 adjacent the bottom end portion of the ink chamber. In this embodiment, the compressed ink absorbing material 2003 is separated into three pat ts, and is compressed beforehand, and thereafter, it is accommodated therein. This results in a little bit complicated manufacturing process of the ink container, but the compression ratio (and therefore capillary-force) can be adjusted to be proper degrees at respective positions. In addition, the low MAR. 2002 15:49 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 39/51 capillary force absorbing material is disposed at the lateral ink chamber wall, and therefore, the internal pressure of the ink supply portion reaches more quickly to the predetermined level.
Embodiment 13 Figure 43 shows a 13th embodiment, in which similarly to the 12th embodiment, the compressed ink absorbing material 2003 is separated into three parts, and there are high compression ratio portion A432, 10 minimum compression ratio portion A434, and there is small compression ratio portion (intermediate capillary force) A433 at the bottom portion of the ink chamber 2006. In this embodiment, even if the ink level in the ink chamber 2006 becomes lower than the bottom end of the ink chamber wall 2006, the ink discharge into the ink chamber 2004 can be suppressed, and therefore, the ink internal pressure variation in the ink supplying portion can be reduced. Therefore, the opening for the communication between the ink chambers at the bottom thereof can be increased, so that the limitation in the design of the ink container can be slightly reduced. In this Figure, A431 shows air-liquid interface. However, in this embodiment, as shown in Figure 44, if the ink absorbing material is further compressed partly (P441) at the time of assembling the compressed ink absorbing material 2003 at the bottom end portion of the ink chamber wall, the MAR. 2002 15:49 SPRUSON FERGUSON 61 2 92615486 NO. 6587 P. 40/51 -71compression ratio adjacent the ink chamber 2006 becomes locally high with the result of the local increase of the capillary force. Then, there is a possibility that the air is blocked between the portion adjacent the ink chamber 2004 having the normal compression ratio, and therefore, the smaller capillary force, with the result of formation ofmeniscus preventing the ink supply from the ink chamber 2006. Therefore, this should be avoided.
10 As described in the foregoing, according to Embodiments 10, 11, 12 and 13, the hybrid type ink container is improved, and there are provided the supply portion to the recording head and the air vent.
and there are further provided a supply ink chamber 15 containing ink absorbing material having adjusted capillary force, and one or more ink chamber in communication therewith. The capillary force of the ink absorbing material at least the upper part of the ink supply portion to the recording head is made larger than the capillary force of the ink absorbing material at the communicating part with the ink chamber, by which the stabilized ejection is maintained, and the leakage of the ink can be prevented. Therefore, the ink container is easy to handle, and the ink retention rate is high.
Embodiment 14 During pressure reduction tests for the ink U. MAK. ZUUZ Ib:49 PFKUSUN 'HKUUSU tjl Z YZbIb4b NO. bb'tiY F 41/bl -72containers described in the foregoing, a problem has been found that the ink is leaked out in some of the ink container when the ink having the composition which will be stated in the comparison ink 3 which will be described hereinafter, therefore, the leakage prevention performance is varied for individual ink containers. Various investigations and test of-the inventors have revealed that the ink buffering effect is influenced by affinity between the ink and the ink 10 container.
Figures 14, 45 and 46 show comparison of the ink container resulting in the ink leakage. In Figure 45, indicates a region in which the ink absorbing material has never been contacted by the ink; (II) is 15 the region which has once been absorbed the ink; and (III) is a region containing the ink. Figure 14 shows the initial state of the ink container, Figure shows the state in which the ink has been consumed from the suppliable ink in the ink chamber 3004 and one fifth the ink in the ink chamber 3006, from the initial state. Figures 46 shows the time when the ink in the ink chamber 3006 is pushed out into the ink chamber 3004 by expansion of the air in the ink chamber 3006 due to the ambient pressure decrease or temperature increase from the state of Figure 45. A part of the ink is absorbed into the portion which has once absorbed the ink. However, the other ink is not iv. MAX. ZUU2 lb:bU SPEUSU YERMUUN bi Z UKbIb4Ub NU. UPW F. 42/b 1 -73absorbed by the absorbing material but leaks out from the air vent 3003 along the ink container wall or the clearance between the ink container wall and the absorbing material.
The reason for this is considered as follows.
The ink absorbing material never contacted by thle ink exhibits poor ink absorbing property. The ink absorbing material having the experience of ink absorption, has different surface state to permit ink absorption. This has been confirmed in the following manner. A unused compressed absorbing material (polyurethane foamed material) and a compressed absorbing material having the experience of ink absorption once, are immersed in the ink, and the height of ink absorptions are measured. It has been found that the unused ink absorbing material hardly *absorbs the ink (several mm), whereas the absorbing material having the experience of ink absorption exhibited not less than several cm, and therefore, the remarkable difference in the ink absorbing nature has been confirmed. in the ink cartridge of this embodiment, the ink can be filled in the ink chamber 3006 to the limit of its volume at the initial state.
In acfdition, the ink can be filled into the ink chamber 3004 to the ink retaining limit. Therefore, in consideration of the above-described points, the ink is filled into the ink chamber 3006 to the limit MAR. 2002 15:50 SPRUSON FERGUSON 61 292615486 NO. 6587 P. 43/51 -74of its volume, and the ink is filled into the ink chamber 3004 to establish the once wet state of the absorbing material is established before the use thereof. Further thereafter, in order to maintain the predetermined vacuum immediately after the ink cartridge is unpacked, a proper amount of the ink can be removed so that the ink contained in the inkchamter 3004 is less than the ink retaining limit thereof.
After the unpacking of the ink container, the (CC Cink is consumed from the ink chamber 3004, and thereafter, the ink in the ink chanter 3006 is used.
:When the ink is consumed from the ink chamber 3006 CCC. requiring the buffering function, the ink absorbing material in the ink chamber 3004 has once been wet, and therefore, the ink can be easily absorbed thereby, and therefore, the buffering function can be sufficiently accomplished. Therefore, the ink is effectively prevented from leaking out through the air vent. An ink container thus produced is mounted on an ink jet recording apparatus, and the pressure reduction tests are carried out. It has been found that the ink did not leak out from any of the ink containers, and in addition, the resultant record has high print quality.
in order to manufacture the ink container provided with such functions, it would be considered MAR. 2062 15:56 SPRUSON FERGUSON 61 292615486 HO. 6587 P. 44/51 that the absorbing material is treated with the ink or another agent providing good rewetting nature before the absorbing material is set in the container.
However, this may require the drying step or the like.
Or, if the agent other than the ink is Used, the consideration should be paid to the possibility of the damage to the heater by the agent solved into the ink.
It would be also considered that the ink having good affinity with the absorbing material is used.
9*10 However, such an ink generally exhibits better seeping property in the paper, and therefore, the printed ink 9* smears along the fibers of the paper in the random directions, thus decreasing the print quality.
Figures 47 and 48 show a modified embodiment of this invention. In these Figures, (11) and (111) show the similar things as with (11) and 9 (11.1) of Figure 45. In this example, two Ink chambers 3007 and 3008 are provided which are in communication with the ink chamber 3006. In this embodiment, the ink is consumed in the order of the ink chamber 3005, the ink chamber 3007 and the ink chamber 3008. in this modified example, the ink chamber is separated into four chambers, for the purpose of preventing the leakage of the ink at the time of the pressure reduction and the temperature change, as described with the foregoing embodiments. Whenthe airs in the ink chamb~er 3006, and in the ink chambers 3007 are JU. MAR. ZUUZ lb:bU SPI(USUII 1'EI(IUN bi Z RZb1M~b N. bb(t IK 4b/bl -76expanded in the state of Figure 48, for example, the expanded volume of the air in the ink chamber 3006 ±s released through the air vent through the ink chamber 3004. The expanded volume in the ink chamber 3007 is released by the ink flowing out from the ink' chiamber 3006 and the ink chamber 3004. In this manner, the ink chamber 3004 is given the buffering chamber- The ink retention capacity of the compressed ink absorbing material in the ink chamber 3004 may be determined in C C 10consideration of the leaking amount from one ink chamber. In this case, too, the entirety of the compressed absorbing material of the ink chamber 3004 0*is once subjected to the ink absorption, so that. the eq.. above-described advantageous effects can be provided.
the buffering chamber (ink chamber 3004) can be reduced in the size, and therefore, the residual ink 0 amount when the ink is removed after filled in the manufacturing process, can be reduced.
EQmbodiment Referring to Figure 49, Embodiment 15 will be described. The fundamental structure. of the recording head is the same as with Figure 1. The inside of the exchangeable ink container 3001 is separated into four ink cham~bers a, b, c and d, which communicate at the bottom. An ink absorbing material 3002 having an adjusted capillary force is packed into the communication part between the ink chamber a and the MAR, 2002 15:51 SPRUSON FERGUSON 612 92615486 NO. 6587 P. 46/51 -77ink chambers functioning as the ink supply portion without substantial clearance. The ink chamber d having an air vent 3003 is packed with a buffering absorbing material to prevent the leakage of the ink.
This is such a hybrid type ink cartridge.
In the state of Figure 49, about one half of the ink in the ink chamber 3007 has been consumed from 0@ the initial state having sufficiently filled ink so 0 000000 chambers 3004, 3006 and 3007. When the ink is f urther 0 consumed, the ink is supplied from the ink chamber 00*: 3006, as shown in Figure 50, from the time at which the ink is used up from the ink chamber 3007. The ink @0 is further consumed from the state shown in Figure and at the time when the ink is used up from the ink 015 chamber 3006, the ink starts to be supplied from the ink absorbing material in the ink chamber 3004. When 0 the ink is substantially used up from the ink chamber 3004, the exchangeable ink container is exchanged.
Figure 51 shows the principle of the internal pressure production of the ink and the ink supply in Embodiment 15. From the left ink chamber in Figure 51, the ink 3201 has been substantially used up, and because of the communication with the ambience through the air vent and the communicating portion between the ink chambers, it is in the atmospheric pressure. -The ink is supplied to the recording head from the ink supply portion through the communication parts between JU. MAX. ZUUZ lb:bl SFEUSUN flXUUSN bi Z URbIMUU NU. bbbW( F. 4Y/b 1 -78ink chambers, in response to which the ink 3201 is supplied out from the ink chamber in communication with the ink chamber which has the atmospheric 'pressure through the ink absorbing material 3201 having an enhanced capillary force by compression, between the ink chambers. The pressure of the ink chamber is reduced corresponding to the consumpt-ion of the ink. Then, the air is introduced into the ink chamber from which the ink is consumed so that the pressure of the ink chamber whose pressure is reduced by partial break down of the meniscus in the compressed ink absorbing material 3202 between the ink chambers. The internal pressure of the ink supply portion is maintained at a predetermined level by the capillary force of the compressed ink absorbing *material in the ink communicating part between ink chambers.
Figure 52 shows the change of the internal pressure at the ink supply portion of the exchangeable ink container of Embodiment 15 in response to the ink supply (consumption). The internal pressure is produced by the capillary-force of the but ferihtg absorbing material or ink absorbing material, but the internal pressure is produced by the capillary force of the compressed ink absorbing material (compressed portion) in the communicating part between the ink chamber 3008 and the ink chamber 3007 in accordance MAR. 2082 15:51 SPRUSON FERGUSON 61 292615486 NO. 6587 P. 48/51 -79with the supply of the ink, so that during the ink supply from the ink chamber 3007, the substantially constant ink pressure is maintained as described in the foregoing. When the ink is further consumed, the ink supply from the ink chamber 30Q6 is started. Upon the switching of the ink chamber, the internal pressure at the ink supply portion slightly vari-es.
It is considered that this phenomenon is-related with the measurement ofthe itrapesuewithth continuous ink supply and the temporary occurrence of the pressure reduction state both in the ink chambers 3007 and 3006. However, it has been confirmed that .the variation isnot aosignificant polmwith respect to the function such as the recording performance of the recording head.
When the ink becomes stably consumed fromt the Ink chamber 3006, the internal pressure is stabilized again. When the ink is consumed up from the ink chamber 3006, the ink is supplied (consumed) from the ink chamber 3004. It has been found that the recording operation is not adversely affected by the ink supply stabilization period shown in Figure 52.
Figure 53 illustrates the function of the buffering absorption material 3203, and the ink has been overtflowed from the ink chamber 3007 due to the air expansion in the ink chamber 3007 attributable to the reduction of the atmospheric pressure and the MAR. 2002 15:51 SPRUSON FERGUSON 61 292615486 NO. 6587 P. 49/51 temperature rise. In this embodiment, the overf lowed ink into the ink chamber 3008 is retained by the buffering absorbing material. in the case of 0.7 atoms, the ink retaining capacit y of the buffering absorbing material 3300 is determined 30 ink leakage from the ink chamber 3007 at the maximum. When the atmospheric pressure restores to the level befo-re pressure reduction (I atm), the ink leaked into the ink chamber 3008 and retained in the buffering absorbing material 3203 returns to the ink chamber :3007. This phenomenon occurs in the similar manner in the case of the temperature change of the ink container, but the amount of leakage is smaller than that at the time of pressure reduction even if the temperature increases by 50 0 C approximately.
In this case, the ink buffering material is *designed in consideration of the maximum leakage.
However, during the pressure reduction test, a problem has been found that the ink leaks out in some of the ink containers, and therefore, the leakage prevention property is dependent on the individual containers.
It has been found that this is because of the affinity between the ink and the buffering absorbing material 3203 in the ink chamber 3008.
in Embodiment 15, therefore, the buffeiing absorbing' material 3203 is subjected to the experience of ink absorption therein before use thereof. It has MAR. 2002 15:51 SPRUSON FERGUSON 512Z 9251548b NO. 6b81 P. bO/bi been confirmed that when the ink is pushed out into the ink chamber 3008 due to the expansion of the air in the ink chamber 3007 due to the temperature rise or the pressure reduction, the ink is absorbed in the buffering absorbing material 3203 in the ink chamber 3008, and therefore, the ink does not leak out.
As described hereinbefore, the ink chamber 3008 is an ink buffering chamber, and therefore, at the initial stage of the use, it is preferable-that it is not filled with the ink. Therefore, in this embodiment, the ink chambers 3004, 3006 and 3007 are filled with the ink up to the limit, and the ink- 0:*;chamber 3008 is filled with the ink substantially to the limit, and theteafter, the ink is removed from the chamnber 3008, thus assuring the buffering effect.
The ink container produced in this manner is loaded in an ink let recording apparatus, and the pressure reduction tests are carried out. As a result, it has been confirmed that there occurs no leakage, and the resultant record is of high quality and reliability.
As described in the foregoing with respect to Embodiments 14 and 15, there is provided an ink container cartridge having an ink supply chamber containing ink absorbing material having adjusted capillary' force and one or more ink chambers for containing ink and in communication with the supply MAR. 2002 15:52 SPRUSON FERGUSON 61 292615486 NO, 6587 P. 51/51 -82ink chamber, in which the absorbing material has been wetted with the ink, by which the ink does not leak out even if the ambient condition of the ink jet recording apparatus changes, when the recording material is carried out or not carried out. The ink used efficiency is high and the print quality is also high.
Embodiment 16 10 ebodimns the ink cartridge of the foregoing mboimetswhen the supply ink chamber containing a. the ink absorbing material becomes empty, it is difficult to refill the container in some cases.
Figure 61 shows the situation in which the ink is going to be supplied (refill) into the ink container with which the ink in the supply ink chamber has been used up. Even if the ink is used up in the supply ink chamber (ink chamber 4004) after the ink in the ink chamber 4006 has been used up, a slight amount of ink remains in the absorbing material. The ink forms meniscuses in various portions of the absorbing material. When the ink is going to be supplied into the ink chamber 4006 not containing the absorbing material 4202, the meniscuses in the absorbing material in the ink chamber 4004 prevent dense filling of the ink therein. Rather, big bubbles remai-n, -as indicated-by A611. When such an ink container is joined with the recording head, the ink flow is not AR. 2002 15:53 SPRIJSON FERGUSON 61 2 9251548b NO. 6588 P. 1/13 -83sufficient because of the existence of the air bubbles ink the absorbing material 4202 in the ink chamber 40041 and therefore, the ink flow easily stops.
In this case, the operator does not notice the emptiness of the ink chamber 4006 because the ink is contained in the absorbing material 4202 in the ink chamber 4004, and therefore, the reco 'rding operation :is possible even after the ink is used up in the ink chamber 4006. The operator will become aware first that the ink has been used up from the ink chamber 4004 and the ink chamber 4006 only after the recording operation becomes not possible as a result of the complete consumption of the ink in the absorbing material 4202 in the ink chamber 4004. Even if the is refilled in the ink chamber 4006 of this state, the ink in the ink chamber 4006 does not in contact with the ink contained in the absorbing material in the ink chamber 4004, and therefore, it is not possible to supply the ink so that no bubble remains in the absorbing material 4202 in the ink chamber 4004, In order to solve this problem, the ink container comprises an ink supply chamber provided with an ink supply portion for the recording head, an air vent and ink absorbing material contained therein, at least one ink chamber in communication with the Ink supply chamber and containing ink, and ink detecting MAR. 2002 15:53 SPRUSON FERGUSON 61 2 92615486 NO. 6588 P. 2/13 -84means for detecting reduction of the remaining amount of the ink while a predetermined amount of the ink remains in the ink chamber.
The description will be made as to the means for detecting the remaining amount of the ink.
Figure 54 shows an example of a control system according to this invention. It comprise's a S-controller in the form of a microcomputer having a built-in A/D converter, a voltage converter 4300, an alarming device 4400. Designated by a reference numeral 4010 is a recording head. The alarming device may be in the form of an LED display or the like or tone producing means such as buzzer or the like, or in the form of combination thereof. A main scan mechanism 4500 for scanningly moving the carriage HC includes a motor or the like. A sub-scan mechanism 4600 includes a motor or the like for feeding the recording medium. Designated by a reference V is a remaining amount detection signal from the ink container. In this embodiment, the constant current flows between the two electrodes in the ink chamber 4006, and the remaining amount of the ink in the ink chamber 4006 is determined on the basis of the resistance between the two electrodes. In this case, there is a relationship as shown in Figure 66 between the remaining amount of the ink and the resistance between electrodes.
MAR 2002 15:53 SPRUSON FERGUSON 61 2 92615486 NO. 6588 P. 3/13 As shown in Figure 55, when the ink level in the ink chamber 4006 lowers to below the upper electrode of the two electrode 4100, the resistance between the two electrodes abruptly increases, and a corresponding voltage is produced between the electrodes. The voltage is supplied directly or through a voltage converter circuit 4300 to the A/D converter in the controller, and is A/D-converted thereby. When the measured value exceeds a predetermined level Rth, the necessity of the ink injection is informed of to the operator by actuating the warning device 4400. At this time, the operation of the main apparatus may be stopped, or the apparatus may be stopped after the current operation is completed.
'Thus, the ink consumption is stopped while a small amount of the ink remains in the ink chamber 4006, and therefore, the ink can be refilled continuously in the absorbing material in the ink chamber 4004, and therefore, the ink container can be reused.
Figure 56 shows the change of the internal pressure at the ink supply portion of the exchangeable ink container according to this embodiment in accordance with the ink supply (consumption). At the initial stage, the internal pressure (negative pressure) is produced by the capillary force of the MAR. 2002 15:53 SPRUSON FERGUSON 61 2 92615486 NO. 6588 P. 4/13 -86compressed ink absorbing material 4202 in the ink chanter 4004. However, with the reduction of the ink in the ink chamber 4004 by the consumption of the ink, the internal pressure by the capillary force gradually increases in accordance with the compression ratio distribution (pore distribution) in the compressed ink absorbing material 4202. When the ink is furthe-r consumed, the ink distribution in the ink chamber 4004 is stabilized, and the ink in the ink chamber 4006 1a starts to be consumed, and the air is introduced into '9.*:the ink chamber 4006 in the manner described in the foregoing. Thus, substantially constant internal pressure is maintained. When the ink is further consumed to such an extent that a predetermined amount of the ink is consumed from the ink. chamber 4006, the remaining amount detector operates, and the action of promoting ink refilling and stoppage of the printing operation, is carried out. By doing so, the refilling is possible before the ink is consumed from the ink chamber 4004 beyond a predetermined degree, and therefore, the ink can be refilled in the refillable state.
As for the refilling method, as shown in Figure 57, for example, an ink supply port 4005 of the ink chamber 4006 is unplugged, and the ink is injected into the ink chamber 4006 with a pipe,4052 or the like. After the injection, the Supply'poet 4005 is MAR. 2002 15:54 SPRUSON FERGUSON 61 292615486 NO. 6588 P. 5/13 plugged by a plug 4051. The refilling method is not limited to this, but another method is usable. The Position of the ink supply port 4005 is not limited to that described above. Thus, the ink cartridge can be reused.
In the foregoing, the remaining amount of the ink is detected on the basis of the resistance between electrodes in the container. However, the method of detection is not limited to this type. Mechanical or optical detection method is usable.
In this embodiment, the ink container is an Eexchangeable type, but it may be an ink jet recording *head cartridge having a recording head and an ink container as a unit.
Embodiment 17 Referring to Figures 58, 59 and Embodiment 16 will be described. In fluid communication with the ink chamber 4006, two ink chambers 4007 and 4008 are provided. In this embodiment, the ink is consumed in the order of ink chamber 4006, ink chamber 4007 and the ink chamber 4008. In this embodiment, the ink chamber is divided into four parts, for the purpose of preventing the ink leakage when the ambient pressure reduces or the ambient temperature increases, as described withrespect to Embodiment 16. For example, when the airs in the ink chamber 4006 and the ink chamber 4007 MAR. 2002 15:54 SPRUSON FERGUSON 61 292615486 NO. 6588 P. 6/13 expand in the state of Figure 58,- the expanded amount of the ink chanter 4006 is released through the air vent and through the ink chamber 4004. As shown in Figure 595 the expanded amount in the ink chamber 4007 is released by the flow of the ink into the ink chamber 4006 and the ink chamber 4004. Thus, the ink chanter 4004 is provided with the buffering chamber p. function. Therefore, the ink retaining capacity of the compressed ink absorbing material 4202 in the ink chanter 4004 is determined in consideration of the 5: leakage of the ink from one ink chamber.
In this case, the ink is consumed sequentially from the ink chamber 4006 and the ink chamber 4007. When the ink is consumed from the last chamber 4008, then the ink is consiued from the ink chamber 4004 containing the absorbing material up to the ink supply stops. In order to detect the remaining amount of the ink in the ink chamber 4008, there are provided electrode 4100 in the ink chamber 4008, as shown in Figure 60. An ink injection port is formed in the ink chamber 4006. In this embodiment, the remaining amount of the ink is detected only in the ink chamber 4008, and therefore, the ink chamber 4006 and the ink chamber 4007 are capable of containing the ink to the all volume thereof except for the communicating part. If the electrodes are located at the same level as in Embodiment 16, the MAR. 2002 15:54 SPRUSON FERGUSON 61 2 92615485 NO. 6588 P. 7/13 -89amount of the ink remaining in the ink chamber not containing the absorbing material at the time when the electrodes detect the limit, can be reduced, to permit efficient use of the space.
In this embodiment, similarly to Embodiment 16, the refilling is possible before the ink becomes insufficient in the ink chamber 4004 containing-the :absorbing material.
Embodiment 18 Figure 62 shows Embodiments 18, in which the awall of the ink container is of transparent or semitransparent material, so that the remaining amount of he ink can be detected optically. In this case, a light reflecting plate 4002 such as mirror for reflecting the light is provided on the ink chamber wall in the ink chamber 4006 to reflect the light, and a photosensor comprising a light emitting element 4043 and a light receiving element 4044 is disposed outside the container. The light emitting element 4043 and the light receiving element 4044 may be provided on the carriage, or at the home position having the recovery system.
In Figure 62, the light is emitted from the light emitting element 4043 at a predetermined angle, and the light is received by the light receiving element 4044 after it is reflected by the reflection plate. For example, the light emitting element 4043 MAR 2002 15:54 SPRUSON FERGUSON 61 2 92615486 NO. 6588 P. 8/13 is of LED element, and the light receiving element 4044 is a phototransistor or the like. In Figure 62, the ink is full substantially. In such a situation, the light emitted from the light emitting element 4043 is blocked by the ink in the ink chamber 4006, and therefore, the light receiving element 4044 does not receive the light, and therefore the output of the detector is small. However, the ink is consumed to the state shown in Figure 62, the light from the light emitting element 4043 is not blocked, and therefore, the output of the light receiving element becomes high. When the light energy (output of the detector) of the light receiving element 4044 exceeds a predetermined threshold, a 1 5 warning signal for promoting the injection of the ink is produced.
Figure 63 shows a modified example in which the light emitting element and the light receiving element is opposed with the ink container therebetween. Figure 63(a) is a top plan view, and Figure 63(b) is a cross-sectional view. In this case, the material of the ink chamber 4006 is also transparent or semi-transparent. In this example.
there is no need of using the reflection plate, and the detection sensitivity is better since the light is directly received.
In the foregoing, the description has been MAR. 2002 15:54 SPRIJSON FERGUSON 61 292515486 NO. 6588 P. 9/13 -91made with respect to a single ink container, but the present invention is applicable to ink Containers for a color ink jet recording apparatus operable with a plurality of recording head for black, cyan, magenta and yellow color. Also, the present invention is usable with a single recording head capable of ejecting different color inks.
The threshold may be changed for the respective colors. A filter or the like may be used in acodnewith the color of the ink to selecta *predetermined wavelength light, and the ink remaining amount may be detected on the basis of the transmissivity of the ink.
In the foregoing, the ink container is However, it is in the form of an ink jet head cartridge having integral recording head and the ink container.
Embodiment 19 Figure 64 shows Embodiment 19, in which the ink chamber 4006 in Embodiment 16 is divided into two parts, and one of them (ink chamber 4007) is exchangeable. Figure 64, shows the state in which the remaining amount detector is actuated as a result of the ink conlsumption. In this case, a fresh ink chamber 4007 is prepared, and replaces the ink,"chamber 4007. Fiqure 64, shows the state- in which the used-up ink chamber 4007 is removed, and a full fresh MAR. 2002 15:55 SPRUSON FERGUSON 612 92615485 NO. 6588 P. 10/13 -92ink container is going to be mounted, In Figure 64, the exchange has been completed. At this time, a plug 4052 at the bottom of the ink chamber C is tone by the injection port 4005 located at an upper Sposition of the ink chamber 4006, so that the ink is supplied. By doing so, there is no need of using pipette or injector, and therefore, the operators fingers are not contaminated. It is possible that the 9 ink chamber 4004 and the ink chamber 4006 remain *910 connected, and therefore, the minimum part exchange is :sufficient, and therefore, it is advantageous from the economical standpoint.
In Eznbodiment 19, the remaining amount detector is not limited to the type using the resistance between the electrodes. It may be an optical type as in Embodiment 18, or another ty-pe is usable. A further preferable ink remaining amount detecting method is to detect whether or not there is the ink liquid continuing through the communicating part between the ink chamber 4004 and the ink chamber 4006. As a structure for doing this, the electrodes 4100 may be disposed at the opposite sides of the communicating part between the ink chamber 4004 and the ink chamber 4006, respectively.
In this embodiment, the recording head and the ink container are separable. However, the recording head may be integral with the ink container MAR, 2002 15:55 SPRUSON FERGUSON 612 92615486 NO, 6588 P. 11/13 -93including the ink chambers 4004 and 40064 As described in the foregoing, according to Embodiments 16 19, there is provided an, ink container provided with ink supply portion for the recording head and an air vent, which comprises an ink supply chamber containing the ink absorbing material, at least one ink chamber for containing the ink-and communicating with the ink supply chamber, in which the insufficiency of the ink is detected while a amount of the ink remains in the ink chamber,"and the result of the detection is notifiedto the operator. Then, the recording operation can be stopped so as to permit the ink chamber to be refilled with the ink, so that the ink container can be reused.
The inventors have investigated the property of the ink suitably usable with the ink containers of the foregoing embodiments. The preferable ink shows the stability of the air-liquid exchange portion against the vibration of the ink, and it is stabilized against the ambient condition change.
The description will be made such inks suitably usable with the ink containers of the foregoing embodiments.
The fundamental structure of the ink includes at least water, coloring material and water-soljble organic solvent. The organic solvent is low volatile and low viscosity material having high MAR. 2002 15:55 SPRUSON FERGUSON 61 2 92615486 NO, 6588 P. 12/13 -94compatibility with water. The following is examples: amides such as dimethylformamide and dimethylaeetoamide, ketones such as acetone, ethers such as tetrahydrofuran and dioxane, polyalkylene glycols such as polyethylene glycol and polypropylene glycol, alkylene glycols such as ethylene glycol, propylene glycol, butylene glycol, triethylene glycol, thiodiglycol, hexylene glycol and diethylene glycol, lower alkyl ethers of polyhydric alcohols such as 10 ethylene glycol methyl ether, diethylene glycol monomethyl ether and triethylene glycol monomethyl ether, monohydric alcohols such as ethanol and a isopropyl alcohol, and besides, glycerol, 1,2,6hexanetriol, N-methyl-2-pyrrolidone, 1,3-dimethyl-2- 15 imidazolidinone, triethanolamine, sulfolane and dimethyl sulfoxide. No particular limitation is imposed on the content of the water-soluble organic solvent. However, it may preferably be within a range of from 1 to 80 by weight. The coloring material usable with this invention may be a dye or a pigment.
The dye may preferably be water-soluble acid dye, direct color, basic dye, reactive dye or the like.
The content of the dye is not Particularly limited, but 0.1 20 by weight on the basis of the ink total weight is preferable.
Use of surfactant is desirable to adjust the surface tension. Examples of such a surfactant used MAR 2002 15:55 SPRUSON FERGUSON 61 2 92615486 NO. 6588 P. 13/13 include anionic surfactants such as fatty acid salts, higher alcohol sulfuric ester salts, alkylbenzenesulfonates and higher alcohol phosphoric ester salts.
cationic surfactants such as aliphatic amine salts and quaternary ammonium salts, nonionic surfactants such as ethylene oxide adducts of higher alcohols, ethylene oxide adducts of alkylphenols, aliphatic ethylene oxide adducts, ethylene oxide adducts of higher alcohol fatty acid esters, ethylene oxide adducts of 9* 1 0 higher alkyl amines, ethylene oxide adducts of fatty acid amides, ethylene oxide adducts of polypropylene glycol, higher alcohol fatty acid esters of polyhydric alcohols and alkanolamine fatty acid amides, and amino acid- and betaine-type amphoteric surfactants. No 15 particular limitation is imposed on such a surfactant.
However, nonionic surfactants such as ethylene oxide 9 adducts of higher alcohols, ethylene oxide adducts of alkylphenols, ethylene oxide-propylene oxide copolymers, ethylene oxide adducts of acetylene glycol are preferably used. Further, it is particularly preferred that the number of moles of added ethylene oxide in the ethylene oxide adducts should be within a range of from 4 to 20. No particular limitation is imposed on the amount of the surfactant to be added.
However, it may preferably be within a range of from 0.01 to 10 by weight. The surface tension may be controlled by the above-described water-soluble rii MAR. 2002 15:57 SPRUSON FERGUSON 612 92615486 NO, 6589 P. 2/38 -96organic solvent.
In addition to the above components, the first .liquid may contain additives such as viscosity modifiers, pH adjusters, mildewprootjjng agents or antioxidants, as needed.
The viscosity of the ink is 1 20 cp. The surface tension should be 20 dyne/cm 55 dyne/;Cm.
Further preferably, it is 25 50 dyne/cm. If the P surface tension of the ink is within this range, it does not occur that the meniscus of the recording head orifice is broken and but the ink is leaked out from the head orifice when the printing operation is not *carried ot *00000The quantity of the ink contained in the ink cartridge may be properly determined up to the limit of its inside volume. In order to maintain the vacuum 0 immediately after the ink cartridge is unpacked, the ink may be filled to its limits. However, the quantity of the ink in the vacuum producing material may be lower than the ink retaining capacity of the vacuum producing material. Here, the ink retaining capacity is the amount of the ink capable of being retained in the individual material.
The inks according to the embodiments of the present invention and the comparison example wif 1 be described.- A mixture of water and water-soluble organic 2002 15:57 SPRUSON FERGUSON 61 2 92615486 NO. 6589 P. 3/38 -97solvent is stirred with a dye for four hours, and thereafter, a surfactant is added thereto. Then it is passed through a filter to remove foreign matters.
The ink has been supplied in the ink cartridge of SFigure 1i, and the recording operation is carried out in the recording apparatus of Figure 12.
The following is composition, nature of the ink and the result of record.
S. ooo o o* oo *o *o diethylene glycol cyclohexanol glycerol thiodiglycol SURFRON S-145 (fluorinated surfactant) ACETYLENOL
EH
(acethylene glycol-ethylene oxide adducts) dyestuff water [Surface tension] Ex. 1 15 Ex.2 10 Ex. 3 10 5 0.1 Ex.4 10 2 2 rest [31 dyne/cm] 2.5 rest [25 dyne/cm 0.2 rest [40 dyne/cm] 2.5 rest dyne/cm] Clear color images have been recorded, and the ink in the cartridge has been used up without trouble, for all of Examples 1 4.
2002 15:57 SPRUSON FERGUSON 61 2 92615486 NO. 6589 P. 4/38 -98- Comp. Ex. 1 Comp. Ex. 2 o.o o diethylene glycol glycerol thiodiglycol SURFLON S-145 (fluorinated surfactant) ACETYLENOL
EH
(acethylene glycol-ethylene oxide adducts) 10 dyestuff water [surface tension) 5 0.1 15 2.5 rest 17.6 dyne/cm Clear color images has been formed.
The ink has dropped out from the head by small input.
2.5 rest 57.4 dyne/cm Bleeding has occurred between colors. The ink has dropped out from the head by small impact.
CC
C C
C
The yellow dye was Acid Yellow 23, the cyan dye was Acid Blue 9, the magenta dye was Acid Red 289, and the black dye was Direct Black 168.
The surface tension was measured at 25 OC through Wilhelmy method.
The following is the surface potential at 25 OC of typical water-soluble organic solvents: Ethanol (22 dyne/cm), isopropanol (22 dyne/cm), cyclohexanol (34 dyne/cm), glycerin (63 dyne/cm), diethyleneglycol (49 dyne/cm), MAR. 2002 15:57 SPRUSON FERGUSON 61 2 92615486 NO. 6589 P. 5/38 -99diethyleneglycol monomethylether (35 dyne/cm), triethyleneglycol (35 dyne/cm), 2 -pyrrolidone (47 dyne/cm), N-methylpyrrolidone (41 dyne/cm).
The desirable surface tension can be provided by mixture with water.
The method of controlling the ink surface tension using surfactant will be described.
For example, 28 dyne/cm of the surface tension can be provided by addition of 1 of sorbitan 10 monolaurate ester on the basis of water; 35 dyne/cm can be provided by addition of 1 of polyoxyethylenesorbitan monolaurate ester; 28 dyne/cm can be provided by addition of not less than 1 of ACETYLENOL
EH
(acetylene glycol-ethylene oxide adducts). If a lower 15 surface tension is desired, 17 dyne/cm is provided by addition of 0.1 of SURFLONS-145 (perfluoroalkylethylene oxide adducts) (available from Asahi Glass Kabushiki Kaisha, Japan). The surface tension slightly varies by another additives, and therefore, proper adjustment can be done by skilled in the art.
As described in the foregoing, the ink buffer is designed in consideration of the maximum leaking ink quantity. It has been found that the ink buffering effect is significantly influenced by the composition of the ink.
The following is a comparison example.
2002 15:57 SPRUSON FERGUSON 61 2 92615486 NO. 6589 P. 6/38 -1.00- Comp. Ex. 3 dye 4 parts glycerol 7.5 parts thiodiglycol 7.5 parts urea 7.5 parts pure water 73.5 parts When the ink is pushed from the ink chamber 3006 into the ink chamber 3004 due to the expansion of the air in the ink chamber 3006 due to the pressure 10 reduction or temperature rise, as shown in Figure 46, the problem occurs that the ink is not absorbed by the absorbing material and is leaked through the air vent 3003 or the like through the'clearance between the container wall and the absorbing material.
15 The ink for the ink jet recording containing surfactant has been proposed, The ink is advantageous in that the fixing property is very good for a copy sheet, bond sheet or another plain paper, that in proper color mixing (bleed or the like) does not occur even when different color ink recording regions are close in the color recording, and therefore, uniform coloring is possible. The following is an example of the composition:
M
MAR. 2062 15:58 SPRUSON FERGUSON 61 292615486 NO. 6589 P. 7/38 Ex, dye 4 parts glycerol 7.5 parts thiodiglycol 7.5 parts acetylene glycol-ethyl oid adducts (mi-n 10) 5 parts urea 7.5 parts pure water 68.5 parts When such an ink used, the ink does niot leak 0 Out of the ink cartridge because the ink is absorbed by the absorbing material 2003 In the ink chamber 2004 when the ink is pushed out of the ink chatber 2006 into the ink chamber 2004 due to the expansion of the air in the ink chamber 2006 due to the temperature rise or the pressure reduction in the atmosphere, as shown in Figure 34.
As described hereinbefore, the air-liquid interface of the ink in the ink chamber 2004 when the ink is supplied from the ink chamber 2006, is maintained at a height where the static head from the ejection part of the recording head, the vacuum in'the ink chamber 2006 and the capillary force of the compressed ink absorbing material. It is assumed that t he average ink height of the air-liquid interface in the ink chamber 2004 at this time is H. When the ink is flowed out from the ink chamber 2006 due to the atmospheric pressure reduction or temperature rise, 3a.MAR. 2002 15:58 SPRUSON FERGUSON 612 92615486 NO. 6589 P. 8/38 -102the height of the air-liquid interface of the ink chamber 2004 is desirably maintained further higher by h. In an example of this embodiment, the total height in the ink chamber is 3 cm, the ink -chamber 2004 and the ink chamber 2006 have the volume of 6 cc, respectively. At the time of the initial stage, the ink chamber 2006 is completely filled (6 cc), and the ink chamber 2004 containing the compressed absorbing material 2003 (polyurethane foamed material) contains .10 4 cc ink (ink total: 10 cc). The Porosity of the :absorbing material is not less than 95 %,and if it is assumed that the ink is completely contained in the %all of the Pores of the absorbing material, ;the ink chamber 2004 is capable of containing approx. 6 cc.
The ink is first consumed from the ink chamber 2004, and a while after, the ink starts to b'e consumed from Sthe ink chamber 2006. The air-liquid interface of the ink chamber 2004 is maintained at the level where the static head of the ejection part of the recording head, the vacuum in the ink chamber 2006 and the capillary force of the compressed ink absorbing material are balanced, On the average, the level of the air-liquid interface at this time is approx. Cm. If it is assumed that all of the Pores of the absorbing material Contain the ink, the quantitj- of the ink in the ink chamber 2004 is approx. 3 cc.
Here, the maximum pressure reduction of the atmosphere MAR. 2002 lb:b8 SPRUSON FERGUSON bi 2 926b48b NO. 6 FbU Y/38 -103is 0.7 atom, 1.8 cc of the ink which is approx. 30 of the volume of the ink chamber 2006. can be overflowed. Therefore, the ink chamber 2004 Preferably absorbs and retains approx. 3 cc 1.8 cc (ink level of approx. 2.4 cm). When the maximum reduced pressure 0.5 atom, 3 cc of the ink which is approx. 50 of the volume of the ink chamber 2006 can be overflowed, and therefore, the ink chamber 2004 can absorb and retain approx. 3 cc 3 cc (ink liquid surface height of approx. 3 cm). Therefore, the ink chamber 2004 has a enough volume to contain the volume of the absorbing material, the volume of the ink retained in the ink chamber 2004 and the volume of the ink overflowed from the ink chamber 2006. Therefore, the volume of the ink chamber 2004 is ipfluenced by the estimation of the ink overflow volume from the ink chamber 2006.
The retaining ink height H of the porous absorbing material is generally expressed by capillary force equation, as follows: H =2rcoso/Pgr where ris the surface tension of the ink, 9 is the contact angle between the ink and the ink absorbing material, P is the density of the ink, g is the force of gravity, and r is an average pore radius of the Ink absorbing material.
It will be understood that in order to MAR. 2002 15:58 SPRUSON FERGUSON 61 2 92615486 NO. 6589 P. 10/38 -104increase the ink retention capacity by increasing the height H, it is considered that the surface tension of the ink is increased, or the contact angle between the ink and the ink absorbing material is decreased (cos8 is increased).
As regards the increase of the ink surface tension, the ink of comparison example 3 as a relatively high surface tension (50 dyne/cm).
However, as described hereinbefore, the ink has not 10 been absorbed properly by the ink absorbing material.
As regards the reduction of the contact angle 9 between the ink and the ink absorbing material, it means to increase the wettability of the ink to the absorbing material. In order to accomplish this, surfactant is used.
In the case of Example 5 ink, the surface tension is small (30 dyne/cm 2 because of the addition of the surfactant, but the wettability between the absorbing material and the ink is improved. By doing so, it is more effective to improve the wettability of the ink latter than increasing the surface tension in order to improve the permeability.
For the purpose of comparison in the ink permeability, the compressed absorbing material (polyurethane foam material) is immersed in the Comparison Example 3 ink and the Example 5 ink, and the height of ink absorption was measured. The 2002 15:58 SPRUSON FERGUSON 61 2 92615486 NO 6589 P. 11/38 -105- Comparison Example 3 ink hardly absorbed the ink (several mm), whereas the Example 5 ink was absorbed to the height of not less than 2 cm. It will be understood that the ink having the improved permeability by containing the surfactant, as in the case of Example 5, the ink can be sufficiently absorbed even when the ink is overflowed from the ink chamber due to the pressure reduction or temperature rise.
The preferable penetrating agents include anion surfactant such as OT type aerosol, sodium dodecylbenzenesulfonate, sodium laurylsulfate, higher alcohol-ethylene oxide adducts represented by general Formula alkylphenol-ethylene oxide adducts 15 represented by general Formula ethylene oxidepropylene oxide copolymer represented by general Formula and acetylene glycol-ethylene oxide adducts represented by general Formula The anion surfactant has stronger foam producing tendency, and is poorer in the bleeding, color uniformity and feathering or the like than the nonionic surfactant, the following nonionic surfactant represented by the following formula is used, Here, n is preferably 6 14, and R Preferably has 5 26 carbon atoms, in Formula Cl] and m+n is preferably 6 14 in Formulas and MAR. 2002 15:59 SPRUSON FERGUSON 61 2 92615486 NO, 6589 P. 12/38 -106- R-O -CH 2 CH20Y--H [2] where R is alkyl, RQ -O CH 2
CH
2
O-
H
-H [2] where R is alkyl,
CH
3 H-fCH 2 CH20+1--CH-CH 2 R [3] Swhere R is hydrogen or alkyl, 1 0 CH3 CH 3
CH
3 CH3
C
3 -CH-CH C-CEC-C-CH 2 -Cd-CH 3 o o* CH2 CH2 [4] 0 0 m n tU2 C1 2 H H where m and n are respectively an integer.
Among the ethylene oxide nonionic surfactants, acetylene glycol-ethylene oxide adducts are preferable from the standpoint of absorption in the ink absorbing material, image quality on the recording material and ejection performance in total.
The hydrophilic property and penetrating property can be controlled by changing number m+n of ethylene oxides to be added. If it is smaller than 6, the MAR. 2002 15:59 SPRUSON FERGUSON 01 2 92b15486 NO 6589 P. 13/38 -107penetrating property is good, water solution nature is not good, and therefore, the solubility in water is not good. If it is too large, the hydrophilic property is too strong, and the penetrating property is too small. If it is larger than 14, the penetrating property is insufficient, and the ejection property is deteriorated- Therefore it is Preferably S-9o. 6 14.
The amount of the nonionic surfactant is Preferably 0.1 20 by weight. If it is lower than 0.1 the image quality and the penetrating property *e is not sufficient. If it is larger than 20 no improvement is expected, and the cost increases, and oC..
0 the reliability decreases.
15 One or more of the above described surfactant are usable in combination.
*°0S o The ink may contain dye, low volatile organic solvent such as polyhydric alcohols to prevent clogging, or organic solvent such as alcohols to improve bubble creation stability and fixing property on the recording material.
The water-soluble organic solvents constituting the ink of the embodiment may include polyalkylene glycols such as polyethylene glycol, and polypropylene glycol; alkylene glycols having 2 to 6 carbon atoms such as ethylene glycol, propylene glycol, butylene glycol, triethylene glycol, 1,2,6- MAR. 2002 15:59 SPRUSON FERGUSON 61 2 92615486 NO. 6589 P. 14/38 -108- *hexanetriol, hexylene glycol, and diethylene glycol; glycerin; lower alkyl ether of polyhydric alcohols such as ethylene glycol methyl ether, diethylene glycol methyl (or ethyl) ether, and triethylene glycol monomethyl (or ethyl) ether; alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, isobutyl alcohol, benzyl alcohol, and cyclohexanol; amides such as dimethylformamide, and dimethylacetamide; ketones and ketone alcohols such as acetone, and diacetone alcohol; ethers such as S: tetrahydrofuran, and dioxane; and nitrogen-containing Scyclics such as N-methyl-2-pyrrolidone, 2 -pyrrolidone, 1,3-dimethyl-2-imidazolidinone.
The water soluble organic solvent can be added without deteriorating the image quality or the ejection reliability. Preferably, it is Polyhydric alcohols or alkyl ether of polyhydric alcohols. The content thereof is preferably 1 3 %.by weight. And, the pure water content is 50 90 by weight.
The dyes usable with the present invention include direct dyes, acid dyes, reactive dyes, dispersive dyes, vat dyes or the like. The content of the dye is determined depending on the kinds of the liquid components and the required properties of the ink, the ejection volume of the recording head or the like. Generally, however, it is 0.5 15 by weight, MAR. 2002 15:59 SPRUSON FERGUSON 61 2 92515485 NO. 6589 P. 15/38 -109- Preferably 1 7 by weight.
By addition of the thioglycol or urea (or derivatives thereof) in the ink, the ejection property and the clog (solidification) preventing property is remarkably improved. This is considered to be because the solubility of the dye in the ink is improved. The content of the thioglycol or urea (or the derivatives thereof) is preferably I 3 and may be added as desired.
S" 10 The main constituents of the ink of the present first invention are described above. Other additives may be incorporated provided that the objects of the invention are achievable. The additive includes viscosity-adjusting agents such as polyvinyl 15 alcohol, celluloses, and water-soluble resins; pHcontrolling agents such as diethanolamine, triethanolamine, and buffer solutions; fungicides and •so forth. To the ink of electrically chargeable type used for ink-jet recording in which the ink droplets are charged, a resistivity-adjusting agent is added Such as lithium chloride, ammonium chloride, and sodium chloride.
A comparison example will be explained.
Comp. Ex. 4 dye 3 parts diethyleneglycol 5 parts thiodiglycol 5 parts 2002 15:59 SPRUSON FERGUSON 61 2 92615486 NO. 6b89 P. 16/38 -110ethyl alcohol 3 parts pure water 84 parts In this case, when the ink is overflowed from the ink container to the absorbing material container chamber due to the expansion of the air in the ink container due to the atmospheric pressure reduction or the temperature rise, the problem arises that the ink leaks out through the air vent or the ink supply portion by way of the clearance between the container 1. 0 wall and the absorbing material.
An ink for an ink jet recording apparatus containing a surfactant has been proposed. Such an Sink is advantageous in that the fixing speed is very high for a copy sheet, bond sheet or another plain 15 sheet paper, and that improper color mixture (bleed or the like), even if different color record region are contacted, and therefore, uniform coloring can be accomplished. Following is an examples of such an ink.
Comp. Ex. 6 dye 3 parts glycerol 5 parts thioglycol 5 parts ethylene oxide-propylene oxide copolymer 3 parts urea 5 parts pure water 79 parts MAR. 2002 16:00 SPRUSON FERGUSON 61 292615486 NO. 6589 P. 17/38 When this ink is used, the is absorbed by the absorbing material in the absorbing material container and does not leak Out even when the ink is overflowed from the ink chambjer into the absorbing material container due to the expansion of the air in the ink chamnber due to the atmospheric pressure reduction or temperature increase.- As described in the foregoing, there is Provided an ink cartridge comprising supply ink 10 chamber containing an ink absorbing material having an adjusted capillary force and one or more ink chambers, wherein the ink contains nonionic surfactant, by which ***the ink does not leak out even if the ambient condition change occurs, during recording operation or 15 when the recording operation is not carried out, and therefore, the ink use efficiency is high.
The above-described Embodiments I 13, are *adlvantageous rsetvlhowever the combination thereof is further advantageous. Further in addition, the combination of the process in the Embodiments 14 and 15, and the structure with Embodiments 16 19 and the above-described ink, is further preferable, The present invention is usable with any ink jet apparatus, such as those using electromechanical converter such as piezoelectric element, but is- Particularly suitably usable in an ink Jet recording head and recording apparatus wherein thermal energy by AR.M 202 b:OU SPRUSON YEHRUSUN Iii Z Iiblb4Ub N. bb8U F. 18/38 an electrothermal transduce;, laser beam or the like is used to cause a change of state of the Ink to eject or discharge the ink. This is because the high density of the picture elements and the high resolution of the recording are possible.
The typical structure and the operational principle are preferably the ones disclosed in U.S.
Patent Nos. 4,723,129 and 4,740,796. The principle and structure are applicable to a so-called on-demand type ':910 recording system and a continuous type recording system. Particularly, however, it is suitable for the on-demand type because the principle is such that at .least one driving signal is applied to an electrothermal transducer disposed on a liquid (ink) a.15 retaining sheet or liquid passage, the driving signal being enough to provide such a quick temperature rise beyond a departure from nucleation boiling point, by which the thermal energy is provided by the electrothermaal transducer to produce film boiling on the heating portion of the recording head, whereby a bubble can be formed in the liquid (ink) corresponding to each of the driving signals.
By the production, developmnt~ and contraction of the the bubble, the liquid (ink) is ejected through an ejection outlet to produce atE least one droplet. The driving signal is preferably in the form of a pulse, because the development and JU.A(.M ZUU lUU SI'1USON I'PAUSUN bli Z RZbl b NO. bbUU 19/38 -113contraction of the bubble can be effected instantaneously, and therefore, the liquid (ink) is ejected with quick response. The driving signal in the form of the pulse is preferably such as disclosed in U.S. Patents Nos. 4,463,359 and 4,345,262. In addition, the temperature increasing rate of the heating surface is preferably such as disclosed-in U.S. Patent No. 4,313,124.
The structure of the recording head may be as shown in U.S. Patent Nos. 4,558,333 and 4,459,600 wherein the heating portion is disposed at a bent portion, as well as the structure of the combination of the election outlet, liquid passage and the electrothermal transducer as disclosed in the abovementioned patents. In addition, the present invention is applicable to the structure disclosed in Japanese Laid-Open Patent Application No. 123670/1984 wherein a common slit is used as the election outlet for plural electrothermal transducers, and to the structure disclosed in Japanese Laid-Open Patent Application No.
138461/1984 wherein an opening for absorbing pressure wave of the thermal energy is formed corresponding to the electing portion. This is because the present invention is effective to perform the recording operation with certainty and at high efficiency irrespective of the type of the recording head.
The present invention is effectively JU.NAK 2002 16:00 SPRUSON FERGUSON 01 2 920b48 NO. UbUS I. 20/38 applicable to a so-called full-line type .recording head having a length corresponding to the maximum recording width. Such a recording head may comprise a single recording head and plural recording head combined to cover the maximum width.
In addition, the present invention is applicable to a serial type recording head where-in the recording head is fixed on the main assembly, to a replaceable chip type recording head which is connected electrically with the main apparatus and can be supplied with the ink when it is mounted in the main assembly, or to a cartridge type recording head having an integral ink container.
The provisions of the recovery means and/or the auxiliary means for the preliminary operation are preferable, because they can further stabilize the effects of the present invention. As for such means, there are capping means for the recording head, cleaning means therefor, pressing or sucking means, preliminary heating means which may be the electrothermal transducer, an additional heating element or a combination thereof. Also, means for effecting preliminary ejection (not for the recording operation) can stabilize the recording operation.
As regards the variation of the recording head mountable, it may be a single corresponding to a single color ink, or may be plural correspondi ng to the MAR. 2002 16:00 SPRUSON FERGUSON 61 2 92615486 NO. 6589 21/38 -115plurality of ink materials having different recording color or density. The present invention is effectively applicable to an apparatus having at least one of a monochromatic mode mainly with black, a multi-color mode with different color ink materials and/or a fullcolor mode using the mixture of the colors, which may be an integrally formed recording unit or a combination of plural recording heads.
Furthermore, in the foregoing embodiment, the ink has been liquid. It may be, however, an ink material which is solidified below the room temperature but liquefied at the room temperature. Since the ink 0 is controlled within the temperature not lower than oc C and not higher than 70 °C to stabilize the viscosity of the ink to provide the stabilized ejection in usual recording apparatus of this type, the ink may be such that it is liquid within the temperature range when the 0" recording signal is the present invention is applicable to other types of ink. In one of them, the temperature rise due to the thermal energy is positively prevented by consuming it for the state change of the ink from the solid state to the liquid state. Another ink material is solidified when it is left, to prevent the evaporation of the ink. In either of the cases, the application of the recording signal producing tiermal energy, the ink is liquefied, and the liquefied ink may be ejected. Another ink material may start to be iv.MfAK. ZUUZ lb:U1 SVI{USU I'h(IUUf I Z 2Rb~b4Ub H1. bbUU F 2/lu -116solidified at the time when it reaches the recording material. The Present inventionx is also applicable to such an ink material as is liquefied by the application of the thermal energy. Such an ink material may be retained as a liquid or solid material in through holes or recesses formed in a porous sheet as disclosed in Japanese Laid-Open Patent Application No. 56847/1979 and Japanese Laid-Open Patent Application No.
71260/1985. The sheet is faced to the electrothermal transducers. The most effective one for the ink *materials described above is the film boln system.
The ink jet recording apparatus may be used as outpzt terminal of an information processing apparatus such as computer or the like, as a copying apparatus combined with an image reader or the like, or as a facsimile machine having information sending and receiving functions.
While the invention has been described with a reference to the structures disclosed herein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the purposes of the improvements or the scope of the following claims.

Claims (12)

1. An ink container for containing ink to be supplied to an ink jet head, said ink container comprising: a first chamber containing a negative pressure producing member and having an air vent for communication between an inside of said ink container and ambient air and with an ink supply port connectable to the ink jet head for supplying ink to said ink jet head; a second chamber communicating with said first chamber by means of a communication path, except for which said second chamber is substantially hermetically sealed; a wall extending upwardly from the communication path, for forming a partition between said first chamber and said second chamber; and an ambient air introducing path, in the form of a recess for regulating capillary force, provided in a surface of said wall being in contact with said negative pressure :producing member and extending from a point partly up said wall toward said communication path. oo•
2. An ink container according to Claim 1, wherein said recess has an upper portion S 20 for producing a relatively small capillary force and a lower portion for producing a :relatively large capillary force. o• [R:LIBOO]6399.doc:avc 118
3. A liquid container acc-ord-ing to Claim 1, wherein said ambient air introducing path terminates at the point, and extcnds to said communication path.
4. A liquid container according to Claim 1, wherein said ambient air introducing path te~rminates at the point and terminates before said communication path. A liquid contaJine-r according to Claim 1. wherein the point is above-said liquid outlet.
6. A liquid container according to any one of Claims 1 5. wherein said air introducing path is defined by a rib on said wall..
7. A liquid container according to any one of Claims 1 5, wherein said air introd'ucing path Is defined by a groove in said wall- R. A liquid container according to Claim 1, wherein said liquid outletL and said air vent are scalted by one member during Lransportation. A liquid container according to Claim 1, wherein said container is of material through which Inside thereof is visible. A liquid container according to Claim 1, wherein the liquId contained in said container is 119 contributahle to image printing, and wherein. Lhe liquid is supplied from said second chamber mb~ said first chamber through said communication path by 'introduction of -the air in-to said second chamber through said air int~roducing p'ath.
11. A liquid container according to Claim 1, wherein said negative pressure producing material Is sponge which is not heat-compressed and is compressed into said rfirst chamber.
12. A liquid container according to Claim T. wherein said negative pressure producing material is heaL-compressed sponge.- .5.9 13. A liquid container according to Claim 1, Swherein a path connecting said alir vent and -the point 59 extettds across said negative pressure producing material. 0 0
14. A liquid container according Lo Claim 1, wherein a plurality of s-uch air introducing paths are provided. 000* 66 wherein the container contains printing liquid. 16~. A liquid containcr according to Claim 1, wherein said first chamber coutains liquid. -120-
17. A liquid container according to Claim 1, wherein said second chamber contains a liquid containing at least one type of non-ionic surfactant.
18. A replaceable ink cartridge as in Claim 1, wherein said liquid ink comprises water, coloring material and water-soluble organic solvent, and has a surface tension of dyne/cm to 55 dyne/cm.
19. A replaceable ink cartridge as in Claim 17, wherein said liquid ink contains at least one-ionic surfactant. DATED this eleventh Day of March, 2004 15 Canon Kabushiki Kaisha Patent Attorneys for the Applicant SPRUSON FERGUSON I o *ooo [R:\LIBOO]6399.doc:avc
AU29219/02A 1992-07-24 2002-03-30 Ink container, ink and ink jet recording apparatus using ink container Expired AU774013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU29219/02A AU774013B2 (en) 1992-07-24 2002-03-30 Ink container, ink and ink jet recording apparatus using ink container

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP4-198733 1992-07-24
JP4-198661 1992-07-24
JP4-198680 1992-07-24
JP4-198681 1992-07-24
JP5-17562 1993-02-04
JP5-122618 1993-05-25
AU97466/01A AU774849B2 (en) 1992-07-24 2001-12-24 Ink container, ink and ink jet recording apparatus using ink container
AU29219/02A AU774013B2 (en) 1992-07-24 2002-03-30 Ink container, ink and ink jet recording apparatus using ink container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU97466/01A Division AU774849B2 (en) 1992-07-24 2001-12-24 Ink container, ink and ink jet recording apparatus using ink container

Publications (2)

Publication Number Publication Date
AU2921902A AU2921902A (en) 2002-05-23
AU774013B2 true AU774013B2 (en) 2004-06-10

Family

ID=3764485

Family Applications (4)

Application Number Title Priority Date Filing Date
AU27748/02A Expired AU774423B2 (en) 1992-07-24 2002-03-27 Ink container, ink and ink jet recording apparatus using ink container
AU29236/02A Expired AU774424B2 (en) 1992-07-24 2002-03-30 Ink container, ink and ink jet recording apparatus using ink container
AU29197/02A Expired AU773802B2 (en) 1992-07-24 2002-03-30 Ink container, ink and ink jet recording apparatus using ink container
AU29219/02A Expired AU774013B2 (en) 1992-07-24 2002-03-30 Ink container, ink and ink jet recording apparatus using ink container

Family Applications Before (3)

Application Number Title Priority Date Filing Date
AU27748/02A Expired AU774423B2 (en) 1992-07-24 2002-03-27 Ink container, ink and ink jet recording apparatus using ink container
AU29236/02A Expired AU774424B2 (en) 1992-07-24 2002-03-30 Ink container, ink and ink jet recording apparatus using ink container
AU29197/02A Expired AU773802B2 (en) 1992-07-24 2002-03-30 Ink container, ink and ink jet recording apparatus using ink container

Country Status (1)

Country Link
AU (4) AU774423B2 (en)

Also Published As

Publication number Publication date
AU2923602A (en) 2002-05-16
AU2921902A (en) 2002-05-23
AU2774802A (en) 2002-05-16
AU2919702A (en) 2002-05-23
AU774423B2 (en) 2004-06-24
AU774424B2 (en) 2004-06-24
AU773802B2 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US6095642A (en) Ink container, ink and ink jet recording apparatus using ink container
AU680523B2 (en) Ink filling method and apparatus for ink cartridge
US6412931B1 (en) Ink jet apparatus and ink jet cartridge and ink container mountable thereto
KR0145341B1 (en) Ink container, ink and ink jet recording apparatus using ink container
US6332675B1 (en) Ink container, ink and ink jet recording apparatus using ink container
AU774013B2 (en) Ink container, ink and ink jet recording apparatus using ink container
AU705946B2 (en) Ink container, ink and ink jet recording apparatus using ink container
JPH0760984A (en) Ink-jet cartridge
AU774849B2 (en) Ink container, ink and ink jet recording apparatus using ink container
AU744119B2 (en) Ink container, ink and ink jet recording apparatus using ink container
GB2297724A (en) Ink container and ink jet recording apparatus using ink container
GB2305397A (en) Ink container, ink and ink jet recording apparatus using ink container
KR0152492B1 (en) Container for containing printing liquid, ink jet recording assembly and ink jet recording apparatus

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)