AU756496B2 - Conveying particulate material in a pressurised gas - Google Patents

Conveying particulate material in a pressurised gas Download PDF

Info

Publication number
AU756496B2
AU756496B2 AU22688/00A AU2268800A AU756496B2 AU 756496 B2 AU756496 B2 AU 756496B2 AU 22688/00 A AU22688/00 A AU 22688/00A AU 2268800 A AU2268800 A AU 2268800A AU 756496 B2 AU756496 B2 AU 756496B2
Authority
AU
Australia
Prior art keywords
duct
pressure
particulate material
discharge
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU22688/00A
Other versions
AU2268800A (en
Inventor
Paul Shultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Birrus International Pty Ltd
Original Assignee
BIRRUS ENGINEERING Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIRRUS ENGINEERING Pty Ltd filed Critical BIRRUS ENGINEERING Pty Ltd
Priority to AU22688/00A priority Critical patent/AU756496B2/en
Priority claimed from PCT/AU1999/001138 external-priority patent/WO2000039009A1/en
Publication of AU2268800A publication Critical patent/AU2268800A/en
Application granted granted Critical
Publication of AU756496B2 publication Critical patent/AU756496B2/en
Assigned to BIRRUS INTERNATIONAL PTY LTD reassignment BIRRUS INTERNATIONAL PTY LTD Alteration of Name(s) of Applicant(s) under S113 Assignors: BIRRUS ENGINEERING PTY LTD
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

WO 00/39009 PCT/AU99/01138 1 CONVEYING PARTICULATE MATERIAL IN A PRESSURISED GAS TECHNICAL FIELD This invention relates to the conveying of particulate material suspended or entrained in a pressurised gas and conveyed with the gas along a duct.
The invention has particular application to pneumatic conveying of powdery particulate material although there will be applications in which the particulate material to be conveyed is not strictly in the form of a powder and/or in which the conveying gas may be a gas other than air.
One particular application of the invention is in the field of "Dense Phase" conveying in which compressed air at relatively high pressure of the order of two bar or more is applied to a pressure vessel charged with a batch of material to be conveyed and the material is conveyed along a duct extending from the pressure vessel to a discharge outlet from the duct, usually into a discharge vessel. Conveying rates in such systems vary widely, commonly falling in the range 5 to 50 tonne/hr but can be anything from under 1 tonne/hr to over 1000 tonne/hr.
Conveying distances can vary between a few hundred metres to several kilometres.
Dense Phase pneumatic conveying is used for conveying a wide range of powdery or fine grained materials such as mineral powders, fine granular aluminium, cement, quick lime, coal dust, flour and other food powders, and pharmaceutical powders. Some of these materials can be difficult to handle in that they cause abrasive damage to the conveying duct and the material itself can suffer severe and detrimental attrition in passing through the duct. It is therefore important to control the peak velocity of the material passing through the conveyor duct.
In a conventional system the pressure along the duct steadily reduces at a constant rate throughout the length of the duct to fall to atmospheric pressure at the WO 00/39009 PCT/AU99/01138 2 discharge end of the duct. Accordingly, if the duct is a simple cylindrical pipe of constant diameter, the velocity of the material flowing through the duct will progressively rise as the pressure declines and this can result in extremely high velocities in the pipe. It is therefore normal to provide a duct in the form of stepped piping of successively increasing diameter so as to produce successive step-wise reductions in velocity of the material along the pipe. This adds to the complexity of the system, requiring careful design, fabrication and installation.
Particularly in long distance applications it can also result in a need for very large diameter pipes. All of these factors produce sufficiently increased costs.
Moreover, the velocities of material in the duct can still be excessive and with many materials, duct abrasion and material attrition remains a problem. By the present invention these problems can be very significantly reduced and the fabrication of the conveyor ducting can be very much simplified.
DISCLOSURE OF THE INVENTION According to the invention there is provided a method of conveying particulate material comprising: locating a quantity of particulate material to be conveyed within a pressure vessel; pressurising the pressure vessel with pressurised gas; directing pressurised gas and entrained particulate material from the pressure vessel into a conveyor duct through which the material is conveyed to a discharge location; and discharging the conveyed particulate material from the duct at the discharge location; wherein the flow of gas and entrained particulate material discharging from the duct is subjected to constriction producing a discrete pressure drop of at least 3 Preferably, the conveyed material is discharged from the duct into a receiving vessel at said discharge location, the pressure within the discharge end of the duct upstream of the restriction being at least greater than the pressure within the discharge vessel.
The pressurised gas may be pressurised air and the interior of the discharge vessel may be at atmospheric pressure.
Preferably, the pressure drop caused by the restriction of the discharge flow is in the range 100 to 200kPa.
The pressure vessel may be pressurised to a pressure of at least 3 bar.
The particulate material may be conveyed through 15 said duct through a distance in the range 50 meters to km, although even greater distances are feasible.
The invention also provides conveyor apparatus for conveying particulate material, comprising: a pressure vessel to receive a charge of particulate 20 material to be conveyed; So pressurising means to pressurise the pressure vessel with pressurised gas; a conveyor duct having an inlet connected to the pressure vessel to receive pressurised gas and entrained 25 particulate material from the pressure vessel and extending to a discharge end of the duct; and a flow restrictor at the discharge end of the duct to present a discrete reduction of at least 20% in the effective cross-sectional area for flow from the discharge end of the duct so as in use of the apparatus to cause a discrete pressure drop in flow through the restrictor.
Preferably, the discharge end of the duct is connected to a discharge vessel to receive the discharging flow of gas and conveyed particulate material.
The pressurising means may comprise means to admit pressurised air into the pressure vessel. That means may comprise an air compressor providing a source of the pressurised air.
H: \Rache\keep\specifictions \22688-00 amendments.doc 24/10/02 WO 00/39009 PCT/AU99/01138 4 The duct may be in the form of a tubular pipe.
The restrictor may be in the form of an orifice plate installed in the discharge end of the duct and provided with an orifice providing the reduced crosssectional area for discharge flow.
The orifice plate may, for example, be an annular plate defining a circular central orifice.
BRIEF DESCRIPTION OF THE DRAWINGS In order that the invention may be more fully explained one particular embodiment will be described with reference to the accompanying drawings in which: Figure 1 is a schematic diagram of a pneumatic conveyor system constructed and operated in accordance with the present invention; Figure 1A is an enlarged cross-section through part of the system shown in Figure 1; Figure 2 is a diagram contrasting the pressure and velocity variations along a conveyor duct in a typical conventional "Dense Phase" pneumatic conveyor system with the pressure variation along a duct in a an equivalent "Dense Phase" system according to the present invention; and Figure 3 is a diagram contrasting flow velocities experienced in the conventional system with velocities experienced in the equivalent system according to the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Figure 1 diagrammatically illustrates a "Dense Phase" pneumatic conveyor system comprising a pressure vessel 11, a long conveyor duct 12 connected to the bottom of the pressure vessel 11 through a duct inlet 13 fitted with a control valve 14 and extending to a duct outlet connected to a discharge vessel 16.
A particulate feed hopper 17 is connected to the upper end of pressure vessel 11 to enable a charge of WO 00/39009 PCT/AU99/01r138 5 particulate material to be delivered into the vessel and the vessel. The vessel can then be sealed by closing an upper valve 18 and the interior of the vessel pressurised by the supply of compressed air through an air inlet 19.
Depending on the particular application, the compressed air may be supplied from a standard plant reticulated air supply at pressure of the order of 4 to 8 bar or, it may be supplied from a dedicated air compressor which may supply air at considerably higher pressures, for example the order of 45 bar.
When pressure vessel 11 has been pressurised, valve 14 is opened to allow pressurised air and entrained particulate material to flow through duct 12 to the duct discharge end 15 where it discharges into discharge vessel 16 the interior of which is at atmospheric pressure. In a conventional system the pressure in duct 12 reduces in a linear fashion from the inlet 13 through to the discharge duct end 15 in the manner indicated by line A in Figure 2 which plots the duct pressure against distance along the duct from the duct inlet to the duct outlet. If a duct of constant cross-section were to be used with such a pressure distribution the velocity within the duct would progressively increase in the manner indicated by line B in Figure 3. For this reason, it is normal in conventional systems to employ stepped ducts made from pipe lengths of successively increasing diameter so as to produce a step wise velocity reduction and peak velocity control in the manner indicated by line C in Figure 3.
In accordance with the present invention the discharge end of conveyor duct 12 is fitted with the restrictor 21 in the form of an annular orifice plate defining a central circular orifice 22. This restrictor produces a discrete constriction of the flow discharging from the discharge end of duct 15 into vessel 16 producing a discrete pressure drop of at least 5kPa. In order to achieve this result the orifice plate should be dimensioned so as to produce a discrete reduction of the order of WO 00/39009 PCT/AU99/01138 6 or more in the effective cross-sectional area for the discharge flow. For most applications the most useful results will be achieved if the pressure drop caused by the restrictor is in the range 100 to 200 kPa. The effect of the pressure drop is that the reduction of pressure along the duct 12 upstream from the restrictor is very much reduced and it possible to maintain much lower velocities within the duct. For most applications it is possible to avoid the need for a stepped pipe arrangement and to employ piping of substantially constant diameter of the length of the pipe.
Line D in Figure 2 shows the pressure distribution along the duct upstream and through the restrictor 21 and line E in Figure 3 shows the flow velocity along eh duct. The region upstream of the restrictor is maintained at a much more constant and higher pressure than compared with the conventional system right.
The higher pressure is maintained through to the restrictor where there is a discrete pressure drop. Because of this pressure distribution the velocity of the material within duct 12 will rise only slightly throughout the length of the duct through to the restrictor 21. Accordingly, abrasion and material attrition problems are very much reduced and it is possible to employ standard steel pressure piping of essentially constant diameter.
In a typical installation the duct may be made from standard pressure piping having a diameter in the range 60mm to 300mm. The pressure vessel may typically range from a few cubic meters to 20 cubic meters although smaller or large vessels would be possible. Systems in accordance with the invention may be low capacity systems conveying volumes of the order of only 300 kgm/hr.
However, for other applications such as ship unloading a system could have a much higher capacity the order of several hundred tonnes/hr. A typical system may employ standard plant compressed air supplied at around 6 bar to produce a useable pressure in the pressure vessel in the WO 00/39009 PCTIAU99/01138 7 order of 5 bar, although in some applications a dedicated pressure may be provided to provide much higher pressures of the order higher pressures. For example, 45 bar compressors are readily available.
The duct may range in length from 50 meters to the order of 5 kilometres. Because of the more constant pressure and very low velocity transportation system achieved by the invention it is feasible to design systems for transport over even longer distances.
The systems in accordance with the invention are best suited to conveying powdery material although other fine particulate materials in flakes, granules or fibres could be feasibly be transported. The system could be applied to hot materials if the pressure vessel and conveyor duct is fitted with suitable refractory linings.
Particularly in applications dealing with hot materials it may be necessary to hold the material in an inert atmosphere in which case the conveying gas may be an inert gas. It is accordingly to be understood that the invention is in no way limited to the specific system which has been described in detail or to pneumatic systems and that many variations will fall within the scope of the appended claims.

Claims (13)

1. A method of conveying particulate material comprising: locating a quantity of particulate material to be conveyed within a pressure vessel; pressurising the pressure vessel with pressurised gas; directing pressurised gas and entrained particulate material from the pressure vessel into a conveyor duct through which the material is conveyed to a discharge location; and discharging the conveyed particulate material from the duct at the discharge location; wherein the flow of gas and entrained particulate material discharging from the duct is subjected to constriction producing a discrete pressure drop of at least
2. A method as claimed in claim 1, wherein the conveyed material is discharged form the duct into a receiving vessel at said discharge location, the pressure within the discharge end of the duct upstream of the restriction being at least 5kPa greater than the pressure within the discharge vessel.
3. A method as claimed in claim 1 or claim 2, wherein the pressurised gas is pressurised air and the interior of the discharge vessel is at atmospheric pressure.
4. A method as claimed in any one of claim 1 to 3, wherein the pressure drop caused by the restriction of the discharge flow is in the range 100 to 200kPa.
A method as claimed in any one of the preceding claims, wherein the pressure vessel is pressurised to a pressure of at least 3 bar.
6. A method as claimed in any one of the preceding claims wherein the particulate material is conveyed through said duct through a distance of at least 50 meters.
7. Conveyor apparatus for conveying particulate 9 material, comprising: a pressure vessel to receive a charge of particulate material to be conveyed; pressurising means to pressurise the pressure vessel with pressurised gas; a conveyor duct having an inlet connected to the pressure vessel to receive pressurised gas and entrained particulate material from the pressure vessel and extending to a discharge end of the duct; and a flow restrictor at the discharge end of the duct to present a discrete reduction of at least 20% in the effective cross-sectional area for flow from the discharge end of the duct so as in use of the apparatus to cause a discrete pressure drop in flow through the 15 restrictor. S.
8. Conveyor apparatus as claimed in claim 7, wherein the discharge end of the duct is connected to a discharge vessel to receive the discharging flow of gas and conveyed particulate material. 20
9. Conveyor apparatus as claimed in claim 7 or claim 8, wherein the pressurising means comprises means to admit pressurised air into the pressure vessel.
10. Conveyor apparatus as claimed in claim 9, wherein the pressurising means comprises an air compressor 25 providing a source of the pressurised air.
11. Conveyor apparatus as claimed in any one of claims 7 to 10, wherein the duct is in the form of a tubular pipe.
12. Conveyor apparatus as claimed in any one of claims 7 to 11, wherein the flow restrictor is in the form of an orifice plate installed in the discharge end of the duct and provided with an orifice providing the reduced cross-sectional area for discharge flow.
13. Conveyor apparatus as claimed in claim 12, wherein the orifice plate is an annular plate defining a circular central orifice. H:\Rachel\keep\specifications\22688-00 amendments.doc 24/10/02
AU22688/00A 1998-12-23 1999-12-23 Conveying particulate material in a pressurised gas Ceased AU756496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU22688/00A AU756496B2 (en) 1998-12-23 1999-12-23 Conveying particulate material in a pressurised gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPP007898 1998-12-23
AUPP7898 1998-12-23
PCT/AU1999/001138 WO2000039009A1 (en) 1998-12-23 1999-12-23 Conveying particulate material in a pressurised gas
AU22688/00A AU756496B2 (en) 1998-12-23 1999-12-23 Conveying particulate material in a pressurised gas

Publications (2)

Publication Number Publication Date
AU2268800A AU2268800A (en) 2000-07-31
AU756496B2 true AU756496B2 (en) 2003-01-16

Family

ID=25618685

Family Applications (1)

Application Number Title Priority Date Filing Date
AU22688/00A Ceased AU756496B2 (en) 1998-12-23 1999-12-23 Conveying particulate material in a pressurised gas

Country Status (1)

Country Link
AU (1) AU756496B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224330A1 (en) * 1985-10-22 1987-06-03 Coalair Systems Ltd High speed auger venturi system and method for conveying bulk materials
WO1997027135A1 (en) * 1996-01-22 1997-07-31 Comalco Aluminium Limited Dense phase transport

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224330A1 (en) * 1985-10-22 1987-06-03 Coalair Systems Ltd High speed auger venturi system and method for conveying bulk materials
WO1997027135A1 (en) * 1996-01-22 1997-07-31 Comalco Aluminium Limited Dense phase transport

Also Published As

Publication number Publication date
AU2268800A (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US6648558B1 (en) Conveying particulate material in a pressurized gas
CA2738719C (en) Device and method for pneumatically conveying bulk materials in a dense flow method
EP0988243B1 (en) A method and a device for transporting bulk material, granular material or powdery material
US6786681B2 (en) Method and apparatus for the pneumatic conveying of fine bulk material
US6749374B1 (en) Flow development chamber for creating a vortex flow and a laminar flow
AU2010330410B2 (en) Device for feeding a fluid into a solid-conveying line
US7650909B2 (en) Flow development chamber
CN100567104C (en) Take into account the pneumatic conveyer of powder and pellet
KR20170047358A (en) Pressurising of bulk material in lock hoppers
CN104541119A (en) Installation for distributing pulverulent substance by pneumatic transportation, comprising a device for depressurizing a pressurized reservoir in which said substance is stored
US6659118B2 (en) Flow development chamber
CA1048761A (en) Conduit
AU756496B2 (en) Conveying particulate material in a pressurised gas
GB2179099A (en) Vacuum aerator feed nozzle
US3210131A (en) Conveying system for particulate materials
WO2000048723A1 (en) Mobile unit for transporting catalyst particles
US11161699B2 (en) Solids conveying with multi-diameter piping circuit
RU2044892C1 (en) Method for filling underground workings with self-cementing metallurgical wastes and device for its realization
JP3528696B2 (en) Method and apparatus for blowing powder
US3447789A (en) Portable perlite handling apparatus and method
US3776601A (en) Method and apparatus for conveying particulate material upwardly in a gas stream
RU2192378C1 (en) Loose material pneumatic transportation device
Dikty et al. Energy-saving pneumatic conveying pipe system
SU885128A1 (en) Apparatus for pneumatic feeding-out of loose materials
Fruchtbaum Pneumatic Conveying

Legal Events

Date Code Title Description
MK6 Application lapsed section 142(2)(f)/reg. 8.3(3) - pct applic. not entering national phase
TH Corrigenda

Free format text: IN VOL 14, NO 40, PAGE(S) 7168-7171 UNDER THE HEADING APPLICATIONS LAPSED, REFUSED OR WITHDRAWN PLEASE DELETE ALL REFERENCE TO APPLICATION NO. 22688/00 AND 22872/00

PC1 Assignment before grant (sect. 113)

Owner name: BIRRUS INTERNATIONAL PTY LTD

Free format text: THE FORMER OWNER WAS: BIRRUS ENGINEERING PTY LTD

FGA Letters patent sealed or granted (standard patent)