AU746708B2 - Mobile station assisted timing synchronization in a CDMA communication system - Google Patents
Mobile station assisted timing synchronization in a CDMA communication system Download PDFInfo
- Publication number
- AU746708B2 AU746708B2 AU22307/99A AU2230799A AU746708B2 AU 746708 B2 AU746708 B2 AU 746708B2 AU 22307/99 A AU22307/99 A AU 22307/99A AU 2230799 A AU2230799 A AU 2230799A AU 746708 B2 AU746708 B2 AU 746708B2
- Authority
- AU
- Australia
- Prior art keywords
- base station
- mobile station
- signal
- slave base
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2662—Arrangements for Wireless System Synchronisation
- H04B7/2671—Arrangements for Wireless Time-Division Multiple Access [TDMA] System Synchronisation
- H04B7/2678—Time synchronisation
- H04B7/2687—Inter base stations synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/7075—Synchronisation aspects with code phase acquisition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/7075—Synchronisation aspects with code phase acquisition
- H04B1/70751—Synchronisation aspects with code phase acquisition using partial detection
- H04B1/70753—Partial phase search
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/7075—Synchronisation aspects with code phase acquisition
- H04B1/7077—Multi-step acquisition, e.g. multi-dwell, coarse-fine or validation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2662—Arrangements for Wireless System Synchronisation
- H04B7/2668—Arrangements for Wireless Code-Division Multiple Access [CDMA] System Synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
- H04J3/0635—Clock or time synchronisation in a network
- H04J3/0682—Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/003—Arrangements to increase tolerance to errors in transmission or reception timing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70701—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70702—Intercell-related aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
WO 99/37037 PCT/US99/00909 MOBILE STATION ASSISTED TIMING SYNCHRONIZATION IN A CDMA COMMUNICATION SYSTEM BACKGROUND OF THE INVENTION I. Field of the Invention The present invention relates to communication systems. More particularly, the present invention relates to a novel and improved method and apparatus for synchronizing a base station by means of signals transmitted from a mobile station which is concurrently in communication with a synchronized base station.
II. Description of the Related Art The use of code division multiple access (CDMA) modulation techniques is but one of several techniques for facilitating communications in which a large number of system users are present. Although other techniques, such as time division multiple access (TDMA), frequency division multiple access (FDMA) and AM modulation schemes such as amplitude companded single sideband (ACSSB) are known, CDMA has significant advantages over these other modulation techniques. The use of CDMA techniques in a multiple access communication system is disclosed in U.S. Patent No. 4,901,307, entitled "SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS" and U.S. Patent No. 5,103,459, entitled "SYSTEM AND METHOD FOR GENERATING SIGNAL WAVEFORMS IN A CDMA CELLULAR TELEPHONE SYSTEM", both of which are assigned to the assignee of the present invention and are incorporated by reference. The method for providing CDMA mobile communications was standardized in the United States by the Telecommunications Industry Association in entitled "Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System", referred to herein as In the just mentioned patents, a multiple access technique is disclosed in which a large number of mobile station users, each having a transceiver, communicate through satellite repeaters or terrestrial base stations (also known as cell base stations or cell-sites) using code division multiple access (CDMA) spread spectrum communication signals. By using CDMA Wn~ 00/17nA7 PrT/1 ICOO/Anon communications, the frequency spectrum can be reused multiple times thus permitting an increase in system user capacity. The use of CDMA techniques result in much higher spectral efficiency than can be achieved using other multiple access techniques.
A method for simultaneously demodulating data that has traveled along different propagation paths from one base station and for simultaneously demodulating data redundantly provided from more than one base station is disclosed in U.S. Patent No. 5,109,390 (the '390 patent), entitled "DIVERSITY RECEIVER IN A CDMA CELLULAR COMMUNICATION SYSTEM", assigned to the assignee of the present invention and incorporated by reference herein. In the '390 patent, the separately demodulated signals are combined to provide an estimate of the transmitted data which has higher reliability than the data demodulated by any one path or from any one base station.
Handoffs can generally be divided into two categories- hard handoffs and soft handoffs. In a hard handoff, when a mobile station leaves an origination base station and enters a destination base station, the mobile station breaks its communication link with the origination base station and thereafter establishes a new communication link with the destination base station. In soft handoff, the mobile station completes a communication link with the destination base station prior to breaking its communication link with the origination base station. Thus, in soft handoff, the mobile station is redundantly in communication with both the origination base station and the destination base station for some period of time.
Soft handoffs are far less likely to drop calls than hard handoffs. In addition, when a mobile station travels near the coverage boundary of a base station, it may make repeated handoff requests in response to small changes in the environment. This problem, referred to as ping-ponging, is also greatly lessened by soft handoff. The process for performing soft handoff is described in detail in U.S. Patent No. 5,101,501, entitled "METHOD AND SYSTEM FOR PROVIDING A SOFT HANDOFF IN COMMUNICATIONS IN A CDMA CELLULAR TELEPHONE SYSTEM" assigned to the assignee of the present invention and incorporated by reference herein.
An improved soft handoff technique is disclosed in U.S. Patent No. 5,267,261, entitled "MOBILE STATION ASSISTED SOFT HANDOFF IN A CDMA CELLULAR COMMUNICATIONS SYSTEM", which is assigned to the assignee of the present invention and incorporated by reference herein.
In the system of the '261 patent, the soft handoff process is improved by measuring the strength of "pilot" signals transmitted by each base station at lllA /1-7in*Z Dd l Ic1110nn I l VV'.J 7IJ 3 IIU3 77IUU7U the mobile station. These pilot strength measurements are of assistance in the soft handoff process by facilitating identification of viable base station handoff candidates.
The base station candidates can be divided into four sets. The first set, referred to as the Active Set, comprises base stations which are currently in communication with the mobile station. The second set, referred to as the Candidate Set, comprises base stations whose signals have been determined to be of sufficient strength to be of use to the mobile station but are not currently being used. Base stations are added to the candidate set when their measured pilot energy exceeds a predetermined threshold TADD. The third set is the set of base stations which are in the vicinity of the mobile station (and which are not included in the Active Set or the Candidate Set). And the fourth set is the Remaining Set which consists of all other base stations.
In IS-95, a base station candidate is characterized by the phase offset of the pseudonoise (PN) sequence of its pilot channel. When the mobile station searches to determine the strength of the pilot signal from a candidate base station it performs a correlation operation wherein the filtered received signal is correlated to a set of PN offset hypotheses. The method and apparatus for performing the correlation operation is described in detail in co-pending U.S. Patent Application Serial No. 08/687,694, filed on July 26, 1996, entitled "METHOD AND APPARATUS FOR PERFORMING SEARCH ACQUISITION IN A CDMA COMMUNICATION SYSTEM", which is assigned to the assignee of the present invention and incorporated by reference herein.
The propagation delay between the base station and the mobile station is not known. This unknown delay produces and unknown shift in the PN codes. The searching process attempts to determine the unknown shift in the PN codes. To do this, the mobile station shifts in time the output of its searcher PN code generators. The range of the search shift is called the search window. The search window is centered about a PN shift hypothesis.
A base station transmits to the mobile station a message indicating the PN offsets of base station pilots in its physical proximity. The mobile station will center its search window around the PN offset hypothesis.
The appropriate size of the search window depends on several factors including the priority of the pilot, the speed of the searching processors, and the anticipated delay spread of the multipath arrivals. The CDMA standards define three search window parameters. The searching of pilots in both the active and candidate sets is governed by Search Window Neighbor Set pilots are searched over window and Remaining Set W 00/' 7TnA- nr Pn rnr 4 1 1Va7UU7Vr pilots over window The searcher window sizes are provided below in Table 1, where a chip is 1.2288MHz SRCH_WIN_A Window Size SRCHWINA Window Size SRCHWINN (PN chips) SRCHWIN N (PN chips) SRCH WIN R SRCH WIN R 0 4 8 1 6 9 2 8 10 100 3 10 11 130 4 14 12 160 20 13 226 6 28 14 320 7 40 15 452 TABLE 1 Window sizing is a trade-off between search speed and the probability of missing a strong path lying outside the search window.
The base station transmits to the mobile station a message which specifies the PN hypotheses that the mobile station should search relative to its own PN offset. For example, the originating base station may instruct the mobile station to search for a pilot 128 PN chips ahead of its own PN offset.
The mobile station in response sets its searcher demodulator 128 chips ahead in the output chip cycle and searches for the pilot using a search window centered about the specified offset. Once the mobile is instructed to a search a PN hypothesis to determine the resources available for performing a handoff, it is critical that the PN offset of the destination base station pilot is very close in time to the directed offset. The speed of searching is of critical importance near base station boundaries because delays in completing the necessary searches can result in dropped calls.
In CDMA systems in the United States, base station synchronization is achieved by providing each base station with a Global Positioning Satellite (GPS) receiver. However, there are cases where a base station may not be able to receive the GPS signal. For example, within subways and tunnels the GPS signal is attenuated to a degree that prohibits their use for timing synchronization of base stations or micro base stations. The present invention provides a method and system for providing timing synchronization in these circumstances where a fraction of the network is 111d'% QQ/1'7nV Dd 1 l- l, r\ TIC fv 771 I I 5 1 I/U Y Y U UY U Y capable of receiving a centralized timing signal and achieving timing therefrom and a portion of the base stations are not capable of receiving the centralized timing signal.
SUMMARY OF THE INVENTION The present invention is a novel and improved method and apparatus for time synchronizing a base station which is not capable of receiving a centralized timing signal in a network where some of the base stations are capable of receiving the centralized timing signal. A reference base station has timing synchronization through receipt of a centralized timing signal or other means. In the exemplary embodiment, the reference base station synchronizes using a global positioning satellite (GPS) receiver.
Slave base stations lack the capacity to synchronize, because, for example, of an inability to receive the centralized timing signal.
In the present invention, a slave base station attains synchronization with a reference base station through messages transmitted from and received by a mobile station in the soft handoff region between the reference base station and the slave base station. First, the round trip delay between the mobile station and the reference base station is measured by the reference base station. Next, the slave base station searches until it acquires the signal transmitted by the mobile station, referred to as the reverse link signal. n response to the acquisition of the reverse link signal, the slave base station adjusts its timing so that the mobile station can acquire its signal, referred to as a forward link signal. This step may be unnecessary if the timing error in the slave base station is not severe.
Once the mobile station acquires the signal from the slave base station, the mobile station measures and reports the difference between the amount of time it takes a signal to travel from the reference base station to the mobile station and the amount of time it takes a signal to travel from the slave base station to the mobile station. The last measurement necessary is a measurement by the slave base station of the time difference between the time the slave base station received the reverse link signal from the mobile station the time the slave base station transmitted a signal to the mobile station.
A series of computations described in detail herein are performed upon the measured time values to determine the time difference between the slave base station and the reference base station. An adjustment of the slave base station timing is performed in accordance with these f \11n an/217A21 n~~R rrr~n mn~~~ 6r 751V rL IUIVYVYuuu 6 computations. It should be noted that, in the preferred embodiment, all of the measurements mentioned are performed during the normal operation of an IS-95 CDMA communication system.
BRIEF DESCRIPTION OF THE DRAWINGS The features, objects, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein: FIG. 1 is a block diagram illustrating the network configuration of a wireless communication system comprising a reference base station and a slave base station; FIG. 2 is a diagram illustrating the various transmissions between the mobile station, the synchronous base station and the asynchronous base station and the corresponding time intervals; FIG. 3 is a flowchart illustrating the method for synchronizing a base station which is incapable of receiving a centralized timing signal; FIG. 4 is a block diagram of the mobile station of the present invention; FIG. 5 is a block diagram of the searcher in the mobile station of the present invention; FIG. 6 is :a block diagram of the traffic channel modulator of the mobile station of the present invention; FIG. 7 is a block diagram of the base station of the present invention; FIG. 8 is a block diagram of transmission system of the base station of the present invention; and FIG. 9 is a block diagram of receiver system of the base station of the present invention.
AII nnr'''" Tr' lr I C L nn ,r r VVJ 7/ 1 J 7 r A/ U YYIUUYU DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS
I. Overview of Timing Error Computation Referring to FIG. 1, mobile station 60 is in communication with reference base station 62, while it is roughly within the coverage area delineated by base station coverage boundary 61. Reference base station 62 is synchronized to the rest of the network by means of a central timing system such as the global positioning system (GPS). In contrast, slave base station 64 is not synchronized to the central timing system by independent means, such as the GPS available to base station 62. Base station controller 66 routes calls from the public switched telephone network (PSTN) to a base station 62 or 64 by means of a T1 line or other means. In addition, frequency synchronization is provided to slave base station 64 through T1 lines.
For short time periods, frequency synchronization can be provided with an acceptable degree of accuracy through T1 lines by methods well known in the art. However, problems are common in schemes which rely upon a T1 line for providing frequency information. These problems result in timing errors which can be corrected by use of the present invention.
Because of the relationship between phase and frequency, the present invention's intermittent correction of phase will permit the utilization of a less accurate frequency sources when necessary.
Referring to FIG. 2, an illustration of the transmission and corresponding time intervals used to synchronize the timing of slave base station 64 with the synchronized timing of reference base station 62. Signal path 500 illustrates the transmission of a forward link signal from reference base station 62 to mobile station 60. The time interval over which this transmission occurs is designated as T 1 At mobile station 60, the start of frame transmissions on the reverse link are time aligned with the start of frame arrivals on the forward link. This time alignment is standardized in and incorporated in hardware designed in conformance therewith.
Therefore, it should be understood that methods and apparatus for performing this alignment are well known in the art.
Transmission 502 depicts the transmission of a reverse link frame from mobile station 60 to reference base station 62. The time for a signal 500 to travel from base station 62 to mobile station 60 (t 1 is equal to the time for signal 502 to travel from base station 62 to mobile station 60 (also T 1 Because base station 62 knows the time at which it transmitted signal 500 If H/"h fhf~l~f\' 111/" I rl /i/.IL~L' WU /O u/ 8 rL I/U y/IVUUY and knows the time at which it received signal 502, base station 62 can compute the round trip delay time (RTD 1 which is the first value necessary in the computation of the time error (T o'-To).
Signal path 504 is the reverse link signal transmission from mobile station 60 traveling along a different propagation path to slave base station 64. The time which it takes signal 504 to travel from mobile station 60 to slave base station 64 is designated as T 2 The time at which the reverse link signal 504 reaches base station 64 is designated as T 2 The time it takes a forward link signal 506 traveling from base station 64 to mobile station 60 is also equal to T 2 In addition, slave base station 64 can measure the time difference between the time it received the reverse link signal from mobile station 60 and the time it transmitted its forward link signal to mobile station 60. This time difference is designated as RTD 2 Knowing these times allows for the computation of the time error (T o'-To).The method for computing the time error T o' is described below.
First it can be observed from FIG. 2 that:
T
2 T1+ T 2 and (1) Ti AT To' T 2 (2) By manipulating the terms of equations and the following is observed:
T
2 AT T o +2 2 (3) 2- 2
T
2 To' AT (4) To simplify the notation, a new variable RTD 2 is defined as:
RTD
2
=T
2 To' It can be seen from FIG. 2 that: RTD AT 2 RTD (6) 2 2 T2 To+ 1 +T 2 (7) Therefore, T2- To T 1 2 and (8) t
RTD
2 2 T 2
AT
1IA nnn~n~? nP'F n r~nn rnnnnn VV W 77101 UJ/ 9 I 1ULJ$YYUUYU By substitution, it can be seen that the time error To) is equal to: To' T 0
T
1 T2 AT (9) To'- To l AT To-n~q1 2 2J To' To RTD1 RTD 2 AT (11) 2 2 2 To'- To RTD +AT RTD 2 (12) 2 2 Once base station 64 knows the amount of its timing error (To'
T
it adjusts its timing so as to synchronize it to the timing of base station 62.
These measurements are subject to error, so, in a preferred embodiment, many of the measurements are redundantly made to assure the accuracy of the timing correction.
The method and apparatus for measuring each of the necessary time values in equation (12) is now described.
II. Measurement of Round Trip Delay (RTD 1 FIG. 3 is a flow diagram illustrating the method of the present invention for synchronizing slave base station 64 to the timing of reference base station 62. In step 300, the synchronization method commences, with mobile station 60 in communication with reference base station 62 and within range to conduct communications with slave base station 64. In step 302, the round trip delay (RTD 1 time for a signal to travel from reference base station 62 to mobile station 60 and back from mobile station 60 to reference base station 62 is measured. This is done by aligning the frame boundaries of frames being received by mobile station 60 with the frame boundaries of frames being transmitted by mobile station 60. The method and apparatus for providing this alignment is well known in the art. Thus, the round-trip delay (RTD 1 is measured as the time difference between the start of frames transmitted by reference base station 62 and the start of frames received by reference base station 62 from mobile station Referring to FIG. 4, forward link frames of data from reference base station 62 are received at antenna 2 and provided through duplexer 3 to receiver (RCVR) 4. Receiver 4 downconverts, filters and amplifies the received signal and provides it to searcher 50 and traffic demodulators
I
WO 99/37037 10 PCT/US99/00909 (TRAFFIC DEMODS) 54. Searcher 50 searches for pilot channels in accordance with a neighbor list provided by reference base station 62. The neighbor list is provided as signaling data on the traffic channel from reference base station 62. A signal indicating the start of received frames from reference base station 62 is provided to control processor 55. Control processor 55 generates and provides a time alignment signal to traffic modulator 58 which aligns the start of frames transmitted from mobile station 60 with the start of frames received at mobile station Frames of data from the user of mobile station 60 are provided to traffic modulator 58 which in response to the timing signal from control processor 55 time aligns the frames transmitted through transmitter (TMTR) 56 with the frames received by mobile station 60 from reference base station 62. The reverse link frames are upconverted, filtered and amplified by transmitter 56 then provided through duplexer 3 for transmission through antenna 2.
III. Acquisition of Mobile Station by Slave Base Station FIG. 6 illustrates the traffic channel modulator 58 of mobile station Frames of data are provided to frame formatter 200. In the exemplary embodiment, frame formatter 200 generates and appends a set of cyclic redundancy (CRC) check bits and generates a set of tail bits. In the exemplary embodiment, frame formatter 200 follows the frame format protocol standardized in IS-95 and described in detail in U.S. Patent No. 5,600,754, entitled "METHOD AND SYSTEM FOR THE ARRANGEMENT OF VOCODER DATA FOR THE MASKING OF TRANSMISSION CHANNEL INDUCED ERRORS", which is assigned to the assignee of the present invention and incorporated by reference herein.
The formatted data frame is provided to encoder 202 which encodes the data for error correction and detection. In the exemplary embodiment, encoder 202 is a convolutional encoder. The encoded data symbols are provided to interleaver 204 which reorders the symbols in accordance with a predetermined interleaving format. The reordered symbols are provided to Walsh mapper 206. In the exemplary embodiment, Walsh mapper 206 receives eight coded symbols and maps that set of symbols to a 64 chip Walsh sequence. The Walsh symbols are provided to spreading means 208 which spreads the Walsh symbols in accordance with a long spreading code.
Long PN code generator 210 generates a pseudonoise (PN) sequence that wn 99/37n37 Pr"T/ I TqQQnana WO 99/370l37 PCT/1 TVZOOMflfO 11 spreads the data and differentiates the data from the reverse link transmitted data from other mobile stations in the vicinity.
In the exemplary embodiment, the data is transmitted in accordance with a quaternary phase shift keying (QPSK) modulation format wherein the I and Q channels are spread in accordance with a short PN sequence.
The spread data is provided to spreading means 214 and 216 which perform a second spreading operation on the data in accordance with a short PN sequence provided by PN generators (PNI and PNQ) 212 and 218 respectively.
In step 304, slave base station 64 acquires the reverse link signal transmitted by mobile station 60. Base station controller 66 sends a signal to slave base station 64 indicating the PN code offset which mobile station 62 is using to spread its reverse link signal. In response to this signal from base station controller 66, slave base station 64 performs a search for mobile station 60 centered about the PN offset indicated by the signal from base station controller 66.
In the exemplary embodiment, slave base station 64 bank loads its searchers long code PN generator 106 and its short code PN generators 108 and 110 (illustrated in FIG. 9) in accordance with a signal from base station controller 66. The searcher process of slave base station 64 is described in detail further herein.
FIG. 7 illustrates the apparatus of slave base station 64. In slave base station 64, a signal from base station controller 60 indicating the PN of mobile station 60 is received. This message is provided to by control processor 100. In response thereto, control processor 100 computes the window search range centered at the specified PN offset. Control processor 100 provides the search parameters to searcher 101 and in response to those parameters slave base station 64 conducts a search for the signal transmitted by mobile station 60. The signal received by antenna 102 of slave base station 64 is provided to receiver 104 which downconverts, filters and amplifies the received signal and provides it to searcher 101. In addition, the received signal is provided to traffic demodulators 105 which demodulate the reverse link traffic data and provide that data to base station controller 60. Base station controller 66, in turn provides it to a PSTN.
FIG. 9 illustrates searcher 101 in greater detail. The demodulation of the reverse link signal is described in detail in co-pending U.S. Patent Application Serial No. 08/372,632, filed January 13, 1995, entitled "CELL SITE DEMODULATOR ARCHITECTURE FOR A SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM" and in co-pending U.S.
Patent Application Serial No. 08/316,177, filed September 30, 1994, entitled llldr' l 1c[ /tl DW-ruircl a/fnnnnln V 'v UJ 7713 J 12 a 1 U.7 IUUV 7U "MULTIPATH SEARCH PROCESSOR FOR A SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM", both of which are assigned to the assignee of the present invention and incorporated by reference herein. An estimate of the PN offset of mobile station 60 is provided to control processor 100 from base station controller 66. In response to the PN offset estimation provided by base station controller control processor 100 generates an initial long PN sequence hypothesis and an initial short PN sequence hypothesis for the search to be performed by slave base station 64. In the exemplary embodiment, control processor 100 bank loads the shift registers of PN generators 106, 108 and 110.
The signal is received by antenna 102 is downconverted, filtered and amplified and passed to correlator 116. Correlator 116 correlates the received signal to the combined long and short PN sequence hypothesis. In the exemplary embodiment, the PN sequence hypothesis is generated by multiplying the short PN hypotheses generated by PN generators 108 and 110 by the long PN sequence generated by PN generator 106. One of the combined PN sequence hypotheses is used to despread the I channel and the other is used to despread the Q channel of the received QPSK signal.
The two PN despread signals are provided to fast Hadamard transform (FHT) processors 118 and 120. The design and operation of fast Hadamard transform processors is described in detail in co-pending U.S.
Patent Application Serial No. 08/173,460, filed December 22, 1993, entitled "METHOD AND APPARATUS FOR PERFORMING A FAST HADAMARD TRANSFORM", which is assigned to the assignee of the present invention and incorporated by reference herein. FHT processors 118 and 120 correlate the despread signals with all possible Walsh symbols to provide a matrix of the resultant amplitudes to energy computation means (I2+Q 2 122. Energy computation means 122 computes the energy of the amplitude matrix elements and provides the energy values to max detector 124 which selects the maximum energy correlation. The maximum correlation energies are provided to accumulator 126 which accumulates the energies for a plurality of Walsh symbols and based upon these accumulated energies, a decision is made as to whether mobile station 60 can be acquired at that PN offset.
IV. Initial Timing Adjustment by Slave Base Station Once mobile station 60 is acquired, then, in block 306, slave base station 64 adjusts its timing so that mobile station 60 will be able to successfully acquire its forward link transmissions. Slave base station 64 \XIC1 Q0117n37 P"T/I ]Qoo/nnono ~x~fl ar~~nv7PCT/I JSOO00/fl0fl computes an initial timing adjustment by determining the difference between the PN offset at which it acquired the reverse link signal from mobile station 60 and the PN offset which reference base station 62 used for reception of the reverse link signal from mobile station 60. Using this PN offset difference, slave base station 64 adjusts the timing of its pilot signal in such a way that when mobile station 60 searches for its pilot signal it will be within the search window of mobile station V. Acquisition of the Slave Base Station by the Mobile Station In searching for the mobile station signal, it is necessary for slave base station 64 to have some indication of time. In the preferred embodiment, the time error of slave base station 64 is kept at or below 1 ms by means of an alternative synchronization scheme. There are schemes which enable slave base station 64 which is incapable of receiving a GPS signal to keep time to a level of lesser precision. One possible method of obtaining a degree of initial synchronization is to manually set the time of slave base station 64 at certain intervals. A second method is to set the time using a WWV receiver, the implementation of which is well known in the art. Unlike the GPS signal, the WWV centralized timing signal is transmitted at very low frequency and is able to penetrate into tunnels and subways. However, W WV receivers are not capable of providing the degree of time synchronization necessary for providing CDMA communications.
In the exemplary embodiment, slave base station 64 adjusts its timing in accordance with the assumption that mobile station 60 is located directly adjacent to slave base station 64. Thus, the initial timing adjustment is made under the hypothesis that there will be no propagation delay between slave base station 64 and mobile station 60. Thereafter, slave base station 64 adjusts its PN sequence generators 72 and 74 forward in time which accounts for greater and greater propagation delay times between slave base station 64 and mobile station 60. Once mobile station 60 has acquired the pilot channel of slave base station 64, using normal procedures the final adjustment of timing for slave base station 64 can be performed in accordance with the computations described above.
As is known in the art and standardized in IS-95, pilot channels of different base stations are distinguished from one another by the phase of their PN generators. Reference base station 62 instructs mobile station 60 to search for slave base station 64 via the neighbor list. Reference base station 62 indicates by means of the signaling data that the pilot of slave base station wn oc~n~nl-r V ITrn rTenn nnnnn 14 IU377IUU7U3 64 can be acquired at a PN phase offset which is described relative to the received PN offset of reference base station 62. This message is demodulated and decoded by traffic demodulators 54 and provided to searcher 50. In response, searcher 50 performs a search centered on a PN phase offset about the PN phase indicated in the signal from reference base station 62.
The pilot signal is typically generated by a linear feedback shift register, the implementation of which is described in detail in the aforementioned patents. In order to acquire the pilot signal from slave base station 64, mobile station 60 must synchronize to the received signals from slave base station 64 in both phase, 0, and in frequency, Co. The object of the searcher operation is to find the phase of the received signal, 0. As described earlier, a relatively accurate frequency synchronization can be supplies to slave base station 64 by means of a T1 link from base station controller 66 as is known in the art. The method by which a mobile finds the phase of the received signal is by testing a set of phase hypotheses, referred to as a search window and determining if one of the offset hypotheses is correct.
FIG. 5 illustrates mobile station searcher 50 in greater detail. A spread spectrum signal is received at antenna 2. The objective of the apparatus is to gain synchronization between pseudorandom noise (PN) sequences generated by PN sequence generator 20 and the received spread spectrum signal which is spread by identical PN sequences of unknown phase transmitted by slave base station 64. In the exemplary embodiment, both pilot signal generator 76 (of FIG. 7) and PN generator 20 are maximal length shift registers which generate the PN code sequences for spreading and despreading the pilot signals respectively. Thus, the operation of obtaining synchronization between the codes used to despread the received pilot signal and the PN spreading code of the received pilot signal involves determining the time offset of the shift register.
The spread spectrum signal is provided by antenna 2 to receiver 4.
Receiver 4 downconverts, filters and amplifies the signal and provides the signal to despreading element 6. Despreading element 6 multiplies the received signal by the PN code generated by PN generator 20. Due to the random noise like nature of the PN codes, the product of the PN code and the received signal should be essentially zero except at the point of synchronization.
Searcher controller 18 provides an offset hypothesis to PN generator The offset hypothesis is determined in accordance with a signal transmitted to mobile station 60 by reference base station 62. In the exemplary embodiment, the received signal is modulated by quaternary )A rn~~ Pr"T/'1 1coOInan n %J YY/T 1 /fl/ 15 phase shift keying (QPSK), so PN generator 20 provides a PN sequence for the I modulation component and a separate sequence for the Q modulation component to despreading element 6. Despreading element 6 multiplies the PN sequence by its corresponding modulation component and provides the two output component products to coherent accumulators 8 and Coherent accumulators 8 and 10 sum the product over the length of the product sequence. Coherent accumulators 8 and 10 are responsive to signals from searcher controller 18 for resetting, latching and setting the summation period. The sums of the products are provided from summers 8 and 10 to squaring means 14. Squaring means 14 squares each of the sums and adds the squares together.
The sum of the squares is provided by squaring means 12 to noncoherent combiner 14. Noncoherent combiner 14 determines an energy value from the output of squaring means 12. Noncoherent accumulator 14 serves to counteract the effects of a frequency discrepancy between the base station transmit clocks and the mobile station receive clock and aids in the detection statistic in a fading environment. Noncoherent accumulator 14 provides the energy signal to comparison means 16. Comparison means 16 compares the energy value to predetermined thresholds supplied by searcher controller means 18. The results of each of the comparisons is then feedback to searcher controller 18. The results fedback to searcher controller 18 include both the energy of the correlation and the PN offset that resulted in the measurement.
In the present invention, searcher controller 18 outputs the PN phase at which it synchronized to base station 64. This offset is used to compute the time error as described further herein.
In the exemplary embodiment, when mobile station 60 acquires slave base station 64 it computes the difference between the time it received the signal from slave base station 64 and the time it received the signal from reference base station 62. This value is provided to message generator 52 which generates a message indicative of the difference value. The message is transmitted as signaling data on the reverse link to reference base station 62 and slave base station 64 which send the message back to base station controller 66.
nC\ 00/17lV7 PCT/I I~QO/nflOflQ 16 VI. Measurement of Delay Between Transmission of Forward Link Signal From Slave Base Station and Receipt of Reverse link Signal at Slave Base Station In step 311, slave base station 64 measures the difference between the time the slave base station received the reverse link signal from mobile station 60 (T 2 and the time the slave base station transmitted its forward link signal to mobile station 60 (T 1 Slave base station 64 stores the PN offset at the time it transmits its forward link signal and upon detection of the reverse link signal from mobile station 60 computes the time difference
RTD
2 In the exemplary embodiment, this computed time difference is provided by slave base station 64 to base station controller 66 and the computation of the timing adjustment is conducted at base station 66. It will be understood by one skilled in the art that the present invention is easily extended to the case wherein the computations are performed at the base stations or mobile stations.
VII. Timing Adjustment of Slave Base Station Base station controller 66, in response, performs the computation described in equation (12) and sends an indication of the necessary timing adjustment to slave base station 64. Referring back to FIG. 7, the timing adjustment signal is received by slave base station 64 at control processor 100. Control processor 100 generates and provides a control signal to timing adjustment processor 99. Timing adjustment processor 99 generates a signal which changes the time of timing source 98 by the amount indicated in the signal from base station controller 66.
VIII. Time Transfer When Not in Soft Handoff The above adjustment procedure is valid for the case in which a mobile station 60 is in soft handoff when the mobile station has established links with both reference base station 62 and slave base station 64). Establishing links with both reference and slave base stations allows reference base station 62 to determine the RTD 1 and slave base station 64 to determine the RTD 2 From the values of RTD 1 and RTD 2 an estimate of the time error To' can be made. However, in accordance with one embodiment of the present invention, slave base station 64 can be synchronized with reference base station 62, as follows, when mobile station 60 is not in communication with both reference base station 62 and slave base station 64.
\1IA nnl11n1T Ieon1nano VV% r~j rjj 17 LJ.J77I'V7 Assuming that a mobile station 60 is communicating with reference base station 62, the value of RTD 1 can be determined as described above. In addition, mobile station 60 and reference base station 64 are preferably in communication through base station controller 66. The long PN code with which mobile station 60 spreads its reverse link transmission to the reference base station 62 is known to reference base station 62. In accordance with the present invention, reference base station 62 communicates the long PN code to the slave base station 64 through the base station controller 66.
In addition, using the communication path through the base station controller 66, reference base station 62 sends to the slave base station 62 a list of values of RTD 1 each being associated with one long PN code used by one mobile station 60 to spread the reverse link transmitted by mobile station in communicating with reference base station 62. It should be understood that each mobile station 60 will be associated with one particular long PN code and RTD 1 value. Slave base station 64 then uses the long PN code information to attempt to receive one or more of the reverse link transmissions from the mobile stations 60. Since the mobile stations 60 are not in soft handoff, the signal received by slave base station 64 from mobile stations 60 will be weak. Therefore, slave base station 64 will typically need be accumulate a large number of PN chips in order to detect a mobile station that is being serviced by reference base station 62.
Slave base station 64 searches for mobile stations 60 one at a time based upon the long PN codes that slave base station 64 received from reference base station 62. Therefore, if after a reasonable amount of time, slave base station 64 has been unsuccessful in detecting a reverse link transmission from a first mobile station 60, then slave base station 64 begins searching for a reverse link transmission from a second mobile station In accordance with one embodiment of the present invention, reference base station 62 assists in determining which of the mobile stations 60 slave base station 64 is most likely to be able to detect. This is preferably done by determining the distance of the mobile stations 60 from reference base station 62. In addition, information regarding the sector from which each mobile station 60 is transmitting is used. That is, if the mobile station is at a relatively great distance from the reference station (as indicated, for example, by information attained while performing a power control algorithm), and the mobile station 60 is in a sector that is adjacent to slave base station 64, then there is a greater likelihood that mobile station 60 will be detected by slave base station 64. It should be clear that by reference base station 62 assisting in determining which mobile stations 60 are most likely to be D9i n An nnnn WV YIJ 71u3 1 18 I U3a7IuUYV7 detected by slave base station 64, the amount of time required for slave base station 64 to detect a mobile station is reduced.
Once slave base station 64 has acquired the transmission from the mobile station over the reverse link, slave base station 64 determines the arrival time of the reverse link transmission, T 2 and obtains an estimate of r 2 (the delay from mobile station 60 to slave base station 64) which is denoted by y2. Slave base station 64 then estimates To'= T 2 (72 T2 (Y2 RTD1/2). It should be noted that y2 is not directly measured. If the location of mobile station 60 is known, then 72 can be estimated based upon the distance between the mobile station 60 and the slave base station 64, since the location of the slave base station is known. If the location of mobile station 60 is not known, 72 can be estimated from a table of values or from a database based upon experience. That is, the path loss between mobile station 60 and slave base station 64 can be used to estimate The path loss can be determined by measuring the amount of power that is transmitted and received at slave base station 64. Alternatively, the strength of the signal received at mobile station 60 (such as a pilot signal which is transmitted by slave base station 64 and received by mobile station 60) can be used to determine the path loss between mobile station 60 and slave base station 64. In such an embodiment of the present invention, mobile station transmits an indication of the strength of the signal received to the slave base station over the reverse link.
The time error is equal to the value of 72 minus r2. Therefore, the time transfer accuracy is directly related to the accuracy of y2. The estimate typically is accurate to less than the cell radius. That is, the difference between the estimate of y2 and the actual value of 72 is less than the cell radius. Thus, for a cell with a radius of K miles, the timing error due to T 2 is about 5 K jis.
In spite of the inaccuracy of the estimate of 72, this method of time transfer can provide better timing than can be provided by many other means, such as by the backhaul. Therefore, estimating 72 in accordance with the present invention as described above can reduce the size of the search windows, and thus ensure that the windows are not excessive. The present invention also provides timing that is accurate enough that the received signals from two base stations do not arrive with the same pilot PN phase, thus allowing pilots from different origins to be distinguished.
It should also be noted that a complementary procedure may be used if mobile station 60 is communicating with slave base station 64, and not DCIr/T ICQO//AnlQf WV YY.)3 IU3 19 U7,, with reference base station 64. In such a case, t 1 needs to be estimated instead of T2- IX. Initialization of Slave Base Station The above adjustment procedure is valid for the case in which the slave base station system time is relatively close to the reference base station system time. However, in some cases, the difference between the reference base station system time and the reference base station system time will be so great as to make this procedure invalid. For example, when the slave base station first becomes operational, the system time must be initialized.
Without an external reference, the slave base station system time will be an arbitrary value. In another instance, when there is no mobile station in the region between the reference base station and the slave base station for a relatively long period of time, the slave base station system time may accumulate a significant error drift from the reference base station system time by a significant amount) due to the oscillator which maintains the system time drifting with respect to the reference used by the reference base station. In such cases, the following initialization procedure is provided in accordance with the present invention.
When a slave base station 64 is first powers on, that slave base station 64 may not have the appropriate timing, since no time transfer has yet occurred between the slave base station 64 and any external timing reference, such as a GPS signal source or a reference base station 62. Therefore, in accordance with one embodiment of the present invention, when power is first applied to slave base station 64, the forward link to be transmitted from that slave base station is not enabled. Initial timing is preferably obtained using the backhaul, assuming that no more accurate means is available. The slave base station 64 then has a reasonable estimate as to the proper timing which is sufficient to allow the slave base station 64 to acquire timing via the reverse link method described above in section VIII. Once this has been done, slave base station 64 enables the forward link transmission at low power. If a mobile station 60 is in the soft handoff region, then the mobile station 60 reports the presence of the new pilot and time can be transferred using the more accurate soft handoff method of the WO 99/37037 20 PCT/US99/00909 present invention, as described above. Once this is done, the forward link power of this base station can be increased to the normally operating power appropriate to the slave base station 64.
WE CLAIM:
Claims (1)
1. A method for time synchronizing a first base station with a 2 reference base station comprising the steps of: measuring a round trip delay interval of transmissions from the 4 reference base station to a mobile station in communication with thereference base station and back from the mobile station to the reference 6 base station; communicating information from the reference base station to the 8 first base station to assist the first base station in receiving communications from the mobile station; receiving at the first base station communications transmitted by the mobile station and noting the time of reception; 12 determining at the first base station, an estimate of the delay which occurs between transmission by the mobile station and reception by the first 14 base station; computing a timing correction value based upon the estimate of the 16 delay, time of reception at the first base station of the transmission from the mobile station to the first base station, and the measured round trip delay 18 interval.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/008203 | 1998-01-16 | ||
US09/008,203 US6307840B1 (en) | 1997-09-19 | 1998-01-16 | Mobile station assisted timing synchronization in CDMA communication system |
PCT/US1999/000909 WO1999037037A1 (en) | 1998-01-16 | 1999-01-15 | Mobile station assisted timing synchronization in a cdma communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2230799A AU2230799A (en) | 1999-08-02 |
AU746708B2 true AU746708B2 (en) | 2002-05-02 |
Family
ID=21730319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU22307/99A Expired AU746708B2 (en) | 1998-01-16 | 1999-01-15 | Mobile station assisted timing synchronization in a CDMA communication system |
Country Status (24)
Country | Link |
---|---|
US (2) | US6307840B1 (en) |
EP (2) | EP1821430A3 (en) |
JP (2) | JP4373004B2 (en) |
KR (3) | KR100773612B1 (en) |
CN (2) | CN1684395B (en) |
AU (1) | AU746708B2 (en) |
BG (1) | BG64661B1 (en) |
BR (1) | BR9906959B1 (en) |
CA (1) | CA2316260C (en) |
CZ (1) | CZ301668B6 (en) |
FI (1) | FI120813B (en) |
HU (1) | HUP0100858A3 (en) |
ID (1) | ID27751A (en) |
IL (2) | IL136952A (en) |
MX (1) | MXPA00006936A (en) |
NO (1) | NO317101B1 (en) |
NZ (2) | NZ505285A (en) |
PL (1) | PL192830B1 (en) |
RO (1) | RO121246B1 (en) |
RU (3) | RU2222102C2 (en) |
SK (1) | SK287389B6 (en) |
TR (1) | TR200002055T2 (en) |
UA (1) | UA67758C2 (en) |
WO (1) | WO1999037037A1 (en) |
Families Citing this family (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69739757D1 (en) * | 1996-12-26 | 2010-03-25 | Nippon Telegraph & Telephone | FURTHER METHOD FOR REDUCING THE PHASE DIFFERENCE FOR SYNCHRONIZING A MOBILE STATION |
US6151332A (en) | 1997-06-20 | 2000-11-21 | Tantivy Communications, Inc. | Protocol conversion and bandwidth reduction technique providing multiple nB+D ISDN basic rate interface links over a wireless code division multiple access communication system |
US6542481B2 (en) | 1998-06-01 | 2003-04-01 | Tantivy Communications, Inc. | Dynamic bandwidth allocation for multiple access communication using session queues |
US6081536A (en) | 1997-06-20 | 2000-06-27 | Tantivy Communications, Inc. | Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link |
US5872774A (en) * | 1997-09-19 | 1999-02-16 | Qualcomm Incorporated | Mobile station assisted timing synchronization in a CDMA communication system |
US6307840B1 (en) * | 1997-09-19 | 2001-10-23 | Qualcomm Incorporated | Mobile station assisted timing synchronization in CDMA communication system |
US9525923B2 (en) | 1997-12-17 | 2016-12-20 | Intel Corporation | Multi-detection of heartbeat to reduce error probability |
US6222832B1 (en) | 1998-06-01 | 2001-04-24 | Tantivy Communications, Inc. | Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system |
US7394791B2 (en) | 1997-12-17 | 2008-07-01 | Interdigital Technology Corporation | Multi-detection of heartbeat to reduce error probability |
US7936728B2 (en) | 1997-12-17 | 2011-05-03 | Tantivy Communications, Inc. | System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system |
US6526039B1 (en) * | 1998-02-12 | 2003-02-25 | Telefonaktiebolaget Lm Ericsson | Method and system for facilitating timing of base stations in an asynchronous CDMA mobile communications system |
JP2894340B1 (en) | 1998-03-04 | 1999-05-24 | 日本電気株式会社 | Spread spectrum communication system |
JP3266091B2 (en) * | 1998-03-04 | 2002-03-18 | 日本電気株式会社 | Cellular system |
US6396819B1 (en) | 1998-03-21 | 2002-05-28 | Richard D. Fleeter | Low-cost satellite communication system |
US7773566B2 (en) | 1998-06-01 | 2010-08-10 | Tantivy Communications, Inc. | System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system |
US8134980B2 (en) | 1998-06-01 | 2012-03-13 | Ipr Licensing, Inc. | Transmittal of heartbeat signal at a lower level than heartbeat request |
US6571111B1 (en) * | 1998-08-05 | 2003-05-27 | Compaq Computer Corporation | Method and apparatus for reducing battery power consumption of transceivers in a communications network using an external generated timing signal |
US6445714B1 (en) * | 1998-08-19 | 2002-09-03 | Nortel Networks Limited | Code generator for multiple correlators |
JP3479935B2 (en) | 1998-08-19 | 2003-12-15 | 富士通株式会社 | Handover method in CDMA mobile communication, CDMA mobile communication system, base station and mobile station thereof |
US6424641B1 (en) * | 1998-08-19 | 2002-07-23 | Nortel Networks Limited | Searcher architecture for CDMA systems |
US6765953B1 (en) * | 1998-09-09 | 2004-07-20 | Qualcomm Incorporated | User terminal parallel searcher |
EP1033896A3 (en) * | 1999-03-04 | 2000-10-18 | Canon Kabushiki Kaisha | Method and device for communicating a message on a network and systems using them. |
US6704348B2 (en) | 2001-05-18 | 2004-03-09 | Global Locate, Inc. | Method and apparatus for computing signal correlation at multiple resolutions |
US6614776B1 (en) * | 1999-04-28 | 2003-09-02 | Tantivy Communications, Inc. | Forward error correction scheme for high rate data exchange in a wireless system |
JP3322240B2 (en) * | 1999-05-10 | 2002-09-09 | 日本電気株式会社 | CDMA receiver |
US6493539B1 (en) * | 1999-07-28 | 2002-12-10 | Lucent Technologies Inc. | Providing an accurate timing source for locating the geographical position of a mobile |
US6628642B1 (en) * | 1999-08-25 | 2003-09-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Synchronization deviation detection |
GB9920248D0 (en) * | 1999-08-26 | 1999-10-27 | Motorola Ltd | A method of measuring radio signals and apparatus therefor |
US6542743B1 (en) * | 1999-08-31 | 2003-04-01 | Qualcomm, Incorporated | Method and apparatus for reducing pilot search times utilizing mobile station location information |
US6882631B1 (en) * | 1999-09-13 | 2005-04-19 | Qualcomm Incorporated | Method and apparatus for overlaying two CDMA systems on the same frequency bandwidth |
JP4550342B2 (en) * | 1999-09-17 | 2010-09-22 | クゥアルコム・インコーポレイテッド | System and method for synchronizing base stations in cellular and PCS networks |
US6526034B1 (en) | 1999-09-21 | 2003-02-25 | Tantivy Communications, Inc. | Dual mode subscriber unit for short range, high rate and long range, lower rate data communications |
KR100733997B1 (en) * | 1999-10-20 | 2007-06-29 | 소니 가부시끼 가이샤 | Signal receiving apparatus of global positioning system and mobile wireless terminal apparatus |
KR100358351B1 (en) * | 1999-12-14 | 2002-10-25 | 한국전자통신연구원 | Hard Handoff Method between Asynchronous CDMA System and Synchronous CDMA System |
US8463255B2 (en) * | 1999-12-20 | 2013-06-11 | Ipr Licensing, Inc. | Method and apparatus for a spectrally compliant cellular communication system |
KR100350481B1 (en) * | 1999-12-30 | 2002-08-28 | 삼성전자 주식회사 | apparatus and method for implementing hand-off from asynchronous mobile communication system to synchronous mobile communication system |
AU3673001A (en) | 2000-02-07 | 2001-08-14 | Tantivy Communications, Inc. | Minimal maintenance link to support synchronization |
US7047011B1 (en) * | 2000-02-10 | 2006-05-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Synchronization in diversity handover |
US7227884B2 (en) | 2000-02-28 | 2007-06-05 | Aeroastro, Inc. | Spread-spectrum receiver with progressive fourier transform |
US7433391B2 (en) * | 2000-02-28 | 2008-10-07 | Aeroastro, Inc. | Spread-spectrum receiver with fast M-sequence transform |
EP1273111B9 (en) * | 2000-04-07 | 2007-06-27 | Interdigital Technology Corporation | Base station synchronization for wireless communication systems |
US6665541B1 (en) | 2000-05-04 | 2003-12-16 | Snaptrack, Incorporated | Methods and apparatuses for using mobile GPS receivers to synchronize basestations in cellular networks |
US6813257B1 (en) * | 2000-06-26 | 2004-11-02 | Motorola, Inc. | Apparatus and methods for controlling short code timing offsets in a CDMA system |
JP2002026768A (en) | 2000-07-07 | 2002-01-25 | Nec Corp | Communication unit |
GB2364857B (en) * | 2000-07-14 | 2004-12-29 | Ip Access Ltd | Cellular radio telecommunication systems |
US6826161B1 (en) * | 2000-07-20 | 2004-11-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Slewing detector system and method for the introduction of hysteresis into a hard handoff decision |
US6810028B1 (en) * | 2000-09-06 | 2004-10-26 | L-3 Communications Corp. | Open loop timing control for synchronous CDA systems |
WO2002025859A1 (en) * | 2000-09-12 | 2002-03-28 | Kvaser Consultant Ab | An arrangement with a number of units that can communicate with each other via a wireless connection system and a method for use with such a system |
WO2002025839A1 (en) * | 2000-09-15 | 2002-03-28 | Koninklijke Philips Electronics N.V. | Secondary station and method of operating the station |
US7313391B2 (en) * | 2000-09-26 | 2007-12-25 | Andrew Corporation | Modeling of RF point source reference for analysis of wireless signal propagation |
US6658258B1 (en) | 2000-09-29 | 2003-12-02 | Lucent Technologies Inc. | Method and apparatus for estimating the location of a mobile terminal |
US6934317B1 (en) * | 2000-10-11 | 2005-08-23 | Ericsson Inc. | Systems and methods for communicating spread spectrum signals using variable signal constellations |
US6438367B1 (en) * | 2000-11-09 | 2002-08-20 | Magis Networks, Inc. | Transmission security for wireless communications |
US8155096B1 (en) | 2000-12-01 | 2012-04-10 | Ipr Licensing Inc. | Antenna control system and method |
DE10102709B4 (en) * | 2001-01-22 | 2014-02-06 | Rohde & Schwarz Gmbh & Co. Kg | Method and apparatus for synchronization to a pilot sequence of a CDMA signal |
US6885869B2 (en) * | 2001-01-26 | 2005-04-26 | Ericsson Inc. | Method for mating a mobile terminal with a cordless phone system |
US7551663B1 (en) | 2001-02-01 | 2009-06-23 | Ipr Licensing, Inc. | Use of correlation combination to achieve channel detection |
US6954448B2 (en) | 2001-02-01 | 2005-10-11 | Ipr Licensing, Inc. | Alternate channel for carrying selected message types |
JP3583730B2 (en) * | 2001-03-26 | 2004-11-04 | 株式会社東芝 | Wireless communication system and wireless transmission device |
EP1388016A1 (en) * | 2001-03-28 | 2004-02-11 | Norwood Systems Pty Ltd. | A wireless communications network |
EP1245967A1 (en) | 2001-03-29 | 2002-10-02 | Société Européenne des Satellites S.A. | Ranging system for determining ranging information of a spacecraft |
WO2002089502A2 (en) * | 2001-05-02 | 2002-11-07 | Linkair Communications, Inc. | Pre-synchronization handoff mechanisms for wireless communication networks |
US6819707B2 (en) * | 2001-05-18 | 2004-11-16 | Global Locate, Inc. | Method and apparatus for performing signal correlation using historical correlation data |
US7769076B2 (en) | 2001-05-18 | 2010-08-03 | Broadcom Corporation | Method and apparatus for performing frequency synchronization |
US7995682B2 (en) * | 2001-05-18 | 2011-08-09 | Broadcom Corporation | Method and apparatus for performing signal processing using historical correlation data |
US7006556B2 (en) | 2001-05-18 | 2006-02-28 | Global Locate, Inc. | Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference |
US6891880B2 (en) * | 2001-05-18 | 2005-05-10 | Global Locate, Inc. | Method and apparatus for performing signal correlation |
US7190712B2 (en) * | 2001-05-18 | 2007-03-13 | Global Locate, Inc | Method and apparatus for performing signal correlation |
US7567636B2 (en) * | 2001-05-18 | 2009-07-28 | Global Locate, Inc. | Method and apparatus for performing signal correlation using historical correlation data |
KR100881869B1 (en) * | 2001-05-26 | 2009-02-06 | 퀄컴 인코포레이티드 | Methods and apparatuses for using mobile gps stations to synchronize basestations |
EP2479904B1 (en) | 2001-06-13 | 2017-02-15 | Intel Corporation | Apparatuses for transmittal of heartbeat signal at a lower level than heartbeat request |
US20030007471A1 (en) * | 2001-07-03 | 2003-01-09 | Daisuke Terasawa | Operation of wideband code division multiple access base stations |
ES2743319T3 (en) | 2001-08-14 | 2020-02-18 | Qualcomm Inc | Procedure and device for wireless network connectivity |
US7756085B2 (en) * | 2001-11-20 | 2010-07-13 | Qualcomm Incorporated | Steps one and three W-CDMA and multi-mode searching |
KR100780155B1 (en) * | 2001-12-20 | 2007-11-27 | 엘지노텔 주식회사 | Method for Maintaining Synchronous about Transmission Channel Between Radio Network Controller and Node-B |
KR100426621B1 (en) * | 2001-12-20 | 2004-04-13 | 한국전자통신연구원 | Small-window-sized preamble search apparatus and method to search preamble signal of terminal |
KR100764480B1 (en) * | 2001-12-27 | 2007-10-09 | 에스케이 텔레콤주식회사 | Method of compensation of search window size in mobile communication system |
US7738533B2 (en) * | 2002-01-07 | 2010-06-15 | Qualcomm Incorporated | Multiplexed CDMA and GPS searching |
CN1292261C (en) * | 2002-01-24 | 2006-12-27 | 华为技术有限公司 | Localization measurement method of mobile station |
US6954622B2 (en) * | 2002-01-29 | 2005-10-11 | L-3 Communications Corporation | Cooperative transmission power control method and system for CDMA communication systems |
US7385913B2 (en) * | 2002-04-24 | 2008-06-10 | Motorola, Inc. | Method and apparatus for compensating for variations in a receive portion of a wireless communication device |
CN100359956C (en) * | 2003-02-09 | 2008-01-02 | 中兴通讯股份有限公司 | Method for implementing synchronization and distance finding in wireless communication system and implementing apparatus thereof |
US20040194109A1 (en) * | 2003-03-25 | 2004-09-30 | Tibor Boros | Multi-threaded time processing unit for telecommunication systems |
DE10331313B3 (en) * | 2003-07-10 | 2005-01-05 | Siemens Ag | Method for synchronizing a radio communication system divided into radio cells |
DE10331311B4 (en) * | 2003-07-10 | 2008-02-07 | Siemens Ag | Method for synchronizing a radio communication system divided into radio cells |
DE10336312B4 (en) * | 2003-08-07 | 2007-08-30 | Siemens Ag | Method for the synchronization of a wireless communication system divided into radio cells, and a base and mobile station in such a system |
EP1701564A4 (en) * | 2003-12-10 | 2012-11-07 | Nec Corp | Transmission time difference measurement method and system thereof |
DE10359268B4 (en) * | 2003-12-17 | 2011-05-19 | Infineon Technologies Ag | Device for generating transmission signals in a mobile radio station by means of a scrambling code generator for preambles and for transmission signals of dedicated physical channels |
KR100827105B1 (en) * | 2004-02-13 | 2008-05-02 | 삼성전자주식회사 | Method and apparatus for ranging to support fast handover in broadband wireless communication system |
FI20040261A0 (en) * | 2004-02-18 | 2004-02-18 | Nokia Corp | Providing time information |
US8023466B2 (en) | 2004-06-22 | 2011-09-20 | Jianglei Ma | Soft handoff in OFDMA system |
LT1779055T (en) * | 2004-07-15 | 2017-04-10 | Cubic Corporation | Enhancement of aimpoint in simulated training systems |
JP4681898B2 (en) * | 2005-02-02 | 2011-05-11 | 富士通東芝モバイルコミュニケーションズ株式会社 | Base station search control method for mobile communication terminal and mobile communication terminal |
JP4031003B2 (en) * | 2005-03-03 | 2008-01-09 | 日本電波工業株式会社 | Spread spectrum communication method and system using weak power, high-frequency radio |
US8364185B2 (en) * | 2005-04-18 | 2013-01-29 | Samsung Electronics Co., Ltd. | Method and system for synchronizing a clock for an adjacent network to a clock for an overlay network |
KR100703441B1 (en) * | 2005-04-21 | 2007-04-03 | 삼성전자주식회사 | Data communication system and method for determining round trip time adapted for communication environment |
US20060292982A1 (en) * | 2005-06-24 | 2006-12-28 | Lucent Technologies, Inc. | Method for accomodating timing drift between base stations in a wireless communications system |
CN100438695C (en) * | 2005-07-19 | 2008-11-26 | 华为技术有限公司 | Method and device for detecting transmission time delay difference between soft exchange activating pole every base state |
JP4837957B2 (en) * | 2005-08-23 | 2011-12-14 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile station, base station, mobile communication system and communication method |
US8130726B2 (en) * | 2005-12-20 | 2012-03-06 | Qualcomm Incorporated | Coarse bin frequency synchronization in a communication system |
US8089938B2 (en) * | 2005-12-28 | 2012-01-03 | Alcatel Lucent | Method of synchronizing with an uplink channel and a method of determining a propagation delay in a wireless communications system |
WO2007136415A2 (en) | 2005-12-30 | 2007-11-29 | Comtech Mobile Datacom Corporation | Mobile satellite communications |
CN100542070C (en) * | 2006-01-24 | 2009-09-16 | 华为技术有限公司 | The method of a kind of definite base station UL-DPCH time of reception |
CN1866801B (en) * | 2006-03-29 | 2010-04-21 | 华为技术有限公司 | Apparatus and method for measuring wireless base station channel delay |
US8064401B2 (en) * | 2006-07-14 | 2011-11-22 | Qualcomm Incorporated | Expedited handoff |
US7936856B1 (en) * | 2006-09-18 | 2011-05-03 | Mediatek Inc. | Timing synchronization in wireless communication system |
US8275080B2 (en) | 2006-11-17 | 2012-09-25 | Comtech Mobile Datacom Corporation | Self-supporting simplex packets |
US8194544B2 (en) * | 2006-11-22 | 2012-06-05 | Belair Networks Inc. | Network delay shaping system and method for backhaul of wireless networks |
TWI543644B (en) * | 2006-12-27 | 2016-07-21 | 無線創新信號信託公司 | Method and apparatus for base station self-configuration |
CN101400079B (en) * | 2007-09-26 | 2010-08-18 | 大唐移动通信设备有限公司 | Detection method and device for idle port synchronization error |
CN101420727B (en) * | 2007-10-26 | 2010-12-29 | 中兴通讯股份有限公司 | Method for implementing hard switching between access networks |
US8284749B2 (en) * | 2008-03-10 | 2012-10-09 | Comtech Mobile Datacom Corporation | Time slot synchronized, flexible bandwidth communication system |
JP4941775B2 (en) * | 2008-06-23 | 2012-05-30 | Necエンジニアリング株式会社 | Time synchronizer |
US8121092B1 (en) * | 2008-11-24 | 2012-02-21 | Sprint Spectrum L.P. | Methods and systems for selecting a low-cost internet base station (LCIB) for a macro-network-to-LCIB handoff of an active mobile station |
US8548107B1 (en) | 2009-01-26 | 2013-10-01 | Comtech Mobile Datacom Corporation | Advanced multi-user detector |
US9106364B1 (en) | 2009-01-26 | 2015-08-11 | Comtech Mobile Datacom Corporation | Signal processing of a high capacity waveform |
US9204349B2 (en) * | 2009-02-10 | 2015-12-01 | Qualcomm Incorporated | Method and apparatus for facilitating a hand-in of user equipment to femto cells |
US20110158164A1 (en) * | 2009-05-22 | 2011-06-30 | Qualcomm Incorporated | Systems and methods for joint processing in a wireless communication |
JP5667626B2 (en) | 2009-06-26 | 2015-02-12 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus in a telecommunications network |
US8675711B1 (en) | 2009-09-25 | 2014-03-18 | Comtech Mobile Datacom Corporation | System and methods for dynamic spread spectrum usage |
US9642105B2 (en) | 2009-11-17 | 2017-05-02 | Qualcomm Incorporated | Access terminal-assisted time and/or frequency tracking |
US9392562B2 (en) | 2009-11-17 | 2016-07-12 | Qualcomm Incorporated | Idle access terminal-assisted time and/or frequency tracking |
US8724610B2 (en) * | 2010-01-28 | 2014-05-13 | Alcatel Lucent | Interference reduction for wireless networks |
US9271248B2 (en) | 2010-03-02 | 2016-02-23 | Qualcomm Incorporated | System and method for timing and frequency synchronization by a Femto access point |
US20130201967A1 (en) * | 2010-04-22 | 2013-08-08 | Nokia Corporation | Open/Closed Loop Synchronization for Radio Transmitters |
CN102237972B (en) * | 2010-04-30 | 2014-12-10 | 电信科学技术研究院 | Inter-cell offset information transmission method and devices |
US9756553B2 (en) | 2010-09-16 | 2017-09-05 | Qualcomm Incorporated | System and method for assisted network acquisition and search updates |
US20120083221A1 (en) * | 2010-10-01 | 2012-04-05 | Nokia Siemens Networks Oy | Inter-frequency measurements for observed time difference of arrival |
WO2012085660A1 (en) * | 2010-12-23 | 2012-06-28 | Alcatel Lucent | Method and apparatus to derive system timing at a wireless base station |
GB2491336B (en) * | 2011-03-24 | 2015-12-16 | Nvidia Corp | Mobile radio network, relay node and method |
JP5926371B2 (en) * | 2011-04-26 | 2016-05-25 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | Base station synchronization |
US8965443B2 (en) * | 2011-07-28 | 2015-02-24 | Blackberry Limited | Method and system for access and uplink power control for a wireless system having multiple transmit points |
US9155057B2 (en) | 2012-05-01 | 2015-10-06 | Qualcomm Incorporated | Femtocell synchronization enhancements using access probes from cooperating mobiles |
US20130322402A1 (en) * | 2012-05-31 | 2013-12-05 | Mediatek Inc. | Method and apparatus for performing channel coding control |
US9237530B2 (en) | 2012-11-09 | 2016-01-12 | Qualcomm Incorporated | Network listen with self interference cancellation |
CN103797868B (en) | 2013-07-01 | 2017-06-06 | 华为技术有限公司 | The method of air interface synchronization, base station, control device and wireless communication system |
WO2015000102A1 (en) * | 2013-07-01 | 2015-01-08 | 华为技术有限公司 | Air interface synchronization method, base station, control apparatus and wireless communication system |
KR20150086591A (en) * | 2014-01-20 | 2015-07-29 | 한국전자통신연구원 | Method for synchronizing time in wireless network and apparatus therefor |
JP6531761B2 (en) * | 2014-08-05 | 2019-06-19 | 日本電気株式会社 | Base station, communication system, method and program |
KR101696225B1 (en) * | 2015-04-29 | 2017-01-16 | 아주대학교산학협력단 | Relay-based distributed time synchronization method and system |
WO2017024452A1 (en) * | 2015-08-07 | 2017-02-16 | 华为技术有限公司 | Time synchronization method, device and system |
TWI578825B (en) * | 2015-10-21 | 2017-04-11 | 財團法人工業技術研究院 | Communication system, base station, user equipment and timing synchronization method for base station thereof |
CN108713334B (en) * | 2016-03-15 | 2021-02-23 | 华为技术有限公司 | Synchronization method and equipment between base stations |
US10742311B2 (en) | 2017-03-02 | 2020-08-11 | Lynk Global, Inc. | Simplified inter-satellite link communications using orbital plane crossing to optimize inter-satellite data transfers |
US20180254825A1 (en) * | 2017-03-02 | 2018-09-06 | UbiquitiLink, Inc. | Method and apparatus for handling communications between spacecraft operating in an orbital environment and terrestrial telecommunications devices that use terrestrial base station communications |
US10084535B1 (en) | 2017-04-26 | 2018-09-25 | UbiquitiLink, Inc. | Method and apparatus for handling communications between spacecraft operating in an orbital environment and terrestrial telecommunications devices that use terrestrial base station communications |
CN109429325B (en) | 2017-08-24 | 2021-03-26 | 阿里巴巴集团控股有限公司 | Data transmission method, device, base station and server |
US10951305B2 (en) | 2018-04-26 | 2021-03-16 | Lynk Global, Inc. | Orbital base station filtering of interference from terrestrial-terrestrial communications of devices that use protocols in common with orbital-terrestrial communications |
WO2020051508A1 (en) | 2018-09-06 | 2020-03-12 | Lynk Global, Inc. | Cellular core network and radio access network infrastructure and management in space |
WO2022150518A1 (en) | 2021-01-06 | 2022-07-14 | Lynk Global, Inc. | Satellite communication system transmitting navigation signals using a wide beam and data signals using a directive beam |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994030024A1 (en) * | 1993-06-14 | 1994-12-22 | Telefonaktiebolaget Lm Ericsson | Time alignment of transmission in a down-link of a cdma system |
EP0766417A1 (en) * | 1995-09-26 | 1997-04-02 | Alcatel Cit | Base station for cellular mobile radio communication system and synchronisation system for these base stations |
US5677908A (en) * | 1994-04-08 | 1997-10-14 | Oki Electric Industry Co., Ltd. | Hand-over method for mobile communication |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4718109A (en) | 1986-03-06 | 1988-01-05 | Motorola, Inc. | Automatic synchronization system |
US5101501A (en) | 1989-11-07 | 1992-03-31 | Qualcomm Incorporated | Method and system for providing a soft handoff in communications in a cdma cellular telephone system |
US5212804A (en) * | 1990-08-02 | 1993-05-18 | Gte Airfone, Inc. | Communication system having multiple base stations and multiple mobile units |
MX9301888A (en) * | 1992-04-10 | 1993-11-30 | Ericsson Telefon Ab L M | MULTIPLE ACCESS OF TIME DIVISION FOR ACCESS OF A MOBILE IN A MULTIPLE ACCESS SYSTEM OF DIVISION OF CODE. |
EP0626769B1 (en) | 1993-05-26 | 2000-02-02 | Nec Corporation | Network synchronization for cellular TDMA communication using signals from mobile stations in neighboring cells |
US6088590A (en) * | 1993-11-01 | 2000-07-11 | Omnipoint Corporation | Method and system for mobile controlled handoff and link maintenance in spread spectrum communication |
US5710768A (en) * | 1994-09-30 | 1998-01-20 | Qualcomm Incorporated | Method of searching for a bursty signal |
US5745484A (en) * | 1995-06-05 | 1998-04-28 | Omnipoint Corporation | Efficient communication system using time division multiplexing and timing adjustment control |
US5642377A (en) * | 1995-07-25 | 1997-06-24 | Nokia Mobile Phones, Ltd. | Serial search acquisition system with adaptive threshold and optimal decision for spread spectrum systems |
JPH1022874A (en) * | 1996-07-09 | 1998-01-23 | Hitachi Ltd | Cdma communication system and method therefor |
US6014376A (en) * | 1996-09-18 | 2000-01-11 | Motorola, Inc. | Method for over-the-air synchronization adjustment in a communication system |
US6307840B1 (en) * | 1997-09-19 | 2001-10-23 | Qualcomm Incorporated | Mobile station assisted timing synchronization in CDMA communication system |
US5872774A (en) * | 1997-09-19 | 1999-02-16 | Qualcomm Incorporated | Mobile station assisted timing synchronization in a CDMA communication system |
CZ2000959A3 (en) * | 1998-09-18 | 2000-08-16 | Qualcomm Incorporated | Timing synchronization method of first base station with reference base station |
-
1998
- 1998-01-16 US US09/008,203 patent/US6307840B1/en not_active Expired - Lifetime
-
1999
- 1999-01-15 JP JP2000540629A patent/JP4373004B2/en not_active Expired - Fee Related
- 1999-01-15 KR KR1020007007786A patent/KR100773612B1/en not_active IP Right Cessation
- 1999-01-15 IL IL136952A patent/IL136952A/en not_active IP Right Cessation
- 1999-01-15 CN CN200510062646.3A patent/CN1684395B/en not_active Expired - Fee Related
- 1999-01-15 PL PL341838A patent/PL192830B1/en unknown
- 1999-01-15 KR KR1020087025975A patent/KR100975863B1/en not_active IP Right Cessation
- 1999-01-15 CA CA2316260A patent/CA2316260C/en not_active Expired - Lifetime
- 1999-01-15 BR BRPI9906959-8A patent/BR9906959B1/en not_active IP Right Cessation
- 1999-01-15 CZ CZ20002599A patent/CZ301668B6/en not_active IP Right Cessation
- 1999-01-15 TR TR2000/02055T patent/TR200002055T2/en unknown
- 1999-01-15 NZ NZ505285A patent/NZ505285A/en unknown
- 1999-01-15 HU HU0100858A patent/HUP0100858A3/en unknown
- 1999-01-15 KR KR1020077007014A patent/KR100941161B1/en not_active IP Right Cessation
- 1999-01-15 MX MXPA00006936A patent/MXPA00006936A/en unknown
- 1999-01-15 RO ROA200000710A patent/RO121246B1/en unknown
- 1999-01-15 RU RU2000121546/09A patent/RU2222102C2/en active
- 1999-01-15 EP EP07010283A patent/EP1821430A3/en not_active Ceased
- 1999-01-15 EP EP99902289A patent/EP1048128A1/en not_active Withdrawn
- 1999-01-15 UA UA2000063812A patent/UA67758C2/en unknown
- 1999-01-15 SK SK1066-2000A patent/SK287389B6/en not_active IP Right Cessation
- 1999-01-15 AU AU22307/99A patent/AU746708B2/en not_active Expired
- 1999-01-15 CN CNB998021970A patent/CN100456645C/en not_active Expired - Fee Related
- 1999-01-15 WO PCT/US1999/000909 patent/WO1999037037A1/en active Application Filing
- 1999-01-15 RU RU2001127978/09A patent/RU2294059C2/en active
- 1999-01-15 ID IDW20001381A patent/ID27751A/en unknown
-
2000
- 2000-06-21 FI FI20001485A patent/FI120813B/en not_active IP Right Cessation
- 2000-07-11 BG BG104592A patent/BG64661B1/en unknown
- 2000-07-14 NO NO20003631A patent/NO317101B1/en not_active IP Right Cessation
-
2001
- 2001-04-25 US US09/841,893 patent/US7295531B2/en not_active Expired - Fee Related
-
2002
- 2002-06-19 NZ NZ519641A patent/NZ519641A/en unknown
-
2005
- 2005-05-25 IL IL168802A patent/IL168802A/en not_active IP Right Cessation
-
2006
- 2006-10-30 RU RU2006138270/09A patent/RU2425469C2/en active
-
2009
- 2009-05-11 JP JP2009115017A patent/JP4448193B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994030024A1 (en) * | 1993-06-14 | 1994-12-22 | Telefonaktiebolaget Lm Ericsson | Time alignment of transmission in a down-link of a cdma system |
US5677908A (en) * | 1994-04-08 | 1997-10-14 | Oki Electric Industry Co., Ltd. | Hand-over method for mobile communication |
EP0766417A1 (en) * | 1995-09-26 | 1997-04-02 | Alcatel Cit | Base station for cellular mobile radio communication system and synchronisation system for these base stations |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU746708B2 (en) | Mobile station assisted timing synchronization in a CDMA communication system | |
US8184611B2 (en) | Mobile station assisted timing synchronization in a CDMA communication system | |
CA2614566C (en) | Mobile station assisted timing synchronization in a cdma communication system | |
CZ2000959A3 (en) | Timing synchronization method of first base station with reference base station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |