AU772543B2 - Method and apparatus for extending the life of an X-ray tube - Google Patents

Method and apparatus for extending the life of an X-ray tube Download PDF

Info

Publication number
AU772543B2
AU772543B2 AU73709/01A AU7370901A AU772543B2 AU 772543 B2 AU772543 B2 AU 772543B2 AU 73709/01 A AU73709/01 A AU 73709/01A AU 7370901 A AU7370901 A AU 7370901A AU 772543 B2 AU772543 B2 AU 772543B2
Authority
AU
Australia
Prior art keywords
oil
housing
processing chamber
ray tube
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU73709/01A
Other versions
AU7370901A (en
Inventor
Maurice D. Dilick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU29701/00A external-priority patent/AU769326B2/en
Application filed by Individual filed Critical Individual
Publication of AU7370901A publication Critical patent/AU7370901A/en
Application granted granted Critical
Publication of AU772543B2 publication Critical patent/AU772543B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Description

S&FRef: 557346D1
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: Maurice D Dilick 2123 Paula Drive Madison Tennessee 37115 United States of America Maurice D Dilick Spruson Ferguson St Martins Tower,Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) Method and Apparatus for Extending the Life of an Xray Tube ::oo* o o 00 0:.0.
The following statement is a full description of this invention, including the best method of performing it known to me/us:- IP Australia Documetrecin: iL SEP I2 0 01 Batch No: 5845c METHOD AND APPARATUS FOR EXTENDING THE LIFE OF AN X-RAY TUBE Field of the Invention The present invention relates to methods and apparatus for extending the life of an x-ray tube.
Background of the Invention U.S. Pat. App. Ser. No. 09/244,729, filed February 5, 1999 (now USP 6,254,272) is incorporated herein by reference. Typically x-ray tubes are mounted inside a lead shielded radiation enclosure called a housing or casing. The housing is attachable to the x-ray machine, typically a CT, fluoroscopic, or rad machine. The housing is filled with a fluid of synthetic or petroleum derivative, generally referred to as insulating oil. The insulating oil acts to thermally and electrically insulate the tube. Heat is generally removed to air through fluid to water or fluid to water cooled air transfer.
All such fluids, are damaged, from four major contributors: heat; (2) 15 radiation; high voltage arcing; and corona discharge.
This heating oil is sold by two primary standards: ASTM 877 for u* *o unprocessed oil; and ASTM 1816 for processed oil. Insulating oil consists *oe (R:\LIBLL] 14650spcci.doc:keh 2 of perhaps 3500 separate hydrocarbons. The hydrocarbons having varying carbon bond lengths with many separate bonded molecules and ions, such as hydrogen, oxygen, hydroxyls, and many others.
For most x-ray products, the end of life is primarily predicated by an arcing process. Failure is accentuated by deposition on the glass or metal window of the insert. Deposition on the high voltage hold off leads to collapse in the insert itself, leading to subsequent deterioration of rotor function. The arcing while starting out infrequently, increases in frequency as the oil deteriorates. As the arcing increases the oil deteriorates more rapidly which, in turn, leads to more arcing.
It is commonly thought that the greases and waxes produced during the life of an x-ray tube are deleterious to the insulating oil, i.e. damaging.
Such is the motivation behind U.S. Patent 5,440,608 entitled "Method And S System For Extending The Service Life Of An X-Ray Tube" by Peralta, et al.
15 The method taught in Pat. '608, and subsequent patents by Peralta, U.S.
Patent 5,596,622 and 5,732,123. U.S. Pats. 5,440,608; 5,732,123; and 5,596,622 are collectively referred to herein as PERALTA. PERALTA ooo..i describes methods and apparatus for removing the old oil and replacing it with new oil, and methods for filtering the greases and waxes produced 20 during the life of an x-ray tube. As PERALTA points out, the financial risks involved in when working with x-ray tubes and CT scanners is substantial.
Tubes are very delicate in some respects and require great care when repairing them.
3 One problem encountered in the past has been the removal of bubbles which has come out of solution, or removal of those introduced into the system when oil has been replaced. For Siemens and Phillips manufactured tubes it has been quite common for many years to remove bubbles by replacing the oil. Circa 1984, General Electric introduced quick-disconnects into the hydraulic system, i.e. quick-disconnects in-line between the heat exchanger and the x-ray tube housing. This facilitated the removal of bubbles from the system. Since approximately 1985, this inventor has had occasion to open the hoses between the heat exchanger and the x-ray tube to remove bubbles, or replace oil, or both. PERALTA describes these well known techniques.
io This inventor believes the greases and waxes are not as damaging as is commonly believed. In fact, the addition of new oil, as taught by Peralta, is contrary to preferred embodiments of the present invention.
goi ioo [R:\LIBLL] 14650speci.doc:keh 4 Object of the Invention It is an object of the present invention to overcome or ameliorate some of the disadvantages of the prior art, or at least to provide a useful alternative.
o* ,•oo oo [R:\LIBLL] 14650speci.doc:keh Summary of the Invention There is disclosed herein an x-ray machine comprising an x-ray tube mounted for operation, wherein the x-ray tube comprises a housing, an inserted located therein for producing x-rays, and insulating oil in the housing, and comprising a coalescing element in fluid communication with the insert, a process chamber containing the coalescing element; and a vacuum source fluidly connected to the processing chamber to reduce pressure in the processing chamber, whereby the reduced pressure in the processing chamber facilitates removing gas in solution with the oil from the oil.
Other objects and advantages of the present invention will be apparent to those of skill in the art from the teachings disclosed herein and by reference to the attached drawings.
oo oo oo *o o [R:\LIBLL] l4650speci.doc:kch Brief Description of the Drawings In the interest of enabling one of skill in the art to practice the invention, exemplary embodiments are shown and described. For clarity, details apparent to those of skill in the art and reproducible without undue experimentation are generally omitted from the drawings and description.
Fig. 1 shows a prior x-ray tube connected to a heat exchanger.
Fig. 2 is a schematic view of a prior art insert for generating x-rays. The insert is placed in a housing of the type shown in Fig. 1 Insulating oil then is circulated around the insert.
Fig. 3 is a perspective view of a prior art x-ray tube and heat exchanger mounted on a gantry of an x-ray machine.
o* e *g oO* *eo *ee o*
*OO
*g [R:\LIBLL]I 4650speci.doc:keh Fig. 4 is an elevated side view depicting a processing chamber of the present invention. A coalescing element in the processing chamber isshown removing water from oil. Oil is shown dripping from the coalescing filter.
Fig. 5 shows a schematic representation of the present invention connected to an x-ray tube.
Fig. 6 shows a close up of a processing chamber of the present invention. The processing chamber in Fig. 6 includes a flow director for directing the dripping oil from the coalescing element away from the oil outlet of the processing chamber.
Fig. 7 shows a perspective view of the present invention connected to an x-ray tube mounted on a gantry.
Fig. 8 shows a plan view of a processing kit of the present invention.
Fig. 9 shows a perspective view of a processing chamber similar to the Sone shown in Fig. 6.
Fig. 10 is an exploded cutaway view of a prior art quick-connector.
oe• DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to methods and apparatus for extending the life of an x-ray tube. Fig. 1 is a prior art drawing showing an x-ray tube i 10 fluidly connected to a heat exchanger 12. The x-rays are produced by an insert 14 shown in prior art drawing Fig. 2. A housing 18, shown in Fig. 1, houses the insert 14. The insulating oil 16 shown in Fig. 2 circulates around the insert to provide thermal and electrical insulation. Fig. 3, prior art, depicts the x-ray tube 10 mounted on a gantry 20 of a computer tomography (CT) scanner 22. The machine depicted in Fig. 3 may also be any typical x-ray device.
The following U.S. Patents, which discuss CT scanners, x-ray tubes, and cooling methods, are hereby incorporated herein by reference: U.S.
Patent 5,086,449; entitled "Debubbler System for X-Ray Tubes" by Furbee, et al.; U.S. Patent No. 4,115,697 entitled "X-Ray Tube Cooling Arrangement" by Hounsfield; U.S. Patent 5,012,505 entitled "Fluidic Slip Ring For CT Scanners" by Zupancic, et al.; U.S. Patent No. 4,622,687 entitled "Liquid Cooled Anode X-Ray Tubes" by Whitaker et al.; U.S. Patent No. 4,688,239 entitled "Heat Dissipation Means For X-Ray Generating Tubes" by Schaffner, et al.; U.S. Patent No. 4,767,961 entitled "X-Ray Generator Cooling System" by Koller, et al.; U.S. Patent No. 4,841,557 entitled "X-Radiator With Circulating Pump For Heat Dissipation" by Haberrecker, et al.; U.S. Patent S" No. 4,866,743 entitled "Computer Tomography Apparatus With A Closed 15 Circulation Cooling System" by Kroener; and U.S. Patent No. 5,732,123 entitled "Method and System For Extending The Service Life Of An X-Ray Tube" by Peralta et al.
As mentioned in the background section, greases and waxes produced during the life of an x-ray tube are not particularly damaging. Gases, 20 however, which are highly absorbable in oil can be particularly damaging to the process of producing x-rays. Because bubbles are a location of reduced insulation, they can act as a pathway for electrical conduction through the insulating oil more readily than through regions lacking bubbles. Also, gas in solution provides opportunities for chemical disassociation by providing a source, of hydrogen and oxygen ions.
As mentioned in the background section the oil is made up of some 3500 separate hydrocarbons. The oil is subjected to a chemical change due to the heat, radiation, arcing and corona phenomena within the x-ray tube.
Longer chain molecules break down and recombine with other by-products to form longer and shorter chain molecules.
A shorter chain of molecules may be pure gas, such as acetylene gas
C
2
H
6
C
2
H
6 is produced primarily during a major high voltage breakdown in oil. Other by-products include hydrogen, which is produced by stripping off a hydrogen ions by arcing or corona discharge. This is primarily due to a corona phenomena.
Note that these gases are formed by manipulations of high voltage in the environment outside the actual x-ray tube insert. This is a key to 15 understanding the nature of tube failure the x-ray machine. It is the insulating oil which is being altered and damaged. When the insulating oil becomes damaged, then the insert becomes damaged due to lack of proper insulation (via the effects of arcing).
One of the keys to the invention is the realization that water is a component in oil which has been subjected to an operating x-ray machine environment. At room temperature the saturation level of water is about 62 "°°parts per million (ppm) in the insulating oil. During the x-ray process, and as the insulating oil breaks down, water can come out of solution (i.e.
become a drop, or droplet, in the oil). The water can accumulate in minute droplets on the cooler surfaces of the x-ray tube housing. This is similar to condensation of water vapor on a cooler surface. Thus, water is accumulating inside the housing. The source of water is the oil itself.
Water, while a neutral molecule, supports arcing because of the molecular nature of it. It has a 1050 angle between the centers of the molecules. This makes it act as a dipole in a static direct current (dc) field.
In a CT tube, x-ray generation is thousands of times longer than in conventional tubes. In general, the x-ray in a CT scanner stays on for many seconds as opposed to the average milliseconds used in conventional tubes.
This results in the insulating oil being exposed to radiation and higher temperatures for a longer time, in any given application. More time, and higher temperature, to expose and radiate the oil results in more disassociations and more water molecules formed to become aligned. A 150 15 kV dc field is applied during the radiating process. Note that breakdown of the oil at a high field point of occurrence readily strips hydrogen ions from long molecules. The recombination and hydroxyl ions produces free water.
S*
Water is a by-product of some of these disassociations. Water is also a source of some of these disassociation problems. It is a damaging circular 20 relationship during the production of radiation. Thus, it is desirable to remove water from the oil. It should also be noted that, generally speaking, .the dielectric properties of the insulating oil (as a whole) are reduced by adding water.
11 As mentioned, water will act as a dipole in a direct current field. Thus, to preserve, or increase, the dielectric properties of the insulating oil, it would be desirable to remove water. Prior art, adds water to the system by adding new oil. This is bad. Thus, water which has seeped out of the old oil and is clinging to the housing in the insert mixes with the new oil though the water is not absorbed because the new oil is likely saturated with water.
That is, the oil is already at its saturation level for water. There is then even more water as a source for more disassociation problems.
The saturation level, or concentration, is a function of the oil temperature. As such, different amounts of gases will come out of solution at different temperatures. Also, different compounds form more readily at different temperatures. For example, acetylene,
C
2
H
6 is believed to form more readily at cooler temperatures as compared to H 2 at hotter temperature.
15 Water, which is absorbable in oil to the level about 60 parts per million at room temperature, should be removed. Embodiments of the present invention remove oil down to 12-20 parts per million at room temperature.
Other embodiments can reduce the water of down to 5 to 10 parts per million.
At this point it is important to realize another aspect of the chemical breakdown in decomposition. Initially, all new housings are relatively similar, and new insulating oil is fairly standard. However, through the chemical breakdown which occurs during the x-radiation process, the particular parameters of the housing bond with the particular parameters of the oil in that housing. The more that particular insulating oil breaks down and bonds with that particular housing, the less the oil will break down and form new bonds. Essentially, the oil is subjected to a form of radiation hardening and is particularly tuned to that particular housing. Thus, it is actually preferred to use older oil, preferably oil which has undergone a bonding process, or has bonded, with that particular housing. This further reduces oil disassociation because there are less sources for disassociation.
That is, the "parametric cross section" has been reduced.
Each CT tube has an inherent set of parameters. Specific dimensions of oil through which the primary radiation passes for any given tube are wide and varying. Specific stray radiation varies from tube to tube also. Specific voltage setting for any generator have small variabilities as well. Each of these parameters, during the aging, or oil deteriorating process, is more 15 sensitive to specific bonding energies over narrow domains. Many of the bonding energies are insensitive to the deterioration energies of radiation in thermal and corona sources. Thus as a class, bonds are reduced in number 0oo00 for a particular oil-housing pair or combination. Thus, the specific insulating oil in that specific housing has less opportunities to form new bonds.
Accordingly, one embodiment of the present invention is for an x-ray tube oil processor 30 shown in Fig. 4. The x-ray tube oil processor 30 is for extending the life of an x-ray tube 10 by processing oil 16 for the x-ray tube wherein the oil 16 is adapted to circulate around the insert 14 in the housing 18 of the x-ray tube The processor 30 comprises a processing chamber 32 having an oil inlet 34 an oil outlet 36 a gas outlet 38. The processor 30 also includes a coalescing element 40 positioned in the processing chamber 32 wherein the coalescing element 40 has a first end 42 in fluid communication with the oil inlet 34. A vacuum source 44 is in fluid communication with the gas outlet 38. Preferably the gas outlet 38 is above the oil inlet 34 reduce the likelihood of drawing oil, or oil foam, through the gas outlet 38 and then through the vacuum source 44. This embodiment is shown in Fig. 4, Figs. and 6 show the gas outlet 38 below the coalescing element An oil inlet hose 46 and an oil outlet hose 48 are respectively in fluid communication with the oil inlet 34 and the oil outlet 36 of the processing chamber 32. The oil 16 enters the oil inlet hose 46 and passes through the 15 coalescing element 40 and exits the oil outlet hose 48 as processed oil e One preferred vacuum pump is produced by Robinair 15234 using motor :°oooo below.
In the embodiment shown in Fig. 4 the processor 30 comprises a sump of oil 52 in the processing chamber 32. In some embodiments, for 20 some applications, it is preferred that the sump of oil 52 comprises radiation e hardened oil. Radiation hardened oil being oil which has been exposed to xrays. Preferably the oil has "bonded" with that housing by having been exposed to radiation over a period of time in that housing. However, 14 exposing oil to radiation, of the same general category that the x-ray tube for which the insulating oil 16 is being processed produces radiation, is also useful.
In a preferred embodiment the coalescing element 40 is located above the oil sump 52, as shown in Fig. 4.
Refer now to Fig. 5 which shows a schematic layout of the oil processor 30 connected to an x-ray tube 10. In the embodiment shown in Fig. 5, the processor 30 comprises an oil pump 54 in fluid communication with the oil outlet hose 48. Preferably the oil pump 54 is a gear pump. One acceptable gear pump is Tuthill DDS1.6 SA relief valve 56 is also shown fluidly connected to the oil outlet hose 48. A relief hose fluidly connects the relief valve 56 to the oil inlet hose 46.
A pressure gauge 60 is fluidly connected to the outlet hose 48. The pressure gauge can be used to determine the pressure in the housing. One e g.
15 acceptable pressure gauge is Ashcraft 1007PH In some embodiments, as is shown in Fig. 5, the processor comprises an outlet flow valve 62 in line with the oil outlet hose 48. An inlet 0 flow valve 64 is shown in line with the oil inlet hose 46. The oil outlet hose 48 shown in Fig. 5 is adapted to connect to the x-ray tube 10 housing 18, 20 and the oil inlet hose 46 is adapted to connect to the x-ray tube 10 housing 18. The x-ray tube housing 18 shown in Fig. 5 includes an oil in hose 66 and an oil out hose 68. The oil outlet hose 48 is connected to the oil in hose 66 and the oil inlet hose 46 is connected to the oil out hose 68.
As shown in Fig. 5, the processor 30 comprises a first quick-connect connecting the oil outlet hose 48 and the oil in hose 66, as well as a second quick-connect 72 connecting the oil inlet hose 45 and the oil out hose 68. Fig. 10 shows a representative quick-connect 70. The quickconnect (or quick-disconnect) 70 shown in Fig. 10 includes a double O-ring 100 around the perimeter and a bevel connection 102 at the interface of the conforming pieces 104 and 106. Conforming piece 106 includes a triangular shaped lip 108 around its perimeter which abuts the edge of conforming piece 104 when the two pieces are mated.
An acceptable hydraulic connector, which is a quick-coupling, is produced by Parker Fluid Connectors in the Quick-Coupling Division located in Minneapolis, MN. Refer to Fig. Preferably the processor comprises a flow controller 74 proximate the 960:69 coalescing element 40. The flow controller 74 has a discharge portion 76 Os..
15 located away from the oil outlet 36. This is shown more clearly in Fig. 6. By 0O SO 0Ogo0 0 0locating the discharge portion 76 of the flow controller 74 away from the oil outlet 36 of the processing chamber 34 gas bubbles 78 are prevented from 0 000 entering the oil outlet 36. If gas bubbles enter the oil outlet 36 and pass through the oil outlet hose 48 they will damage the gear pump 54 and 0@ 0o 009@ 0* 20 prevent it from working. It is also desirable to prevent an air bubble from .*00V being transmitted into the housing 18 of the x-ray tube 10. A bubble in an O00 O x-ray tube could be catastrophic to the tube, and damaging to the scanner.
Since tube cost from $15,000 to $100,000, and the scanners cost from $300,000 to $1.2 the risk is very real.
A vacuum gauge 80 is operably connected to the processing chamber 32. -One preferred electronic vacuum gauge is that produced by JB Industries, Inc. of Aurora, Illinois 60507. When the oil processing is started pressure in the processing chamber 32 may typically be on the order of 700 microns. In some embodiments it is sufficient to evacuate the chamber down to 200 microns. In some preferred embodiments it is desirable to evacuate the chamber down to 20 microns. Evacuation of the processing chamber 32 removes gases from the processing chamber 32. Since the oil is processed, preferably, in a closed system the evacuation process is taking ~gases out of the oil. The reduced pressure in the chamber is an indication of ~this since the oil in the closed system is not reduced. In some preferred 00embodiments the processing chamber 32 is transparent. This allows the process to be visually monitored and to note the out-gassing from the oil. It is not required that the processing chamber 32 be transparent to monitor 0. 0 the process, however, because the process can be monitored by monitoring o pressures in the processing chamber 32 as well as pressures in the housing 18.
o 20 Preferably the processing chamber 32 comprises a length 82, shown in Fig. 6, and the coalescing element 40 extends across the length 82 of the processing chamber 32.
17 While a variety of coalescing filters will be apparent to those of skill in the art, the coalescing element 40 depicted in Figs. 4 and 6 is a hollow cylindrical tube comprising very fine highly compressed shards and strips of fiberglass. The tube is then enclosed with a fine nylon wire mesh having openings on the order of 0.01 to 0.05 inch. The multitude of shards in the fiberglass act to create thin films which coalesce or collect the gases, preferably water, and out-gas the collected gas from the oil. Adjusting the pressure in the processing chamber, via evacuation, aids out-gassing.
In one preferred embodiment the relief valve 56 comprises an inport 84, an outport 86, and a relief port 88. The relief hose 58 connects the relief port 88 to the oil inlet hose 46. Preferably the oil pump 54 is o downstream of the outlet valve 62 and the relief valve 56 is downstream of the oil pump 54. The pressure gauge 60 is connected to the oil outlet hose o 48 downstream of the relief valve 56 in the configuration shown in Fig. In many instances it will be desirable to maintain the x-ray tube 10 on the gantry 20 of the CT scanner 22. Thus the oil outlet 36 of the processing chamber 32 is attached to the housing 18 and the oil inlet 34 is attached to the housing 18 while the housing 18 is mounted in the gantry 20. This is shown in Fig. 7.
20 Since it will be desirable to perform the oil processing while the x-ray tube is mounted on a gantry, it will be desirable to have the oil processor portable. Accordingly, one embodiment of the present invention is for an xray tube processing kit 90 for processing oil 16 in an x-ray tube 10 housing 18 wherein the housing 18 is mounted on a gantry.
Referring to Fig. 8 the kit 90 comprises a processing chamber 32 containing a coalescing element 40; a plurality of fluid hoses 92 adapted to connect to the processing chamber 32; an oil pump 54 adapted to connect to one of the plurality of fluid hoses 92; and a vacuum pump 44 adapted to connect to the processing chamber 32. A one preferred source of fluid hoses is Ritchie In one embodiment the plurality of fluid hoses 92 comprises at least two hoses fluidly connected to valves (see Fig. 5) including the one hose being adapted to connect to the oil pump 54.
Preferably the kit 90 includes a plurality of quick-connectors (not i shown in Fig. Also it will be desirable if the kit 90 includes a quickconnector kit for positioning a quick-connector in-line between the housing 18 and a heat exchanger 12, wherein the heat exchanger 12 is mounted on 0: the gantry 20, and wherein the oil 16 is adapted to circulate through the heat exchanger 12 and the housing 18.
Preferably the kit 90 comprises a carrying case 94 for transporting the processing chamber 32. Generally it will be desirable if the carrying case 94 *20 comprises foam padding 96 for securing the kit components in place.
Preferably the carrying case 94, the oil pump 54, the vacuum pump 44, and the processing chamber 32 are sized such that the processing chamber 32, the vacuum pump 44, and the oil pump simultaneously fit in the carrying 19 case 94. It is desirable to have the kit weight less than 40 kilos. This facilitates international transportation of the kit.
More generally the present invention includes a method of extending the life of an x-ray tube 10 having a housing 18 and an insert 14 located therein for producing x-rays. The method comprises the steps of providing the x-ray tube 10 with an insulating oil 16 in the housing 18; and processing the insulating oil 16 to remove deleterious gases 98 from the oil.
See Fig. 6.
Preferably the step of processing the oil 16 to remove deleterious gases 98 from the oil 16 comprises removing water from the oil wherein the water is removed as a gas.
i The method may also include the step of drying the housing by removing water. This is accomplished when processed oil 50 circulates through the housing 18. Since the processed oil 50 is dryer than the housing 18 the processed oil will absorb water in the housing 18 which will then be removed from the oil by the coalescing element 40 (in some preferred embodiments).
Typically the deleterious gas 98 includes water vapor and the step of processing includes transporting the oil through a coalescing element 20 out-gassing the deleterious gases 98 from the oil 16 (or 50) and removing water from the oil 16 (or 50). Recall, the 50 indicates oil which has passed through the coalescing element 40 and has been "processed." However, the oil 16 and the processed oil 50 readily mix. So it is desirable to continually circulate and process the oil until a desired dryness is reached. The desired dryness can be "measured" by reference to pressures in the processing chamber 32. Thus, the terms oil 16 and oil 50 are used interchangeably except where reference to processed oil 50 facilitates understanding of the invention. One exemplary apparatus for accomplishing this is shown in Figs. 5 and 6.
One embodiment of the method comprises locating the coalescing element 40 in a processing chamber 32; fluidly connecting the housing 18 to an inlet 34 of the processing chamber 32. The method also includes the step of evacuating the processing chamber 32 as oil 16 in the housing 18 is transported through the processing chamber 32 inlet 34 and through the coalescing element 40, wherein the oil 16 exiting the coalescing element is co .processed oil 50. See Fig. 6.
Referring to Fig. 5 as an exemplary embodiment, the method also comprises the step of fluidly connecting an outlet 36 of processing chamber 32 to the housing 18 and transporting the processed oil 50 to the housing 18.
Referring to Fig. 6, some embodiments of the method comprise the steps of placing a sump of oil 52 in the processing chamber 32; and allowing °oo 20 the processed oil 50 to mix with the oil in the sump. Thus the step of transporting the processed oil to the housing includes transporting sump oil to the housing. Preferably the method comprises utilizing radiation hardened oil in the sump of oil.
Thus it will be apparent to those of skill in the art that the method in some embodiments will comprise the steps of circulating oil 16 from the housing 18 through the coalescing element 40 through the sump of oil 52 and back to the housing 18. Also included in the method are steps of removing gases from the oil 16 as it passes through the coalescing element and continuing to circulate the oil 16 until a desirable level of gas has been removed from the oil.
In some preferred embodiments the method comprises the steps of aligning a first end 42 of the coalescing element 40 over the processing chamber inlet 34; supporting the coalescing element 40 above the sump of oil 52. The step of transporting the oils 50 to the housing 18 includes pumping the oil 50 to the housing 18. The step of evacuating the processing chamber 32 includes evacuating the deleterious gases 98 out-gased from the oil 16. This is shown in Fig. 6.
It is desirable to prevent a bubble 78 from being sucked through the o:ooo processing chamber outlet 36 for the reasons previously discussed. This is most easily accomplished by locating the processing chamber outlet 36 away from where the oil exiting the coalescing element 40 enters the sump of oil 52. In Fig. 6 this is accomplished by use of a flow controller 74.
20 In some embodiments it is preferred that the step of circulating the oil through the housing is at a positive pressure. This prevents bubbles from coming out of solution while they are in the housing. The step of circulating the oil 16 in a positive pressure occurs prior to evacuating the deleterious gases 98 from the processing chamber 32, in some preferred embodiments.
This helps prevent a bubble from forming in the housing 18. Some embodiments of the method comprise the step of adjusting pressure in the housing by regulating oil flow into and out of the housing. In some instances, it is desirable to build up to a positive pressure of about 15 psi in the housing, then begin processing, then operate at a neutral or slightly positive pressure, or thereabouts, in the housing.
Preferably, the method of processing the oil comprises maintaining the x-ray tube 10 on the gantry 20 of the x-ray machine 22.
It will be apparent to those of skill in the art that the method also comprises the steps of locating the coalescing element 40 in a processing chamber 32 having an inlet 34 an outlet 36 and an evacuation port 38. The evacuation port 38 is also referred to as a gas outlet. The method also ocomprises fluidly connecting the housing 18 to the processing chamber inlet 34; fluidly connecting the housing 18 to the processing chamber outlet 36; oo.ooi S: and connecting a vacuum source 44 to the processing chamber evacuation port 38. The method also includes evacuating gases 98 from the processing chamber 32 and circulating oil 16 and 50 through the processing chamber.
Preferably the steps of fluidly connecting the housing 18 to the inlet 34 and *oo *20 the outlet 36 of the processing chamber 32 comprises the step of inserting quick-connects 70 and 72 in oil flow lines between the housing 18 and a heat exchanger 12 on a gantry 20. See Fig. 7.
In some embodiments the method of processing the oil 16 comprises the steps of locating the coalescing element 40 above a sump of oil 52 in the processing chamber 32. The method also comprises positioning the coalescing element 40 relative to the processing chamber 32 inlet 34 such that oil 16 entering the processing chamber 32 through the processing chamber inlet 34 must pass through the coalescing element Preferably the step of circulating the oil at a positive pressure through the housing comprises the step of pumping the oil into the housing to increase pressure in the housing prior to allowing oil to flow out of the housing. Thus, oil from the sump of oil is forced into the housing to increase pressure in the housing and aid forcing any bubbles in the housing back e into solution. The oil is then allowed to flow through the lines and through the coalescing filter. When the oil flows through the coalescing element, water and other gases are out-gased from the oil. This processed oil is then transported back to the housing.
~Some preferred embodiments of the present invention comprise placing a relief valve 56 in line between the oil pump 54 in the housing 18; •connecting a relief port 88 on the relief valve 56 to the processing chamber inlet.
20 Preferably the method also includes adjusting an inlet valve 64, also referred to as an inlet flow valve, 64 and an outlet flow valve, also referred to as an outlet flow valve, 62 to regulate pressure in the housing 18. The inlet valve 64 is in-line between the housing 18 and the processing chamber inlet 34, and the outlet valve 62 is in line between the housing 18 and the processing chamber outlet 36. The processing chamber inlet is also referred to as the oil inlet and the processing chamber outlet is also referred to as the oil outlet.
Due to the damage which may be caused by excessive or minimal pressure in the housing, one embodiment in the method comprises monitoring pressure in the housing. Another embodiment comprises the step of monitoring pressure in the processing chamber. Typically, the step of monitoring pressure in the housing is accomplished via an oil pressure gauge. The step of monitoring pressure in the processing chamber is accomplished via a vacuum gauge.
Since different out-gases come out of solution at different temperatures one embodiment comprises the step of out-gassing gases formed at higher temperatures by heating the oil. Another comprises the 15 step of out-gassing gases formed at colder temperatures by cooling the oil.
Another method of extending the life of an x-ray tube having a housing and an insert located therein for producing x-rays comprises the step of providing an insulating oil in the housing; and drying insulating oil.
S' In some embodiments the step of drying the insulating oil comprises *20 removing water from the insulating oil. Oil is highly deliquescent, similar to pure grain alcohol. The oil seeks water which is has condensed onto the outer cooler housing wall in the form of microscopic droplets. Thus, changing oil can aid the removal of saturated water, but it cannot remove absorbed water, except for what has gone into solution. -Therefore, drying the oil, similar to wringing out a towel, allows the, now dryer, oil to absorb more water, which is in turn "wrung out" of the oil. The process is repeated until a sufficient level of dryness is achieved, i.e. water is removed. As has previously been discussed, this may be accomplished through use of a coalescing element, though other devices and methods will be apparent to those of skill in the art.
In some embodiments the step of removing water comprises reducing the water saturated in the oil. In one embodiment this includes reducing a parts of water per million parts of oil level to at least twenty parts of water per million parts of oil. The standard for most x-ray tube oil is on the order of thirty parts per million, wherein this is considered "dry." Thus, one embodiment of the invention is to improve performance by providing improved oil.
15 As will be clear from the teachings herein, the method may also comprise the step of drying an interior (not shown) of the housing 18. This o may be accomplished by circulating the insulating oil 16 through the housing 18, wherein the insulating oil 16 is drier than the housing 18; and allowing the drier insulating oil to absorb water in the housing. The method also includes the step of removing the absorbed water from the insulating oil. In many instances it is preferred that the step of drying the insulating oil occurs while maintaining the x-ray tube on a gantry of an x-ray machine.
Another embodiment comprises the removal of aromatic hydrocarbons.
This is beneficial because the insulating qualities of hydrocarbons is generally not suitable.
Another embodiment comprises the steps of hardening oil and introducing the hardened oil into an environment or chamber. In one version, the environment is a cooling chamber of a nuclear power plant. The hardening is carried out using a radiation source in treatment chamber, wherein the treatment chamber is separate from the cooling chamber.
Another embodiment comprises the steps of out-gassing gases and capturing the gases. In one embodiment, the gases are captured in a balloon-trap to more readily illustrate the quantity of gases taken out of "solution.
One embodiment of the processing kit comprises a processing chamber containing a coalescent filter; and a plurality of fluid hoses adapted to connect to the processing chamber. The kit preferably includes an oil pump wherein both the processing chamber and the oil pump are adapted to allow oil to be maintained in both elements during shipping while preventing oil from spilling out. Upon set up, the oil will be gravity feed into the respective components.
*ee *20 Thus, although there have been described particular embodiments of the present invention of a new and useful X-Ray Tube Processor, it is not intended that such references be construed as limitations upon the scope of this invention except as set forth in the following claims.

Claims (4)

1. An x-ray machine comprising an x-ray tube mounted for operation, wherein the x-ray tube comprises a housing, an inserted located therein for producing x- rays, and insulating oil in the housing, and comprising a coalescing element in fluid communication with the insert, a process chamber containing the coalescing element; and a vacuum source fluidly connected to the processing chamber to reduce pressure in the processing chamber, whereby the reduced pressure in the processing chamber facilitates removing gas in solution with the oil from the oil.
2. The x-ray machine of claim 7, comprising means for drying the housing.
3. The x-ray machine of claim 7, comprising means for removing bubbles from the housing.
4. An x-ray machine, substantially as herein described with reference to any one of the embodiments of the invention shown in the accompanying drawings. Dated 17 February 2004 Maurice D. Dilick Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON *o* *•g e *o g go• o*o *,o *ooo* *g *~o [RL L]
AU73709/01A 1999-02-05 2001-09-19 Method and apparatus for extending the life of an X-ray tube Ceased AU772543B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/244729 1999-02-05
AU29701/00A AU769326B2 (en) 1999-02-05 2000-01-21 Method and apparatus for extending the life of an X-ray tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU29701/00A Division AU769326B2 (en) 1999-02-05 2000-01-21 Method and apparatus for extending the life of an X-ray tube

Publications (2)

Publication Number Publication Date
AU7370901A AU7370901A (en) 2001-11-15
AU772543B2 true AU772543B2 (en) 2004-04-29

Family

ID=32398665

Family Applications (1)

Application Number Title Priority Date Filing Date
AU73709/01A Ceased AU772543B2 (en) 1999-02-05 2001-09-19 Method and apparatus for extending the life of an X-ray tube

Country Status (1)

Country Link
AU (1) AU772543B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956713A (en) * 1982-09-24 1984-04-02 Mitsubishi Electric Corp Lubricating device for oil-immersed electrical apparatus
JPH08236048A (en) * 1995-02-28 1996-09-13 Shimadzu Corp X-ray tube device
US5732123A (en) * 1993-07-13 1998-03-24 David V. Habif, Jr. Method and system for extending the service life of an x-ray tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956713A (en) * 1982-09-24 1984-04-02 Mitsubishi Electric Corp Lubricating device for oil-immersed electrical apparatus
US5732123A (en) * 1993-07-13 1998-03-24 David V. Habif, Jr. Method and system for extending the service life of an x-ray tube
JPH08236048A (en) * 1995-02-28 1996-09-13 Shimadzu Corp X-ray tube device

Also Published As

Publication number Publication date
AU7370901A (en) 2001-11-15

Similar Documents

Publication Publication Date Title
AU769326B2 (en) Method and apparatus for extending the life of an X-ray tube
US4198191A (en) Vaporization cooled dielectric fluid pump
US7295436B2 (en) Cooling system for computer components
US20070034360A1 (en) High performance cooling assembly for electronics
DE112007001223T5 (en) In-situ cleaning of a CVD system drain
JP4531973B2 (en) Equipment for obtaining pure water from raw water
JP2005175460A (en) Plasma treatment apparatus
DE102005000831B4 (en) Contaminant monitoring device, contamination management system and related methods
AU772543B2 (en) Method and apparatus for extending the life of an X-ray tube
US7543987B2 (en) Modular cooling unit for x-ray device
WO2016181451A1 (en) Heat pump apparatus
KR101600663B1 (en) Heat Pipe Manufacturing Method
US6491742B1 (en) ESRF coolant degassing process
MXPA01007924A (en) Method and apparatus for extending the life of an x-ray tube
US20230200010A1 (en) Immersion cooling device, heat pipe, and cold plate
US4091230A (en) Evaporation-cooled transmission line system
JP2004311170A (en) Oil heat exchanger and x-ray tube device
JPH0395907A (en) Method of changing classification and section of pcb transformer
WO2005069687A1 (en) Method for operating an infrared radiator element and use thereof
US6206565B1 (en) Continuous conditioning of dielectric fluid in an x-ray tube
CN219015977U (en) Heptafluoropropane extinguishing agent residue detection device
JPS58198899A (en) X-ray tube device
EP4040071A1 (en) Refrigeration cycle device
TW531444B (en) Particle removal and chlorofluorocarbon compound decomposition system using middle frequency plasma source
US1318832A (en) Ments

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)