AU748072B2 - Bearing slab and method of making the same - Google Patents
Bearing slab and method of making the same Download PDFInfo
- Publication number
- AU748072B2 AU748072B2 AU13679/01A AU1367901A AU748072B2 AU 748072 B2 AU748072 B2 AU 748072B2 AU 13679/01 A AU13679/01 A AU 13679/01A AU 1367901 A AU1367901 A AU 1367901A AU 748072 B2 AU748072 B2 AU 748072B2
- Authority
- AU
- Australia
- Prior art keywords
- layer
- bearing
- spa
- polymer alloy
- slippery polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title description 8
- 229920001971 elastomer Polymers 0.000 claims description 54
- 239000005060 rubber Substances 0.000 claims description 33
- 229920000642 polymer Polymers 0.000 claims description 28
- 239000000956 alloy Substances 0.000 claims description 25
- 229910045601 alloy Inorganic materials 0.000 claims description 25
- 229920000728 polyester Polymers 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 229910003460 diamond Inorganic materials 0.000 claims description 4
- 239000010432 diamond Substances 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 35
- 150000001875 compounds Chemical class 0.000 description 21
- 239000000806 elastomer Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 19
- 239000000853 adhesive Substances 0.000 description 16
- 230000001070 adhesive effect Effects 0.000 description 16
- 239000002131 composite material Substances 0.000 description 13
- 239000000314 lubricant Substances 0.000 description 10
- 229920000459 Nitrile rubber Polymers 0.000 description 9
- 238000003754 machining Methods 0.000 description 9
- 229920001169 thermoplastic Polymers 0.000 description 9
- 239000004416 thermosoftening plastic Substances 0.000 description 9
- 239000004744 fabric Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229920002799 BoPET Polymers 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- 239000005041 Mylar™ Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 4
- 229920002943 EPDM rubber Polymers 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 239000011152 fibreglass Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229920013683 Celanese Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical group S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 241001269524 Dura Species 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229920002449 FKM Polymers 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229920013646 Hycar Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229920005560 fluorosilicone rubber Polymers 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
Description
P/00/012 Regulation 3.2
AUSTRALIA
Patents Act 1990
ORIGINAL
COMPLETE SPECIFICATION DIVISIONAL PATENT Invention Title: "BEARING SLAB AND METHOD OF MAKING THE SAME" The following statement is a full description of this invention, including the best method of performing it known to me/us: 2
TITLE
"BEARING SLAB AND METHOD OF MAKING THE SAME" TECHNICAL FIELD THIS INVENTION relates to a bearing slab and more particularly to a new and novel bearing slab for use in supporting a water lubricated propeller shaft as in large navel ships.
BACKGROUND OF THE INVENTION Bearing assemblies with elastomeric bearing elements are known to be particularly well suited for this purpose because of their excellent ability to withstand the effects of corrosive fluids and to abrasion resulting from particles of foreign matter carried in suspension in the sea water in which the shaft and bearing assembly operates.
.l.O 15 One type of such bearing assembly includes an outer nonoooo o corrosive support or shell and a plurality of circumferentially evenly spaced ooooe elastomeric staves provided therein which support by selectively ••ooo contacting the shaft.
oo o Another type of such bearing assembly includes an outer ooooo •0020 non-corrosive support or shell and a larger elastomeric bearing contact surface provided therein which contacts the shaft over a larger circumferential area than the stave type bearing. This type of bearing is known as a round bore or partial arc bearing (in some cases)..: known as a round bore or partial arc bearing (in some cases).
3 Partial arc bearings are difficult to manufacture because of the exacting tolerances to which they must be made. Heretofore, partial arc bearings have been manufactured by attaching bearing members to the inner surface of the shell and machining the elastomer down to the proper dimension. The machining process, however, scars the elastomer, thereby significantly raising the coefficient of friction between bearing and shaft and the wear rate of both members.
Efforts to improve such bearings and their manufacture have led to continuing developments to improve versatility, practicality and efficiency.
DISCLOSURE OF THE INVENTION One aspect of the invention is to provide a method of making a slab for use in a bearing assembly used for supporting water lubricated 15 propeller shaft in large navel ships, the method comprising of the following .oo° S:steps: providing a bottom elastomeric layer having an upper •surface and a lower surface; providing a slippery polymer alloy (SPA) layer having an upper surface and a lower surface; transferring a pattern having a plurality of raised contact points onto the upper surface of the slippery polymer alloy (SPA) layer; and 4 bonding the lower surface of the slippery polymer alloy (SPA) layer to the upper surface of the elastomeric layer, to make the slab.
Preferably, the step of transferring the pattern includes the following steps: providing a polyester sheet; placing the polyester sheet onto the slippery polymer alloy (SPA) layer before the slippery polymer alloy (SPA) is -molded; placing the slippery polymer alloy (SPA) layer and polyester sheet into a rubber mold having a pattern impressed therein; closing the mold; and pressing the pattern into the slippery polymer alloy (SPA) layer and polyester sheet.
Another aspect of the invention is to provide a bearing slab o 15 for use in a bearing assembly used for supporting a water lubricated oeoo propeller shaft in large navel ships, the bearing slab comprising; .ooo.i a bottom elastomeric layer having an upper surface; .ooo•.
•a slippery polymer alloy (SPA) layer having an upper surface and a lower surface; the upper surface of the slippery polymer (SPA) layer 20 having a plurality of raised contact points, the bottom surface of the lower slippery polymer alloy (SPA) layer being bonded to the upper surface of oo oi the bottom elastomeric layer.
The bearing slab may further include a polyester sheet layer on the top surface of the slippery polymer alloy (SPA) layer wherein the polyester sheet layer is bonded to the slippery polymer alloy (SPA) layer during the curing of the slippery polymer alloy (SPA) layer.
Preferably, the raised contact points comprise diamond shaped protuberances.
These and other objects, features and advantages of he present invention will become more apparent in the light of the detailed description of exemplary embodiments thereof, as illustrated by the drawings.
The description of the drawings in FIGS. 1-5 provided herein relating to a bearing assembly and methods of making same are provided to assist in clarifying the invention, and are not part of the invention as claimed. FIGS. 6a-6b relates to a bearing slab of the present invention, which may be a component of the bearing assembly shown in FIGS. BRIEF DESCRIPTION OF THE DRAWINGS go FIG. 1 is a side view, partly broken away, of a bearing ••go assembly.
FIG. 2 is an end view of a bearing assembly.
FIG. 2a is an enlarged detail view of the portion of FIG. 2 within line 2a-2a.
FIG. 3 is an end view of a portion of bearing material.
FIG. 4 is an isometric view of a tool for applying adhesive for S•a bearing assembly.
oeee° FIG. 4a is a top view of an adhesive pattern applied using the tool illustrated in FIG. 4 for a bearing assembly.
6 FIG. 5 is an isometric view of a bearing assembly.
FIGS. 6a-6b are isometric views of alternate embodiments for bearing material or slab for use in a bearing assembly in accordance with the present invention.
DETAILED DESCRIPTION OF THE DRAWINGS Referring to the drawings, wherein like reference numerals designate like or corresponding parts throughout the several views, there is shown in the figures a bearing assembly 10 having an outer cylindrical bearing housing 15. Disposed about an axial centerline 5. Such rigid bearing housing 15 may be a metallic structure such as brass, a plastic shell, a composite nonmetallic structure with a plurality of annularly disposed radially adjacent layers or a composite structure derived from fibers reinforced or impregnated with a resin matrix. Housing 15 has a ~flange 17 having mounting holes 18 provided therein.
15 Attached to the inner surface of housing 15 is a plurality of partial arc bearing sections 20. Bearing assembly 10 is shown having ooooo eight bearing sections 20, although more or less may be utilized. Each •bearing section 20 extends circumferentially approximately 180 degrees around the interior of housing 15. Each bearing section 20 has a smooth bearing surface 16. Bearings sections 20 define a central bore 14 for receiving a shaft (not shown) therein, which contacts the bearing surface 16. Bearing sections 20 are retained by a plurality of retaining strips 26 which are securably attached to housing 15 utilizing bolts or screws 30. It is preferred to provide chamfers 34 on the circumferential ends of sections 7 to provide a good interface with retaining strips or rails 26 and to prevent protrusion of section 20 toward the center of the bore 14.
Bearing sections 20 are preferably made of two layers 22, 24 and is preferably an elastomer layer 22 adhered to a fiberglass reinforced epoxy shell 24. An elastomer is defined as a substance that can be stretched at room temperature to at least twice its original length and, after having been stretched and the stress removed, returns with force to approximately its original length in a short time. (See Glossary of Terms as prepared by ASTM Committee D-11 on Rubber and Rubber-like Materials, published by the American Society of Testing Materials). The elastomeric or rubber material that can be used in constructing the present invention includes any of the well known elastomers, such as natural rubber, nitrile rubber, SBR rubber, copolymers of butadiene and acrylonitrile, copolymers of butadiene and styrene, copolymers of 15 butadiene and alkyl acrylates, butyl rubber, olefin rubbers such as ethylene-propylene and EPDM rubber, fluorocarbon rubbers, fluorosilicone rubbers, silicone rubber, chlorosulfonated polyethylene, polyacrylates, •polybutadiene, polychloroprene and the like. As noted before, however, nitrile rubber and other elastomers that have high elasticity are most 20 preferred. Such elastomers have lower shore A hardness (less than The preferred material is catalog number H-201 available from the B.F.
SGoodrich Company. H-201 is a nitrile rubber having a shore A hardness on the order of 85 8 Composite shell 20 is most preferably comprised of fiberglass reinforced epoxy, with a glass content on the order of 70% by weight.
Manufacture of the bearing assembly sections 20 is as follows.
A. MOLDING OF BEARING SECTIONS 1. Mill the uncured H-201 rubber into a sheet so that it will fit into the appropriate mold. The mold bottom plate should have a smooth surface finish less than 8 microinches).
2. Preheat the mold to 215F. Tape a 0.250 inch diameter rope around the perimeter of the plate and load the milled sheet into the mold, keeping it centered. Place a thin polyester sheet, preferably MYLAR, over the entire top surface of the elastomer. MYLAR is a trademark of DUPONT deNemours E.I. Company. Close the mold for oooo 15 minutes at 215F and low pressure (less than 1,000 psi). This shapes the oo.o S"elastomer sheet. Then open the mold and replace the wrinkled MYLAR •ooo• with an unwrinkled piece. Then close the mold and cure for 45 minutes at 3100 at high pressure (2,000 to 2,600 psi).
3. With no cool down, open the press and remove the •20 cured sheet from the mold and cut to shape. Then trim the rope away from the edge.
4. Sand the rubber off the back of the section the surface opposite the smooth bearing surface) to the desired thickness using an automatic grinding machine. The composite housing ID, 9 adhesive bond layer thickness, shaft OD and desired clearance between shaft and bearing are all involved in calculating the desired rubber thickness.
B. MAKING OF THE COMPOSITE HOUSING 1. Utilizing a Model 11-A filament winding machine available from Dura Wound Company, wind fiberglass strands impregnated with an epoxy resin over an appropriately dimensioned composite mandrel to the desired outside diameter value. Cover the mandrel with MYLAR tape before winding. The filament angle should be on the order of a 78 degree angle to the axial centerline in order to maximize hoop strength and minimize spring-back.
2. Cure the housing at room temperature for 48-72 hours.
B. MANDREL REMOVAL AND MACHINING OF g 15 COMPOSITE HOUSING °oo° 1. Pull the housing off of the mandrel.
ooooo 2. Peel the MYLAR off of the ID surface of the housing.
Measure and average a rough ID measurement. Cut the lathe softjaws to the rough ID measurement. Machine length and half of the ID. Cut the •20 softjaws to the finished ID dimension. Then turn the shell end to end, and finish the ID and OD to the proper dimensions. It is to be noted that the housing may be milled down to 0.0001 inches of the desired ID dimension.
99o999 C. BONDING OF SANDED ELASTOMER BEARING SECTIONS TO THE HOUSING 1. Cut the rubber elastomer sections to the proper final size. Mark the centerline on the ID of the housing. Mix together an adhesive of approximately 50% (by volume) epoxy, catalog number EL 2995A available from the B.F. Goodrich Company and 50% (by volume) amine, catalog number EL 2995B available from the B.F. Goodrich Company.
Referring now to FIG. 4, use a grooved trowel 40 as illustrated to spread the adhesive on the housing. A trowel can be manufactured by machining grooves into a trowel. The grooves should be on the order of 0.09375 inches wide, 0.0625 inches deep with a 0.125 inch separation between grooves. The grooves in the trowel cause the adhesive to be spread with alternating parallel circumferential lines of adhesive which, when compressed by the bearing sections, smooths out to a constant thickness adhesive layer with little or no voids. The pattern of parallel adhesive lines 40a is illustrated in FIG. 4a. With the preferred •o.o trowel, an adhesive thickness of less than or equal to 0.005 inches, and oo••o preferably 0.001 inches can be obtained. The adhesive must be applied carefully to give the preferred thickness of approximately 0.001 inches in order to have maximum adhered strength with the strata. If the adhesive °20 layer becomes too thick, fracturing or brittle cracking may occur. Bond one circumferential bearing half at a time, stopping at the side centerline.
Then place each bearing section on the adhered ID. Use a *555o5 roller to mash the elastomer sheets against ID surface of the composite shell.
11 2. Referring now to FIG. 5, center an inflatable airbag 42 inside the housing ID. Airbag 42 is preferably made of two elastomeric sheets 44, 46 bonded (or otherwise attached) together at their respective outer edges 47. An inflation valve 48, pressure gage and tube 50 are provided to inflate the bag 42. Place a rubber shim (approximately 0.50 inches thick) on top of the bag. Inflate the bag 42 to about 3.5 psig and let it set for 7 hours or longer. Utilizing airbag 42 ensure that equal radial pressure is applied over the entire bearing surface. Since airbag 42 is made from relatively soft (Shore A=65 5) elastomers, no damage is done to the bearing surface. It is to be noted that airbag 42 naturally fills out from the middle of the bag to the ends, thereby helping to eliminate air bubbles by pushing any air bubbles present in the adhesive out the ends of the housing as the adhesive spreads to an even layer.
3. The adhesive should be cured at room temperature 15 and at atmospheric pressure, since heat and pressure will unfavourably change the coefficient of friction and wear characteristics of the rubber bearing material 22, plus thin out the adhesive layer. After the adhesive has set, deflate the airbag and remove.
D. SPLITTING AND MACHINING 450 ANGLES 20 1. The bearing sections 20 are then set up on a horizontal boring machine, where they are split and the side angles machined on them.
12 2. Clean the housing and housings with methylethylketone (MEK). Assemble the bearing and install the retaining rails. Shim along the rails if necessary with stainless steel shims.
It is to be noted that the bearing assembly and method of making the same shown in FIGS. 1-5 avoids any machining on the elastomer bearing surface, thereby maintaining a smooth, glass like finish which keeps the water lubricated coefficient of friction at a very low level.
Said machining is avoided by accurately machining the bearing housing inner diameter, accurately machining the bonding surface only of each elastomer bearing section, using a grooved trowel to spread the bonding agent on the housing inner diameter, and utilizing an airbag to apply gentle, even pressure to the bearing sections while the adhesive is curing.
Inflation device 42 may utilize a fluid other than air as the medium to apply radial pressure for curing the bearing material to the bearing housing.
000 15 Also, the housing may be cut into smaller units in order to better facilitate installation of the elastomer bearing sections and then reassembled prior S° to curing or installation.
Referring now to FIG. 6a-6b, wherein alternate embodiments of bearing material 22 for bearing sections 20 is illustrated. The bearing or,• 20 material 22 is molded in large flexible slabs. The material is molded and shaped against a rough fabric or plate with many protuberances. The •molded slabs consist made from an elastomeric/plastic composite, such as that described in commonly owned US Patent 3,993,371 or most preferably a homogenous slippery polymer alloy (SPA) such as is 13 disclosed in US Patent 4,725,151 and 4,735,982, all of which are hereby fully incorporated herein by reference. The SPA bearing material layer is preferably on the order of 0.125 inches thick. It is then adhered during slab cure to a nitrile rubber backing sheet. The rubber backing makes the slab flexible, and when abraded, is easy to bond to the metal or composite bearing housing using room temperature curing epoxy adhesives or contact cement. The rubber backing is rapidly and easily sanded or ground by means of a machine to give the correct overall slab thickness for the particular bearing size. The adhesive layer adds around 0.001 inches to the bearing total wall thickness. There is therefore no need to grind or machine the bearing surface. Grinding the bearing surface increases friction and wear.
Referring now to FIG. 6a, an alternate bearing material 22 may be manufactured by providing a bottom layer 110 of elastomer in a mold. The preferred elastomer is catalog number H-212 available from oo.o the B.F. Goodrich Company. Next, a top layer 112 of slippery polymer .o.ooi alloy (SPA) is provided on the elastomer. A thermoplastic and a thermoset rubber compound, along with a smaller amount of a lubricant form the SPA. The SPA is a heterogeneous composition wherein the 20 thermoplastic exists in a continuous phase and the thermoset is dispersed therein as a discontinuous phase. In other words a thermoplastic matrix is formed, having the thermoset compound and the lubricant dispersed t n o d n x therein, as opposed to an admixture.
14 The thermoplastic compound can be any polymer which exhibits tough, low friction and good wear resistant properties. A specific group of such polymers are the various ultra high molecular weight polyethylenes (UHMWPE) which are known to the art as well as to the literature. Ultra high molecular weight polyethylene are generally classified as those having a weight average molecular weight of greater than 2.5 million, that is from about 3.0 million to about 7.0 million using the solution viscosity method. A desired range is from about 4 million to about million with a preferred range being from about 5 million to about 6 million. Such polyethylene are commercially available from Hoechst Celanese Corporation under the name GUR 413.
The ultra high molecular weight polyethylene as well as other polymers generally suitable for use in the present invention typically Shave low friction properties, such as a breakaway coefficient of static °°eo friction at 0 rpm shaft speed of 0.25 or less, desirably 0.20 or less and oooo preferably 0.15 or less. The desired thermoplastic compounds of the ooooo present invention also have a toughness as measured by a Izod notch impact test (ASTM D256) of 20 or greater and preferably of 30 or greater.
However, unnotched test samples did not fail. The thermoplastic 20 compounds of the present invention also have good wear resistance as measured by a sand slurry abrasion test. The sand slurry abrasion test is oooo0 a test of Hoechst Celanese Corporation wherein generally a test specimen x 3" x is rotated at 1200 RPM over a 24 hour period in a slurry containing 2 parts of water and 3 parts of sand.
An effective amount of the ultra high molecular polyethylene is utilized such that it forms a continuous phase in the SPA. Generally, the amount of a thermoplastic compound is sufficient to coat the thermoset rubber compound which generally exist in the form of particles and more desirably an amount in excess of that required to coat the rubber particles. Based upon the total weight of the SPA, the amount of the thermoplastic often utilized is from about 25% to about 90% by weight, desirably from about 40% to about 75% by weight and preferably from about 55% to about 65% by weight.
The thermoset compound is a cured rubber compound which typically has low friction as well as good oil and water resistant properties.
By "low friction" it is meant that rubber bearings of a desired thickness range, when water lubricated, develop hydrodynamic lubrication at normal journal (shaft) operating speeds. Thin rubber bearings develop 15 hydrodynamic friction at lower shaft speeds than any other known bearing material due to the Plasto-Elastohydrodynamic effect. Hydrodynamic oo.o•) lubrication is the developing of a fluid film between the bearing and a •rotating shaft. By the terms "oil and water resistant", it is meant that the elastomer is unaffected (not dissolved or softened) and the volume •20 increase caused by swell in water is under and preferably under 3%.
Generally any rubber compound having such friction and o:o•• water resistant properties can be utilized. A specific group of such compounds are various nitrile rubber compounds which are known to the art and to the literature. For example, the various Hycar nitrile rubbers 16 manufactured by the B.F. Goodrich Company can be utilized. The various harder nitrile rubber compounds are generally preferred. A specific example of such a rubber is compound H-201 (80 5 Shore A hardness) manufactured by the B.F. Goodrich Company. Another example is a softer nitrile rubber such as compound H-203, also manufactured by the B.F. Goodrich Company which has a Shore A hardness of about 70 Other rubbers include Butyl rubber, EPDM, that is rubber made from ethylene-propylene-diene monomers, and fluorelastomers based on the copolymer of vinylidene fluoride and hexafluoropropylene thought to have the following repeating structure -CF -CH -CF -CF (CF) Such copolymers are sold under the Trademark "Viton" by DuPont. Although these other rubber compounds can be utilized, the nitrile rubbers are highly preferred because of their elastic and creep deflection properties.
It is an important aspect of the present invention that the :°°ooe 15 cured rubber compound can be initially dry blended or mixed with the oooo thermoplastic compound before the alloy is formed.
•°o.oi Accordingly, the rubber compound is cured and in order to •mix the two components, it is ground to a suitable size. Conventional grinding methods can be utilized such as mechanical or cryogenic 20 grinding. Particle size of the cured rubber compound is generally •g important. The particle size is generally measured as being finer, that is ••°oo being able to pass through, a specific Tyler mesh screen. The cured rubber compounds thus generally have a particle size smaller than mesh, desirably smaller than 65 mesh, and preferably smaller than 100 17 mesh. The amount of the cured rubber in the SPA is generally from about to about 70% by weight, desirably from about 12% to about 40% by weight and preferably from about 15% to about 30% by weight based upon the total weight of the SPA.
The lubricant is generally added in the form of a solid and hence is non-liquid. In order to ensure a good dispersal thereof, the lubricant typically is in the form of a powder. By the term powder, it is meant that a majority, and at least 70%, 80% or 90% and more desirably at least 95% of the particles are smaller than a Tyler 100 mesh screen, that is 150 microns. Desirably, a majority of the powder, typically or even 95% is smaller than 200 mesh, that is 75 microns.
Preferably a majority of the graphite powder, that is 70%, 80% or 90% is smaller than 325 meshes, that is 44 microns. Any lubricant known to the •V art as well as to the literature can be utilized which imparts lubricating :°oeoo o 15 properties to the SPA. By lubricating properties it is meant that the .ooo coefficient of friction of the surface of the formed SPA is reduced, as for oooo° example, on the order of at least 10% and more desirably at least 20% or •30% when wear starts. The lubricant also should be nonabrasive.
Graphite constitutes a preferred lubricant. An example of a specific graphite is grade 117-A, manufactured by Ashbury Graphite Mills, Inc.
Another specific lubricant is molybdenum disulfide. Although not generally preferred, molybdenum disulfide is desirable in dry end use applications where moisture is not available, even as atmospheric moisture vapor.
Silicone oils can also be utilized in an amount of from about 2% to about 18 by weight and desirably from about 3% to about 6% by weight based upon the total weight of the SPA. Examples of specific silicone oils include 200 Fluid manufactured by Dow Corning. Another acceptable lubricant is PTFE (polytetrafluorethylene) available from DuPont DeNemours E.I. Company.
The amount of lubricant generally is from about 0.5% or 3% by weight to about 25% by weight, desirably from about 1.0% to about by weight, and preferably from about 2% to about 10%. by weight based upon the total weight of the SPA.
Next, a pattern is transferred into the top layer of the bearing surface of bearing material 22. The pattern provides a plurality of protuberances, lands, or contact points 114 that protrude axially inward from the top layer 112. The protuberances 114 can each individually become hydrodynamic bearing surfaces when fluid lubricated. The :°oooo 15 preferred method of transferring this pattern is to place a very smooth, think polyester sheet between a piece of heavy, loose knit or loose weave ••om• fabric and press the polyester sheet and fabric into the surface of SPA oooo• bearing material 22 before curing. The fabric is preferably catalog no.
8708 available from Georgia Duck. The polyester sheet is preferably 0.003 inch thick MYLAR. The polyester sheet smooths out the resultant SPA layer and rounds the corners of the protuberances 114. It is to be noted that prior to pressing the polyester and fabric into the material, the fabric should be sprayed with a mold release, such as catalog no. RTC 9110, manufactured by Chem-Trend, in a manner well known in the art to 19 ensure the fabric can be removed after curing. After the fabric and polyester sheet have been placed on top of the uncured bearing section it should be pressed in, such as by closing the mold. The material is then molded for approximately 4.5 hrs. under pressure of approximately 1000 to 1500 psi at approximately 350 0 F. After this molding process, the temperature of the mold is allowed to return to ambient while the pressure is maintained. The mold should be allowed to cool down for approximately 1 hr. after molding. It has been found that cooling the composite under pressure helps to prevent warping of the final article.
Application of water to the outside of mold may also be utilized to reduce the mold cooling time to 1 hour to prevent warping of the finished product.
Referring now to FIG. 6b, an alternate bearing material may be manufactured in accordance with the procedure for the composite S'illustrated in FIG. 6a, thereby yielding a composite having a bottom layer oeoo 15 120 of elastomer and a top layer 122 of SPA having diamond shaped ooee protuberances, lands, or contact points 124 provided therein. The .:oo°i protuberances or lands 124 protrude axially inward and can each oeoee individually become hydrodynamic bearing surfaces when fluid lubricated.
a The diamond shaped pattern in the top layer 122, however, is provided by 20 utilizing a rubber mold having the appropriate impression or pattern provided therein. A polyester release sheet, such as MYLAR, may be
S
placed between the rubber mold and the SPA before curing. The polyester sheet is preferably on the order of 0.003 inches thick. The polyester sheet smooths out the resultant SPA layer and rounds the corners of the protuberances.
It is to be noted that other shape and size patterns not specifically disclosed herein maybe provided in the top alloy layer in order for the bearing to be hydrodynamic.
Although the invention has been shown and described with exemplary embodiments thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions and additions may be made therein and thereto without departing from the spirit and scope of the invention.
*ee•
Claims (2)
- 4.. providing a polyester sheet; ooooo placing the polyester sheet onto the slippery polymer alloy (SPA) layer before the slippery polymer alloy (SPA) is molded; 20 placing the slippery polymer alloy (SPA) layer and polyester sheet into a rubber mold having a pattern impressed therein; closing the mold; and pressing the pattern into the slippery polymer alloy (SPA) layer and polyester sheet. 3. A bearing slab for use in a bearing assembly used for supporting a water lubricated propeller shaft in large navel ships, said bearing slab comprising; a bottom elastomeric layer having an upper surface; a slippery polymer alloy (SPA) layer having an upper surface and a lower surface; said upper surface of said slippery polymer (SPA) layer having a plurality of raised contact points, said bottom surface of said lower slippery polymer alloy (SPA) layer being bonded to said upper surface of said bottom elastomeric layer. 4. The bearing slab as defined in Claim 3, and further including a polyester sheet layer on the top surface of said slippery polymer alloy (SPA) layer wherein said polyester sheet layer is bonded to said slippery polymer alloy (SPA) layer during the curing of the slippery polymer alloy (SPA) layer. 15 5. The bearing slab as defined in Claim 3, wherein said raised contact points comprise diamond shaped protuberances.
- 6. A bearing slab substantially as herein described with reference to the accompanying drawing. :O I *eo *o•
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU13679/01A AU748072B2 (en) | 1996-04-18 | 2001-01-11 | Bearing slab and method of making the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60/015831 | 1996-04-18 | ||
US08/842857 | 1997-04-17 | ||
AU13679/01A AU748072B2 (en) | 1996-04-18 | 2001-01-11 | Bearing slab and method of making the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU32033/97A Division AU725564B2 (en) | 1996-04-18 | 1997-04-18 | Partial arc bearing assembly and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
AU1367901A AU1367901A (en) | 2001-04-12 |
AU748072B2 true AU748072B2 (en) | 2002-05-30 |
Family
ID=3703989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU13679/01A Expired - Fee Related AU748072B2 (en) | 1996-04-18 | 2001-01-11 | Bearing slab and method of making the same |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU748072B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3184362A (en) * | 1961-03-20 | 1965-05-18 | Fafnir Bearing Co | Apparatus for bonding an annular liner to a bearing ring |
US3668040A (en) * | 1969-11-03 | 1972-06-06 | Textron Inc | Method and means for bonding bearing liners |
US3779828A (en) * | 1969-11-03 | 1973-12-18 | Textron Inc | Apparatus for bonding bearing liners |
-
2001
- 2001-01-11 AU AU13679/01A patent/AU748072B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3184362A (en) * | 1961-03-20 | 1965-05-18 | Fafnir Bearing Co | Apparatus for bonding an annular liner to a bearing ring |
US3668040A (en) * | 1969-11-03 | 1972-06-06 | Textron Inc | Method and means for bonding bearing liners |
US3779828A (en) * | 1969-11-03 | 1973-12-18 | Textron Inc | Apparatus for bonding bearing liners |
Also Published As
Publication number | Publication date |
---|---|
AU1367901A (en) | 2001-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5932049A (en) | Method of making a partial arc bearing | |
US7290932B2 (en) | Stave bearing assembly and stave for a bearing assembly | |
US4725151A (en) | Thermoplastic-rubber polymer alloys and method of producing the same | |
US3932004A (en) | Rubber bearing with non-metallic support member | |
KR20010022045A (en) | Self-lubricated bearing | |
US6238093B1 (en) | Partial arc bearing assembly and method of making the same | |
JPS6069317A (en) | Bearing assembly | |
US4577379A (en) | Bearing assembly and method for assembling a bearing | |
AU748072B2 (en) | Bearing slab and method of making the same | |
KR100636894B1 (en) | Manufacturing method of partial arc bearing assembly, bearing slab for bearing assembly and bearing assembly | |
NZ505482A (en) | A bearing assembly and housing in water lubricated propeller shaft | |
MXPA98008547A (en) | Partial arc bearing unit and method for elabora | |
CA2526142C (en) | Method of making bearing components and bearing assemblies | |
RU2222723C2 (en) | Bearing provided with slotted plates | |
KR100473411B1 (en) | Bearing assembly with slotted groove |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4 | Application lapsed section 142(2)(d) - no continuation fee paid for the application |