AU760352B2 - Hydraulic weighing apparatus and method - Google Patents

Hydraulic weighing apparatus and method Download PDF

Info

Publication number
AU760352B2
AU760352B2 AU24227/00A AU2422700A AU760352B2 AU 760352 B2 AU760352 B2 AU 760352B2 AU 24227/00 A AU24227/00 A AU 24227/00A AU 2422700 A AU2422700 A AU 2422700A AU 760352 B2 AU760352 B2 AU 760352B2
Authority
AU
Australia
Prior art keywords
hydraulic
pressure
lifting
weighing apparatus
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU24227/00A
Other versions
AU2422700A (en
Inventor
Richard Creswick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tek Solutions Pty Ltd
Original Assignee
Tek Solutions Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPP7851A external-priority patent/AUPP785198A0/en
Application filed by Tek Solutions Pty Ltd filed Critical Tek Solutions Pty Ltd
Priority to AU24227/00A priority Critical patent/AU760352B2/en
Publication of AU2422700A publication Critical patent/AU2422700A/en
Application granted granted Critical
Publication of AU760352B2 publication Critical patent/AU760352B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

WO 00/37899 PCT/AU99/01160 1 Hydraulic weighing apparatus and method Field of the Invention This invention relates to a hydraulic weighing apparatus and method.
In particular, the invention relates to an apparatus and method for dynamic weighing, in which the weight to be measured is moved by a hydraulic cylinder, a rotary actuator, or the like, and in particular, to such a method and apparatus for use in weighing commercial and/or domestic waste Background of the Invention Waste or refuse is produced by both domestic households and commercial organisations. The service of waste removal is commonly carried out by municipal councils, particularly in the case of domestic households.
In some arenas, waste is also collected by commercial organisations often acting on behalf of municipal councils. Most domestic households, pay a fixed rate for disposal of refuse which is independent of the amount of refuse the household produces. However, as councils become increasingly concerned about the environment, the cost of landfill, and the need to encourage people to recycle more household waste, attention is now being paid to reducing the amount of refuse households provide and to encourage them to recycle as much of their waste as possible. Further, governments are putting pressure on councils to reduce the amount of waste that goes to landfill. This can only be achieved by separating recyclable material and biodegradable materials that previously went to landfill, from waste. Thus, many municipal councils are now considering introducing incentive schemes where residents pay for the refuse collection service and have weight limits.
Most industrial weighing systems operate using a load cell which is mounted on a structural member and the deformation of the member is used to calculate the weight of the object. However, static weighing is much too slow for use in a waste collection environment, since such technology, and other weighing technology requires a set period of time to perform the weighing function. This would increase the time required to complete the waste collection service and would be unacceptable in terms of efficiency.
Thus, any practical weighing system for use in waste management must be able to weigh dynamically whilst the waste is actually being loaded onto a refuse collection vehicle.
WO 00/37899 PCT/AU99/01160 2 Although dynamic weighing systems have been proposed, most of these systems are unreliable and inaccurate often because they fail to compensate for variables in the weighing process.
It is an object of the present invention to provide an apparatus and method which alleviates the problems of the prior art and enables dynamic weighing of waste bins and the like within acceptable degrees of accuracy.
Summary of the Invention Thus according to the present invention, there is provided a hydraulic lifting system/apparatus comprising a lifting arm, frame or the like adapted to carry a load whose weight is to be measured, the arm or frame being moved by a hydraulic actuator means such as a hydraulically operated piston and cylinder arrangement, or a rotary actuator or the like, operable to cause the arm to move due to the flow of hydraulic fluid into or out of the hydraulic actuator means, including a first pressure sensing means for measuring the pressure of the hydraulic fluid in the system, and characterised by means for determining changes in the flow characteristics of the hydraulic fluid and means for calculating the weight of the load based on the pressure measurements made by the first pressure sensing means while compensating for changes in flow characteristics as measured by the means for determining changes in the flow characteristics.
In a preferred embodiment, the means for determining changes in the flow characteristics include an orifice disposed in the hydraulic line. The first pressure sensing means is disposed on one side of the orifice. A second pressure sensing means is disposed on the opposite side of the orifice. The measurements from the first and second pressure can be used to calculate a pressure differential across the orifice. The kinematic viscosity of the hydraulic fluid is related to the pressure differential either side of the orifice plate. Knowledge of the kinematic viscosity of the hydraulic fluid can be used to compensate for changes in hydraulic fluid flow characteristics (which are primarily brought about by an increase in temperature) which would otherwise affect the accuracy of the weight measurement. Variations of as much as 30% in the measured value of the weight could occur between weight measurements made when the hydraulic fluid is cold and measurements made when the hydraulic fluid has reached its normal WO 00/37899 PCT/AU99/01160 3 working temperature, if no account is taken of changes in flow characteristics.
Typically, each pressure sensing means will make a series of pressure measurements each defining a sequence of pressure measurements which can be used to produce an average pressure measurement for each pressure sensing means.
Another potential source of changes in flow rate, arise from the use of valves to operate lifting members. If the valve is not fully opened by the operator, variations in flow rate each time the arm is lifted, will occur.
In an alternative embodiment, instead of the orifice, the apparatus includes a temperature sensor. As the hydraulic fluid warms up its kinematic viscosity decreases and it becomes more free flowing. The temperature of the oil can be used to indirectly calculate changes in flow characteristics. However pressure difference measurement is preferable as it is more accurate and responsive than calculating theoretical changes due to temperature changes.
The apparatus may incorporate both the orifice and the temperature sensor.
In one embodiment, a hydraulic pump which pumps fluid to the hydraulic actuator to move the lifting arm operates at a constant volume flow rate during most of the movement of the arm, except for the periods when the arm stops and starts moving. The pressure measurements made by the first and second pressure sensing means are taken between two set points in most cases, while volume flow rate is theoretically constant and the arm is ideally travelling at a constant velocity, thus obviating the requirement for any accelerometer or other means for measuring the acceleration of the arm.
However, for hydraulic flows which provide non-uniform movement between the two sensors, an accelerometer could be used to detect that nonuniform movement and this information could be imported into the main calculation.
However, a constant flow rate pump is not essential and it is possible to calculate flow rate and variations in flow rate from measurements of the time it takes the lifting arm to move a set distance.
WO 00/37899 PCT/AU99/01160 4 It is preferred that the apparatus includes a means for measuring the time it takes for the lifting device to move between the two set points. The time taken for the arm to move between the two points gives the flow rate.
Corrections can be made to account for any variations in the normally constant velocity of the lifting arm.
The system of the present invention is particularly suitable for use on waste collection vehicles, however it could also be used on other hydraulic lifting apparatus such as forklifts. It will be appreciated that existing waste collection vehicles can be simply converted to the system of the present invention by for example, simply placing an orifice and pressure sensors into the vehicle's hydraulic line plus other sensors including temperature sensors if desired, and link them to appropriate control and calculation means.
The system simply uses the existing hydraulics of the vehicle and it is not necessary to fit load cells or other weight sensing devices to the lifting mechanism to make weight measurements. Thus, the system of the present invention can be implemented relatively simply and without major mechanical modifications.
The system also preferably includes level measurement apparatus which is adapted to compensate for variations in the attitude of the base frame to which the lifting arm is attached which would affect the measured weight.
The invention also encompasses a method of dynamically weighing a load carried on a lifting member moved by a hydraulic actuator, the hydraulic actuator being operable to cause the lifting member to move due to the flow of hydraulic fluid into or out of the hydraulic actuator means, comprising the steps of, during the lifting of the weight by the lifting member; measuring the pressure of the hydraulic fluid in the system using a first pressure sensor; measuring variations in flow characteristics of the hydraulic fluid in the system; calculating the weight of the load based on the pressure measured by the first pressure sensors, the calculating step including compensating for variations in flow characteristics of hydraulic fluid.
WO 00/37899 PCT/AU99/01160 In one embodiment the step of measuring variations in the flow characteristics includes the step of; measuring the pressure of the hydraulic fluid in the system using a second pressure sensor, wherein the first and second sensors are disposed either side of an orifice in the hydraulic line and calculating the pressure differential across the orifice.
Brief Description of the Drawing A specific embodiment of the present invention will now be described by way of example only and with reference to the accompanying Figure 1 which is a schematic representation of apparatus embodying the present invention.
Detailed Description of a Preferred Embodiment Referring to the drawing, Figure 1 shows a schematic diagram of a dynamic weight measuring apparatus embodying the present invention The Figure is not to scale.
The apparatus includes a pump 14, which supplies hydraulic fluid, typically an oil, via a control valve 13 and the flow line 12 to a hydraulic cylinder 15 and piston 16 arrangement which is operatively connected to a lifting arm 18. The pump may be, but is not necessarily, a constant volume flow rate pump. One end of the arm is mounted on a pivot 20 and the other end carries a garbage bin or the like 22. Clearly movement of the piston 16 in cylinder 15 causes the arm 18 to rotate about the pivot 20 lifting or lowering the bin 22. The cylinder and piston could be replaced by a rotary actuator in an alternative embodiment. The arm is carried on a base frame schematically represented by the line 21 which should ordinarily be horizontally oriented.
There is an orifice 24 disposed in the hydraulic line 12 between the cylinder 15 and the pump 14. Pressure transducers 26, 28 are disposed in the line either side of the orifice 24 and produce electrical signals dependent on the pressures P1 and P2 either side of the orifice 24. The pressure transducers 26, 28 are operatively connected to a control means 30 which includes a processor means.
The system may also include a temperature sensor 36 which measures the temperature of the hydraulic fluid.
WO 00/37899 PCT/AU99/01160 6 When the lifting arm 18 is operated to lift the garbage 22 and the position of the operator of the vehicle incorporating the system will open the control valve 13 to supply hydraulic fluid to the cylinder for lifting. Often, in practice, the operator will not open the valve fully. The lifting arm 18 moves about an arc, whose centre is the pivot 20. The arm moves between two positions X1 and X2 illustrated in phantom in the Figure. The time t it takes the arm to rotate through positions X1 and X2 depends on the flow rate of the hydraulic fluid through the pump 14 and the position of the operator's control valve. The time t taken to move between those two points is measured. If any variations occur in the time t, corrections can be made to the measured weight to make allowances for changes in flow rate of the hydraulic fluid. Variations in the system dependent on the different loads lifted show up in the pressures measured by transducers 26, 28.
The system has to compensate for circumstances which affect accurate measurements of the weight. Thus, the apparatus includes level measurement means 34 which measures the lateral and longitudinal orientation angle of the base frame 21 of the vehicle/lifting apparatus and can thus compensate for differences in the weight of the garbage caused by the vehicle being on a slope.
The weight can then be calculated by multiplying the voltage value given by the pressure transducer 26 by a multiplier G1 which is obtained through calibrating the apparatus with known weights. The calculated weight is adjusted to compensate for differences in the flow characteristics of the hydraulic oil and the orientation/angle of the vehicle as measured by the level measurement means 34.
The weight W is generally given by the following equation.
W=G
1
P
2 (1 k, (P 2
P
1 k2 k3 1 cos.x cos.y
P
2 is the pressure measured by the second pressure sensor (may be an averaged value).
x is the longitudinal or forward angle of inclination of the base frame from the horizontal.
y is the lateral or sideways inclination of the base frame from the horizontal.
k 1 k 2 k 3 are multiples.
WO 00/37899 PCT/AU99/01160 7 Because the system weighs by sensing the pressure of the oil in the hydraulic system, vibrations can be compensated for by compressionof the oil.
A further important feature of the invention is that because variations in the flow characteristics and flow rate are compensated for, inaccuracies such as the operator's valve being only partly open. Hydraulic fluid leaks in the system also are compensated for automatically, since the system measures the pressure of the hydraulic fluid.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims (21)

1. A hydraulic lifting system/apparatus comprising a lifting arm, frame or the like adapted to carry a load whose weight is to be measured, the arm or frame being moved by a hydraulic actuator means such as a hydraulically operated piston and cylinder arrangement, or a rotary actuator or the like, operable to cause the arm to move due to the flow of hydraulic fluid into or out of the hydraulic actuator means, including a first pressure sensing means for measuring the pressure of the hydraulic fluid in the system, and characterised by means for determining changes in the flow characteristics of the hydraulic fluid and means for calculating the weight of the load based on the pressure measurements made by the first pressure sensing means while compensating for changes in flow characteristics as measured by the means for determining changes in the flow characteristics.
2. A hydraulic lifting and weighing apparatus as claimed in claim 1 wherein the means for determining changes in the flow characteristics include an orifice disposed in a hydraulic line to create a pressure differential between the first pressure sensing means and a second pressure sensing means.
3. A hydraulic lifting and weighing apparatus as claimed in claim 1 or claim 2 wherein each pressure sensing means makes a series of pressure measurements each defining a sequence of pressure measurements which are used to produce an average pressure measurement for each pressure sensing means.
4. A hydraulic lifting and weighing apparatus as claimed in any preceding claim wherein the lifting member is a lifting arm.
A hydraulic lifting and weighing apparatus as claimed in claim 4 wherein the lifting member is a frame.
6. A hydraulic lifting and weighing apparatus as claimed in any preceding claim wherein the hydraulic actuator means is a hydraulic cylinder.
7. A hydraulic lifting and weighing apparatus as claimed in claims 1 to wherein the hydraulic actuator means is a rotary actuator.
8. A hydraulic lifting and weighing apparatus as claimed in any preceding claim further including a temperature sensor and processing means for indirectly calculating changes in flow characteristics due to temperature changes. WO 00/37899 PCT/AU99/01160 9
9. A hydraulic lifting and weighing apparatus as claimed in any preceding claim wherein a hydraulic pump which pumps fluid to the hydraulic actuator to move the lifting member except for the periods when the arm stops and starts moving, and wherein the pressure measurements made by the first and second pressure sensing means are taken between two set points while the arm is travelling at a constant speed.
A hydraulic lifting and weighing apparatus as claimed in claim 9 further including a means for measuring the time taken for the lifting member to move between the two set points to enable corrections to be made to account for any variations in the normally constant velocity of the lifting member.
11. A hydraulic lifting and weighing apparatus as claimed in any preceding claim including level measurement apparatus which are adapted to compensate for variations in the attitude of the lifting arm which would affect the weight measured by the apparatus.
12. A vehicle incorporating a hydraulic lifting and weighing apparatus as claimed in any preceding claim.
13. A vehicle as claimed in claim 12 wherein the vehicle is a refuse collection vehicle.
14. A vehicle as claimed in claim 12 wherein the vehicle is a fork lift truck.
A method of dynamically weighing a load carried on a lifting member moved by a hydraulic actuator, the hydraulic actuator being operable to cause the lifting member to move due to the flow of hydraulic fluid into or out of the hydraulic actuator means, comprising the steps of, during the lifting of the weight by the lifting member; measuring the pressure of the hydraulic fluid in the system using a first pressure sensor; measuring variations in flow characteristics of hydraulic fluid; calculating the weight of the load based on the pressure measured by the first and second pressure sensors, the calculating step including compensating for variations in flow characteristics of hydraulic fluid.
16. A method as claimed in claim 15 wherein the step of measuring variations in the flow characteristics includes the step of measuring the pressure of the hydraulic fluid in the system using a second pressure sensor, WO 00/37899 PCT/AU99/01160 wherein the first and second pressure sensors are disposed either side of an orifice in the hydraulic flow line.
17. A method as claimed in claim 15 or claim 16 wherein the step of measuring the pressure using the pressure sensors, involves the making a series of pressure measurements defining a sequence of pressure measurements and averaging the pressure measurement for each pressure sensor.
18. A method as claimed in any one of claims 15 to 17 further including the step of measuring the temperature and processing the temperature readings for calculating changes in flow characteristics of the hydraulic fluid due to temperature changes.
19. A method as claimed in any one of claim 18 wherein the pressure measurements made by the first and second pressure sensors are taken between two set points while the volume flow rate of hydraulic fluid is theoretically constant and that the lifting member is travelling at a constant speed.
A method as claimed in any one of claims 15 to 19 further including the step of measuring the time taken for the lifting member moved between the two set points to enable corrections to be made to account for any variations in the normal constant velocity of the lifting member.
21. A method as claimed in any one of claims 15 to 20 further including the step of compensating for variations in the altitude in the lifting arm.
AU24227/00A 1998-12-21 1999-12-21 Hydraulic weighing apparatus and method Ceased AU760352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU24227/00A AU760352B2 (en) 1998-12-21 1999-12-21 Hydraulic weighing apparatus and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPP7851A AUPP785198A0 (en) 1998-12-21 1998-12-21 Hydraulic weighing apparatus and method
AUPP7851 1998-12-21
PCT/AU1999/001160 WO2000037899A1 (en) 1998-12-21 1999-12-21 Hydraulic weighing apparatus and method
AU24227/00A AU760352B2 (en) 1998-12-21 1999-12-21 Hydraulic weighing apparatus and method

Publications (2)

Publication Number Publication Date
AU2422700A AU2422700A (en) 2000-07-12
AU760352B2 true AU760352B2 (en) 2003-05-15

Family

ID=25619282

Family Applications (1)

Application Number Title Priority Date Filing Date
AU24227/00A Ceased AU760352B2 (en) 1998-12-21 1999-12-21 Hydraulic weighing apparatus and method

Country Status (1)

Country Link
AU (1) AU760352B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000270A1 (en) * 1985-06-25 1987-01-15 Caterpillar Inc. Payload monitor
WO1992005409A1 (en) * 1990-09-14 1992-04-02 Caterpillar Inc. Dynamic payload monitor
DE19724057A1 (en) * 1997-06-07 1998-12-10 Pfreundt Gmbh & Co Kg Method for weighing hydraulically moving parts used to lift payloads

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000270A1 (en) * 1985-06-25 1987-01-15 Caterpillar Inc. Payload monitor
WO1992005409A1 (en) * 1990-09-14 1992-04-02 Caterpillar Inc. Dynamic payload monitor
DE19724057A1 (en) * 1997-06-07 1998-12-10 Pfreundt Gmbh & Co Kg Method for weighing hydraulically moving parts used to lift payloads

Also Published As

Publication number Publication date
AU2422700A (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US6627825B1 (en) Hydraulic weighing apparatus and method
US5717167A (en) Device and method for weighing solid waste with an angle-correction scale
US4230196A (en) Load weighing and accumulating system and method for hydraulic loader
US5182712A (en) Dynamic payload monitor
AU712101B2 (en) Refuse weighing system and method
US5178226A (en) Load measuring system for refuse trucks
US5245137A (en) Load measuring system for refuse trucks
US5917159A (en) Dynamic load weighing system
US8126619B2 (en) Weight calculation compensation
CN203269113U (en) Program control metering quick-loading device
US20120285750A1 (en) Weight measurement system for accurately determining the weight of material in a container being lifted
CN200982885Y (en) Automatic weighting device of loader
WO1992003708A1 (en) Dynamic payload monitor
CN104724638B (en) The method that forklift weighing device and fork truck are weighed automatically
EP1893955A1 (en) Method of weight determination of a load carried by a lifter of a lifting device and weighing device
CN101832810B (en) High-precision metering loading machine
US5065829A (en) Hydraulic control system for weighing
AU760352B2 (en) Hydraulic weighing apparatus and method
CN112777184A (en) Automatic weighing monitoring equipment of garbage loading vehicle
CN209085743U (en) For rubbish loading vehicles to canned garbage automatic weighing equipment
US5064008A (en) Hydraulic control system for weighing
CN103909858A (en) Plate spring suspension vehicle self-weighing system
AU2012232994A1 (en) Weighing system and method of weighing loads
US5065828A (en) Hydraulic control system for weighing
CN200979446Y (en) An electronic weigher for forklifts

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)