AU7603896A - Method for preparing camptothecin derivatives - Google Patents

Method for preparing camptothecin derivatives

Info

Publication number
AU7603896A
AU7603896A AU76038/96A AU7603896A AU7603896A AU 7603896 A AU7603896 A AU 7603896A AU 76038/96 A AU76038/96 A AU 76038/96A AU 7603896 A AU7603896 A AU 7603896A AU 7603896 A AU7603896 A AU 7603896A
Authority
AU
Australia
Prior art keywords
lower alkyl
alkyl
cycloalkyl
hydrogen
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU76038/96A
Other versions
AU717315B2 (en
Inventor
Francis G. Fang
Shiping Xie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSI Pharmaceuticals LLC
Original Assignee
OSI Pharmaceuticals LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSI Pharmaceuticals LLC filed Critical OSI Pharmaceuticals LLC
Publication of AU7603896A publication Critical patent/AU7603896A/en
Application granted granted Critical
Publication of AU717315B2 publication Critical patent/AU717315B2/en
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. Alteration of Name(s) in Register under S187 Assignors: GLAXO WELLCOME INC.
Assigned to OSI PHARMACEUTICALS, INC. reassignment OSI PHARMACEUTICALS, INC. Alteration of Name(s) in Register under S187 Assignors: GILEAD SCIENCES, INC.
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PCT No. PCT/US96/17574 Sec. 371 Date May 14, 1998 Sec. 102(e) Date May 14, 1998 PCT Filed Nov. 1, 1996 PCT Pub. No. WO97/16454 PCT Pub. Date May 9, 1997The present invention relates to a process for preparing camptothecin and camptothecin analogs of Formula (I) from compounds of Formula (II) and to novel intermediates useful in their preparation, wherein R1 to R6 represent various substituents.

Description

METHOD FOR PREPARING CAMPTOTHECIN DERIVATIVES
FIELD OF THE INVENTION
The present invention relates to a method of preparing camptothecin and camptothecin analogs employing chemical compounds that are useful as intermediates and to processes for the preparation of the intermediates.
BACKGROUND OF THE INVENTION
Camptothecin is a naturally occurring compound, found in Camptotheca acuminata. Camptothecin and camptothecin analogs have been found to have anti-leukemic and anti-tumor properties.
Camptothecin and camptothecin analogs can be synthesized using processes described in US. Patent No. 4,894,456 to Wall et al. issued January 16, 1990; US. Patent No. 4,399,282 to Miyasaka, et al. issued August 16, 1983; US. Patent No. 4,399,276 to Miyasaka, et al. issued August 16, 1983; US. Patent No. 4,943,579 to Vishnuvajjala, et al. issued July 24, 1990; European Patent Application 0 321 122 A2 filed b y SmithKline Becham Corporation, and published June 21, 1989; US. Patent No. 4,473,692 to Miyasaka, et al. issued September 25, 1984; European Patent application No. 0 325 247 A2 filed by Kabushiki Kaisha Yakult Honsh, and published July 26, 1989; European Patent application 0 556 585 A2 filed by Takeda Chemical Industries, and published August 25 , 1993; US. Patent No. 4,981,968 to Wall, et al. issued January 1 , 1991 ; US. Patent No. 5,049, 668 to Wall, et al. issued September 17, 1991 ; US. Patent No. 5,162,532 to Comins, et al. issued November 10, 1992; 175. Patent No. 5,180, 722 to Wall, et al. issued January 19, 1993 and European Patent application 0 540 099 Al , filed, by Glaxo Inc., and published May 5, 1993. Previous methods used in the preparation of camptothecin and camptothecin analogs employ resolutions or chiral auxiliaries to obtain enantiomerically enriched intermediates. A problem with these methods is that a resolution necessitates discarding half of the racemic material and a chiral auxiliary requires utilizing stoichiometric amounts of a chiral subunit to stereoselectively install the chiral center.
A method which uses a process of catalytic asymmetric induction is described in U.S. Patent application serial number 08/237,081 and Fang et al, Journal of Organic Chemistry, 59(21), 6142-6143 (1994). One potential problem with such prior methods is that some of the chirally specific intermediates themselves may exhibit cell toxicity. Furthermore, the final step of the synthesis described in U.S. Patent application serial number 08/237,081 requires the use of a palladium catalyst which must subsequently be removed from the final drug substance by multiple recrystallizations. The potent cytotoxicity of camptothecin and some of its analogs requires that stringent safeguards be imposed during all the later steps of manufacturing to protect production personnel and the environment. Such safeguards increase the complexity and cost of manufacturing and handling camptothecin and its analogs.
An object of the present invention is a method for the preparation of camptothecin and its analogs wherein the chirality at the 20 position is not introduced until the penultimate manufacturing step. This would reduce the risk of accidental contamination of the environment and injury to the production worker, and hence, reduces the need for stringent safeguards, since handling and storage of highly biologically active material is minimized.
SUMMARY OF THE INVENTION
The present invention provides a method of preparing compounds of Formula (I) which comprises oxidizing compounds of Formula (II)
(π) (I)
wherein:
R\ and R2, which may be the same or different, are independently
selected from hydrogen, lower alkyl, (C3_7)cycloalkyl, (C3_7)cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or alkoxy alkyl, or (-CH2NR7R8), wherein:
i) R7 and Rg, which may be the same or different, are independently selected from hydrogen, lower alkyl, (C3.7) cycloalkyl, (C3.7) cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or lower alkoxy lower alkyl; or
ii) R7 represents hyrogen, lower alkyl, (C3_7)cycloalkyl, (C3.7) cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or lower alkoxy lower alkyl, and Rβ represents -COR9, wherein:
R9 represents hydrogen, lower alkyl, perhalo- lower alkyl, (C3_7)cycloalkyl, (C3.7) cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, lower alkoxy, lower alkoxy lower alkyl; or
iii) R7 represents hydrogen or lower alkyl; and Rβ represents diphenyl-methyl or -(CH2)tAr wherein: t is 0 to 5 and Ar represents phenyl, furyl, pyridyl, N- methylpyrrolyl, imidazolyl optionally subsituted with one or more substituents selected from hydroxy, methyl, halogen, and amino; or
iv) R7 and Rβ taken together with the linking nitrogen form a staturated 3 to 7 atom heterocyclic group of formula (IA)
(IA)
wherein:
Y represents O, S, SO, SO2, CH2 or NRIQ, wherein:
RjO represents hydrogen, lower alkyl, perhalo lower alkyl, aryl, aryl substituted with one or more substituents selected from lower alkyl, lower alkoxy, halogen, nitro, amino, lower alkyl amino, perhalo-lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl groups or -CORπ, wherein:
Rj l represents hydrogen, lower alkyl, perhalo-lower alkyl, lower alkoxy, aryl, aryl substituted with one or more substituents selected from lower alkyl, perhalo- lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl groups; or
R4 are independently selected from hydrogen, lower alkyl, (C3_7)cycloalkyl, (C3_7)cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or alkoxy alkyl; or
R3 and R4 taken together form a saturated 5 to 6 atom heterocyclic group of formula (IB)
(IB) wherein, n represents the integer 1 or 2; or
R3 represents -OCONR12R13, wherein,
Rj2 and R13, which may be the same or different, are independently selected from hydrogen, a substituted or unsubstituted alkyl group with 1-4 carbon atoms or a substituted or unsubstituted carbocyclic or heterocyclic group, with the proviso that when both R12 and R^ are substituted or unsubstituted alkyl groups, they may b e combined together with the nitrogen atom, to which they are bonded, to form a heterocyclic ring which may b e interrupted with -O-, -S- and/or >N-Rj4 in which R14 is hydrogen, a substituted or unsubstituted alkyl group with 1 - 4 carbon atoms or a substituted or unsubstituted phenyl group, and
R5 represents hydrogen or alkyl, particularly methyl, and
R^ represents hydrogen or alkyl, particularly hydrogen, and
pharmaceutically acceptable salts thereof. The present invention further provides a method of preparing compounds of Formula (I) which comprises dihydroxylating a compound of Formula (II) and subsequent oxidation to yield a compound of Formula (I).
In addition to a method of preparing compounds of Formula (I) from compounds of Formula (II), other aspects of the invention include the compounds of Formula (II) and various intermediates useful in the formation of compounds of Formula (I) and (II). Other aspects and advantages of the present invention will become apparent from a review of the detailed description below.
DETAILED DESCRIPTION OF THE INVENTION
As used herein, the term "loweralkyl" means, a linear or branched alkyl group with 1-8, preferably 1-4 carbon atoms, such as, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, hexyl and octyl. This definition also applies to a loweralkyl moiety in the loweralkoxy, loweralkylthio, and di(loweralkyl)amino groups. Thus, examples of loweralkoxy groups are methoxy, ethoxy, propoxy, sec-butoxy, and isohexoxy: examples of loweralkylthio groups are methylthio, ethylthio, tert-butylthio, and hexylthio, and examples of di(loweralkyl)amino groups are dimethylamino, diethylamino, diisopropylamino, di(n- butyl)amino, and dipentylamino.
The terms "halo" and "halogen" as used herein refer to a substitutent which may be fluoro, chloro, bromo, or iodo. The term "triflate" as used herein refers to trifluoromethanesulfonate. The designation "C" as used herein means centigrade. The term "ambient temperature" as used herein means from about 20° C to about 30° C.
Compounds of the present invention may have 1 or more asymmetric carbon atoms that form enantiomeric arrangements, i.e., 'R" and "S" configurations. The present invention includes all enantiomeric forms and any combinations of these forms. For simplicity, where no specific configuration is depicted in the structural formulas, it is to b e understood that both enantiomeric forms and mixtures thereof are represented. Unless noted otherwise, the nomenclature convention, "(R)" and "(S)" denote essentially optically pure R and S enantiomers, respectively.
Also included in the present invention are other forms of the compounds including: solvates, hydrates, various polymorphs and the like.
Acceptable salts include, but are not limited to, salts with inorganic acids and bases such as hydrochloride, sulfate, phosphate, diphosphate, hydrobromide and nitrate or salts with organic acids such as acetate, malate, maleate, fumarate, tartrate, succinate, citrate, lactate, methanesulfonate, p-toluenesulfonate, palmoate, salicylate, oxalic and stearate. For further examples of acceptable salts see, "Pharmaceutical Salts, " J. Pharm. Sci., 66(1 ), 1 (1977).
One aspect of the present invention provides a method for preparing compounds of Formula (III);
(HI)
which comprises dihydroxylating a compound of Formula (II),
using a catalytic asymmetric dihydroxylation reaction. Typically, the reaction may be carried out in the presence of an osmium catalyst (e.g., potassium osmate (VI) dihydrate, osmium(III) chloride hydrate or osmium tetroxide), a chiral tertiary amine catalyst (e.g., derivatives of the cinchona alkaloids such as hydroquinidine 1 ,4-phthalazinediyl diether), an oxidizing reagent (e.g., potassium ferricyanide(III), hydrogen peroxide, N-methylmorpholine N-oxide, or electricity), and a primary amide (e.g., methanesulfonamide) under basic conditions (e.g. potassium carbonate) in an aqueous mixture containing a polar protic solvent (e.g., t-butanol, i-propanol, or n-propanol). The reaction may b e carried out at a temperature of between about 0° C to about 30° C for about 12 to about 48 hours. Acceptable variations on these conditions are described in the literature on related catalytic asymmetric dihydroxylation reactions, e.g., K. B. Sharpless et al., J. Org. Chem. 58, 3785-3786 (1993).
Alternatively the compound of Formula II is oxidized to a compound of Formula III in an achiral dihydroxylation reaction to yield a racemic cis-diol which is then resolved enzymaticaUy to give the enantiomerically enriched compound of Formula II. Descriptions of achiral dihyroxylations are provided by Larock, Comprehensive Organic Transformations, 493-496 (1989). The resolution reaction may b e carried out in the presence of an acylating enzyme such as pancreatic lipases, Pseudomonas fluorenscens lipases, C. Cylindracea lipases, Chromobacterium viscosum lipases and Aspergillus niger lipases in the presence of an acylating agent such as vinyl acetate at a temperature of between about 0° C to ambient temperature for about 2 to about 48 hours. Variations on these conditions will be apparent from A. Klibanov, Asymmetric Transformations Catalyzed by Enzymes in Organic Solvents, Ace. Chem. Res. 23, 114-120 (1990).
Compounds of Formula (II) may be prepared by cyclizing a compound of Formula (IV),
wherein X represents triflate or halo, particularly chloro-, bromo-, and iodo-.
The compounds of Formula (IV) may be cyclized by a n intramolecular Heck reaction. The reaction may be carried out in the presence of a palladium catalyst (e.g., palladium(II) acetate) under basic conditions in a polar aprotic solvent (e.g. acetonitrile or N,N- dimethylformamide) or a polar protic solvent (e.g., n-propanol, i - propanol, or t-butanol). A phase transfer catalyst such as a tetraalkylammonium halide salt (eg., tetrabutylammonium chloride, tetrabutylammonium bromide, or tetrabutylammonium iodide) may b e included when a polar aprotic solvent is used. Preferably, a ligand for the palladium catalyst may also be included such as a triphenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, or tri-p- tolylphosphine. The reaction may be carried out in an inert atmosphere, such as under nitrogen or argon gas in a suitable reaction vessel equipped with mechanical stirrer and water-cooled condenser. The reaction mixture may be heated to a temperature between about 50° to about 110° C for about 1 to about 48 hours. Variations on these conditions are described in the literature on the Heck reaction, e.g., R Grigg et al, Tetrahedron 46, 4003-4008 (1990).
The compounds of Formula (IV) may be prepared by condensing compounds of Formula (V) and Formula (VI). 10
wherein,
X represents triflate or halo particularly chloro-, bromo-, and iodo- and Z represents a suitable leaving group such as chloro-, bromo-, and iodo- or ORi 5, wherein R15 represents triflate, mesylate, or tosylate, or particularly H.
In the case wherein Z represents hydroxy, the condensation reaction is carried out in an aprotic solvent, e.g., methylene chloride, in the presence of a trialkyl- or triarylphosphine, e.g., triphenylphosphine, and a dialkyl azodicarboxylate, e.g., diethyl azodicarboxylate, at a temperature between about 0° C to about 50° C for about 0.5 to 4 hours. Further variations on the above conditions will be apparent from the literature on the Mitsunobu reaction, e.g., O. Mitsunobu, Synthesis, 1 , (1981 ).
When Z represents halo, triflate, mesylate, or tosylate, the condensation reaction is carried out in a polar aprotic solvent such as acetonitrile or N,N-dimethylformamide, or a polar protic solvent such as i-propanol or t-butanol, in the presence of a base, e.g., potassium t - butoxide, at a temperature between about 25° to about 100° C for about 1 to 24 hours to yield compounds of Formula (IV). Variations on the above conditions are described in U.S. Patent No. 5,254,690 to Comins et al. issued October 19, 1993 and incoφorated herein by reference.
Compounds of Formula (VI) may be prepared from compounds of Formula (VII),
wherein,
R ] 6 represents alkyl, particuarly methyl.
The dealkylation reaction may be carried out in a polar aprotic solvent, e.g. acetonitrile, in the presence of a suitable dealkylating reagent, e.g., a trialkylsilyl iodide, at a temperature between about 0° C and 100° C for about 1-12 hours. The trialkylsilyl iodide may b e generated in situ by combining a trialkylsilyl halide, e.g., trimethylsilyl chloride, and an alkali metal iodide, e.g., sodium iodide.
Alternatively the dealkylation reaction may be carried out in a polar, protic solvent, e.g., water or ethanol, in the presence of a strong acid, e.g., hydrochloric acid at a temperature between about 0° C and 100° C for about 1 to 24 hours to yield the compound of Formula (VI).
The starting materials, the compounds of Formula (V) and Formula (VII), are described in U.S. Patent application serial number 08/237 ,081 , Fang et al., Journal of Organic Chemistry, 59(21), 6142-6153 ( 1994), PCT/US 95/05425, and PCT/US 95/05427.
The compounds of Formula (III) may be oxidized to yield a compound of Formula (I).
(I)
The oxidation reaction may be carried out in a suitable solvent, e.g., methylene chloride, in the presence of an oxidizing agent, e.g., dimethylsulfoxide, an activating reagent, e.g., oxalyl chloride, and a base, e.g., triethylamine, at a temperature between about -78° C and -20° C for about 0.1 to about 1 hours to yield a compound of Formula (I). Further variations on these conditions will be apparent from the literature on activated sulfur-based oxidants, e.g., Mancuso and Swern, Synthesis, 165-185 (1981) and March, J., Advanced Organic Chemistry, 3rd edition, John Wiley & Sons, New York (1985), pp. 1057-1060, 1081-1082.
Thus, progressing compounds of Formula (V) and (VI) to compounds of Formula (I) through the intermediate compounds of Formula (IV), (II), and (III) is schematically represented by the following scheme:
A further aspect of the invention are the novel compounds of Formula (II), (III), (IV), and (VI).
The compounds of Formula (II), (III), (IV), (V), (VI), and (VII) are useful as intermediates in the preparation of camptothecin and camptothecin analogs, e.g. compounds of Formula (I), and those described in European Patent application 0 540 099 Al, filed by Glaxo Inc., and published May 5, 1993 and incorporated herein by reference.
A typical preparation of a camptothecin derivative of Formula (I) using intermediate compounds of Formula (II), (III), (IV), (V), (VI), and (VII) is exemplified herein.
EXAMPLES
The following examples illustrate various aspects of the present invention, but should not be construed as limitations. The symbols, conventions and nomenclature not specifically defined below are consistent with those used in the contemporary chemical literature, for example the Journal of the American Chemical Society.
In the examples that follow: "mg" means milligram(s), "M" means molar, "mL" means milliliter(s), "mmol" means millimole(s), "L" means liter(s), "mol" means mole(s), "g" means gram(s), "TLC' means thin layer chromatography, "HPLC" means high pressure liquid chromatography, "mm" means millimole(s), "mp" means melting point, "Mhz" means Megaherz, "IH-NMR" means proton nuclear magnetic resonance, "Hz" means Hertz, "h" means hour(s) and "n" means normal.
Unless otherwise noted all starting materials were obtained from commercial suppliers and used without further purification. All reactions involving oxygen or moisture-sensitive compounds were performed under a dry N2 atmosphere. All reactions and chromatography fractions were analyzed by thin-layer chromatography on silica gel plates, visualized with UV light and 12 stain. Example 1 :
4-Ethyl- lH-pyrano[3,4-c]pyridin-8-one (a compound of Formula
(VI) wherein R5 is hydrogen and Rg is methyl).
A 250-mL one-neck round-bottom flask is charged with 4-ethyl- 8-methoxy-lH-pyrano[3,4-c]pyridine (10 g, 52.4 mmol), prepared a s described in U.S. Patent application serial number 08/237,081 , Fang e t al.. Journal of Organic Chemistry, 59(21), 6142-6143 ( 1994), PCT/US95/05425 and PCT/US 95/05427, acetonitrile (100 mL), and sodium iodide (11.8 g, 79 mmol). This mixture is stirred for about 20 minutes at ambient temperature. To the mixture is added trimethylsilylchloride (10 mL, 79 mmol) causing the immediate formation of a white precipitate. The resulting mixture is heated a t reflux for about 2 hours. The reaction is cooled to ambient temperature. To the cooled reaction mixture is added 50 mL of saturated sodium bicarbonate solution. The mixture is stirred for 1 hour at ambient temperature. The precipitate is collected by filtration on a buchner funnel. The collected solid is dried in vacuo for about 12 hours a t between 25 and 38° C to provide a first crop 4-ethyl- l H-pyrano[3,4- c]pyridin-8-one as a slightly tan crystalline solid. The filtrate is concentrated in vacuo and the resulting residue recrystallized from acetonitrile/methanol to give additional 4-ethyl- l H-pyrano[3,4- c]pyridin-8-one as a slightly tan crystalline solid. Characterization data: mp 169-171° C. *H NMR (CDCI3, 300 MHz): δ 1.11 (t, J=7.4 Hz, 3H), 2.27 (q, J=7.4 Hz, 2H), 5.04 (s, 2H), 6.17 (d, J=6.8 Hz, IH), 6.59 (s, IH), 7.32 (d, J=6.8 Hz, IH), 13.16 (bs, IH).
Example 2:
4-Ethy! -7 - [7 -i od o-9- [(4- methyl - pi pera z i nyl) m eth yl ] - 2 ,3 - dihydro-[l ,4]dioxino[2,3-g]quinoIin-8-ylmethyl] - lH- pyrano[3,4-c]pyridin-8-one (a compound of Formula (IV) wherein
R] is 4-methylpiperazinyl-methyl, R2, is hydrogen, R3 and R4 together are ethylenedioxy, R5 is hydrogen, Rg is methyl, and X is iodo). To a solution of of 4-ethyl-lH-pyrano[3,4-c]pyridin-8-one (200 mg, 1.13 mmol) and [7-iodo-9-[(4-methyl-piperazinyl)methyl]-2,3- dihydro-[l,4]dioxino[2,3-g]quinolin-8-yl]-methanol (514 mg,1.13 mmol), prepared as described in U.S. Patent application serial number 08/237,081, Fang et al., Journal of Organic Chemistry, 59(21), 6142- 6143(1994), PCT/US 95/05425, and PCT/US 95/05427, in 4.5 mL of dichloromethane is added triphenylphosphine (326 mg, 1.24 mmol). After being stirred at ambient temperature for 3 min, the mixture is cooled to 0° C, followed by dropwise addition of diethyl azodicarboxylate (0.20 mL, 1.24 mmol). The brown solution is warmed to ambient temperature and stirred for 14 h. The solvent is removed under reduced pressure and the resultant residue is chromatographed on sihca gel. Elution with 5-10% methanol in dichloromethane affords 4-ethyl-7- [7-iodo-9-[(4-methyl-piperazinyl)methyl]-2,3-dihydro-[l,4]dioxino[2,3- g]quinolin-8-ylmethyl]-lH-pyrano[3,4-c]pyridin-8-one as a yellow solid. Characterization data: *H NMR (200MHz, CDCB): δ 1.03 (t, J = 7.4 Hz, 3H), 2.18 (s, 3H), 2.25 (q, J = 7.4 Hz, 2H), 2.45 (br. s, 4H), 3.80 (s, 2H), 4.39 (s, 4H), 5.18 (s, 2H), 5.45 (s, 2H), 5.94 (d, J = 6.8 Hz, IH), 6.60 (s, IH), 6.80 (d, J = 6.8 Hz, IH), 7.52 (s, IH), 7.67 (s, IH).
Example 3: llH-l,4-Dioxino[2.3-g]pyrano[3'4':6,7]indoIizino[lf2- b]quinoline-12(14H)-one,8-eth I-2,3-dihydro-15-[(4-methyl- l-piperazinyl)methyl] (acompound of Formula (II) wherein Rj is 4- methylpiperazinyl-methyl, R2 is hydrogen, R3 and R4 together are ethylenedioxy, R5 is hydrogen, and Rg is methyl).
To a solution of 4-ethyl-7-[7-iodo-9-[(4-methyl- piperazinyl)methyl]-2,3-dihydro-[l,4]dioxino[2,3-g]quinolin-8- ylmethyl]-lH-pyrano[3,4-c]pyridin-8-one (50.0 mg, 0.0813 mmol) in 4 mL of acetonitrile is successively added palladium(II) acetate (0.90 mg, 0.0040 mmol), powdered anhydrous potassium carbonate (22.4 mg, 0.163 mmol) and triphenylphosphine (10.6 mg, 0.0406 mmol) at ambient temperature. The mixture is brought to reflux and stirred for 17 h. The solvent is removed under reduced pressure and the resultant residue is chromatographed on silica gel. Elution with 10% methanol in chloroform yields HH-l ,4-Dioxino[2,3-g]pyrano[3'4':6,7]indolizino[l ,2- b]quinoline- 12(14H)-one,8-ethyl-2,3-dihydro- 15-[(4-methyl- l - piperazinyl)methyl] as a yellow solid: Characterization data: mp 223 - 225 °C. lH NMR (300MHz, CDCB): δ 1.22 (t, J = 7.4 Hz, 3H), 2.29 (s, 3H), 2.45 (q, J = 7.4 Hz, 2H), 2.57 (br. s, 4H), 3.94 (s, 2H), 4.44 (s, 4H), 5.20 (s, 2H), 4.83 (s, IH), 5.29 (s, 2H), 6.67 (s, 2H), 7.14 (s, IH), 7.65 (s, IH), 7.75 (s, IH).
Example 4: l lH- l,4-Dioxino[2,3-g]pyrano[3' ,4' :6,7]indolizino [l,2-b]quinoline-12(8H,14H)- one,8 -ethyl - 2,3 -di hyd ro -8 ,9- dihyd roxy- 15-[(4-methyl- l -piperazinyl)methyl]- (9R-cis) (a compound of Formula (III) wherein Rj is 4-methylpiperazinyl-methyl, R2 is hydrogen, R3 and R4 together are ethylenedioxy, R5 is hydrogen, and Rg is methyl).
To AD-mix-β (1.26 g) , containing the chiral ligand hydroquinidine 1 ,4-phthalazinediyl diether, available from Aldrich Chemical Company, Milwaukee, WI, in 4 mL of water-tert-butyl alcohol (1:1) is added methanesulfonamide (24 mg, 0.260 mmol). The brown mixture is cooled to 0 °C, followed by addition of l lH-l ,4-Dioxino[2,3- g]pyrano[3*4, :6,7]indolizino[l ,2-b]quinoline- 12(14H)-one,8-ethyl-2,3- dihydro- 15-[(4-methyl- l-piperazinyl)methyl] (126 mg, 0.260 mmol). The mixture is allowed to warm to ambient temperature and vigorously stirred for 36 h. The mixture is diluted with 8 mL of water and quenched with 750 mg of sodium sulfite. After being stirred for an additional 20 min, the mixture is diluted with 5 mL of dichloromethane and filtered to give a solid which is dried in high vaccum to provide HH- l ,4-Dioxino[2,3-g]pyrano[3' ,4':6,7]indolizino[l ,2-b]quinoline- 12(8H,14H)- one,8-ethyl-2,3-dihydro-8,9-dihydroxy- 15- [(4-methyl- l - piperazinyl)methyl]- (9R-cis) as a light yellow solid. lH NMR indicates a diastereomeric ratio of 83:17. Presumably, the two diastereomers are epimeric in the hemiacetal carbon. Characterization data (major epimer): mp 255-260° C with decomposition. *H NMR (300MH, DMSO-d6): δ 0.97 (t, J = 7.4 Hz, 3H), 1.74 (q, J = 7.4 Hz, 2H), 2.06 (s, 3H), 2.29 (br. s, 4H), 3.89 (s, 2H), 4.39 (s, 4H), 4.51 (ABq, JAB = 39 Hz, Δv = 82 Hz, 2H), 4.83 (s,
IH), 4.95 (s, IH), 5.26 (s, 2H), 7.23 (s, IH), 7.54 (s, IH), 7.70 (s, IH).
In order to assess the enantiomeric selectivity of the above process, the major diastereomer above is seperately converted to the (S)- and (R)-O-methylmandelates by the following protocol. A mixture of the above solid (10 mg, 0.019 mmol), (S)-O-methylmandelic acid (6.4 mg, 0.038 mmol), 1 ,3-dicyclohexylcarbodiimide (7.9 mg, 0.038 mmol) and a catalytic amount of N,N-dimethylaminopyridine in 2 mL of dichloromethane is stirred at ambient temperature for 2 h. The resulting white suspension is filtered through a short pad of Celite ® and washed with 2 mL of dichloromethane. The combined filtrate and washings are concentrated under reduced pressure to yield a crude product as a solid. Analysis on the integrals of the *H NMR spectrum (300 MHz, CDCI3) indicates a diastereomeric ratio of 93:7. This corresponds to 86% enantiopurity for the major pentacyclic alcohol. The same ratio is obtained when (R)-mandelates are prepared from the major alcohol. The signals for the (S)- and (R)-O-methylmandelates are complementary to each other. In both cases, the sharp signal for the proton of the anomeric center is used for analysis.
Example 5:
H H- l,4-Diox ino[2,3-g]pyrano[3 ,,4, :6,7] indolizino[ l ,2- b] quinoIine- 9, 12(8H, 14H)-d ione,8-ethyI -2,3-dihyd ro-8- hydroxy- 15- [(4- methyl- l -piperazinyl)methyI]- (S ) (a compound of Formula (I) wherein Rj is 4-methylpiperazinyl-methyl, R2 is hydrogen, R3 and R4 together are ethylenedioxy, R5 is hydrogen, and Rg is methyl).
A solution of oxalyl chloride (0.14 mL,1.5 mmol) in 8 mL of dichloromethane is cooled to -78° C, followed by dropwise addition of dimethyl sulfoxide (0.22 mL, 3.1 mmol). The mixture is stirred for 2 min, and then H H- l ,4-Dioxino[2,3-g]pyrano[3' ,4' :6,7]indolizino[l ,2- b]quino!ine- 12(8H,14H)- one,8-ethyl-2,3-dihydro-8,9-dihydroxy- 15-[(4- methyl-l-piperazinyl)methyl]- (9R-cis) (40 mg, 0.077 mmol) is added in dimethyl sulfoxide (2 mL). After being stirred at - 78° C for 15 min, the mixture is treated with triethylamine (0.85 mL, 6.2 mmol) dropwise.
The cooling bath is removed and the stirring is continued for 10 min.
After being quenched with 10 mL of water, the layers are separated and the aqueous layer is extracted with chloroform three times. The combined organic layers are washed with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resultant brown residue is chromatographed on silica gel. Elution with 10% methanol in chloroform provides 26 mg (65% yield) of HH-l ,4-Dioxino[2,3-g]pyrano[3',4':6,7]indolizino[l ,2- b]quinoline-9, 12(8H, 14H)-dione,8-ethyl-2,3-dihydro-8-hydroxy- 15-[(4- methyl- l-piperazinyl)methylJ-(S) as a yellow solid. Characterization data: *H NMR (300MH, CDCB): δ 1.06 (t, J = 7.4 Hz, 3H), 1.91 (m, 2H), 2.31
(s, 3H), 2.59 (br. s, 4H), 3.80 (br. s, IH), 3.97 (s, 2H), 4.46 (s, 4H), 5.32 (s, 2H), 5.55 (ABq, JAB = 8.4 Hz, Δv = 90 Hz, 2H), 7.60 (s, IH), 7.66 (s, IH),
7.72 (s, IH).

Claims (3)

We claim:
1. A method of preparing a compound of Formula (I)
(JJ) (I)
which comprises dihydroxylating a compound of Formula (II), wherein: Rj and R2, which may be the same or different, are independently
selected from hydrogen, lower alkyl, (C3.7) cycloalkyl, (C3_7)cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or alkoxy alkyl, or (-CH2NR7R8), wherein:
i) R7 and Rβ, which may be the same or different, are independently selected from hydrogen, lower alkyl, (C3.7) cycloalkyl, (C3.7) cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or lower alkoxy lower alkyl; or
ii) R7 represents hyrogen, lower alkyl, (C3_7)cycloalkyl, (C3.7) cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or lower alkoxy lower alkyl, and Rβ represents -COR9, wherein:
R9 represents hydrogen, lower alkyl, perhalo- lower alkyl, (C3_7)cycloalkyl, (C3.7) cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, lower alkoxy, lower alkoxy lower alkyl; or iii) R7 represents hydrogen or lower alkyl; and Rg represents diphenyl-methyl or -(CH2)tAr wherein: t is 0 to 5 and
Ar represents phenyl, furyl, pyridyl, N- methylpyrrolyl, imidazolyl optionally subsituted with one or more substituents selected from hydroxy, methyl, halogen, and amino; or
iv) R7 and Rg taken together with the linking nitrogen form a staturated 3 to 7 atom heterocyclic group of formula (IA)
(IA)
wherein:
Y represents O, S, SO, SO2, CH2 or NR10, wherein:
RjO represents hydrogen, lower alkyl, perhalo lower alkyl, aryl, aryl substituted with one or more substituents selected from lower alkyl, lower alkoxy, halogen, nitro, amino, lower alkyl amino, perhalo-lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl groups or -COR11, wherein:
Ri l represents hydrogen, lower alkyl, perhalo-lower alkyl, lower alkoxy, aryl, aryl substituted with one or more substituents selected from lower alkyl, perhalo- lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl groups; or
R3 and R4 are independently selected from hydrogen, lower alkyl, (C3_7)cycloalkyl, (C3_7)cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or alkoxy alkyl; or
R3 and R4 taken together form a saturated 5 to 6 atom heterocychc group of formula (IB)
wherein, n represents the integer 1 or 2; or
R3 represents -OCONR^R^, wherein,
Rj2 and Rj3> which may be the same or different, areindependently selected from hydrogen, a substituted or unsubstituted alkyl group with 1-4 carbon atoms or a substituted or unsubstituted carbocyclic or heterocyclic group, with the proviso that when both R^ and Rj3 are substituted or unsubstituted alkyl groups, they may b e combined together with the nitrogen atom, to which they are bonded, to form a heterocyclic ring which may b e interrupted with -0-, -S- and/or >N-Ri4 in which Rj4 is hydrogen, a substituted or unsubstituted alkyl group with 1 - 4 carbon atoms or a substituted or unsubstituted phenyl group, and
R5 represents hydrogen or alkyl, and
Rg represents hydrogen or alkyl, and pharmaceutically acceptable salts thereof.
2. A compound of Formulas (II), (III), (IV), or (VI):
(ID
(TV)
(VI)
wherein:
Rj and R2, which may be the same or different, are independently
selected from hydrogen, lower alkyl, (C3.7) cycloalkyl, (C3_7)cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or alkoxy alkyl, or (-CH2NR7Rg), wherein:
i) R7 and Rg, which may be the same or different, are independently selected from hydrogen, lower alkyl, (C3.7) cycloalkyl, (C3.7) cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or lower alkoxy lower alkyl; or
ii) R7 represents hyrogen, lower alkyl, (C3_7)cycloalkyl, (C3.7) cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, o r lower alkoxy lower alkyl, and Rg represents -COR9, wherein:
R9 represents hydrogen, lower alkyl, perhalo- lower alkyl, (C3_7)cycloalkyl, (C3.7) cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, lower alkoxy, lower alkoxy lower alkyl; or
iii) R7 represents hydrogen or lower alkyl; and R8 represents diphenyl-methyl or -(CH2)tA r wherein: t is 0 to 5 and
Ar represents phenyl, furyl, pyridyl, N- methylpyrrolyl, imidazolyl optionally subsituted with one or more substituents selected from hydroxy, methyl, halogen, and amino; or
iv) R7 and Rg taken together with the linking nitrogen form a staturated 3 to 7 atom heterocyclic group of formula (IA)
(IA)
wherein:
Y represents O, S, SO, SO2, CH2 or NRI Q, wherein:
RlO represents hydrogen, lower alkyl, perhalo lower alkyl, aryl, aryl substituted with one or more substituents selected from lower alkyl, lower alkoxy, halogen, nitro, amino, lower alkyl amino, perhalo-lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl groups or -COR11, wherein:
Ri j represents hydrogen, lower alkyl, perhalo-lower alkyl, lower alkoxy, aryl, aryl substituted with one or more substituents selected from lower alkyl, perhalo- lower alkyl, hydroxy lower alkyl, lower alkoxy lower alkyl groups; or R3 and R4 are independently selected from hydrogen, lower alkyl, (C3_7)cycloalkyl, (C3_7)cycloalkyl lower alkyl, lower alkenyl, hydroxy lower alkyl, or alkoxy alkyl; or
R3 and R4 taken together form a saturated 5 to 6 atom heterocyclic group of formula (IB)
(IB) wherein, n represents the integer 1 or 2; or
R3 represents -OCONR12R13, wherein,
Ri 2 and Rj3, which may be the same or different, areindependently selected from hydrogen, a substituted or unsubstituted alkyl group with 1-4 carbon atoms or a substituted or unsubstituted carbocyclic or heterocyclic group, with the proviso that when both R^ and R13 are substituted or unsubstituted alkyl groups, they may b e combined together with the nitrogen atom, to which they are bonded, to form a heterocyclic ring which may b e interrupted with -0-, -S- and/or >N-R14 in which R14 is hydrogen, a substituted or unsubstituted alkyl group with 1 - 4 carbon atoms or a substituted or unsubstituted phenyl group, and
R5 represents hydrogen or alkyl, and
Rg represents hydrogen or alkyl, and
pharmaceutically acceptable salts thereof.
3. A compound selected from the group consisting of:
4-Ethyl-lH-pyrano[3,4-c]pyridin-8-one;
4-Ethyl-7-[7-iodo-9-[(4-methyl-piperazinyl)methyl]-2,3- dihydro-[l,4]dioxino[2,3-g]quinolin-8-y Imethyl]- 1H- pyrano[3,4-c]pyridin-8-one;
llH-l,4-Dioxino[2,3-g]pyrano[3'4,:6,7]indolizino[l,2-b]quinoline- 12(14H)-one,8-ethyl-2,3-dihydro-15-[(4-methyl-l- piperazinyl)methyl]; or
llH-l,4-Dioxino[2,3-g]pyrano[3',4':6,7]indolizino[l,2-b]quinoline- 12(8H,14H)- one,8-ethyl-2,3-dihydro-8,9-dihydroxy-15-[(4- methyl-l-piperazinyl)methyl]- (9R-cis).
AU76038/96A 1995-11-02 1996-11-01 Method for preparing camptothecin derivatives Ceased AU717315B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US613895P 1995-11-02 1995-11-02
US60/006138 1995-11-02
PCT/US1996/017574 WO1997016454A1 (en) 1995-11-02 1996-11-01 Method for preparing camptothecin derivatives

Publications (2)

Publication Number Publication Date
AU7603896A true AU7603896A (en) 1997-05-22
AU717315B2 AU717315B2 (en) 2000-03-23

Family

ID=21719492

Family Applications (1)

Application Number Title Priority Date Filing Date
AU76038/96A Ceased AU717315B2 (en) 1995-11-02 1996-11-01 Method for preparing camptothecin derivatives

Country Status (17)

Country Link
US (2) US6143891A (en)
EP (1) EP0876373B1 (en)
JP (1) JP3499246B2 (en)
AT (1) ATE301659T1 (en)
AU (1) AU717315B2 (en)
CA (1) CA2236420A1 (en)
CZ (1) CZ133898A3 (en)
DE (1) DE69635057T2 (en)
EA (1) EA001400B1 (en)
ES (1) ES2247606T3 (en)
HU (1) HUP9802407A3 (en)
IL (1) IL124287A (en)
IS (1) IS2274B (en)
NO (1) NO324308B1 (en)
NZ (1) NZ322318A (en)
PL (1) PL186540B1 (en)
WO (1) WO1997016454A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491237A (en) * 1994-05-03 1996-02-13 Glaxo Wellcome Inc. Intermediates in pharmaceutical camptothecin preparation
US6716982B2 (en) 1995-11-02 2004-04-06 Osi Pharmaceuticals, Inc. Method for preparing camptothecin derivatives
US6559309B2 (en) 1996-11-01 2003-05-06 Osi Pharmaceuticals, Inc. Preparation of a camptothecin derivative by intramolecular cyclisation
US6288072B1 (en) * 1999-12-29 2001-09-11 Monroe E. Wall Camptothecin β-alanine esters with topoisomerase I inhibition
AR035684A1 (en) 2001-02-21 2004-06-23 Yakult Honsha Kk PROCEDURE TO PREPARE 2'-AMINO-5'-HYDROXYPROPIOPHENONE, USE OF THE SAME FOR THE PREPARATION OF CAMPTOTECHINE ANALOGS, PROCEDURE TO PREPARE THEM, INTERMEDIATE COMPOUNDS, PROCEDURE TO PREPARE A TRICYCLINT KITONE USED IN THE CAMP
AU2003207369A1 (en) * 2002-02-18 2003-09-04 Dr. Reddy's Laboratories Limited A process for the preparation of 10-hydroxy-9-n,n-dimethylaminomethyl-5-(2'-fluoroethoxy)-20(s)-camptothecin hydrochloride
US6593334B1 (en) 2002-05-02 2003-07-15 The University Of North Carolina At Chapel Hill Camptothecin-taxoid conjugates as antimitotic and antitumor agents
US7067666B2 (en) * 2003-06-27 2006-06-27 Research Triangle Institute 7-substituted camptothecin and camptothecin analogs and methods for producing the same
RU2408387C2 (en) 2004-04-27 2011-01-10 Веллстат Байолоджикс Корпорейшн Virus and camptothecin based treatment of malignant growth
AU2006270297B2 (en) 2005-07-14 2013-01-17 Wellstat Biologics Corporation Cancer treatment using viruses, fluoropyrimidines and camptothecins
CN103288842B (en) * 2012-02-24 2016-01-13 中国人民解放军第二军医大学 Fluorine replaces E ring camptothecin analogues and the purposes as medicine thereof
CN108135917B (en) 2015-09-25 2021-07-09 Zy医疗 Pharmaceutical formulations based on particles comprising polysaccharide-vitamin conjugates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930702289A (en) * 1990-10-31 1993-09-08 스튜어트 아. 슈터 Substituted indolinino [1-2-b] quinolinones
WO1993016698A1 (en) * 1992-02-21 1993-09-02 Smithkline Beecham Corporation SUBSTITUTED FURO[3',4':6,7]INDOLIZINO[1,2-b]QUINOLINONES

Also Published As

Publication number Publication date
HUP9802407A1 (en) 1999-04-28
WO1997016454A1 (en) 1997-05-09
NO324308B1 (en) 2007-09-24
IS2274B (en) 2007-09-15
EP0876373B1 (en) 2005-08-10
EA001400B1 (en) 2001-02-26
CA2236420A1 (en) 1997-05-09
NO981970D0 (en) 1998-04-30
NO981970L (en) 1998-06-30
NZ322318A (en) 2000-01-28
PL326869A1 (en) 1998-10-26
ES2247606T3 (en) 2006-03-01
US6284891B1 (en) 2001-09-04
JPH11515028A (en) 1999-12-21
ATE301659T1 (en) 2005-08-15
EA199800354A1 (en) 1999-02-25
US6143891A (en) 2000-11-07
IS4730A (en) 1998-04-29
IL124287A (en) 2004-06-01
DE69635057D1 (en) 2005-09-15
DE69635057T2 (en) 2006-06-01
EP0876373A1 (en) 1998-11-11
CZ133898A3 (en) 1998-08-12
PL186540B1 (en) 2004-01-30
AU717315B2 (en) 2000-03-23
HUP9802407A3 (en) 2000-01-28
JP3499246B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
EP1254908B1 (en) Preparation of a camptothecin derivative by intramolecular cyclisation
US10654865B2 (en) Enantioselective syntheses of heteroyohimbine natural product intermediates
US6043359A (en) Processes for the preparation of derivatives of 4a,5,9,10,11,12-hexahydro-6H-benzofuro-[3a,3,2-ef][2]benzazepine
PL185354B1 (en) Novel analoques of campotectin, methods of obtaining them and applying them as medicines as well as pharmaceutic compounds containing them
EP0876373B1 (en) Method for preparing camptothecin derivatives
US5405963A (en) Process for asymmetric total synthesis of camptothecin analogues
US6239278B1 (en) Intermediates in the synthesis of (±)-camptothecin and related compounds and synthesis thereof
US6407229B1 (en) Processes for the preparation of derivatives of 4a,5,9,10,11,12-hexahydro-6H-benzofuro-[3a,3,2-ef][2] benzazapine
KR960002854B1 (en) Fluoro ethyl camptothecin derivatives
US6716982B2 (en) Method for preparing camptothecin derivatives
US5459269A (en) 14-halo-camptothecins
PL202393B1 (en) Optically pure camptothecin analogues
US6815546B2 (en) Analogues of camptothecin, their use as medicaments and the pharmaceutical compositions containing them
US6559309B2 (en) Preparation of a camptothecin derivative by intramolecular cyclisation

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: GILEAD SCIENCES, INC.

Free format text: FORMER OWNER WAS: GLAXO WELLCOME INC.

PC Assignment registered

Owner name: OSI PHARMACEUTICALS, INC.

Free format text: FORMER OWNER WAS: GILEAD SCIENCES, INC.