AU764513B2 - Sterol esters in tableted solid dosage forms - Google Patents
Sterol esters in tableted solid dosage forms Download PDFInfo
- Publication number
- AU764513B2 AU764513B2 AU45852/99A AU4585299A AU764513B2 AU 764513 B2 AU764513 B2 AU 764513B2 AU 45852/99 A AU45852/99 A AU 45852/99A AU 4585299 A AU4585299 A AU 4585299A AU 764513 B2 AU764513 B2 AU 764513B2
- Authority
- AU
- Australia
- Prior art keywords
- stanol
- surfactant
- sterol
- support
- acid ester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/141—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
- A61K9/143—Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/575—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0056—Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2095—Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Zoology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Obesity (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Steroid Compounds (AREA)
Abstract
The present invention provides a stanol material in a form suitable for the manufacture of an oral dosage. A method for producing the stanol material is also provided.
Description
-1-
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
Name of Applicant/s: McNeil-PPC, Inc.
Actual Inventor/s: Richard D. Bruce and John D. Higgins and Stephen A. Martellucci *o a Address for Service: BALDWIN SHELSTON WATERS MARGARET STREET SYDNEY NSW 2000 *O O Invention Title: 'STEROL ESTERS IN TABLETED SOLID DOSAGE FORMS' The following statement is a full description of this invention, including the best method of performing it known to me/us:- File: 25030AUP00 la Sterol Esters in Tableted Solid Dosage Forms Field of the Invention The present invention relates to sterol ester in the form of a tablet that is suitable for reducing cholesterol levels in patient.
Background of the Invention Several reports have described the use of plant-sterols P-sitosterol) as dietary supplements for the reduction of serum cholesterol levels. It is generally S. 10 accepted that the sitosterol family of plant sterols reduces serum cholesterol by inhibiting the intestinal absorption of cholesterol. More recently, P-sitosterol's saturated equivalent, p-sitostanol, has been shown to be more effective in the reduction of intestinal cholesterol 15 absorption. Furthermore, sitostanol itself is virtually unabsorbed, so it does not contribute at all to in vivo serum cholesterol concentration upon consumption. These observations make P-sitostanol an attractive candidate as a dietary supplement for reduction of serum cholesterol levels.
Typically it has been necessary to incorporate the sterol ester in a suitable material such as a margarine, in which the waxy nature of the sterol ester can be tolerated.
There have been reports that describe how the esterification of sterols (stanols) to a fatty acid or an edible oil produces a sterol (stanol) ester with improved micelle solubility characteristics. For example, when sitostanol is esterified to edible oil such as rapeseed oil, a wax-like mixture of fatty acid esters with excellent lipid solubility results. These sterol esters are conveniently incorporated into food products such as margarine.
-2- However there is a continuing need for a tableted form of the sterol ester.
Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.
Summary of the Invention It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
According to a first aspect of the invention there is provided a solid oral solid dosage form comprising: a compressed free-flowing powder comprising an effective amount of sterol, stanol or their corresponding acid ester to reduce cholesterol, about 5 to about 75 milligrams per dosage form of a support with a surface area range of from about 100 to 350 square meters/gram, wherein the sterol, stanol or their corresponding acid ester is in a molten form when loaded onto the support, S. and a monofunctional surfactant and a polyfunctional surfactant, wherein the polyfunctional surfactant is a polyoxyethylene derivative of the monofunctional surfactant.
According to a second aspect of the invention there is provided a method for producing a solid oral dosage form comprising: heating a sterol, stanol or their corresponding acid ester at a temperature of from about 45 to about 100 0 C to provide the sterol, stanol or their corresponding acid ester in a molten form; providing a monofunctional surfactant and a polyfunctional surfactant, wherein the polyfunctional surfactant is a polyoxyethylene derivative of the monofunctional i surfactant; admixing the molten sterol, stanol or their corresponding acid ester and the monofunctional surfactant and the polyfunctional surfactant to form a sterol, stanol or their corresponding acid ester-surfactant mixture; 2a providing a support with a surface area of from about 100 to about 350 square meters per gram; adding a sufficient amount of the support to the molten sterol, stanol or their corresponding acid ester-surfactant mixture to form a flowable powder; and optionally compressing the flowable powder to form a tablet.
In a related embodiment there is provided a solid dosage form comprising: a support with a surface area range of from about 100 to 350 square meters/gram; an effective amount of stanol ester provided to reduce cholesterol; an effective amount of a mixed micelle surfactant system.
In a further related embodiment there is provided a method for producing a solid dosage form comprising: providing the sterol ester in a molten form; providing an effective amount of surfactant; admixing the sterol ester and the surfactant; S 15 providing a support with a surface area of from about 100 to about 350 square meters per gram; adding a sufficient amount of the support to the sterol ester, surfactant mixture to oi. ~form a flowable powder; and optionally compressing the flowable powder to form a tablet.
The above described methods use the phase change from solid to liquid form under elevated temperature to load the sterol, stanol on their corresponding and ester onto support followed by a second phase change when the mixture is cooled to room o *:temperature to help preserve adsorbate's physical integrity.
Unless the context clearly requires otherwise, throughout the description and the claims, 25 the words 'comprise', 'comprising', and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".
Detailed Description of the Invention P-sitosterols are typically derived from wood or agricultural sources, such as soy based mixtures. In addition to P-sitosterol, as used throughout this application, P-sitosterol is also understood to include the esters of P-sitosterols, as well the stanol and stanol ester forms which are the oxidized form of the sterols. These derivatives are well known in the art and include patents US 5,244,887; US 5,502,045 and US 5,698,527. In order to be effective in reducing cholesterol in the bloodstream, it is necessary to consume less about 1.5 grams, typically from about 0.25 to about 1.4 grams, preferably from about 0.5 to about 1.2 and more preferably from about 0.8 to about 1 gram of -sitosterol per dose.
The present invention is applicable to any of the following serum cholesterol lowering compounds, including stanols, sterols, sterol esters, stanol esters, Psitosterol, P-sitostanol and the like. Those with skill in the art will be able to carry out the present invention with any of these related materials.
In order to be most effective when ingested, the particle size of the P-sitosterol should be in the range of from 10 to 40 microns. More preferably the particle size should from about 20 to 35 microns. Any grinding technique known in the art may be used to grind the P-sitosterol.
Suitable methods include pulverizing, rotary hammermill, air milling and the like of which air milling is most preferred.
Smaller particle sizes are preferred in that the resulting 0-sitosterol product is more readily exposed to bile salts in the digestive tract. The handling properties of the smaller particle size product are less desirable, resulting in higher angle of rupture, higher angle of repose and compressibility. The handling of the water-dispersible 3sitosterol product can be improved with increased particle size; however, this is believed to be detrimental to the efficacy of the 0-sitosterol in reducing serum cholesterol.
In order to form the water dispersible P-sitosterols appropriate surfactants are required. The present invention employs a dual surfactant system. One surfactant in the system is monofunctional, while the second surfactant is polyfunctional. The monofunctional surfactants tend to be more hydrophobic, whereas the polyfunctional surfactants tend to be hydrophilic. The two-surfactant system employed in this invention creates a mixed micelle system that results in the water-dispersible product. As used herein monofunctional is defined as the ability of the surfactant to bond to the 0-sitosterol. The polyfunctional surfactant has the ability to bond to the P-sitosterol as well as to the other surfactant.
Useful surfactants in the practice of the present invention include polyglycerol esters, polysorbates, mono and diglycerides of fatty acids, propylene glycol esters, sucrose fatty acid esters and polyoxyethylene derivatives of sorbitan fatty acid esters. These surfactants are well known in the art and are commercially available.
Suitable polyglycerol esters include triglyceryl monostearate, hexaglyceryl distearate, hexaglyceryl monopalimate, hexaglyceryl dipalmitate, decaglyceryl distearate, decaglyceryl monoleate, decaglyceryl dioleate, decaglycerol monopalmitate, decaglycerol dipalmitate, decaglyceryl monostearate, octaglycerol monoleate, octaglycerol monostearate and decaglycerol monocaprylate.
Other useful surfactants include polysorbates made from the reaction product of monoglycerides or sorbitan esters with ethylene oxides. Examples of useful polysorbates include polyoxyethylene 20 mono- and diglycerides of saturated fatty acids, polyoxyethylene 4 sorbitan monostearate, polyoxyethylene 20 sorbitan tristearate, polyoxyethylene 20 sorbitan monooleate, polyoxyethylene sorbitan monooleate, polyoxyethylene 20, sorbitan trioleate, sorbitan monopalmitate, sorbitan monolaurate, propylene glycol monolaurate glycerol monostearate diglycerol monostearate, glycerol lactyl-palmitate.
Other suitable surfactants include, with HLB values provided in brackets, 1, include decaglycerol monolaurate(15.5]; decaglycerol distearate [10.5]; decaglycerol dioleate [10.51; decaglycerol dipalmitate decaglycerol monostearate decaglycerol monooleate hexaglycerol monostearate [12.0]; hexaglycerol monooleate hexaglycerol monoshortening polyoxyethylene (20) sorbitan monolaurate [16.7]; polyoxyethylene sorbitan monolaurate [13.3]; polyoxyethylene (20) sorbitan monopalmitate [15.61; polyoxyethylene (20) sorbitan monostearate [14.9]; polyoxyethylene (20) sorbitan tristearate [10.5]; polyoxyethylene (20) sorbitan monooleate [15.0]; polyoxyethylene sorbitan monooleate [10.01; polyoxyethylene (20) sorbitan trioleate As is appreciated by those with skill in the art, the HLB value for a surfactant is an expression of its Hydrophile- Lipophile balance, the balance of the size and strength of the hydrophilic (polar) and lipophilic (nonpolar) groups of the surfactant.
Lactic acid derivatives include sodium stearoyl lactylate and calcium stearoyl lactylate.
The level of monofunctional surfactant is typically from about 1 to about 15 weight percent based upon the final dried weight of the P-sitosterol product, preferably from about 2 to about 12, and most preferably about 4 to about weight percent. The level of polyfunctional surfactant is typically from about 0.5 to about 15 weight percent based upon the final dried weight of the 0-sitosterol product, preferably from about 2 to about 12, and most preferably about 4.0 to about 10 weight percent. TWEEN 80 is the preferred monofunctional surfactant and SPAN 80 is the preferred polyfunctional surfactant. Suitable ratios of monofunctional/polyfunctional surfactants which form the mixed micelle include from about 1:6 to about 1.5:1, preferably from about 1:4 to about 1.3:1, most preferably about 1:1 ratio. The level of surfactant employed ranges from about 0.5 to about 8 percent by weight total surfactant system, preferably 1 to about 6, most preferably from about 3 to about 4 percent by weight.
It has long been known that increasing the concentration of surfactant in a co-crystallization of a poorly water-soluble drug leads to an increase in wettablity. This is has also been found to improve the dissolution of the active ingredient.
The present invention also employs a support surface with a high surface area. The support is a pharmaceutically 20 acceptable material with the specified surface area. The support surface typically has a surface area of from about 100 to about 450 square meters, preferably from about 150 to about 400 and most preferably from about 200 to about 350 square meters per gram. The support can be an organic (carbon and hydrogen containing) such as xantham gum, microcrystalline cellulose, or excipient used for tablet formation, or preferably the support surface is an inorganic material (containing materials other than carbon and hydrogen), most preferably selected from magnesium aluminosilicate, tricalcium phosphate, silicon dioxide and the like.
The support is provided in an amount sufficient to form a flowable powder, which is typically provided in an amount ranging from about 5 to about 75 milligram per tablet, preferably from 50 to about 10 and most preferably from about 40 to about 20 mg per tablet produced.
The present invention also contemplates the inclusion of pharmaceutical ingredients including, sweeteners, disintegrants lubricants, fillers, binders and adhesives, excipients, colors, preservatives and the like.
The present invention employs a phase change of the sterol ester from solid to molten forms under elevated temperature to load the sterol ester onto the solid support followed by a second phase change when the mixture is cooled to room temperature to help preserve the tablets physical integrity. Typically the sterol ester is heated to a temperature of from about 100 to about 45 0 C, preferably from about 70 to about 50 and most preferably from about 62 to about 56°C.
One technique for the measurement of the effectiveness of the sterol ester system is through the size of the resulting micelles formed when placed into water. The size of the micelles formed in the suspension may be measured through the use of a Turbimeter. The greater turbidity, the larger the micelle formation. It is expected that greater turbidty, larger micelles provides a more effective form of the P-sitosterol for reducing cholesterol when consumed. Preferred turbidity levels are greater than about 1250, preferably greater than 2500 and most preferably greater than 3000 Nepthialic Turbidity Units (NTU). As used herein turbidity is understood to be the same as defined by the United States Pharmacopeia, the light scattering effect of suspended particles and turbidity as the measure of the decrease in the incident beam intensity per unit length of a given suspension. The range of turbidty values is from 0 to 20,000 NTU. As a point of reference the turbidity of water is zero. The turbidity of the samples was measured at room temperature.
After the sterol ester is mixed with the catalyst support, the mixture is allowed to cool to room temperature S once again allowing the material to solidify. The solidified material is then mixed with suitable materials and is ready for tableting. Tableting is accomplished by techniques well known in the art, which include slugging, Chilsonation and rotary tablet compression. Tablets are understood to include gelatin-coated materials, caplets, One advantage of this invention is that it offers a tamper-resistant, consumer-appealing tablet form in which a minimum quantity of excipients is needed. Another advantage of this invention is the potential for enhanced bioavailability of the sterol ester. Since the mechanism of sterol ester's cholesterol reduction efficacy is thought to involve incorporation into the GI micelle, any dosage form must deliver a rapidly dispersible molecular state. This is ensured by delivery of a solid solution of sterol esters and surfactants, which is a molecular dispersion. Solid dispersions of poorly water-soluble drugs have been shown to enhance in vitro dissolution rates and in vivo bioavailability. Another advantage is the simple, one container preparation that is rapid and economical.
The following examples are provided to illustrate the present invention. The present invention is not limited to the embodiments provided below. Unless noted otherwise all units are understood to be in weight percent.
Example 1. Preparation of Solid Supported Sterol ester using preferred surfactant blend Stanol Ester (Rasio) was melted in a hot-water jacketed beaker. A mixed micelle liquid surfactant system was added to the molten product and stirred until homogeneous. In this example, a Tween 80/Span 80 mixture (ICI Chemicals) was added in a 1:1 ratio. Portions of Magnesium Aluminosilicate (Neusilin US2) or Tricalcium Phosphate were added with stirring and the resultant effect on bulk properties 1 0 monitored from suspension, to paste through granulation until a dry, free-flowing powder resulted with a final weight example composition being preferred as 52.9% stanol ester, 10.1% Tween 80, 10.6% Span 80 and 26.5% Neusilin US2.
**S
The mixture was removed from the beaker and allowed to cool.
Mixture exhibited excellent powder flow, wetted dispersed spontaneously upon addition to room temperature tap water.
Comparative Example. Preparation of Solid Supported stanol "ester using incorrect surfactant blend A mixture prepared in a method similar to Example 1 was 20 made substituting Tween 40 for Tween 80 (both available form ICI Americas). Mixture exhibited excellent powder flow but did not wet or disperse upon addition to room temperature water. This illustrates importance of mixed micelle surfactant system in this invention.
Example 2. Prototype of directly compressible, swallowable stanol ester tablet A portion of Example 1 product was powder-blended with weight sodium starch glycolate. The new mixture was manually compressed to 2000 lbs. force for about 3 seconds on a Carver hydraulic press using 11/16 round, flat-faced beveled-edge tooling. Test tablets contained 418 mg as free stanol. Compacts ejected with surprisingly little frictional force. Tablets produced showed spontaneous surface erosion and were about 10% dispersed after standing one minute in unstirred deionized water at room temperature.
Example 3. Prototype of directly compressible chewable tablet A portion of the material made in Example 1 was powder blended with xylitol, aspartame and artificial Watermelon Strawberry flavoring. The mixture was compressed under 5 10 identical conditions as in Example 2 to swallowable tablet prototype. Tablets again ejected without difficulty, in the absence of any additional lubrication. A solid dispersion (solid solution mixtures of active(s) with amphiphilic inert semi-solid excipient(s)) of Example 1 was made in a carrier polyethylene glycol, saturated polyglycolized glycerides, waxes, oils, microemulsions) which is water soluble and solid/semi solid at room temperature yet liquid at elevated temperature. The active ingredient, is first dissolved in molten vehicle. This melt is then hot filled 20 into either hard-shell capsules or soft-gels using existing technology. After filling, the mixture solidifies upon cooling; creating a solid or semi solid filled capsule product.
Example 4: A comparison study of the effects of various adsorbate supports on the final tableted form was performed using Neusilin (Magnesium Aluminum Silicate), Tixosil (silicon dioxide) and Tri-Cal (Tricalcium Phosphate) to create Stanol Ester Adsorbate (SEA).
Preparation of stanol ester adsorbate: An accurately weighed amount of the stanol ester Rasio Sito-74) was placed into a heated water jacketed beaker (hot water circulator) equilibrated at 57 OC. The stanol ester was then allowed to melt into the liquid phase. When the stanol ester was completely melted, small portions of an adsorbate were slowly stirred into the liquid. The adsorbate material was continuously added until the stanol ester liquid was completely incorporated onto the adsorbate. The resulting material formed either a free-flowing powder or large granules.
Milling of stanol ester adsorbate granules: The stanol 10 ester adsorbate granules were dried in a hood for 15-30 minutes before milling. After the granules were dried, liquid nitrogen was poured into a micro-mill (Scienceware).
The granules were then placed into the mill and frozen with more liquid nitrogen. Finally, the top of the mill was 15 replaced and the granules were milled into a fine powder.
Dry mixing of the tablet formulations: Dry mixing of the active and excipients in a whirl-pak bag prepared all tablet formulations. The excipients in each formulation were accurately weighed on a balance, dry mixed with a 20 spatula in a weigh boat and then transferred to a whirl-pak for continued dry mixing.
Tablet pressing: The dry mixed formulations were poured into an 11/16- inch round dye and pressed using an 11/16inch round FFBE tooling. The tablets were manually pressed for three seconds at 2000 psig with a Carver press.
Disintegration tests Tablets were placed in a calibrated disintegration bath containing 37C water. The tablets were repeatedly dunked in a 900 milliliter-water bath until completely disintegrated. This procedure was done visually and was timed with a stopwatch.
Turbidity tests: After the tablets were completely disintegrated in the DT above, the water was placed into a small glass tube and homogenized. The tube was then placed into a Hatch, 2100N Turbidimeter and a reading was taken.
The Neusilin and Tixosil SEA's formed a free-f lowing powder, where as the Tni-Cal SEA formed large granules. These large granules were then milled into a fine powder as described above.
Five different formulations, using the three SEA' s above, were prepared and tableted as described in the above experimental. These formulations are shown in the Tables 1below.
a a.
a a a a. a. 10 Table 1: Chewable tablet formulation using stanol ester adsorbate.
the Neusilin Neusilin Stanol Ester Adsorbate total active weight per tablet 500 mag (a s Stanol) total 11 tablets number tablets total 2,400.0 mg tablet weight total tablet batch weight 26. 400 Item Tabi target target actual mass' et mass (mg/ mass /batch (G/batch) Stanol Ester 50.7 1,217 13.385 13.393 Adsorbate Kylitol 22.5 540 5.940 5.944 (xyli tab) Magnesium 1.8 43 0.475 0.476 Stearate Sodium Starch 25 600 6.600 6.604 glycolate______ 100. 2,400 26.400 26.417 0% The formulation in Table 1 was prepared using the Neusilin stanol ester adsorbate. As seen above, these tablets contain 500mg of the active stanol and have a. large amount of sodium starch glycolate After pressing, the resulting tablets were slightly sticky on one side, but didn't film or stick to the tooling. Dissolution times were run on four of the tablets, which completely disintegrated between 12 min 43 seconds and 13 min 47seconds. The resulting solution gave a turbidity of 1253 NTU.
The formulation in Table 2 was prepared using the Tixosil stanol ester adsorbate. The resulting tablets contained 500 mg of active stanol and a large amount of sodium starch glycolate After pressing, the tablets ejected nicely and left no noticeable filming. disintegration times were run on four of the tablets, which completely disintegrated between 3 min 54 seconds and 4 min The turbidity of the solution was measured at 4398 NTU.
Table 2: Chewable tablet formulation using the Tixosil stanol ester adsorbate.
miI lxosi L Total active weight per tablet 500 mg (as Stanol) Stanol Ester Adsorbate Total 11 tablets number tablets Total 2,400.0 mg tablet weight Total tablet batch weiaht 26.400 Item Tabl target target actual mass et mass (mg/ mass (G)/batch tablet) (G/batch) Stanol Ester 50 1,200 13.200 13.241 Adsorbate Xylitol 22.5 540 5.940 5.938 (xylitab) Mg Stearate 1.8 43 0.475 0.476 Sodium Starch 25.7 617 6.785 6.774 glycolate 100. 2,400 26.400 26.429 0% Table 3: Chewable tablet formulation using the Tri-calcium phosphate stanol ester adsorbate.
Tri-calcium Phosphate Stanol Ester 46.3% Adsorbate total active weight per tablet 400 mg (as Stanol) total 11 tablets number tablets total 2,400.0 mg tablet weight total tablet batch weight 26.400 Item lot# Table target target actual mass t mass (mg/ mass (G)/batch _tablet) (G/batch) Stanol Ester 60 1,440 15.840 15.838 Adsorbate__ Xylitol 4.6 110 1.214 1.213 (xylitab) Mg Stearate 1.8 43 0.475 0.482 Sodium Starch 33.6 806 8.870 8.880 Glycolate Total 100.0 2,400 26.400 26.413 The formulation in Table 3 was prepared with the Tricalcium phosphate stanol ester adsorbate. The tablets contained 400 milligrams of active stanol and a large amount of sodium starch glycolate. The tablets were not sticky and they also didn't leave a film on the tooling. Dissolution times were run on four tablets, which completely disintegrated.in 2 minutes and 08seconds. The resulting turbidity was 3136 NTU.
The formulation shown in Table 4 was prepared with the Neusilin stanol ester adsorbate. This formulation was done with a smaller amount of sodium starch glycolate a larger amount of sugar excipient and was pressed into a smaller tablet than the formulation in Table 1. A DT was performed on one of these tablets, which completely disintegrated in* 27 minutes and 51 seconds.
Table 4: Chewable tablet formulation using the Neusilin stanol ester adsorbate.
Ileusilin Stanol Ester Adsorbate -Y I I total active weight per tablet 501 mg (as Stanol) total 4 Tablets number tablets total 2,000.0 Mg tablet weight total tablet batch weiciht 8.000 Item target Itarget actual mass mass (mg/ mass /batch Tablet% tablet) Stanol Ester 61 1,220 4.880 4.8851 Adsorbate________ Xylitol 29.2 584 2.336 2.338 (xyli Mg Stearate 1.8 36 0.144 0.143 Sodium Starch 8 160 0.640 0.643 Glyco late__ 100.0 2,000 8.000 8.009 Table 5: Chewable tablet formulation phosphate stanol ester adsorbate.
using the Tri-calcium Tri-Calcium Phosphate 1 9 total active weight per tablet 500 mg (as Stanol) Stanol Ester 46.3% Adsorbate total 1 Tablets number tablets total 2,600.0 Mg tablet weight total tablet batch weiaht 2.600 Item Table target target Actual mass t mass (mg/ mass (G)/batch tablet) (G/batch) Stanol Ester 69.2 1,799 1.799 1.800 dsorbate Xylitol 10 260 0.260 0.264 (xylitab) Mg Stearate 1.8 47 0.047 0.047 Sodium Starch 8 208 0.208 0.205 Glycolate Tri-Calcium 11 286 0.286 0.287 Phosphate Total 100.0 2,600 2.600 2.603 sa The formulation shown in Table 5 was prepared with the Tri-calcium phosphate SEA. This formulation is different from the one in Table 3 due to its smaller amount of sodium starch glycolate and its tri-calcium phosphate excipient. This formulation also differed in size (2.6g) and by amount of active stanol (500mg). A disintegration test was performed on one of the tablets, which disintegrated in 4 minutes and 29 seconds. The resulting turbidity was 924 NTU.
The formulations above show that it is possible to make a stanol ester chewable tablet, which could be dispersed in an aqueous solution under 30min. These formulations, when compared, by dispersion time, stickiness and limited use of expensive excipients, to previous formulations, are clearly the best. From the five formulations above, the one shown Table 5 is the most feasible. Tri-calcium phosphate is cheap, readily available and that this formulation uses a relatively small amount of sodium starch glycolate.
Furthermore, the tablets made from this formulation completely dispersed into water after 4.5 minutes. An 10 improvement was realized by combining the superior powder flow of Neusilin-based formulas and the more rapid disintegration times of the Tri-Cal based formulations.
o oo *oo o ooo
Claims (9)
1. A solid oral solid dosage form comprising: a compressed free-flowing powder comprising an effective amount of sterol, stanol or their corresponding acid ester to reduce cholesterol, about 5 to about 75 milligrams per dosage form of a support with a surface area range of from about 100 to 350 square meters/gram, wherein the sterol, stanol or their corresponding acid ester is in a molten form when loaded onto the support, and a monofunctional surfactant and a polyfunctional surfactant, wherein the polyfunctional surfactant is a polyoxyethylene derivative of the monofunctional surfactant.
2. The oral dosage form of claim 1 wherein the support is an inorganic material.
3. The oral dosage form of either claim 1 or claim 2 wherein the support is selected from the group consisting of magnesium alumina silicate, silicon dioxide and tricalcium phosphate.
4. The oral dosage form of any one of claims 1 to 3 wherein the stanol ester is provided in an amount of less than about 1.5 grams.
5. A method for producing a solid oral dosage form comprising: heating a sterol, stanol or their corresponding acid ester at a temperature of from about 45 to about 100 °C to provide the sterol, stanol or their corresponding acid ester in a molten form; providing a monofunctional surfactant and a polyfunctional surfactant, wherein the oo polyfunctional surfactant is a polyoxyethylene derivative of the monofunctional S 25 surfactant; admixing the molten sterol, stanol or their corresponding acid ester and the monofunctional surfactant and the polyfunctional surfactant to form a sterol, stanol or their corresponding acid ester-surfactant mixture; -19- providing a support with a surface area of from about 100 to about 350 square meters per gram; adding a sufficient amount of the support to the molten sterol, stanol or their corresponding acid ester-surfactant mixture to form a flowable powder; and optionally compressing the flowable powder to form a tablet.
6. The method of claim 5 wherein the support is an inorganic material.
7. The method of either claim 5 or claim 6 wherein the support is selected from the group consisting of magnesium alumina silicate, silicon dioxide and tricalcium phosphate.
8. The method of any one of claims 5 to 7 wherein the sterol, stanol or their corresponding acid ester is provided in an amount of less than about 1.5 grams.
9. A solid oral solid dosage form according to claim 1 and substantially as hereinbefore described with reference to any one or more of the Examples. A method for producing a solid oral dosage form, according to claim 5 and substantially as hereinbefore described with reference to any one or more of the S. Examples. DATED this 27th day of June 2003 S. BALDWIN SHELSTON WATERS Attorneys for: McNEIL-PPC, INC. o* ooo o *ooo *~l go *go o «o
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/145528 | 1998-09-02 | ||
US09/145,528 US6376481B2 (en) | 1998-09-02 | 1998-09-02 | Sterol esters in tableted solid dosage forms |
Publications (2)
Publication Number | Publication Date |
---|---|
AU4585299A AU4585299A (en) | 2000-03-16 |
AU764513B2 true AU764513B2 (en) | 2003-08-21 |
Family
ID=22513518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU45852/99A Ceased AU764513B2 (en) | 1998-09-02 | 1999-09-01 | Sterol esters in tableted solid dosage forms |
Country Status (12)
Country | Link |
---|---|
US (1) | US6376481B2 (en) |
EP (1) | EP0985411B1 (en) |
JP (1) | JP2000103737A (en) |
AT (1) | ATE282405T1 (en) |
AU (1) | AU764513B2 (en) |
BR (1) | BR9903992A (en) |
CA (1) | CA2281251C (en) |
DE (1) | DE69921919T2 (en) |
DK (1) | DK0985411T3 (en) |
NO (1) | NO994233L (en) |
NZ (1) | NZ337574A (en) |
PT (1) | PT985411E (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1140027T3 (en) * | 1998-12-23 | 2006-02-27 | Alza Corp | Dosage forms containing porous particles |
US6342249B1 (en) | 1998-12-23 | 2002-01-29 | Alza Corporation | Controlled release liquid active agent formulation dosage forms |
KR20020026053A (en) * | 2000-09-30 | 2002-04-06 | 노승권 | Method of dispersing plant sterol for a beverage and beverage containing the same |
HUP0400281A3 (en) * | 2001-06-22 | 2009-11-30 | Pfizer Prod Inc | Pharmaceutical compositions of adsorbates of amorphous drug and process for their preparation |
JP2005523262A (en) | 2002-02-01 | 2005-08-04 | ファイザー・プロダクツ・インク | Pharmaceutical compositions of amorphous dispersions of drugs and lipophilic microphase-forming substances |
US7994153B2 (en) * | 2002-05-20 | 2011-08-09 | Otsuka Pharmaceutical Co., Ltd. | Chloasma amelioration composition and dullness amelioration composition |
US7335389B2 (en) | 2002-06-12 | 2008-02-26 | The Coca-Cola Company | Beverages containing plant sterols |
US7306819B2 (en) | 2002-06-12 | 2007-12-11 | The Coca-Cola Company | Beverages containing plant sterols |
US6946151B2 (en) * | 2002-11-12 | 2005-09-20 | Ayurvedic-Life International, Llc | Therapeutic compositions |
US6949261B2 (en) | 2002-11-12 | 2005-09-27 | Ayurvedic-Life International, Llc | Compositions for diabetes treatment and prophylaxis |
MXPA06001417A (en) | 2003-08-04 | 2006-05-15 | Pfizer Prod Inc | Pharmaceutical compositions of adsorbates of amorphous drugs and lipophilic microphase-forming materials. |
BRPI0416747A (en) * | 2003-11-20 | 2007-01-16 | Zomanex Llc | methods and formulations for treating medical conditions related to high dihydrotesterone |
US8968768B2 (en) * | 2004-03-29 | 2015-03-03 | Wyeth Llc | Phytosterol nutritional supplements |
KR101573316B1 (en) * | 2004-03-29 | 2015-12-01 | 와이어쓰 엘엘씨 | Multi-vitamin and mineral nutritional supplements |
DE102005022953A1 (en) * | 2005-05-19 | 2006-11-23 | Chemische Fabrik Budenheim Kg | Dietary supplements |
EP2167069B1 (en) | 2007-05-23 | 2011-10-26 | Amcol International Corporation | Cholesterol-interacting layered phyllosilicates and methods of reducing hypercholesteremia in a mammal |
EP2257173B1 (en) * | 2008-02-27 | 2014-07-30 | Amcol International Corporation | Protonated hydrogen ion-exchanged layered phyllosilicate material for use in treating atherosclerosis |
US8039025B1 (en) | 2010-10-15 | 2011-10-18 | Life Plus, LLC | Methods and dosage forms for the treatment of human cancers |
GB201502077D0 (en) * | 2015-02-09 | 2015-03-25 | Cubic Pharmaceuticals Ltd And Delta Pharmaceuticals Ltd | Improved hme technology |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0947197A1 (en) * | 1998-02-19 | 1999-10-06 | McNEIL-PPC, INC. | Method for producing water dispersible sterol formulations |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB284814A (en) | 1926-11-29 | 1928-02-09 | Leonard Miller | Improvements in or relating to hoists or derricks |
US3004043A (en) | 1959-10-09 | 1961-10-10 | Eastman Kodak Co | Water-soluble vegetable oil sterol derivatives |
US3203862A (en) | 1960-03-11 | 1965-08-31 | Jones John Harris | Oral anti-hypercholesterol composition |
US3495011A (en) | 1968-10-28 | 1970-02-10 | Unimed Inc | Reduction of blood level cholesterol |
US3865939A (en) * | 1973-02-23 | 1975-02-11 | Procter & Gamble | Edible oils having hypocholesterolemic properties |
US3881005A (en) | 1973-08-13 | 1975-04-29 | Lilly Co Eli | Pharmaceutical dispersible powder of sitosterols and a method for the preparation thereof |
US4160850A (en) | 1975-08-25 | 1979-07-10 | General Mills, Inc. | Shelf-stable mix for a spreadable butter-substitute |
US4195084A (en) | 1977-01-07 | 1980-03-25 | Eli Lilly And Company | Taste-stable aqueous pharmaceutical suspension of tall oil sitosterols and a method for the preparation thereof |
GB1598638A (en) | 1978-04-18 | 1981-09-23 | Gen Mills Inc | Butter-substitute products comprising an emulsifier water oil and hard fat and compositions and processes for the production thereof |
US4238520A (en) | 1979-06-28 | 1980-12-09 | Scm Corporation | Low-fat comestible spread substitutes |
US4588717A (en) | 1984-06-13 | 1986-05-13 | David C. Mitchell Medical Research Institute | Compounds and vitamin supplements and methods for making same |
US4705875A (en) | 1984-06-13 | 1987-11-10 | Mitchell David C | Substituted fructose compounds and vitamin supplements and methods for making same |
US4883788A (en) | 1986-06-06 | 1989-11-28 | Hauser-Kuhrts, Inc. | Method and composition for reducing serum cholesterol |
US4824672A (en) | 1986-06-06 | 1989-04-25 | Hauser-Kuhrts, Inc. | Method and composition for reducing serum cholesterol |
GB8623557D0 (en) * | 1986-10-01 | 1986-11-05 | Boots Co Plc | Therapeutic agents |
US5082684A (en) | 1990-02-05 | 1992-01-21 | Pfizer Inc. | Low-calorie fat substitute |
US5306514A (en) | 1990-04-26 | 1994-04-26 | The Procter & Gamble Company | Solid, nondigestible, fat-like compounds and food compositions containing same |
US5306515A (en) | 1990-04-26 | 1994-04-26 | The Procter & Gamble Company | Reduced calorie pourable shortening, cooking oils, salad oils or like compositions |
US5514398A (en) | 1990-11-05 | 1996-05-07 | Amano Pharmaceutical Co., Ltd. | Food additive and use thereof |
HU217625B (en) | 1991-05-03 | 2000-03-28 | Raisio Benecol Ltd. | New method for producing beta-sitostanol-fatty-acid-esters and ester-mixtures for lowgring the cholesterol-level in serum and food containing the same |
US5338563A (en) | 1992-05-01 | 1994-08-16 | Nabisco, Inc. | Process for the preparation of a spatter-resistant low-fat spread |
GB9220268D0 (en) | 1992-09-25 | 1992-11-11 | Unilever Plc | Cosmetic composition |
US5326825A (en) | 1992-11-27 | 1994-07-05 | Naesman Jan H | Process for the preparation of a graft copolymer bound catalyst |
AU7250694A (en) | 1993-06-25 | 1995-01-17 | Biosphere Technologies Inc. | Dietary supplement incorporating beta-sitosterol and pectin |
US5472728A (en) | 1994-04-22 | 1995-12-05 | Kraft Foods, Inc. | Edible fat-containing margarine type products and process for preparing same |
GB9410867D0 (en) * | 1994-05-31 | 1994-07-20 | Ucb Sa | Radiation curable compositions |
US5770254A (en) | 1994-10-21 | 1998-06-23 | Healthy Foods Solutions, Inc. | Reduced-fat compositions and methods for preparing and using same |
EP0960567B1 (en) | 1995-06-01 | 2005-10-05 | Unilever N.V. | Fat based food products |
DE69623904T2 (en) | 1995-11-02 | 2003-05-15 | Lipidia Holding S.A., Luxemburg/Luxembourg | Stable edible oil composition |
US6139872A (en) | 1996-08-14 | 2000-10-31 | Henkel Corporation | Method of producing a vitamin product |
US6025010A (en) | 1997-11-21 | 2000-02-15 | Lipton, Division Of Conopco, Inc. | Multifunctional spread |
US6110502A (en) * | 1998-02-19 | 2000-08-29 | Mcneil-Ppc, Inc. | Method for producing water dispersible sterol formulations |
US6025348A (en) | 1998-04-30 | 2000-02-15 | Kao Corporation | Oil and fat composition containing phytosterol |
SE512958C2 (en) | 1998-04-30 | 2000-06-12 | Triple Crown Ab | Cholesterol-lowering composition containing beta-sitosterol and / or beta-sitostanol and process for its preparation |
US6087353A (en) * | 1998-05-15 | 2000-07-11 | Forbes Medi-Tech Inc. | Phytosterol compositions and use thereof in foods, beverages, pharmaceuticals, nutraceuticals and the like |
US5932562A (en) * | 1998-05-26 | 1999-08-03 | Washington University | Sitostanol formulation to reduce cholesterol absorption and method for preparing and use of same |
CA2334449A1 (en) | 1998-06-05 | 1999-12-16 | Radka K. Milanova | Compositions comprising phytosterol, phytostanol or mixtures of both having enhanced solubility and dispersability and incorporation thereof into foods, beverages, pharmaceuticals, nutraceuticals and the like |
US6242001B1 (en) * | 1998-11-30 | 2001-06-05 | Mcneil-Ppc, Inc. | Method for producing dispersible sterol and stanol compounds |
-
1998
- 1998-09-02 US US09/145,528 patent/US6376481B2/en not_active Expired - Lifetime
-
1999
- 1999-09-01 JP JP11247465A patent/JP2000103737A/en active Pending
- 1999-09-01 AU AU45852/99A patent/AU764513B2/en not_active Ceased
- 1999-09-01 EP EP99306961A patent/EP0985411B1/en not_active Expired - Lifetime
- 1999-09-01 BR BR9903992-3A patent/BR9903992A/en not_active Application Discontinuation
- 1999-09-01 CA CA002281251A patent/CA2281251C/en not_active Expired - Fee Related
- 1999-09-01 DK DK99306961T patent/DK0985411T3/en active
- 1999-09-01 NO NO994233A patent/NO994233L/en not_active Application Discontinuation
- 1999-09-01 AT AT99306961T patent/ATE282405T1/en active
- 1999-09-01 PT PT99306961T patent/PT985411E/en unknown
- 1999-09-01 DE DE69921919T patent/DE69921919T2/en not_active Expired - Lifetime
- 1999-09-01 NZ NZ337574A patent/NZ337574A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0947197A1 (en) * | 1998-02-19 | 1999-10-06 | McNEIL-PPC, INC. | Method for producing water dispersible sterol formulations |
AU1735899A (en) * | 1998-02-19 | 2000-06-08 | Mcneil-Ppc, Inc. | Method for producing water dispersible sterol formulations |
Also Published As
Publication number | Publication date |
---|---|
JP2000103737A (en) | 2000-04-11 |
PT985411E (en) | 2005-02-28 |
DE69921919T2 (en) | 2005-11-24 |
NO994233D0 (en) | 1999-09-01 |
DK0985411T3 (en) | 2005-03-14 |
CA2281251C (en) | 2008-12-30 |
EP0985411A1 (en) | 2000-03-15 |
AU4585299A (en) | 2000-03-16 |
EP0985411B1 (en) | 2004-11-17 |
CA2281251A1 (en) | 2000-03-02 |
ATE282405T1 (en) | 2004-12-15 |
NO994233L (en) | 2000-03-03 |
NZ337574A (en) | 2000-11-24 |
BR9903992A (en) | 2000-09-19 |
US20010009677A1 (en) | 2001-07-26 |
US6376481B2 (en) | 2002-04-23 |
DE69921919D1 (en) | 2004-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU764513B2 (en) | Sterol esters in tableted solid dosage forms | |
CA2290315C (en) | Method for producing dispersible sterol and stanol compounds | |
KR880000970B1 (en) | Preparation method for pharmaceutical composition which is high bioavail ability | |
EP1858352B1 (en) | A composition comprising a powder containing microencapsulated polyunsaturated long-chain esterified fatty acids distributed in an effervescent base | |
US5433951A (en) | Sustained release formulation containing captopril and method | |
EP1946755B1 (en) | Jelly composition | |
CA2236023C (en) | Method for enhancing dissolution properties of relatively insoluble dietary supplements and product incorporating same | |
EP0996429B1 (en) | Solid state solutions and dispersions of poorly water soluble drugs | |
US20070009559A1 (en) | Free-flowing solid formulations with improved bio-availability of poorly water soluble drugs and process for making the same | |
EP1216048B1 (en) | Solid lipid formulations comprising an inhibitor of lipases and a fatty acid ester of polyols | |
US4786495A (en) | Therapeutic agents | |
WO1992013531A1 (en) | Nutritional supplement containing vitamin e | |
JPS5813508A (en) | Drug containing polyglycerol ester of fatty acid | |
CN112353845B (en) | Hot-melt extrusion composition containing traditional Chinese medicine volatile oil, preparation method thereof and pharmaceutical preparation | |
JPS6230965B2 (en) | ||
KR20070113289A (en) | Improved formulations of fenofibrate containing menthol or peg/poloxamer | |
ES2532013T3 (en) | Phytosterols compositions with enhanced bioavailability | |
MXPA99008044A (en) | Sterol esters in solid dose forms as table | |
ES2317174T3 (en) | TENSIOACTIVE AGENTS IN THE FORM OF POWDER USED IN TABLETS OR CAPSULES; PREPARATION PROCEDURE AND COMPOSITIONS CONTAINING THEM. | |
RU2765946C1 (en) | Supersaturated self-nanoemulsifiable drug delivery system (snedds) for poorly water-soluble pharmaceutical compositions and method for preparing thereof | |
JPH03176420A (en) | Pharmaceutical tevferon composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |