AU769070B2 - Removal of biological contaminants - Google Patents

Removal of biological contaminants Download PDF

Info

Publication number
AU769070B2
AU769070B2 AU25266/00A AU2526600A AU769070B2 AU 769070 B2 AU769070 B2 AU 769070B2 AU 25266/00 A AU25266/00 A AU 25266/00A AU 2526600 A AU2526600 A AU 2526600A AU 769070 B2 AU769070 B2 AU 769070B2
Authority
AU
Australia
Prior art keywords
solvent stream
compound
biological contaminant
membrane
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU25266/00A
Other versions
AU2526600A (en
Inventor
Brendon Conlan
Tracy Ann Edgell
May Lazar
Chenicheri Hariharan Nair
Elizabeth Jean Seabrook
Thomas Norman Turton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Therapeutics Ltd
Original Assignee
Gradipore Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPP7906A external-priority patent/AUPP790698A0/en
Application filed by Gradipore Ltd filed Critical Gradipore Ltd
Priority to AU25266/00A priority Critical patent/AU769070B2/en
Publication of AU2526600A publication Critical patent/AU2526600A/en
Application granted granted Critical
Publication of AU769070B2 publication Critical patent/AU769070B2/en
Assigned to LIFE THERAPEUTICS LIMITED reassignment LIFE THERAPEUTICS LIMITED Request to Amend Deed and Register Assignors: GRADIPORE LIMITED
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

WO 00/38743 PCT/AU99/01171 1 Removal of Biological Contaminants Technical Field The present invention relates to methods for the removal of biological contaminants, particularly removal of biological contaminants from biological preparations.
Backeround Art The modern biotechnology industry is faced with a number of problems especially concerning the processing of complex biological solutions which ordinarily include proteins, nucleic acid molecules and complex sugars and which are contaminated with unwanted biological materials. Contaminants include microorganisms such as bacteria and viruses or biomolecules derived from microorganisms or the processing procedure. The demand is. therefore, for a high purity, scalable separation, which can be confidently used both in product development and production, which in one step will both purify macromolecules and separate these biological contaminants.
Viruses are some of the smallest non-cellular organisms known. These simple parasites are composed of nucleic acid and a protein coat. Viruses are typically very small and range in size from 1.5x10- 8 m to 5.0x10 5 m. Viruses depend on the host cells that they infect to reproduce by inserting their genetic material into the host. often literally taking over the host's function.
An infected cell produces more viral protein and genetic material, often instead of its usual products. Some viruses may remain dormant inside host cells. However, when a dormant virus is stimulated, it can enter the Ivtic phase where new viruses are formed, self-assemble occurs and burst out of the host cell results in killing the cell and releasing new viruses to infect other cells. Viruses cause a number of diseases in humans including smallpox. the common cold. chicken pox. influenza. shingles, herpes, polio, rabies. Ebola. hanta fever, and AIDS. Some types of cancer have been linked to viruses.
Pyrogens are agents which induce fever. Bacteria are a common source for the production of endotoxins which are pyrogenic agents. Furthermore, another detrimental effect of endotoxins is their known adjuvant effect which could potentially intensify immune responses against therapeutic drugs. The endotoxin limit set by the Food and Drug Administration (FDA) guidelines for most pharmaceutical products is for a single dose 0.5ng endotoxin per WO 00/38743 PCT/AU99/01171 2 kilogram body weight or 25ng endotoxin/dose for a 50kg adult. Due to their size and charge heterogeneity, separation of endotoxins from proteins in solution can often be difficult. Endotoxin inactivation by chemical methods are unsuitable because they are stable under extremes of temperature and pH which would destroy the proteins. Furthermore, due to their amphipathic nature, endotoxins tend to adhere to proteins in a fashion similar to detergents. In such cases, endotoxin activity often clusters with the protein when chromatographic procedures such as ion exchange chromatography or gel filtration are employed.
Presently, the purification of biomolecules is sometimes a long and cumbersome process especially when purifying blood proteins. The process is made all the more complex by the additional step of ensuring the product is "bug" free. The costs associated with this task is large and further escalates the purification costs in total. The Gradiflow technology rapidly purifies target proteins with high yield. For example, a proteins like fibrinogen (a clotting protein) can be separated in three hours using the Gradiflow while the present industrial separation is 3 days. Certain monoclonal antibodies can be purified in 35 minutes compared to present industrial methods which take 35 hours.
The membrane configuration in the Gradiflow enables the system to be configured so that the purification procedure can also include the separation of bacteria viruses and vectors. It has now been found by the present inventors that appropriate membranes can be used and the cartridge housing the membrane configured to include separate chambers for the isolated bacteria and viruses.
The Gradiflow Technology Gradiflow is a unique preparative electrophoresis technology for macromolecule separation which utilises tangential flow across a polyacrylamide membrane when a charge is applied across the membrane (AU 601040). The general design of the Gradiflow system facilitates the purification of proteins and other macromolecules under near native conditions. This results in higher yields and excellent recovery.
In essence the Gradiflow technology is bundled into a cartridge comprising of three membranes housed in a system of specially engineered grids and gaskets which allow separation of macromolecules by charge and/or molecular weight. The system can also concentrate and desalt/dialyse at the WO 00/38743 PCT/AU99/01171 3 same time. The multimodal nature of the system allows this technology to be used in a number of other areas especially in the production of biological components for medical use. The structure of the membranes may be configured so that bacteria and viruses can be separated at the point of separation a task which is not currently available in the biotechnology industry and adds to the cost of production through time delays and also because of the complexity of the task.
Disclosure of Invention In a first aspect. the present invention consists in a method of removing a biological contaminant from a mixture containing a biomolecule and the biological contaminant, the method comprising: placing the biomolecule and contaminant mixture in a first solvent stream. the first solvent stream being separated from a second solvent stream by an electrophoretic membrane; selecting a buffer for the first solvent stream having a required pH; applying an electric potential between the two solvent streams causing movement of the biomolecule through the membrane into the second solvent stream while the biological contaminant is substantially retained in the first sample stream. or if entering the membrane, being substantially prevented from entering the second solvent stream; optionally, periodically stopping and reversing the electric potential to cause movement of any biological contaminants having entered the membrane to move back into the first solvent stream, wherein substantially not causing any biomolecules that have entered the second solvent stream to re-enter first solvent stream: and maintaining step and optional step if used. until the second solvent stream contains the desired purity of biomolecule.
In a second aspect. the present invention consists in a method of removing a biological contaminant from a mixture containing a biomolecule and the biological contaminant, the method comprising: placing the biomolecule and contaminant mixture in a first solvent stream. the first solvent stream being separated from a second solvent stream by an electrophoretic membrane: selecting a buffer for the first solvent stream having a required pH; applying an electric potential between the two solvent streams causing movement of the biological contaminant through the membrane into the WO 00/38743 PCT/AU99/01171 4 second solvent stream while the biomolecule is substantially retained in the first sample stream, or if entering the membrane. being substantially prevented from entering the second solvent stream: optionally, periodically stopping and reversing the electric potential to cause movement of any biomolecule having entered the membrane to move back into the first solvent stream. wherein substantially not causing any biological contaminants that have entered the second solvent stream to reenter first solvent stream: and maintaining step and optional step if used, until the first solvent stream contains the desired purity of biomolecule.
In the first and second aspects of the present invention, preferably the biomolecule is selected from the group consisting of blood protein, immunoglobulin. and recombinant protein.
The biological contaminant can be a virus, bacterium, prion or an unwanted biomolecule such as lipopolysaccharide, toxin or endotoxin.
Preferably, the biological contaminant is collected or removed from the first stream.
Preferably, the buffer for the first solvent stream has a pH lower than the isoelectric point of biomolecule to be separated.
In a further preferred embodiment of the first aspect of the present invention, the electrophoretic membrane has a molecular mass cut-off close to the apparent molecular mass of biomolecule. It will be appreciated, however, that the membrane may have any required molecular mass cut-off depending on the application. Usually. the electrophoretic membrane has a molecular mass cut-off of between about 3 and 1000kDa. A number of different membranes may also be used in a desired or useful configuration.
The electric potential applied during the method is selected to ensure the required movement of the biomolecule, or contaminant if appropriate, through the membrane. An electric potential of up to about 300 volts has been found to be suitable. It will be appreciated. however, that greater or lower voltages may be used.
The benefits of the method according to the first aspect of the present invention are the possibility of scale-up. and the removal of biological contaminants present in the starting material without adversely altering the properties of the purified biomolecule.
WO 00/38743 PCT/AU99/01171 In a third aspect, the present invention consists in use of Gradiflow in the purification or separation of biomolecule from a biological contaminant.
In a fourth aspect. the present invention consists in biomolecule substantially free from biological contaminants purified by the method according to the first aspect of the present invention.
In a fifth aspect. the present invention consists in use of biomolecule according to the third aspect of the present invention in medical and veterinary applications.
In a sixth aspect, the present invention consists in a substantially isolated biomolecule substantially free from biological contaminants.
Throughout this specification, unless the context requires otherwise, the word "comprise". or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
In order that the present invention may be more clearly understood a preferred forms will be described with reference to the accompanying drawings.
Brief Description of Drawings Figure 1. Samples from up and downstream were taken at time intervals (x-axis) during the isolation of albumin from plasma. Albumin was measured in the samples by mixing with BCG reagent and reading the absorbance of 630nm. The concentration of albumin in each sample was calculated from the standard curve, and multiplied by the volume of the upor downstream to obtain the Total HSA in the up- and downstream (y-axis).
All samples were assayed for prion using a sandwich ELISA. and recording the absorbance values at 450nm (second y-axis).
Figure 2. Samples from the second phase of an IgG separation were taken from both up- and downstreams (U/S and D/S respectively) at minute intervals. The samples were assayed for endotoxin using a LAL Chromogenic assay (Cape Cod Assoc.) Figure 3. HSA was purified from endotoxin spiked plasma. Samples were taken from up- and downstream at 30 minute intervals during a minute purification (x-axis). Analysis of the samples using a LAL Chromogenic assay was performed to establish the endotoxin concentration (y-axis) in the samples.
WO 00/38743 PCT/AU99/01171 6 Figure 4. Four to 25% native gel electrophoresis of samples from an HSA purification from endotoxin spiked plasma. Lane 1 contains molecular weight markers. Lane 2 contains starting plasma sample, Lanes 3-5 contain upstream samples at time 30. 60, and 90 minutes. Lanes 6-9 contain downstream samples at time 0. 30. 60 and 90 minutes. respectively.
Modes for Carrving Out the Invention Virus removal during plasma protein purification using Gradiflow technology Contamination with virus is a major concern when purifying plasma proteins, such as IgG and human serum albumin (HSA). A contaminant virus can potentially infect a patient receiving the contaminated plasma products. A virus that infects bacteria is known as a phage, and they are readily detected by examining culture plates for cleared zones in a coating or lawn of bacteria.
Aim: To isolate IgG, HSA, and Fibrinogen from human plasma spiked with virus, using the Gradiflow. with simultaneous removal of the contaminating virus.
IgG purification procedure IgG is the most abundant of the immunoglobulins. representing almost 70% of the total immunoglobulins in human serum. This class of immunoglobulins has a molecular mass of approximately 150kDa and consists of 4 subunits. two of which are light chains and two of which are heavy chains. The concentration of IgG in normal serum is approximately IgGs are conventionally purified using Protein A affinity columns in combination with DEAE-cellulose or DEAE-Sephadex columns. The main biological contaminants in IgG isolations are 6-lipoprotein and transferrin.
The product of conventional protein purification protocols is concentrated using ultrafiltration. Immunoaffinitv can also be used to isolate specific IgGs.
Method: Platelet free plasma was diluted one part in three with Trisborate. pH 9.0 running buffer and placed in the upstream of Gradiflow and spiked with either Llambda or T7 phage to a concentration of -10 8 pfu/ml (plaque forming units/ml). A potential of 250V was placed across a separating membrane with a molecular weight cut off of 200kDa (3kDa restriction membranes). A membrane of this size restricts IgG migration WO 00/38743 PCT/AU99/01171 7 whilst allowing smaller molecular weight contaminants to pass through the membrane. leaving IgG and other large molecular weight proteins in the upstream. A second purification phase was carried out using a GABA/Acetic acid buffer. pH 4.6 with a 500kDa cut off separating membrane (3kDa restriction membranes). A potential of 250V reversed polarity was placed across the system resulting in IgG migration through the membrane leaving other high molecular weight contaminants upstream.
Examination of samples taken at 30 minutes intervals was made on reduced SDS-PAGE 4-25% gels.
Virus testing One hundred and fifty jil taken at each time point sample was mixed with 1004l of appropriate Escherichia coli culture (Strain HB101 was used for T7 and strain JM101 for Llambda). The mixtures were incubated for minutes at 37"C. before each was added to 2.5ml of freshly prepared molten soft agar. and vortexed. The mixtures were poured over culture plates of Luria Agar. and incubated at 37°C overnight. The plates were inspected for the presence of virus colonies (plaques) in the lawn of E. coli. The number of plaques was recorded or if the virus had infected the entire E. coli population the result was recorded as confluent lysis.
HSA purification procedure Albumin is the most abundant protein component (50mg/m.) in human plasma and functions to maintain blood volume and oncotic pressure.
Albumin regulates the transport of protein, fatty acids. hormones and drugs in the body. Clinical uses include blood volume replacement during surgery, shock, serious burns and other medical emergencies. Albumin is 67kDa and has an isoelectric point of approximately 4.9. The protein consists of a single subunit and is globular in shape. About 440 metric tons of albumin is used annually internationally with worldwide sales of US$1.5 billion. Albumin is currently purified using Cohn fractionation and commercial product contains many contaminants in addition to multimers of albumin. The high concentration. globular nature and solubility of albumin make it an ideal candidate for purification from plasma using Gradiflow technology.
Method: Pooled normal plasma was diluted one in three with Tris-Borate (TB) running buffer. pH 9.0 and spiked with -10pfu/ml of Llambda or T7 phage. The mixture was placed in the upstream of a Gradiflow apparatus.
Albumin \-as isolated from platelet free plasma in a one-phase process using WO 00/38743 PCT/AU99/01171 8 the charge of albumin at a pH above its isoelectric point (pI) and its molecular weight. Thus a cartridge with a 75kDa cutoff separation membrane was placed between two 50kDa cutoff restriction membranes.
The albumin was removed from high molecular weight contaminants by its migration through the separation membrane whilst small molecular weight contaminants dissipated through the 50kDa restriction membrane. Samples were taken at regular intervals throughout a 90 minutes run.
The presence of the purified HSA in the downstream was demonstrated by examination by SDS-PAGE. Virus was detected as previously described above.
Fibrinogen purification procedure: Commercially. fibrinogen has a role as fibrin glue, which is used to arrest bleeding and assist in the wound healing process. Fibrinogen is an elongated molecule of 340kDa that consists of three non-identical subunit pairs that are linked by a disulphide knot in a coiled coil conformation. The isoelectric point of fibrinogen is 5.5 and it is sparingly soluble when compared with other plasma proteins.
Fibrinogen is conventionally purified from plasma by a series of techniques including ethanol precipitation, affinity columns and traditional electrophoresis. This process takes about 48-72 hours and the harsh physical and chemical stresses placed on fibrinogen are believed to denature the molecule, resulting in activity that is removed from that of fibrinogen in plasma.
Cryo-precipitation is the first step in the production of factor VIII and involves the loss of most of the fibrinogen in plasma. Processing of this waste fibrinogen is of considerable interest to major plasma processors and provides an opportunity to demonstrate the rapid purification of fibrinogen from cryo-precipitate using the Gradiflow.
Method: Cryo-precipitate 1, produced by thawing frozen plasma at 4 0
C
overnight was removed from plasma by centrifugation at 10000xg at 4 0 C for minutes. The precipitate was re-dissolved in Tris-Borate buffer (pH 9.0) and placed in the upstream of a Gradiflow apparatus. The upstream was spiked with either Llambda or T7 phage to a concentration of -10 8 pfu/ml. A potential of 250V was applied across a 300kDa cutoff cartridge and run for 2 hours. The downstream was replaced with fresh buffer at 30 minute intervals. A second phase was used to concentrate the fibrinogen through a WO 00/38743 PCT/AU99/01171 9 500kDa cutoff separation membrane at pH 9.0. The downstream was harvested at 60 minutes. The product was dialysed against PBS pH 7.2 and analysed for clotting activity by the addition of calcium and thrombin (final concentrations 10nmM and 10NIH unit/nil respectively).
The presence of purified fibrinogen was confirmed by examination on reduced SDS PAGE 4-25% gels. The presence of either T7 or Llambda in the time point samples was tested using the previously described method.
Results of IgG, HSA and fibrinogen purification: The procedures described successfully purified IgG, albumin and fibrinogen as judged by electrophoresis. Neither T7 nor Llambda phage were detected in the downstream products. but were present in the upstream samples.
Prion removal during plasma protein purification using Gradiflow technology There is an international concern regarding the contamination of plasma proteins by prion protein. Prion is a glycoprotein of 27-33kDa in size which occurs naturally in many human derived materials, including white blood cells, platelets, plasma and plasma proteins preparations, e.g. HSA, IgG, FVIII and fibrinogen. Prion can become folded abnormally and cause neurological disorders such as Creutzfeld-Jacob disease (CJD) and Kuru.
Currently, there is much concern regarding the transmission of these diseases via transfusion and plasma protein fractions administered clinically.
Aim: To isolate HSA from human plasma using the Gradiflow. with simultaneous removal of prion.
Method: Pooled platelet rich plasma was diluted one in two with Tris- Borate (TB) running buffer. pH 9.0 and was placed in the upstream of a Gradiflow apparatus. Albumin was isolated from platelet free plasma using the charge of albumin at a pH above its pi and its molecular weight. Thus a cartridge with a 75kDa cutoff separation membrane was placed between two 50kDa cutoff restriction membranes. The albumin was removed from high molecular weight contaminants by its migration through the separation membrane whilst small molecular weight contaminants dissipated through the 50kDa restriction membrane. Samples were taken at 20 minute intervals throughout a 240 minute run. The buffer stream and cartridge were replaced after the initial two hours. with identical solutions and cartridge.
WO 00/38743 PCT/AU99/01171 The presence of the purified HSA in the downstream was demonstrated by examination by SDS-PAGE. and was measured using a Bromocresol Green Assay (purchase from Trace Scientific. Prion was tested for in both up- and down-stream samples using a sandwich ELISA comprised of prion specific antibodies obtained from Prionics Inc (Switzerland).
Albumin quantitation Fifty 1 l of each time point sample was diluted with 50il of PBS buffer.
A 20l aliquot of each diluted sample was placed in a microplate well. A standard curve of the kit calibrator from a maximum concentration of 40mg/ml was prepared using PBS as the diluent. The standard curve dilutions were also placed in the microplate (2 1 dl plasma/well). The bromocresol green reagent was added to all the wells (200gl/well) and the absorbance at 630nm was read using a Versamax microplate reader. The standard curve was drawn on a liner scale and the concentration of albumin in the up and downstream samples were read from the curve. The volume in the appropriate stream at the time of sampling was multiplied by the concentration of each sample. Thus providing a value for the total HSA present in each stream.
Prion detection A solution of 5j.g/ml monoclonal antibody denoted 6H4 (Prionics Inc.
Switzerland) in a 10mM carbonate buffer was added to the wells of a microplate (100l/well). and incubated overnight at 4 0 C. The antibody was later decanted and the wells washed three times with 250pl/well of a PBS solution containing Tween 20. The plate wells were blocked by incubating at room temperature for 30 minutes with 2004l/well of containing 1% albumin. The plate was again washed three times with 250ul/well of PBS/T20 before the up- and down-stream time point samples were added (100/l/well). The samples were incubated for 1-2 hours at room temperature before being dispensed. and the plate washed three times as previously described. A solution of prion-specific polyclonal antibody, denoted R029 (Prionics Inc. Switzerland) was diluted at 1:1000(v:v) in and added to the wells of the plate (1001l/well). The mixture was incubated for 1-2 hours at room temperature. before being decanted. The plate was washed three times and 100l/well of a horseradish peroxidase conjugated polvclonal anti-rabbit IgG antiserum (purchased from Dakopatts) was added. The conjugate was incubated for 30-60 minutes at room WO 00/38743 PCT/AU99/01171 11 temperature and then removed. Any bound HRP conjugate was detected using o-tolidine substrate solution (100ul/well). and the reaction stopped by addition of 3M HCI (50pl/well). The developed colour was measured at 450nm in a Versamax plate reader.
Results Albumin was transferred to the downstream and was detected in the BCG assay (Figure and visualized on a native 8-16% electrophoresis gel.
Decreasing quantities of Prion were detected in the upstream during the time-course, and no Prion was detected in the downstream samples.
Endotoxin removal during plasma protein purification using Gradiflow technology Contamination with bacterial endotoxin is a major concern when purifying plasma proteins, such as IgG and HSA. Endotoxins are a lipopolysaccharide derived from the lipid membrane of gram negative bacteria. The presence of endotoxin in a human blood fraction therapeutic can lead to death of the receiving patients.
Aim: To isolate IgG and HSA from human plasma spiked with endotoxin, using the Gradiflow, with simultaneous removal of endotoxin.
IgG purification procedure Method: Platelet free plasma was diluted one part in three with Trisborate. pH 9.0 running buffer and placed in the upstream of a Gradiflow apparatus and spiked with purified E. coli endotoxin to a concentration of A potential of 250V was placed across a separating membrane with a molecular weight cut off of 200kDa (3kDa restriction membranes). A membrane of this size restricts IgG migration whilst allowing smaller molecular weight contaminants to pass through the membrane, leaving IgG and other large molecular weight proteins in the upstream. A second purification phase was carried out using a GABA/Acetic acid buffer, pH 4.6 with a 500kDa cut off separating membrane (3kDa restriction membranes). A potential of 250V reversed polarity was placed across the system resulting in IgG migration through the membrane leaving other high molecular weight contaminants upstream.
Examination of samples taken at 30 minutes intervals was made on reduced SDS-PAGE 4-25% gels. Endotoxin was tested for using a LAL Pyrochrome Chromogenic assay purchased from Cape Cod Associates. All WO 00/38743 PCT/AU99/01171 12 samples were diluted 1 in 10 and the endotoxin assay was performed according to the manufacturer instructions.
HSA purification procedure Method: Pooled normal plasma was diluted one in three with Tris-Borate (TB) running buffer. pH 9.0 and spiked with 55ng/ml of purified endotoxin.
The mixture was placed in the upstream of a Gradiflow apparatus. Albumin was isolated from platelet free plasma in a one-phase process using the charge of albumin at a pH above its pi and its molecular weight. Thus a cartridge with a 75kDa cutoff separation membrane was placed between two 50kDa cutoff restriction membranes. The albumin was removed from high molecular weight contaminants by its migration through the separation membrane whilst small molecular weight contaminants dissipated through the 50kDa restriction membrane. Samples were taken at regular intervals throughout a 90 minutes run.
The presence of the purified HSA in the downstream was demonstrated by examination by SDS-PAGE. Endotoxin was tested for in both up- and down-stream samples using a LAL Chromogenic assay supplied by Cape Cod Associates. All samples were diluted 1 in 10 and the endotoxin assay was performed according to the manufacturer instructions.
Results of IgG and HSA purification Up and downstream samples taken at 30 minute intervals during the second phase of an IgG purification from endotoxin spiked plasma were tested for endotoxin using a LAL Chromogenic assay. The results showed that the endotoxin was almost entirely found in the upstream at all time points (Figure The downstream contained only 0.7% of the initial endotoxin. Reduced SDS-PAGE examination showed that IgG had been successfully isolated in the downstream.
Analysis of samples taken at 30 minute intervals during the purification of HSA from plasma spiked with endotoxin found the majority of endotoxin remained in the upstream. Only 4% of the total endotoxin was found in the downstream at the end of the run (Figure Native PAGE examination confirmed the presence of purified HSA in the downstream samples (Figure 4).
WO 00/38743 PCT/AU99/01171 13 Bacteria removal during plasma protein purification using Gradiflow technology Contamination with bacteria is a major concern when purifying plasma proteins, such as IgG and HSA. Contaminant bacteria can potentially infect a patient receiving the plasma products. or during pasteurisation of the products the bacteria dies releasing dangerous endotoxins. that are harmful to the patient. Bacteria are easily detected by culturing samples on nutrient agar plates.
Aim: To isolate IgG. and HSA. from human plasma spiked with bacteria, using the Gradiflow.
IgG purification procedure Method: Platelet free plasma was diluted one part in three with Trisborate, pH 9.0 running buffer and placed in the upstream of Gradiflow and spiked with E. coli to a concentration of 4x10 8 cells/ml. A potential of 250V was placed across a separating membrane with a molecular weight cut off of 200kDa (100kDa restriction membranes). A membrane of this size restricts IgG migration whilst allowing smaller molecular weight contaminants to pass through the membrane. leaving IgG and other large molecular weight proteins in the upstream. A second purification phase was carried out using a GABA/Acetic acid buffer, pH 4.6 with a 500kDa cut off separating membrane (3kDa restriction membranes). A potential of 250V reversed polarity was placed across the system resulting in IgG migration through the membrane leaving other high molecular weight contaminants upstream.
Examination of samples taken at 30 minutes intervals was made on reduced SDS-PAGE 4-25% gels.
Bacteria testing Twenty 1l of upstream or 100l of downstream samples were spread plated onto Luria agar culture plates. The plate were incubated for 24 hours at 37'C. and the number of colonies was counted.
HSA purification procedure Method: Pooled normal plasma was diluted one in three with Tris-Borate (TB) running buffer. pH 9.0 and spiked with -4x10 8 cells/ml of E. coli. The mixture was placed in the upstream of a Gradiflow apparatus. Albumin was isolated from platelet free plasma in a one-phase process using the charge of albumin at a pH above its pi and its molecular weight. Thus a cartridge with a 75kDa cutoff separation membrane was placed between two 50kDa cutoff WO 00/38743 PCT/AU99/01171 14 restriction membranes. The albumin was removed from high molecular weight contaminants by its migration through the separation membrane whilst small molecular weight contaminants dissipated through the restriction membrane. Samples were taken at regular intervals throughout a 90 minutes run.
The presence of the purified HSA in the downstream was demonstrated by examination by SDS-PAGE. Bacteria were detected as previously described above.
Results of IgG. and HSA purification The procedures described successfully purified IgG. and albumin as judged by electrophoretic examination. The downstream samples containing the purified protein products did not contain detectableE. coli colonies, while the upstream samples produced greatly in excess of 500 colonies/plate.
CONCLUSION
It is possible to purify proteins such as IgG, albumin and fibrinogen from plasma, while simultaneously removing contaminating virus by the methods according to the present invention.
Prion present in plasma can be moved across a 75kDa separation membrane with albumin, however, unlike albumin, the prion is not retained by the 50kDa restriction membrane. Thus, albumin can be purified from plasma with simultaneous removal of Prion protein.
Evidence has been provided by the present inventors that it is possible to purify proteins such as IgG and albumin from plasma, while simultaneously removing endotoxin contamination in the starting plasma using the Gradiflow technology.
Furthermore, it has been found that it is also possible to purify proteins such as IgG. and albumin from plasma. while simultaneously removing contaminating bacteria.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are. therefore, to be considered in all respects as illustrative and not restrictive.

Claims (27)

1. A method for removing a biological contaminant selected from the group consisting of virus, bacterium, yeast, and combinations thereof from a mixture containing a compound and the biological contaminant, the rmethod comprising: placing the compound and biological contaminant in a first solvent stream, the first solvent stream being separated from a second solvent stream by a selective membrane having a defined pore size; selecting a buffer for the first solvent stream having a required pH; applying an electric potential across the first and second solvent streams, wherein the application of such electric potential causes movement of at least a portion of the compound through the membrane into the second solvent stream while the biological contaminant is substantially retained in the first solvent stream, or if entering the membrane, being substantially prevented from entering the second solvent stream; optionally, periodically stopping and reversing the electric potential to cause the movement of any biological contaminants having entered the membrane to move back into the first solvent stream, wherein substantially not causing any compounds that have entered the second solvent stream to re-enter the first solvent stream; and maintaining step and optional step if used, until the second solvent stream contains the desired purity of the compound. 20
2. The method according to claim 1 wherein the compound is selected from the group consisting of blood proteins, immunoglobulins, recombinant proteins, and combinations thereof.
The method according to claim 1 or 2 wherein the biological contaminant is a virus.
4. The method according to claim 1 or 2 wherein the biological contaminant is a bacterium.
The method according to claim 1 or 2 wherein the biological contaminant is a yeast.
6. The method according to any one of claims 1 to 5 wherein the solvent for the first solvent stream has a pH selected at one of a pH lower than the isoelectric point of the compound, a pH at about the isoelectric point of the compound, and a pH above the 30 isoelectric point of the compound.
7. The method according to any one of claims 1 to 6 wherein the selective membrane has a molecular mass cut-off close to the apparent molecular mass of the compound.
8. The method according to any one of claims 1 to 7 wherein the selective membrane has a molecular mass cut-off of at least about 3 kDa.
9. The method according to any one of claims 1 to 8 wherein the electric potential is up to 300 volts.
10. The method according to any one of claims 1 to 9 wherein the compound is collected or removed from the second solvent stream.
11. The method according to any one of claims 1 to 10 further comprising removing a biological contaminant selected from the group consisting of lipopolysaccharide, toxin, endotoxin, or mixtures thereof from the compound.
12. The method according to any one of claims 1 to 11 wherein step results in the compound being substantially free of any biological contaminants.
13. A method for removing a biological contaminant selected from the group consisting of virus, bacterium, yeast, and combinations thereof from a mixture containing a compound and biological contaminant, the method comprising: placing the compound and the biological contaminant in a first solvent stream, the first solvent stream being separated from a second solvent stream by a selective membrane having a defined_pore size; selecting a buffer for the first solvent stream having a required pH; applying an electric potential across the first and second solvent streams, wherein 20 the application of such electric potential causes movement of at least a portion of the biological contaminant through the membrane into the second solvent stream while the compound is substantially retained in the first solvent stream, or if entering the membrane, S"being substantially prevented from entering the second solvent stream; optionally, periodically stopping and reversing the electric potential to cause the movement of any compound having entered the membrane to move back into the first solvent stream, wherein substantially not causing any biological contaminants that have entered the second solvent stream to re-enter the first solvent stream; and maintaining step and optional step if used, until the first solvent stream contains a desired purity of the compound. 30
14. The method according to claim 13 wherein the compound is selected from the group consisting of blood proteins, immunoglobulins, recombinant proteins, and combinations thereof.
The method according to claim 13 or 14 wherein the biological contaminant is a virus.
16. The method according to claim 12 or 13 wherein the biological contaminant is a bacterium.
17. The method according to claim 13 or 14 wherein the biological contaminant is a yeast.
18. The method according to claim 13 to 17 wherein the solvent fdr the first solvent stream has a pH selected at one of a pH lower than the isoelectric point of the biological contaminant, a pH at about the isoelectric point of the biological contaminant, and a pH above the isoelectric point of the biological contaminant.
19. The method according to claim 13 to 18 wherein the selective membrane has a molecular mass cut-off close to the apparent molecular mass of the compound.
The method according to claim 13 to 19 wherein the selective membrane has a molecular mass cut-off of at least about 3 kDa.
21. The method according to claim 13 to 20 wherein the electric potential applied is up to about 300 volts.
22. The method according to claim 13 to 21 wherein the biological contaminant is collected or removed from the second solvent stream.
23. The method according to claim 13 to 22 wherein substantially all of the biological contaminant is removed from the mixture. oooo 20
24. The method according to claim 12 to 23 wherein the mixture comprises at least two types of biological contaminant and only one type is caused to move into the second solvent stream.
25. The method according to any one of claims 13 to 24 further comprising removing a biological contaminant selected from the group consisting of lipopolysaccharide, toxin, endotoxin, or mixtures thereof from the compound.
26. A compound substantially free from a biological contaminant selected from the group consisting of virus, bacterium, yeast, and combinations thereof obtained by the method ***according to any one of claims 1 to 12. *l lot•. 18
27. A compound substantially free from a biological contaminant selected from the group consisting of virus, bacterium, yeast, and combinations thereof obtained by the method according to any one of claims 13 to Dated this 13th day of March 2003 Gradipore Limited Patent Attorneys for the Applicant: ALLENS ARTHUR ROBINSON Patent Trade Marks Attorneys *oo* *oe *o *~o *ooo
AU25266/00A 1998-12-23 1999-12-23 Removal of biological contaminants Ceased AU769070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU25266/00A AU769070B2 (en) 1998-12-23 1999-12-23 Removal of biological contaminants

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPP7906A AUPP790698A0 (en) 1998-12-23 1998-12-23 Separation of microorganisms
PCT/AU1999/001171 WO2000038743A1 (en) 1998-12-23 1999-12-23 Removal of biological contaminants
AU25266/00A AU769070B2 (en) 1998-12-23 1999-12-23 Removal of biological contaminants
AUPP7906 1999-12-23

Publications (2)

Publication Number Publication Date
AU2526600A AU2526600A (en) 2000-07-31
AU769070B2 true AU769070B2 (en) 2004-01-15

Family

ID=25619650

Family Applications (1)

Application Number Title Priority Date Filing Date
AU25266/00A Ceased AU769070B2 (en) 1998-12-23 1999-12-23 Removal of biological contaminants

Country Status (1)

Country Link
AU (1) AU769070B2 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ELECTROPHORESIS, 1996, 17 (1), P 224-226 *
ELECTROPHORESIS, 1997, 17 (4), P 771-775 *
ELECTROPHORESIS, 1997, 18 (3-4) P 317-323 *

Also Published As

Publication number Publication date
AU2526600A (en) 2000-07-31

Similar Documents

Publication Publication Date Title
CA2259632C (en) A method for chromatographic removal of prions
US5076933A (en) Process and apparatus for removal of dna and viruses
US6464851B1 (en) Removal of biological contaminants
US6402913B1 (en) Separation of plasma components
US7077942B1 (en) Removal of biological contaminants
JP2004512539A (en) Complex separation method
AU769070B2 (en) Removal of biological contaminants
US6407212B1 (en) Method for the removal of causative agent(s) of transmissible spongiform encephalopathies from protein solutions
US20030019763A1 (en) Apparatus and method for separation of biological contaminants
US20050224355A1 (en) Removal of biological contaminants
WO1999064441A1 (en) Method for preparing virus-safe pharmaceutical compositions
AU736461B2 (en) Purification of blood clotting proteins
US20020028917A1 (en) Separation of avian antibodies
US20230029456A1 (en) Method of purifying botufinum toxin
WO2003013702A1 (en) Separation of components from milk sources
EA045619B1 (en) METHOD FOR PURIFYING BOTULINUM TOXIN
Isu Optimizing Virus Prefiltration for Biopharmaceutical Manufacturing
Dahlman Implementation of the mille-feuille nanofilter paper in the virus removal filtration of IgY purified from chicken egg yolk
JP2003159094A (en) Method for aseptically producing yolk antibody
MOUSAVI et al. HUMAN PLASMA DERIVED DRUGS SEPARATION BY FRACTIONATION OF PLASMA WITH POLYETHYLENE GLYCOL (BRIEF REPORT)
RU2110279C1 (en) Method of purification of immunoglobulin from pyrogenic substances
JPH05222091A (en) Separation of protein
AU2001256004A1 (en) Separation of avian antibodies

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)