AU745939B2 - Implanted bone stimulator and prosthesis system - Google Patents

Implanted bone stimulator and prosthesis system Download PDF

Info

Publication number
AU745939B2
AU745939B2 AU13586/00A AU1358600A AU745939B2 AU 745939 B2 AU745939 B2 AU 745939B2 AU 13586/00 A AU13586/00 A AU 13586/00A AU 1358600 A AU1358600 A AU 1358600A AU 745939 B2 AU745939 B2 AU 745939B2
Authority
AU
Australia
Prior art keywords
bone
charge
prosthesis
strain
piezo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU13586/00A
Other versions
AU1358600A (en
Inventor
Christopher S. Mcdowell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Orthopaedics Inc
Original Assignee
DePuy Orthopaedics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DePuy Orthopaedics Inc filed Critical DePuy Orthopaedics Inc
Publication of AU1358600A publication Critical patent/AU1358600A/en
Application granted granted Critical
Publication of AU745939B2 publication Critical patent/AU745939B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/205Applying electric currents by contact electrodes continuous direct currents for promoting a biological process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/326Applying electric currents by contact electrodes alternating or intermittent currents for promoting growth of cells, e.g. bone cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2821Bone stimulation by electromagnetic fields or electric current for enhancing ossification
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30087Properties of materials and coating materials piezoelectric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30383Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
    • A61F2002/30387Dovetail connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30734Modular inserts, sleeves or augments, e.g. placed on proximal part of stem for fixation purposes or wedges for bridging a bone defect
    • A61F2002/30738Sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30919Sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • A61F2002/3627Necks with lateral apertures, holes or openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • A61F2002/3631Necks with an integral complete or partial peripheral collar or bearing shoulder at its base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/365Connections of heads to necks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system

Description

P/00/0011 Regulation 3.2
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
0 *00* *0*0 0 0*0* Name of Applicant: Actual Inventor: Address for service in Australia: DEPUY ORTHOPAEDICS, INC.
Christopher Scott MCDOWELL CARTER SMITH BEADLE 2 Railway Parade Camberwell Victoria 3124 Australia Invention Title: IMPLANTED BONE STIMULATOR AND PROSTHESIS
SYSTEM
The following statement is a full description of this invention, including the best method of performing it known to us IMPLANTED BONE STIMULATOR AND PROSTHESIS SYSTEM BACKGROUND OF THE INVENTION The present invention relates to bone prostheses and to methods for enhancing the anchoring of such prostheses or promoting the regrowth of bone in the vicinity of a prosthetic implant or other bone repair.
Replacement of a bone joint, or the splicing or repair of traumatic bone injury often involves the insertion or external attachment of an elongated member that spans a fracture, or that forms a joint termination for mechanical articulation with a mating part 4)at the damaged portion of bone. Thus, for example, fractures may commonly be repaired with a bone plate which spans the break, or artificial joints such as knee or hip joints may utilize a prosthetic stem portion inserted into a long bone, that receives a corresponding prosthetic articulation portion attached to or articulated against the end of the stem portion for forming the replacement joint. In each case, the structural element of the prosthetic repair takes over a portion of the- natural mechanical loading of the bone, but also requires regrowth of that bone in order for the prosthesis to become effectively attached to or incorporated in thebone.
It is known that healthy bone undergoes growth processes in which competing rates of bone resorption or wasting, and bone growth or accretion operate to maintain the requisite bone strength. Moreover, bone growth increases when the bone is subject to mechanical stress. Conversely, when a prosthetic stem or bone plate takes over the portion of the loading on a bone, and is anchored or transfers the load to a distalregion, intermediate portions of bone may experience no natural loading, and tend to erode, an effect known as stress shielding. Much recent research in the area of prosthesis design has attempted to optimize the mechanical strength, the strain and bending deflection, of prosthetic elemtents, so as to match them to the characteristics of natural bone and assure that the requisite amount of loading continues to be transferred to surrounding bone to encourage the receiving residual bone to grow strong and bind to the prosthetic element.
At the physiological level, the mechanism whereby bone stresses result in enhanced bone growth or bone mass accretion are not fully elucidated. It has long been known that natural bone in mammals and even frogs has a piezoelectric property, and this has been attributed, for example, to the presence of hydroxy apatite in the bone itself.
Experiments have shown that this active bone material is structured such that compression of the bone results in accumulation of a negative charge at the compressed surface, while tensile elongation produces charge of the opposite polarity. The property is intrinsic to the bone itself, and not to surrounding tissue or biological material, since the piezoelectric behavior has not been observed, for example, in tendon tissue or other non-boney structures, and it persists whether the bone is in vivo or ex vivo. Generation of charge has also been hypothesized to result from deformation of long chain molecules or *other macro-molecules in the bone, based on the observation that removal of the organic .fraction from natural bone may cause bone to either lose it piezoelectric property, or become so fragile as to render any charge undetectable.
In addition to the above observations on the electrogenic or charge-generating material present in natural bone, the presence of electrical potentials at the bone surface has been considered to promote bone healing, and several investigators have attempted, by applying currents or pulses of known shape, duration or energy, to experimentally assess the magnitude of this effect and to determine optimal regimens for enhancing postoperative healing. Conflicting results have been reported, with some investigators :focusing on the desirability of a particular energy range and/or pulse duration during a limited post-operative time interval. As a matter of biophysics, it would seem apparent that a prolonged or excessively high DC potential would result in polarization shielding which is likely to interfere with natural processes governed by biologically available potentials applied to enzymatic or fluid transport mechanjismns that may operate with the scale of tissue, cell and material mobility characteristic of a fracture site. In line with such expected effects, enhanced growth has been reported primarily for regimens involving relatively low frequency pulses at moderately low energies.
3 However, even when specific therapeutic effects appear to be demonstrated by the experimental data for a particular charge regiment, many practical problems are presented in terms of a delivery system for applying the desired charge pattern over a suitably long time interval. For example, one common approach suggests implanted or transdermal platinum electrodes, while another suggests an implanted power supply such as a silver oxide battery or power source similar to that used for cardiac pacemakers, to enable the sustained application of an electric potential to the bone surface for an extended interval.
Accordingly it would be desirable to provide improved methods and devices for stimulating healing of fractures or implanted prostheses.
Summary of the Invention a o"One or more of the foregoing desired ends are achieved in accordance with the present invention by a system for enhanced anchoring of an implanted bone a..
prosthesis of the type wherein the prosthesis comprises a plate, stem, articulation 15 component or other structural component for attaching to the bone at a first oo location, wherein the system comprises a generator body including a strain ooo.
response element formed of piezoelectric material and being configured for implantation at a second location to receive strain and generate charge in oooo response thereto, and at least one output electrode connected to said generator 20 body, said output electrode extending to said first location for applying the charge generated by the generator body to said first location as a signal of defined polarity to enhance bone growth in the vicinity of the prosthesis. In one embodiment, the piezoelectric element is attached on the medial side of a prosthetic hip stem in a position on the shoulder or neck of the stem, so that it preferentially undergoes compressive strain, and the element is poled to produce a negative charge when so strained. Preferably the element attaches near the surface such that is outer surface constitutes a negative electrode that operates to stimulate bone across an opposing receiving gap in the proximal femur. In another r embodiment, the element attaches to tissue at a sit different from the prosthesis, 'uaOCYtvO 3a and an electrode lead extends distally from the piezoelectric element to apply the generated charge remotely, such as at a site proximate to a fracture plate. For such operation, the 0. 0. piezoelectric element may be installed in the natural bone, for example at the medial side of the femoral neck or other region of high or oriented strain, and its electrodes may extend to a site of fracture which may, for example, be further along the length of the femur or may be located on an adjacent bone. A conductive screw or metal mesh screen may attach to the bone fracture site to apply the piezo-generated charge over a region of the bone surface and enhance the buildup of a thickening body at the distal electrode site.
Alternatively, the electrode may extend to another region of bone where growth is desired, for example, a region normally subject to stress shielding, such as the region of the proximal femur surrounding an implanted femoral stem component. In other embodiments, the piezoelectric element is positioned in a region of tensile strain, but it is oriented with its cathodic pole extending to the desired growth gap or intended region of bone accretion. Oppositely poled piezoelectric elements may be positioned on opposing sides of a long bone, so that all elements produce like charge. Alternatively, or in addition, circuit elements may be attached to the implanted piezo elements to condition the magnitude, duration or modulation of charge they produce. Furthermore, the piezoelectric element or elements may attach to the bone itself at a strain transfer position, and generate charge which is applied via one or more conductors to a bone gap around the prosthesis to enhance healing. The invention also contemplates conditioning and applying the piezo-generated charge to power an implanted device or to recharge a power cell for such a device.
BRIEF DESCRIPTION OF THE DRAWINGS These andi other features of the invention will be understood from the description below and claims herein, taken together with figures illustrating ilustrative embodiments and operation of the invention, wherein: Figure 1 shows a first embodiment of the invention; Figure 2 ilustrates strain in a hip stem prosthesis; Figure 2A illustrates a second embodiment of the invention; Figure 3 ilustrates a third embodiment of the invention; Figure 4 illustrates steps of the method of the present invention; and.
Figure 4A is a schematic illustration of a fourth embodiment of the invention.
DETAILED
DESCRIPTION
As shown in Figure 1, the present invention involves a system wherein, in its broadest terms, a piezoelectric element 10 is strain coupled to bone 20 or other body tissue so as to generate charge as the tissue undergoes strain, and the generated charge is applied via electrodes 11, 12 to a region R where it is desired to stimulate bone growth.
For purposes of illustration, such a system is shown in Figure 1 as utilizing a separate piezoelectric element attached by pins or bone screws 25 to a lower end of an intact bone, such as the femur, and the poles of the piezoelectric element are connected via leads 1 l a, 12a to carry the charge remotely and couple the charge to promote healing. As illustrated, .'*the positive or anode side is coupled to a prosthetic implant 30, shown as a hip stem, and the negative or cathode side is coupled to a region of bone along the medial edge of the proximal femur to enhance bone growth in that region. In this manner, the bone is made 0 negative with respect to the prosthetic stem to enhance filling of the canal and closing of o gaps between the stem and bone.
Thus, strains from the natural loading of the tissue bone 20) are coupled into the piezoelecaric element and generate a voltage across the poles of that element which is brought out via the electrode leads and applied to create a current flow between the prosthetic stemn and surrounding bone tissue, in which the bone is cathodic.
In general, the direction of current flow induced in vivo will be dependent on the pole orientation of the piezoelectric element and the direction of strain loading e.g., tensile or compressive strain, applied to the element. In further aspects of the invention these are selected or controlled during piezo manufacture so that implantation of the bulk electroded piezo material produces enhanced bone growth effects. Advantageously, the frequency of the current flow generated by strained tissue in this manner is comparable to the frequency of current flow which occurs in natural bone as a result of natural piezoelectric effects during normal activity. Moreover, the piezoelectric element 10 is preferably completely sealed and is implanted as a permanent device, so that it operates to sustain or maintain bone growth during the life of the implant.
The configuration illustrated in Figure 1 is schematic and may be varied to suit different prostheses, tissue configurations or bone growth requirements. For example, when the prosthesis is simply a plate attached to join ends or pieces of a fractured bone, the output of the piezoelectric element may be connected to stimulate growth at the plate so as to accelerate the joining of the fractured parts. In that case, the piezoelectric element itself may be connected to the same or to a different bone, and it may even be connected across the fracture site so that it experiences the level of strain that is applied across that region. Since strain will increase when the site is flexed more is weaker), the output adapts to the degree of stimulation needed.
In general, the charge produced by the piezoelectric element may be conditioned by circuit elements, or its amplitude and polarity may be controlled at an earlier stage of fabrication by the selection of piezo material, so that it has suitable voltage and current characteristics for bone stimulation. By way of example, a peak current of about 250 uA and a voltage level of about several mV per centimeter of bone in the current path would be within the appropriate target range to produce a signal for promoting bone growth.
9:999:Signal conditioning may be effected by providing small circuit elements across the piezo output, such as diode to pass output of one polarity (when it is coupled to tissue that is strained bidirectionally) or to limit voltage, or such as shunt resistors or capacitors to :shape or condition the output signal.
In one preferred embodiment, the piezo element forms a compact assembly which is intimately affixed to the body of the prosthetic implant 30 prior to surgery during manufacture. For example, in such an embodiment, the piezo element may take the form of a plate which is fitted into a dovetail slot of the prosthesis and is bonded thereto, so as to effectively couple the strain from an elongated area of the surface of the prosthesis and be energized thereby. Several relevant considerations for such fabrication will now be discussed in relation to a hip stem prosthesis as shown in Figure 1.
Figure 2 illustrates a prosthetic hip stem 50 for which measurement or mechanical modeling has identified regions of high strain in the device. As shown, the stem 50 has a generally elongated form with a lower body portion 51 fabricated in a generally spike-like shape for insertion into a prepared femoral canal, and a widening shoulder region 52 which fits within the spout of the proximal femur and supports a trunnion or post 53 to which a prosthetic hip ball attaches as part of a total joint replacement. The weightbearing path from the hip to trunnion along the medial side of the prosthesis downward, results in a region of compressive strain, denoted C, on the medial. side of the shoulder region, and a region of tensile or extensional strain, denoted T, on the lateral side of the prosthesis. During a normal surgical procedure, a stem such as stem 50 is driven into a .prepared femur 20 and seated against the bone. However, the shape of the prepared bone ::cannot exactly match the prosthesis, and numerous gaps remain particularly in the upper tapered region of the proximal canal where a bone gap may remain at one or more regions around the prosthesis. Following implantation, these gaps may fill as bone grows during normal healing. However, as noted above, numerous competing factors govern the rate of bone growth; when the prosthesis itself shields a region from receiving stress, bone may fail to re-grow in that region. This problem may be further compounded when looseness in the original fitting produces wear processes that erode bone more quickly than it can grow, or creates debris which promotes an osteolytic response.
As shown in Figure 2A, bone healing is enhanced in accordance with this embodiment of the invention by providing a prosthetic implant 60 having one or more piezoelectric elements 65a, 65b fitted to the prosthesis to apply cathodic or bonestimulating electric fields around the prosthesis itself. As shown in Figure 2A, a first piezoelectric element 65a is attached in the region C of compressive strain, and an oppositely poled piezoelectric element 65b is attached in the region T of tensile strain.
By arranging oppositely poled elements in regions of oppositely directed strain, each has its prosthesis-contacting electrode produce an output of the same polarity in. normal active stimulation. As illustrated, the elements are placed with the negative pole oriented toward the surrounding bone tissue, and their opposite (positive) side contacting the implant to render the prosthesis anodic.
This results in an electrical field around the implant wherein tissue is electronegative,%with respect to the implanted stem, causing bone to grow into and refill the femoral canal. In alternative embodiments, bone growth can be promoted on the surface of the implant itself by connecting the piezo elements to make the implant cathodic.
In either case, the conductive metal prosthesis distributes electrical charge over a larger region than the pole of a localized piezo element. In general, the stimulated region may also be selected or tailored by employing electrodes having a larger or smaller surface area, for example, by connecting a special conductive screen, or a plurality of separate electrode leads, to preferentially enhance the applied field at one or more local or defined regions. The degree of natural tissue conductivity is believed to be sufficient so that the appropriate field may be established over a region by providing a single or only a few discrete wire or contact electrodes to the bone itself.
While two charge generating elements are illustrated in Figure 2A, the device may have fewer or mare piezoelectric elements, and by employing leads, the electrodes may be positioned at remote sites. Alternatively, the system may employ some elements with exposed electrod~e surfaces of the piezo elements or packaged piezoelectric elements, and some with insulated distal leads to suit the available sites of tissue strain and the possible different loci where bone growth is intended.
In general it is desirable to have the piezo elements entirely encapsulated or otherwise rendered suitable for long-term implantation. Because only a relatively small electrical signal is required, certain naturally occurring hardy piezoelectric materials such as quartz crystal slices may suitably be employed as generators when mechanically coupled to the prosthesis. Alternatively, high tech piezoceramic or piezopolymer elements may be formed in suitable configurations. Thus, for example, suitably shaped sheets, blocks or plates of hard piezo material such as the piezoceramic PZT may be arranged in a cutout, dovetail or slot in the prosthesis itself. Furthermore, these elements may be poled during assembly of the prosthesis to achieve the desired polarity or charge orientation. When the charge is to be generated remotely from the prosthesis or patch, it may be generated by such stiff piezoelements coupled to bone, or by pads or membranes containing less stiff materials, such as PVDF polymer, coupled to softer tissue or mounted between rigid attachments. Other variations will occur to those skilled in the art to adapt the piezo charge generators to commonly used prostheses and to the available biological sites of attachment or regions suitable for applying tissue strain energy.
Figure 3 illustrates another embodiment of the invention. In this construction a piezoceramic element 71 is mounted within an assembly 70 that further includes a flexible metal or plastic shim 72, and a polymeric cover or casing 73 to enclose both the shim and piezo. The piezo element is stiffly attached to the shim, so that any strain or flexing of the shim gives rise to a charge in the piezo, and the ends of the shim are each pinned to the *bone 20, preferably near its middle or thinnest region where the pinned end regions will cause the shim 72 to undergo the greatest strain or displacement. Electrode leads 75a, extend frm the package to apply the flex-generated charge remotely, for example, to a prosthetic stem, a bone plate or bone screw. Bone screws may be thus negatively charged to energize the bone in which they are inserted, while plates may serve as anodic counterelectrodes to positon the bone at a relatively negative potential, or may serve as cathodes to bias the bone to which they are attached. This construction allows charge generators to be conveniently installed in secure locations, independently of the prosthesis installation site. While Figure 3 illustrates a stiff flexible piezo attached to a shim structure in which the tissue strain induces bending, the invention further contemplates packages formed of or containing piezopolymer material which may be sutured to soft tissue, or flexible packages such as rubber blocks or pads, in which loading forces are transferred to piezo strain transducers embedded in the rubber body when suitably positioned or attached next to moving tissue or strained tissue.
Figure 4 ilustrates the basic steps of a method 100 of the present invention. As shown therein, as a first step 101 a piezoelectric element is prepared to suitably generate charge when implanted. Preparation may take any of several forms including the encapsulation of the element, the forming of the element into a plate or block-like member which may be attached to a prosthesis, embedding of the element in an elastic or a stiff member which may sutured to tissue or pinned to bone to experience strain during the activities of daily living, and other ancillary steps such as the forming of electrodes, attachment of remote leads in a biologically compatible manner or otherwise preparing a piezoelectric element for implantation in the intended environment to generate charge.
As a second step 102, the piezo element is strain-coupled to either the prosthesis itself, or to a body tissue site where it will experience the strain necessary to generate charge. In the case of attachment to a prosthesis, this step may be included as part of the prosthesis manufacturing step, for example, by embedding a piezoelectric plate in a slot milled in a femoral stem, or embedding piezoelectric material in a region of a bone plate where it may act as a load cell or strain sensor to generate the required charge. For the embodiments in which the piezoelectric element is separate from the prosthetic element, this step ,may involve suturing or pinning the charge generating element or its support to the respective soft or hard body tissue.
Finally, the third step 103 is to set the electrodes to promote bone growth. As for the first two steps above, this step may subsumed under the manufacturing of the prosthesis itself when the electrodes and piezo element are both integrated into the prosthesis body. Thus, for example, as shown in Figure 2A, the elements may be attached to a metal prosthesis in such a manmer that one charged electrode surface of the element is exposed to position a negative-going gradient at the facing bone and promote bone growth. The other piezo electrode energizes the surface of the prosthesis to serve as the anode for current flow through surrounding bone. Alternatively, as described in regard to Figure 1, the electrode attachments may be brought out via leads, and auxiliary plates or electrode screens if necessary, to place the desired charge in a specific region remote from the element itself where bone growth is to be enhanced.
In each case the invention contemplates that normal activities of daily living will provide the strain that powers and continues to generate charge during life of the implant so that even when portions of bone remain unattached or disconnected, and thus cannot experience sufficient strain to generate their own growth enhancing charges, the electrodes of the element will promote bone growth in the desired or targeted regions.
While normal biological activity may be expected to produce suitable slowly varying strains, for example, having a frequency on the order of 1 Hz, so that changing charge generates a voltage signal to create a bone-stimulating electric field, the invention also contemplates that charge conditioning or signal shaping elements may also be included in the packaged piezoelectric element or conductors therefrom so as to generate specific signals appropriate for bone stimulation. Thus, for example, a charge storage element and oscillator, or a resonant or periodic shunt may operate to convert the piezo output to a pulsed electric field, or create other wave form or duty cycle different from that of the natural strain field of the underlying tissue.
.The invention further contemplates the provision of implanted piezo element as .described above which is configured to apply the charge it generates to an electrical device. In accordance with this aspect of the invention, a charge generating element, as illustrated for example in Figures 1, 2A or 3 above, provides its output to charge conditioning and charge storage elements so as to produce an electrical signal having useful amplitude and power. By way of example, the output may be applied by way of a voltage-limiting shunt to a rectifying diode or bridge to charge a capacitor, or to charge a rechargeable battery or power cell which serves as a storage element. The storage element, in turn, provides a sustained voltage and current for device operation.
Configured in this manner, the piezo module may be used as the primary power source for an implanted device such as an intermittently-operated infusion pump, or may serve as a recharger or secondary power source for a battery powered device such as a cardiac pacemaker.
Figure 4A illustrates such a device. An implanted piezo module 10a which attaches to tissue or is incorporated in a prosthesis is connected in a load-bearing or strain transfer position to generate charge, and the output is applied to a charge storage unit such as a capacitor, and to a conditioning circuit 45. The nature of the storage and conditioning will vary depending on the intended device application. Thus, for example, if the conditioned output is to be applied to an infusion pump that operates intermittently and only draws a brief current burst, simply charging a capacitor may be sufficient to provide the desired current flow for a sufficient time. If the output is to power a processor or the like, the conditioning circuit may be configured to convert the piezo charge to continuous power at a defined voltage level, or to provide charging signals for a power cell that pro-vides the desired continuous output.
In such case, the original signal arising at the frequency of natural bone or muscle loading, is changed in amplitude, duration or power to suit the requirements of the intended output device. Advantageously, however, the output may be greatly increased in voltage or current, and may be shaped or transformed for example into modulated pulses for charging a battery so as to provide a perpetual internal power source for an implanted medical device. Moreover, by incorporating the piezo module in a prosthesis shown in Figure 2A, an exceptionally hardy, enclosed generator with well-controlled power specifications is achieved.
15 The invention being thus described and illustrative embodiments ilustrated herein, further variations and modifications will occur to those skilled in the art, and all such variations and modifications are considered to be within the scope of the invention as defined by the claim appended hereto and equivalents thereof.
AU13586/00A 1999-01-28 2000-01-27 Implanted bone stimulator and prosthesis system Ceased AU745939B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/239497 1999-01-28
US09/239,497 US6143035A (en) 1999-01-28 1999-01-28 Implanted bone stimulator and prosthesis system and method of enhancing bone growth

Publications (2)

Publication Number Publication Date
AU1358600A AU1358600A (en) 2000-08-03
AU745939B2 true AU745939B2 (en) 2002-04-11

Family

ID=22902421

Family Applications (1)

Application Number Title Priority Date Filing Date
AU13586/00A Ceased AU745939B2 (en) 1999-01-28 2000-01-27 Implanted bone stimulator and prosthesis system

Country Status (4)

Country Link
US (1) US6143035A (en)
EP (1) EP1023872A3 (en)
JP (1) JP2000237219A (en)
AU (1) AU745939B2 (en)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050203578A1 (en) * 2001-08-15 2005-09-15 Weiner Michael L. Process and apparatus for treating biological organisms
US6610096B2 (en) * 2001-08-22 2003-08-26 Macdonald Stuart G. Prosthetic implants having enhanced utility
US6701185B2 (en) 2002-02-19 2004-03-02 Daniel Burnett Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues
DE10215996B4 (en) * 2002-04-11 2005-07-21 Gundolf, Ferdinand, Dr.med. Device for promoting bone growth, in particular for osteosynthesis of bone fragments and / or fixation of bone fractures
US7998190B2 (en) * 2002-06-17 2011-08-16 California Institute Of Technology Intravascular miniature stent pump
US7144427B2 (en) * 2002-12-05 2006-12-05 Depuy Products, Inc. Apparatus and method for advancing synovial fluid in a prosthetic joint
IL154184A0 (en) * 2003-01-29 2003-07-31 Univ Ramot Self powered osteogenesis and osseointegration promotion and maintenance device for endesseous implants
US20040243148A1 (en) * 2003-04-08 2004-12-02 Wasielewski Ray C. Use of micro- and miniature position sensing devices for use in TKA and THA
US7169151B1 (en) * 2003-04-10 2007-01-30 Kci Licensing, Inc. Bone regeneration device for long bones, and method of use
JP4874970B2 (en) 2004-06-07 2012-02-15 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Orthopedic implant with sensor
WO2005122899A1 (en) * 2004-06-15 2005-12-29 Synthes Gmbh Device for measuring tibio-femoral force amplitudes and force locations in total knee arthroplasty
US20060004431A1 (en) * 2004-07-01 2006-01-05 Fuller Thomas A Prophylactic bactericidal implant
US7167746B2 (en) * 2004-07-12 2007-01-23 Ats Medical, Inc. Anti-coagulation and demineralization system for conductive medical devices
US7097662B2 (en) * 2004-08-25 2006-08-29 Ut-Battelle, Llc In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection
US8388553B2 (en) 2004-11-04 2013-03-05 Smith & Nephew, Inc. Cycle and load measurement device
US7410497B2 (en) * 2004-12-14 2008-08-12 Boston Scientific Scimed, Inc. Stimulation of cell growth at implant surfaces
US7431734B2 (en) * 2005-02-04 2008-10-07 Intellistem Orthopaedic Innovations, Inc. Implanted prosthetic device
EP1850803B1 (en) * 2005-02-18 2014-03-26 Zimmer, Inc. Smart joint implant sensors
ES2428639T3 (en) * 2005-03-29 2013-11-08 Martin Roche Body parameter detection sensor and method to detect body parameters
JP5518335B2 (en) * 2005-08-23 2014-06-11 スミス アンド ネフュー インコーポレーテッド Telemetric orthopedic implant
US7618454B2 (en) * 2005-12-07 2009-11-17 Zimmer Spine, Inc. Transforaminal lumbar interbody fusion spacers
US9610459B2 (en) 2009-07-24 2017-04-04 Emkinetics, Inc. Cooling systems and methods for conductive coils
US9339641B2 (en) 2006-01-17 2016-05-17 Emkinetics, Inc. Method and apparatus for transdermal stimulation over the palmar and plantar surfaces
WO2011053607A1 (en) 2009-10-26 2011-05-05 Emkinetics, Inc. Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues
US20070167990A1 (en) * 2006-01-17 2007-07-19 Theranova, Llc Method and apparatus for low frequency induction therapy for the treatment of urinary incontinence and overactive bladder
DE102006025476B4 (en) 2006-05-30 2015-05-28 Otto Bock Healthcare Gmbh Orthopedic device
US20080077193A1 (en) * 2006-09-26 2008-03-27 Jennifer Bow Scavenged energy for electric field generation to prevent bone loss and encourage bone growth for orthopedic applications
WO2008042902A2 (en) 2006-10-02 2008-04-10 Emkinetics, Inc. Method and apparatus for magnetic induction therapy
US11224742B2 (en) 2006-10-02 2022-01-18 Emkinetics, Inc. Methods and devices for performing electrical stimulation to treat various conditions
US10786669B2 (en) 2006-10-02 2020-09-29 Emkinetics, Inc. Method and apparatus for transdermal stimulation over the palmar and plantar surfaces
US9005102B2 (en) 2006-10-02 2015-04-14 Emkinetics, Inc. Method and apparatus for electrical stimulation therapy
US7931651B2 (en) 2006-11-17 2011-04-26 Wake Lake University Health Sciences External fixation assembly and method of use
US8609036B2 (en) 2006-12-28 2013-12-17 Agentumcidalelectrics, Inc. Ex vivo antimicrobial devices and methods
US8377016B2 (en) 2007-01-10 2013-02-19 Wake Forest University Health Sciences Apparatus and method for wound treatment employing periodic sub-atmospheric pressure
US20080172107A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Stand alone osteogenic stimulus device and method of using
US20080171304A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Dental implant kit and method of using same
US20080172106A1 (en) * 2007-01-11 2008-07-17 Mcginnis William J Osteogenic stimulus device, kit and method of using thereof
EP2114247B1 (en) 2007-02-23 2013-10-30 Smith & Nephew, Inc. Processing sensed accelerometer data for determination of bone healing
US8753304B2 (en) 2007-08-17 2014-06-17 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having acoustically actuatable waveguide components for delivering a sterilizing stimulus to a region proximate a surface of the catheter
US9005263B2 (en) 2007-08-17 2015-04-14 The Invention Science Fund I, Llc System, devices, and methods including actively-controllable sterilizing excitation delivery implants
US8162924B2 (en) * 2007-08-17 2012-04-24 The Invention Science Fund I, Llc System, devices, and methods including actively-controllable superoxide water generating systems
US8706211B2 (en) 2007-08-17 2014-04-22 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having self-cleaning surfaces
US8702640B2 (en) 2007-08-17 2014-04-22 The Invention Science Fund I, Llc System, devices, and methods including catheters configured to monitor and inhibit biofilm formation
US8647292B2 (en) 2007-08-17 2014-02-11 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having components that are actively controllable between two or more wettability states
US8734718B2 (en) 2007-08-17 2014-05-27 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having an actively controllable therapeutic agent delivery component
US8460229B2 (en) 2007-08-17 2013-06-11 The Invention Science Fund I, Llc Systems, devices, and methods including catheters having components that are actively controllable between transmissive and reflective states
US20090048648A1 (en) * 2007-08-17 2009-02-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Self-sterilizing device
US8366652B2 (en) * 2007-08-17 2013-02-05 The Invention Science Fund I, Llc Systems, devices, and methods including infection-fighting and monitoring shunts
CN107115591A (en) 2007-09-06 2017-09-01 史密夫和内修有限公司 System and method for being communicated with remote measurement implant
US8915866B2 (en) 2008-01-18 2014-12-23 Warsaw Orthopedic, Inc. Implantable sensor and associated methods
US8029566B2 (en) * 2008-06-02 2011-10-04 Zimmer, Inc. Implant sensors
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US9616205B2 (en) 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
US10842645B2 (en) 2008-08-13 2020-11-24 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
WO2010019807A1 (en) * 2008-08-13 2010-02-18 Smed-Ta/Td, Llc Orthopaedic implant with spatially varying porosity
US20100042213A1 (en) * 2008-08-13 2010-02-18 Nebosky Paul S Drug delivery implants
JP5774989B2 (en) * 2008-08-13 2015-09-09 スメド−ティーエイ/ティーディー・エルエルシー Orthopedic screw
EP2341852B1 (en) * 2008-08-29 2018-08-15 SMed-TA/TD, LLC Orthopaedic implant
US20110295090A1 (en) 2008-12-04 2011-12-01 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including implantable devices with anti-microbial properties
US8585627B2 (en) 2008-12-04 2013-11-19 The Invention Science Fund I, Llc Systems, devices, and methods including catheters configured to monitor biofilm formation having biofilm spectral information configured as a data structure
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US20110118852A1 (en) * 2009-11-18 2011-05-19 Synthes Usa, Llc Piezoelectric implant
US8588884B2 (en) 2010-05-28 2013-11-19 Emkinetics, Inc. Microneedle electrode
CN102198011A (en) * 2011-06-10 2011-09-28 中国人民解放军第四军医大学 Device for fixing bone fragments at fracture joint end after comminuted fracture of long bone of limb
WO2013021357A1 (en) * 2011-08-08 2013-02-14 Ecole Polytechnique Federale De Lausanne (Epfl) In-vivo condition monitoring of metallic implants by electrochemical techniques
US9101678B2 (en) 2011-11-03 2015-08-11 Elwha Llc Heat-sanitization of surfaces
US9724203B2 (en) 2013-03-15 2017-08-08 Smed-Ta/Td, Llc Porous tissue ingrowth structure
US9408699B2 (en) 2013-03-15 2016-08-09 Smed-Ta/Td, Llc Removable augment for medical implant
US9681966B2 (en) 2013-03-15 2017-06-20 Smed-Ta/Td, Llc Method of manufacturing a tubular medical implant
KR101497338B1 (en) * 2013-12-31 2015-03-25 연세대학교 산학협력단 Medical patch
KR101675414B1 (en) * 2014-11-17 2016-11-11 경상대학교산학협력단 Bone regeneration apparatus
WO2017062399A1 (en) 2015-10-06 2017-04-13 University Of Kansas Stacked piezoelectric composites and methods of making
WO2017147602A1 (en) * 2016-02-26 2017-08-31 Cimphoni Life Sciences LLC Light emitting bone implants
JP2021520905A (en) * 2018-04-10 2021-08-26 デピュイ・シンセス・プロダクツ・インコーポレイテッド Bipolar bone anchor with electrical stimulation connection
WO2022126130A1 (en) * 2020-12-10 2022-06-16 University Of Kansas Modular piezoelectric intermedullary nail
US20230029611A1 (en) * 2021-07-27 2023-02-02 Todd Shanks Tissue stimulating devices, systems, and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216548A (en) * 1976-03-19 1980-08-12 Werner Kraus Long-term endoprosthesis

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT316729B (en) * 1971-04-06 1974-07-25 Kraus Werner Device to support the formation of bone substance
US4026304A (en) * 1972-04-12 1977-05-31 Hydro Med Sciences Inc. Bone generating method and device
AU6023173A (en) * 1972-09-21 1976-05-27 Electro-Biology Inc. Bone prosthesis
US4027392A (en) * 1976-05-10 1977-06-07 Interface Biomedical Laboratories Corporation Endosteal bionic tooth and implantation method
US4175565A (en) * 1977-06-22 1979-11-27 Oratronics, Inc. Method and apparatus for stimulating osteogenic activity in bone structure adjacent a dental implant
US4430999A (en) * 1981-11-10 1984-02-14 Trustees Of The University Of Pennsylvania Osteogenesis stimulating cathode assembly for use with an internal fixation device
SU1122329A1 (en) * 1983-05-04 1984-11-07 Военно-медицинская академия им.С.М.Кирова Osteostimulator
US4665920A (en) * 1984-11-28 1987-05-19 Minnesota Mining And Manufacturing Company Skeletal tissue stimulator and a low voltage oscillator circuit for use therein
DD243855B1 (en) * 1985-12-05 1991-09-19 Chemnitz Tech Hochschule ACTIVE IMPLANT
US4798206A (en) * 1986-10-28 1989-01-17 Telectronics N.V. Implanted medical system including a self-powered sensing system
DE3709733C2 (en) * 1987-03-25 1996-12-19 Kraus Werner Funnel-shaped perforated reinforcement element for a bone cement layer of an endoprosthesis
US5030236A (en) * 1989-06-19 1991-07-09 Intermedics Orthopedics, Inc. Apparatus for enhancing biointegration of bony and endoprosthesis structures
CA2074318A1 (en) * 1992-07-22 1994-01-23 Morteza Shirkhanzadeh Prosthetic implant with self-generated current for early fixation in skeletal bone
FI930259A (en) * 1992-11-06 1994-05-07 Takiron Co Polymer piezoelectric material
JPH07498A (en) * 1993-06-02 1995-01-06 Uchida Yasunari Bone inducing material
AU1684595A (en) * 1994-01-21 1995-08-08 Brown University Research Foundation Biocompatible implants
DE19544750A1 (en) * 1995-11-30 1997-06-05 Christoph Rehberg Implantable device with internal electrode to promote tissue growth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216548A (en) * 1976-03-19 1980-08-12 Werner Kraus Long-term endoprosthesis

Also Published As

Publication number Publication date
AU1358600A (en) 2000-08-03
JP2000237219A (en) 2000-09-05
EP1023872A3 (en) 2002-08-07
US6143035A (en) 2000-11-07
EP1023872A2 (en) 2000-08-02

Similar Documents

Publication Publication Date Title
AU745939B2 (en) Implanted bone stimulator and prosthesis system
US6610096B2 (en) Prosthetic implants having enhanced utility
US8374697B2 (en) Electrical dental screw implant
US7917223B2 (en) Self powered osteogenesis and osseointegration promotion and maintenance device for endosseous implants
CN1142745C (en) Apparatus and method for delivery of electrical current
US7384390B2 (en) Method and apparatus for treating incontinence
US20110118852A1 (en) Piezoelectric implant
EP2493549B1 (en) Implant device for stimulating osteogenesis and osseointegration
JPS6226781B2 (en)
US20120276501A1 (en) Disposable osteogenesis and osseointegration promotion and maintenance device for endosseous implants
Lewandowski et al. In vivo demonstration of a self-sustaining, implantable, stimulated-muscle-powered piezoelectric generator prototype
Lewandowski et al. Feasibility of an implantable, stimulated muscle-powered piezoelectric generator as a power source for implanted medical devices
AU734631B2 (en) Apparatus and method, delivery of electrical current
AU781755B2 (en) Method and apparatus for treating incontinence
AU2005204340C1 (en) Method and apparatus for treating incontinence

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)