AU731259B2 - Printable tab divider sheet assembly with foldable flap and method of making same - Google Patents

Printable tab divider sheet assembly with foldable flap and method of making same Download PDF

Info

Publication number
AU731259B2
AU731259B2 AU53514/99A AU5351499A AU731259B2 AU 731259 B2 AU731259 B2 AU 731259B2 AU 53514/99 A AU53514/99 A AU 53514/99A AU 5351499 A AU5351499 A AU 5351499A AU 731259 B2 AU731259 B2 AU 731259B2
Authority
AU
Australia
Prior art keywords
sheet
tab
assembly
flap
divider sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU53514/99A
Other versions
AU5351499A (en
AU731259C (en
Inventor
Sonia Owen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCL Label Inc
Original Assignee
Avery Dennison Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU77467/98A external-priority patent/AU712290B2/en
Application filed by Avery Dennison Corp filed Critical Avery Dennison Corp
Priority to AU53514/99A priority Critical patent/AU731259C/en
Publication of AU5351499A publication Critical patent/AU5351499A/en
Publication of AU731259B2 publication Critical patent/AU731259B2/en
Application granted granted Critical
Publication of AU731259C publication Critical patent/AU731259C/en
Assigned to CCL LABEL, INC. reassignment CCL LABEL, INC. Alteration of Name(s) in Register under S187 Assignors: AVERY DENNISON CORPORATION
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

-1-
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
c.
Name of Applicant/s: Actual Inventor/s: Address for Service: Avery Dennison Corporation Sonia Owen BALDWIN SHELSTON WATERS 60 MARGARET STREET SYDNEY NSW 2000 'PRINTABLE TAB DIVIDER SHEET ASSEMBLY WITH FOLDABLE FLAP AND METHOD OF MAKING SAME' Invention Title: Details of Original Application No. 77467/98 dated 23 July 1998 (which is a divisional of 44118/96 filed 30 November 1995) The following statement is a full description of this invention, including the best method of performing it known to me/us:- File: 25020AUP00 IP Australia SDocuments received on.
Batch N: (4 -2- FIELD OF THE INVENTION This invention relates to the field of tabbed index dividers, business cards, Rolodex® cards, holiday or greeting cards, uneven sheets and the like and particularly those for use in three-ring or similar notebooks. The invention has particular applicability to tabbed dividers upon which the user may print text using a standard laser jet printer, ink jet printer, photocopier or other common printing apparatus.
BACKGROUND OF THE INVENTION The width of a standard index tab divider for a three-ring notebook containing sheets ofpre-punched 8 1/2 x 11 inch notebook paper is 9 x 11 inches (including the 10 width of the tab). Unfortunately, many standard laser jet or ink jet printers or photocopiers can only accept rectangular sheets of width not exceeding 8 1/2 inches.
S Accordingly, there has been a need for an assembly and accompanying method for conveniently printing upon the face and tab portion of a 9 x 11 inch divider using a laser or ink jet printer or photocopier which has an 8 1/2 inch width restriction.
o One approach has been to print on a standard 8 1/2 x 11 inch sheet, then adhere a 00. pre-punched spine strip along an edge of the sheet. The sheet may then be inserted into a ringed binder. However, this arrangement is somewhat inconvenient to a user for two reasons. First, for assemblies in which the spine strips are entirely separate from the divider sheets, the user must separately store both components. Storage areas can become cluttered and spine strips misplaced. Secondly, the user must very carefully attach the pre-punched spine strip to the divider sheet. If the spine strip is misaligned, the user must reposition the strip or may even need to discard the entire assembly, particularly if a permanent pressure sensitive adhesive is used on the spine.
Additionally, this arrangement is somewhat user-unfriendly due to the time it takes to remove a release liner from the spine strip and apply the spine strip to thedivider.
Common printers and copiers may have a thickness restriction as well as a width restriction, due to interior clearances and due to the radii of bends in the sheet path through those machines. Uneven thickness can cause skewing in the transport of sheets through the printer and possibly jamming. It is therefore important to minimise nonuniformity of thickness over the entire assembly. Holmberg US Patent No. 4,447,481 teaches that assemblies for feeding into common printers should have a substantially uniform thickness. (This patent and all other patents, publications and patent 10 applications mentioned in this disclosure are hereby incorporated by way of reference in *:their entireties).
Different brands of software are currently available and others are being developed for causing laser, ink jet and other printers to automatically print the desired oO*° indicia directly on tabs of dividers. The dividers can be approximately 8 1/4 inches by 11 inches when folded before printing and unfold the standard nine inches by 11 inches oo o after printing, as described in the applicant's US patent application Serial No. o*•o 08/348,370 filed 1 January, 1994. They are typically constructed of medium weight paper reinforced along one longitudinal edge by an adhered layer of plastic film.
This edge may include three through-holes or apertures for filing the divider in a ring binder. Extending out from the opposite. edge is a tab, having a length of about 1 1/4 inch to 1 7/8 inch (or 1 1/8 inch to 3 1/4 inches) and a width of one-half inch and which may b e reinforced with an adhered layer of plastic film. The tabs on different dividers in a set are typically provided at between three to eight different positions.
4 I* -4- In the past when such dividers were fed (in the portrait direction of the divider sheet) using multipurpose or cassette trays into ink jet, electrophotographic or laser printers, the dividers tended to skew as they entered the printer. This skewing occurs because the tabs of the dividers stick out one-half inch from the body of the paper and thus do not provide full continuous contact of each divider to the paper guide of the (multipurpose) printer tray and the paper guide of the multipurpose tray is much shorter than the paper divider itself. This means that the dividers with the last few tab positions do not contact the paper guide, specifically, the fourth and fifth tabs of a five tab set and the fifth through eighth tabs of an eight tab set.
10 Even when an insert feed tray as described in the applicant's US patent application Serial No. 08/511,879 filed 4 August, 1995, is used, a perfectly 'straight feed in the portrait direction may not result. In fact, that insert feed tray works perfectly with only about one half of the printers. For example, it does not work well with vertical feed trays and with the older HPII and HPIII printers where the insert tray tends to move around a bit causing shifting of the print and skewing. The tray tends to move around when it is only 8 1/4 inches wide and the cassette tray is 8 1/2 inches. A two-sided insert tray works better in that situation.
Within the past year a new office printer the Hewlett Packard 4V printer has been made available. The HP4V printer is a high speed, network shared printer adapted for office use. Unlike prior printers, except a few used in the graphic arts business for large format printing, the HP4V printer handles sheets as wide as 11 inches. It thus allows 8 1/2 x 11 inch sheets to be fed therein in the landscape direction. Thus, 8 1/2 x 11 inch tabbed divider sheets can be fed in tabbed edge or binding edge first. And the it 0 available software allows the printer to print both along the tab and across the body of the sheet in a single pass through the printer.
A problem, however, is that unless the tab of the sheet happens to be aligned with the printer's start-of-the-page sensor, the sheet, if fed in tab edge first (or sheet edge first with a trailing tab), will not be detected or sensed and will not be fed into the printer for a printing operation thereon. More accurately, the tab will not be sensed and printing on the tab does not occur. The HP4V printer has center sensors to sense the beginning and trailing edges of the paper. Thus, for the HP4V printer when a five-position tabbed divider system is used, only the dividers with their tabs in the third position will be 10 sensed for printing on the tabs when fed in tab edge first (or as a divider with a third- S* position trailing tab). That is, those dividers whose tabs are in the first, second, fourth and fifth positions do not cause the tabs to be sensed for printing thereon. Thus, the divider must be fed in a hole punched side first, on the side opposite the tab. Also, if the dividers are fed in binding (hole punched) edge first, all of the sheets are fed through, but only the ones with the tabs near the center would be printed. That is, for sheets having .00. uncentered tabs, the printer will not sense the trailing edge and print on the tab.
e0eee: It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
SUMMARY OF THE INVENTION Accordingly, a first aspect of the .present invention provides a tab divider sheet assembly, comprising: a divider sheet including a main body having first and second edges, an outwardly-extending tab along said first edge, and a flap at said second edge; 09 -6said flap being positionable in a folded position folded onto and lying substantially flat on said main body for feeding said divider sheet into a printer or copier whereby a printing operation can be performed on said divider sheet, and in an unfolded position after the printing operation has been performed thereon.
The invention also provides a method of making a printed tab divider sheet, comprising the steps of: providing a tab divider sheet assembly including a tab divider sheet having first and sheet edges, and an outwardly-extending tab at said first sheet edge and a flap attached to the divider sheet along the second edge, the flap being positionable in a °10 folded position folded onto and lying substantially flat on the divider sheet and an unfolded position; with the flap in the folded position, feeding the tab divider sheet assembly into a printer or copier and thereby performing a printing operation on the divider sheet; and after the printing operation, unfolding the flap to the unfolded position.
Unless the context clearly requires otherwise, throughout the description and the claims, the words 'comprise', 'comprising', and the like are to be construed in an *o0*o inclusive as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".
The present invention provides an improved tab divider sheet assembly for feeding into printers or copiers for printing thereon. The tabbed divider sheet is provided with a removable strip attached to the sheet extending a slight distance beyond the tabbed edge thereof and extending the length of that edge (to 8 1/2 inches). Thus, with the sheet in the feed tray of the new wide format printers, disposed in the landscape -7direction and the tabbed edge being the leading edge, the removable strip is detected by the sensor. Since the strip extends the entire sheet length, the sheet is thereby detected no matter where the tab is positioned on the sheet. That is, the detector detects the leading edge strip itself and not the smaller usually offset tabs. If that sheet is fed in the portrait direction into a printer, the strip advantageously guides the sheet along the tray guide edges, without skewing, into the printer.
After the sheet has been fed (in either the landscape or portrait directions) into the printer, printed thereon and expelled or ejected, the strip is removed from the sheet.
With the strip removed, the (backside of the) tab is exposed or defined and the sheet is 10 ready for use. The strip was attached to the sheet using removable adhesive or microperforations, for example. Thereby the strip can be subsequently removed easily o 'and cleanly by peeling or tearing it off from the divider sheet.
In other words, a peel off strip is releasably attached to the leading (tabbed) edge of the divider sheet to provide a sheet edge to engage the start-of-the-page detector of the printer and permit imaging on the tab area. Conversely, a peel off strip is releasably attached to the trailing (tabbed) edge of the divider to provide a trailing sheet edge to engage the sheet detector allowing imaging of the tab. The strip is temporarily fixed to the divider page with a removable adhesive and can be constructed of a lighter weight paper than that of the divider sheet or even of plastic. Another advantage of this design is that it overcomes the non-printing "dead zone" at the leading edge of the sheet by providing early engagement of the sensor. Thereby, images can be placed right up to the edge of the tab. A further advantage is that rotation of the tab indicia is not necessary since it can be treated as ordinary text in conventional word processing software 't Ir -8applications. Alternatively, the peel off strip can be constructed as two separate peel off strips or strip portions releasably attached to the tabbed edge and positioned on opposite sides of the tab. Both tabs contact only the adjacent ends of the tab and neither extends across it. Thereby, the printer can print alternatively on either side or on both sides of the tab as desired.
The peel off or microperforated strip is also advantageous in that the divider sheet is then squared off on the tab side and is thus not odd shaped. It would also create a sheet having a width of 8 1/2 inches, instead of 8 1/4 inches. This makes it possible to feed the dividers into virtually any laser printer with straight-path cassette feed, with top 10 load or center feed trays, or ink jet printers or photocopiers without skewing, and not just i side feed laser printers that have multipurpose trays.
Other objects and advantages of the present invention will become more apparent to those persons having ordinary skill in the art to which the present invention pertains 0 **"from the foregoing description taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a front elevational view of a laser printable index divider having an index tab extending from one edge thereof and a foldable apertured binding edge; Fig. 2 is a cross sectional view taken across Section 2-2 of Fig. 1 showing the unfolded, debossed binding edge and the reinforced index tab; Fig. 3 is a front elevational view of the assembly of Fig. 1 with the folding portion folded over at the score line; Fig. 4 is a sectional view taken across Section 4-4 of Fig. 3 showing the folding portion having been folded over onto the non-folding portion of the binding edge region; Fig. 5 is detailed sectional view of the folded over binding edge region taken along Section 5-5 of Fig. 3; and Fig. 6 is a cross-sectional view similar to Fig. 2 showing an alternative, two-sheet embodiment of the invention.
Fig. 7 is a front elevational view of a first index divider sheet assembly according to the present invention; Fig. 8 is a perspective view of the assembly of Fig. 7 shown in position in a feed tray of a printer for feeding in a landscape tab edge first direction into the printer; Fig. 8a shows the assembly of Fig. 8 with an alternative binding edge first, 10 landscape feed direction into the printer as indicated; it is also within the scope of the invention for the assembly of Fig. 8 to be fed into the printer in a landscape feed direction with the binding edge last, that is, with the direction of the arrow of Fig. 8a reversed; Fig. 8b is a view similar to Fig. 8a showing an alternative portrait feed direction of the invention; Fig. 9 is a view of the assembly of Fig. 7 after having passed through the printer of Fig. 8 and showing the strip being removed; Fig. 10 is a view of the assembly of Fig. 9 with the strip completely removed and disposed of and showing an alternative tab printing alignment; Fig. 11 is a front elevational view of a second index divider sheet assembly according to the invention; Fig. 12 is an enlarged cross-sectional view taken on line 6-6 of Fig. 11; Fig. 13 is a view similar to Fig. 11 of the second assembly in a folded over position; Fig. 14 is an enlarged cross-sectional view taken on line 8-8 of Fig. 13; Fig. 15 is an enlarged cross-sectional view taken on line 9-9 of Fig. 13; Fig. 16 is a view similar to Fig. 14 of a third index divider sheet assembly of the invention; Fig. 17 is a view similar to that of Fig. 8 showing the second assembly of Fig. 13 in a printer feed tray for feeding in a portrait direction into the printer; Fig. 18 is a perspective view of the second assembly of Fig. 13 after printing 10 thereon by the printer of Fig. 17 and showing the folded edge unfolded and the strip being removed; Fig. 19 is a front elevational view of a fourth index divider sheet assembly of the invention; Fig. 20 is a front elevational view of a fifth index divider sheet assembly showing the perforated strip thereof being removed; Fig. 21 is a front elevational view of a sixth index divider sheet assembly of the invention; Fig. 22 is a perspective view of an alternative sheet assembly of the present invention after passing through a printer or copier and with the peel off strip thereof partially removed; Fig. 23 is a plan view of a business card sheet assembly of the present invention; Fig. 24 is a perspective view of one of the business cards of the assembly of Fig. 23, in a generally finished condition; 11- Fig. 25 is a plan view of an alternative business card sheet assembly of the present invention; Fig. 26 is a perspective view of one of the business cards of the assembly of Fig. 25 in a generally finished condition; Fig. 27 is a perspective view similar to Fig. 26 of a holiday card of the present invention; Fig. 28 is a plan view of a tabbed flip file (Rolodex®-type) card sheet assembly of the present invention; and Fig. 29 is a perspective view of the assembly of Fig. 28 after having passed o 10 through a printer or copier and showing a subsequent separation procedure.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT i Fig. 1 illustrates a one-piece divider assembly which may be folded over at the binding edge. The assembly is suitable for printing in laser printers, ink jet printers, photocopiers and other printers. The assembly 10 has a binding edge 12 and an integral, debossed binding edge region 14 extending inwardly into the sheet from binding edge 12. The assembly also has a main body 16 with an integral, outwardly extending tab 18.
A heavy paper or cardstock sheet 17 forms the structural basis for the entire divider assembly The binding edge region 14 may have a folding portion 20 which has spaced ring apertures 22. The binding edge region 14 may also have a non-folding portion 24.
Folding portion 20 and non-folding portion 24 are separated by a folding line 26, about which folding portion 20 may fold. Longitudinal folding line 26 is inset from and runs parallel to binding edge 12. In the embodiment of Fig. 1, the folding line is scored to (t l -12improve the regularity and proper positioning of the fold. Such scoring may be notches, cuts, or a single indented line as shown in Fig. 2.
Fig. 2 is a sectional view taken across line 2-2 of Fig. 1. Fig. 2 shows that the folding portion 20 and the non-folding portion 24 of binding edge region 14 are debossed or calendared. That is, binding edge region 14 is reduced in thickness somewhat relative to main body portion 16. Binding edge region 14 is also laminated with a reinforcement film 28 which is adhered to one surface of the binding edge region 14.
Fig. 2 also shows that tab 18 is reinforced with a tab reinforcement film 30 which •10 is adhered to both sides of the tab. In this instance, tab reinforcement film 30 is an a adhesively-coated, symmetrical member that is folded about and adhered to the tab at a line of symmetry of the reinforcement film member. The adhesive for the tab reinforcement film should be stable to temperatures of up to 450 degrees so as to remain stable in the high heat environment of a laser printer or photocopier. Fig. 2 further shows that fold line 26 is a line of indentation which extends into the divider sheet.
Fig. 3 illustrates the assembly of Fig. 1 with folding portion 20, which is also known as a folding flap, having been folded over and adhesively tacked to non-folding portion 24. In this configuration, the assembly is ready to be fed into a laser printer, ink jet printer or photocopier. The printer will print onto the tab 18 and/or the main body portion 16. The tab reinforcement film 30 may be provided with a laser printable coating which will receive indicia from a variety of different printers.
Fig. 4 is a sectional view taken across Section 4-4 of Fig. 3. Fig. 4 shows that folding portion 20 is folded over at score line 26 and is tacked with a single use adhesive -13layer 32 to non-folding portion 24. The purpose of this single use adhesive layer 32 is to temporarily maintain folding portion 20 in the folded position of Fig. 4 so that the assembly will pass through the printer without jamming. In this folded configuration, the assembly is substantially flat and has a width of 8 1/4 inches as measured from the edge of the folded portion to the very edge of the index tab. Fig. 4 also shows that the main body sheet may have a slightly reduced thickness at tab 18 to help compensate for the added thickness of tab reinforcement film 30. The thickness reduction may be accomplished with a standard calendaring process.
Fig. 5 is a sectional view of the binding edge region taken along Line 5-5 of 10 Fig. 3. Fig. 5 shows that the debossing has reduced the thickness of the binding edge e *region such that when folding portion 20 is folded over, the total thickness of the folded S: over portion is approximately the same as the thickness of the main body of the sheet.
Embodiments of the present invention may have a greater or lesser degree of debossing.
S• 'The general idea is to prevent the folded over binding edge region from bulging upward to any substantial extent, thereby causing jamming in the printer. However, the thickness of the folded-over portion may be slightly greater than the thickness of the main body.
With respect to materials, the following illustrative materials and dimensions are provided for purposes of illustration but not of limitation. The assembly may be made from a single sheet of paper stock which is approximately 6.5 to 8.0 mils thick and is approximately 9 inches wide. One suitable-type of paper stock is from the Champion Paper Company in a basis weight of 57 pounds per 1800 square feet. Various laser printable cardstocks and papers of various thickness are also acceptable.
-14- A suitable adhesive for tacking down folding portion 20 to non-folding portion 24 is the 45858 Aqueous Fugitive Adhesive from Swift Adhesives Division of Reichhold Chemicals, Inc. of Research Triangle Park, North Carolina. When wet, this adhesive creates a good paper-to-paper bond. However, when it dries, the bond will still hold until it is physically broken. Once the adhesive bond is broken, as for instance after a user has unfolded the folding portion 20 from the non-folding portion 24 and broken the adhesive seal, the dry adhesive is no longer tacky and will not stick to anything.
When dry and tackless, the adhesive is virtually unnoticeable.
The edge reinforcing film, which serves to reinforce the hole punches 22, may be o10 a 0.5 2.0 mil thick strip of clear polyester film, coated on one side with a thermally-activated adhesive which remains stable at the temperatures of between 3750 450° degrees Fahrenheit that may be generated within a laser printer. Such a film and suitable adhesive are available from Protect-All, Inc. of Darien, Wisconsin. The tab S reinforcing film, based on 0.5 2.0 mil polyester film, is coated on one side with a stable heat-activated adhesive for attachment to the tab portion of the divider sheet and on the other side with a coating that enhances laser, ink jet or copier printability. One such
S
coating is available from Precision Coatings, Inc. of Walled Lake, Michigan.
A number of companies have performed the process of bonding these reinforcing films to index dividers, and the process is well known. One such company is Avery Dennison Specialty Products Division of Rolling Meadows, Illinois. In the embodiment illustrated in the drawings, the edge reinforcing adhesive coating is approximately mil thick and the tab adhesive coating is approximately 1 mil thick, although thicker or thinner coats may be used.
It should be noted that both the edge and tab reinforcing films should also be stable in the high temperature environment of present-day laser printers. Consequently, the reinforcement films, coatings and adhesives should be temperature stable up to a temperature of approximately 4500 Fahrenheit. However, if printers are developed that do not generate such temperatures, this requirement may be relaxed.
With respect to dimensions, in its unfolded position, the assembly may be 11 inches long by 9 inches wide as measured from the binding edge 12 to the outermost edge of the tab 18. Tab 18 may extend 1/2 inch outwardly of the main body 16 and may have various lengths for various purposes, with common lengths being 3 1/4 inches for a three-tab set, 1 7/8 inches for a five-tab set and 1 1/4 inches for an eight-tab set.
Folding portion 20 may be 3/4 inch wide so that, in the folded configuration, the assembly is 11 inches long by 8 1/4 inches wide as measured from the folded edge to the outermost edge of the tab. An advantage of having a folded divider width of 8 1/4 inches l.relates to a limitation of some printers which are unable to print within 1/2 inch of the edges of an 8 1/2 inch wide sheet. This would prevent printing on a tab that extends only 1/2 inch. A 1/4 inch offset, possible with the narrower sheet, effectively reduces this unprintable zone by 1/4 inch, allowing printing on half of the tab. By increasing the width of the folded portion to 1 inch, the folded divider width decreases to 8 inches, allowing printing over the full extent of the tab. Thus, increasing the width of the folded 20 portion increases the printable area on the tab.
One more consideration in choosing the width of the folding portion is the need to avoid intersecting the holes 22, which extend to a distance of about 1/2 inch from the binding edge. That is, the fold line should be inset toward the main body from the inner -16edge of the holes 22. With all of the aforementioned considerations in mind, a practical range for the inset of the score line 26 is between about 5/8 inch and 1 inch from the binding edge 12.
The hole-reinforcing film 28 (Fig. 2) may cover an area which includes the score line and which strengthens the assembly against tearing along the score line and also enhances the appearance of the product following unfolding.
The binding edge 14 is reduced.in thickness compared to the main body of the divider sheet. This may be achieved by compression of the sheet, referred to as debossing or calendaring. Processes for debossing papers and cardstocks, which typically utilise calendaring devices having a calendaring cylinder and an anvil roll between which the sheet is fed, are well known in the art. Ideally, the thickness reduction would be more than 50% of the original sheet thickness so that the reinforced and folded-over thickness would equal that of the original sheet.
The difficulty of increasing the density of paper beyond the density of the constituent fibres, however, limits the thickness reduction for a 6.5 8 mil sheet to less than about 1.5 3.5 mils. This yields, after reinforcing and folding, a thickness on the folded edge in the neighbourhood of 10 11 mils, which is near the maximum thickness that most printers will tolerate. While not perfectly coplanar, such sheets will reliably run through common laser and ink jet printers. If a higher degree of coplanarity is desired, an alternative method of creating a thickness step at the binding edge may be employed in which the body of the divider sheet is constructed as a laminate totalling less than 10 mils in thickness over the main body of the sheet, and a partial laminate totalling less than about 5 mils in the binding edge region.
-17- In the embodiments shown, both the edge reinforcing film and the calendaring or debossing are done on the top side of the divider. However, the debossing could be done on the back side of the divider, and the edge reinforcing film could be provided on the back side as well. By putting the reinforcing film on the back side of the assembly, there is paper-to-paper lamination when flap 20 is folded over onto non-folding portion 24.
This may be desirable in some embodiments.
Fig. 6 illustrates an alternative, laminated two-ply embodiment having a lower sheet 117 and an upper sheet 140 that is permanently adhered to the lower sheet. As with the previous embodiments, the embodiment of Fig. 6 includes a binding edge region 114. However, binding edge region 114 is an extension of lower sheet 117 and is not normally debossed. Upper sheet 140 is somewhat narrower than lower sheet 117, so that upper sheet 140 does not cover binding edge region 114. Tab 118 extends outwardly from the main body of the divider, and is reinforced with polyester tab reinforcement film 130.
Upper sheet 140 and lower sheet 117 are typically bonded together with an adhesive that is stable against flow and degradation at the high temperatures encountered S. in laser printers and copiers. One suitable adhesive for laminating the two sheets together is Nicomelt L-2274, manufactured by Malcolm Nicol Co. Other hot melt adhesives may also be used, such as that sold under the trade identification Bostik 4101.
Binding edge region 114 includes a folding portion 120, a scored folding line 126 and a non-folding portion 124. Like the embodiment of Figs. 1-5, the manufacturer provides the embodiment of Fig. 6 to the end user with folding portion 120 folded over and adhered with a single-use adhesive to the non-folding portion 124'.
-18- Upper sheet 140 and lower sheet 117 are typically each approximately 3 to 4 mils thick and are made of sheet paper. Alternatively, upper sheet 140 and/or lower sheet 117 may be made of polyester or other plastic. With at least one of the sheets being a strong plastic sheet, there is less of a need to provide the binding edge reinforcement film 28 that is required for all-paper embodiments. Preferably, sheets 117 and 140 are both made of the same material so that the divider will not be prone to curling when subjected to changing humidity conditions.
With the lower and upper sheets having approximately the same thickness, the divider has a substantially uniform thickness across the folded-over binding edge region and the main body of the divider. That is, there is no sudden increase in thickness at the juncture of the folded-over portion and the main body, as there typically is in the one-sheet embodiment shown in Fig. 4.
It is to be understood that various changes may be made without departing from i.the spirit and the scope of the invention. Thus, by way of example and not of limitation, any of a variety of materials may be used. For example, thinner or thicker paper material may be used for the main sheet portion of the laser printable index divider. Tab 18 is S-generally integral to the main sheet 16. However, index tab 18 may be a separate component that is simply adhered to an edge of the assembly. Index tab 18 is shown in the figures as being on the right hand side of the assembly.
The tab 18 may be on other sides of the assembly. For instance, embodiments of :*0000 the present invention can be provided having tabs on the top or bottom. The binding edge reinforcement 28 may extend the entire width and length of the assembly.
C. B -19- Alternatively, a second binding edge reinforcement layer may be provided on the back side of the sheet.
Tab sheet assemblies of various dimensions may also be provided. For example, some binders are only 5 inches wide by 10 inches long. Dividers may be sized appropriately for use in such a binder, or may be sized to meet the size requirements of any of a variety of other binders. Additionally, the base sheet may be made of temperature stable plastic sheet or polymer material.
In one embodiment of the present invention, the tab portion may be formed by providing a pattern of microperforations which define the tab edge and the tab portion.
The assembly could be printed with the microperforations still intact, so that a fully rectangular sheet is fed into the printer. The user would then tear the assembly along the microperforations to define a tab edge having an outwardly extending tab. The user would then discard the resulting excess strip of sheet material. It may be noted that "microperforations" typically refer to perforations which have approximately 35 cuts and ties per linear inch. "Microperforations" more generally refers to perforations which leave a substantially smooth edge when torn.
One preferred embodiment of the present invention is shown in Figs. 7-10, and this embodiment an index divider sheet assembly is shown generally at 50. The assembly 50 includes an index divider sheet 52, as shown in isolation in Fig. 10 and having a length of eleven inches and a width up to the straight edge of 8 1/2 (or 8 1/4) inches and a total width dimension including the tab 56 of nine inches. The assembly can also be standard A4 paper, which is 8.27 inches by 11.69 inches not including the tabs. The sheet 52 is preferably a 57 pound vellum bristol, approximately 7.5 mil thick, It such as that available from Wausau or Champion, or 90 pound index paper, approximately seven mil thick, such as that available from International Paper. The tab 56 itself has length dimensions for laser dividers of 1 1/8 inch to 1 1/4 inch for an eight tab system, or for a five tab system of 1 3/4 to two inches, and one-half inch width. (The tab length is measured at one half the height or width of the tab.) The divider sheets 52 are typically provided in a set wherein the tabs (56) are positioned at three, five, eight or different locations 1/5, 1/8 and 1/10 cuts, respectively) along the edge 60. Thus, when the sheets are in a ring binder or other file (not shown), the tabs (56) of adjacent sheets (52) will be offset from each other to facilitate reading of any indicia thereon and also for accessing the tab to open the file to the desired location, as is known.
Attached to the sheet 52 along the edge 60 thereof is a strip of paper 64. The strip 64 would typically have a length the same as the length of the divider sheet 52 and would have a width dimension of between 3/4 and 1 1/2 inches and with a minimum i attachment of 1/8 to 1/4 inch. The strip 64 can be 24 pound bond paper or equivalent film, and have a thickness of approximately 3 1/2 to four mil. The strip 64 is preferably thin, thinner than the index divider sheet 52, so that the strip plus the sheet are together S- not too thick to pass through the printer.
The strip 64 is glued to the back of the divider sheet 52 along the edge Referring to'Fig. 9, the adhesive or glue 66 is preferably a removable pressure sensitive type of adhesive, but can also be a fugitiye type of adhesive. An example thereof is the 48341 (formerly 45858) or 42995 Aqueous Fugitive Adhesive from Swift Adhesives, Division of Reichhold Chemicals, Inc. of Research Triangle Park, North Carolina, as described in detail later. The adhesive 66 is deposited on one half of the length of the -21strip 64. Then the strip 64 and the sheet 52 are positioned and laminated together. If a pressure sensitive adhesive 66 is used, only minimal laminating pressure is needed. The back of the tab 56 can be, but is preferably not, directly glued to the strip 64.
When glued, the strip 64 extends preferably 1/2 to 3/4 inch (1/2 inch for print-on tabs and/or laser divider and 3/4 inch for laser divider) outward beyond the edge 60 of the divider sheet 52, and 0 1/4 inch beyond the outer edge of the tab 56. This gives the assembly 50 an overall width of preferably nine inches (when laser dividers are unfolded), or 8 1/4 to 8 1/2 inches for laser divider (when folded) and nine inches for print-on tabs, respectively. In other words and referring to Fig. 7, dimensions 68a, 68b and 68c can be 8 1/2, 1/2 (or 3/4) and 7 3/4 inches, respectively, for laser dividers.
Thereby, and referring to Figs. 7 and 8, the divider sheet assembly 50 is positioned in the feed tray 70 of the printer 72. As shown in Fig. 8, the printer 72 can be the HP4V printer, a wide format printer as previously described. The printer 72 can also i.:i:be a copier, such as a digital programmable copier, like the Xerox DocutechTM copier.
And the assembly 50 can be deposited in the feed tray 70 in the -landscape feed direction as shown. As previously mentioned, the wide format printers allow for feeding of documents which are 11 inches wide into the printer Alternative feed directions of this invention are illustrated by the arrows in Figs. 8a and 8b.
Wheh the printing cycle is initiated the sensor 76 of the printer 72 shown in the 20 center detects the paper strip 64 and thereby the presence of the. divider assembly 50 and oo initiates the feeding and printing cycle. Since the detector or sensor 76 is in the center of the 11 inch feed of the printer 72, it would not have detected the divider sheet 52 without the strip 64 because the tab 56 is offset from the detector or sensor 76, and thus imaging -22would have been interrupted. In other words, if the detector does not sense the start of the page until the main body of the divider has reached it, no image is deposited on the tab. (Examples of detectors are finger types and photosensors. The sensor engages interlocking electronics that tell the printer that paper is coming in (is inbound) and thus printing may proceed or outbound so printing will stop.) The same is true if the divider is fed in binding edge first without the paper strip; the printer would not detect the trailing edge of the sheet without the additional paper strip.
With the divider sheet assembly 50 fed into the printer 72 and the printing operation conducted as directed by the printer software, the desired indicia is printed on the divider sheet 52. This can be, for example, as shown in Fig. 9 with a title width-wise of the divider sheet 52 and another indicia title (either horizontal or vertical) 82 along the length of the tab 56. Thus, assembly 50 allows direct printing without the use of macros or special commercial graphics software.
.ooooi SoWith the printing on the divider sheet 52 completed, the divider sheet assembly 50 is expelled or ejected from the printer 72 in a conventional manner. The user then removes the strip 64 from the divider sheet 52. As shown in Fig. 9, this is a simple *process of peeling it off to release the adhesive 66. No residue of the adhesive 66 remains on the divider sheet 52 because of the type of adhesive selected. The divider sheet 52 is then ready for use as shown in Fig. 10. This can be used in a file folder, 20 stapled or otherwise hole-punched or unfolded to reveal hole punches (for Laser divider) and put into a binder. Alternatively, apertured spines can be attached as described earlier in this disclosure.
-23- One preferred method of constructing and using the divider sheet (52) is to provide the binding edge, the edge opposite of the tabbed edge with a plurality (preferably three) of preformed spaced apertures or through-holes for fitting the divider sheet into a conventional three ring binder. The binding edge can be constructed as described in the '370 application and as is illustrated in Figs. 11 to 15, for example, and discussed below.
Fig. 11 illustrates a one-piece divider assembly 110 which can be folded over at the binding edge thereof and which includes the previously-mentioned adhesive strip 64.
The assembly 110 is suitable for printing in laser printers, ink jet printers, photocopiers and other printers such as shown in Figs. 8 and 17. The assembly 110 has a binding edge 112 and an integral, debossed binding edge region 114 extending inwardly into the sheet from the binding edge. The assembly also has a main body 116 with an integral, outwardly extending tab 118. A heavy paper or cardstock sheet forms the structural too basis for the entire divider assembly 110.
.Is The binding edge region 114 has a folding portion 120 which has spaced ring apertures 122. The binding edge region 114 may also have a non-folding portion 124.
The folding portion 120 and non-folding portion 124 are separated by a folding line 126, about which the folding portion may fold. Longitudinal folding line 126 is inset from 0 and runs parallel to the binding edge 112. In the embodiment of Fig. 11, the folding line .o 20 126 is scored to improve the regularity and proper positioning of the fold. Such scoring may consist of notches, cuts or a single indented line as best shown in Fig. 12.
Fig. 12, which is an enlarged sectional view taken on line 6-6 of Fig. 11, shows that the folding portion 120 and the non-folding portion 124 of binding edge region 114 -24are debossed or calendered. That is, binding edge region 114 is reduced in thickness somewhat relative to the main body portion 116. Binding edge region 114 is also laminated with a reinforcement film 128 which is adhered to one surface of the binding edge region. Fig. 12 further shows that folding line 126 is a line of indentation which extends into the divider sheet.
The tab 118 can be reinforced with a tab reinforcement film which is adhered to both sides thereof. In this instance, the tab reinforcement film is an adhesively-coated, symmetrical member that is folded about and adhered to the tab 118 at a line of symmetry of the reinforcement film member. The adhesive for the tab reinforcement film should be stable to temperatures of up to 450 degrees Fahrenheit so as to remain stable in the high heat environment of a laser printer or photocopier.
Fig. 13 illustrates the assembly of Fig. 11 with folding portion (or folding flap) *120 having been folded over and adhesively tacked to non-folding portion 124. In this e.
configuration, the assembly 110 is ready to be fed into a laser printer, ink-jet printer or photocopier: The printer will print onto the tab 118 and/or the main body portion 116.
The tab reinforcement film may be provided with a laser printable coating which will *e* receive indicia from a variety of different printers.
Fig. 14 is an enlarged sectional view taken on line 8-8 of Fig. 13. It shows the ofolding portion 120 folded over at score line 126 and tacked with a single-use adhesive 20 layer 132 to non-folding portion 124. The single-use adhesive layer-132 temporarily maintains folding portion 120 in the folded position of Fig. 14 so that the assembly 110 will pass through the printer without jamming. In this folded configuration, the assembly 110 is substantially flat and has a width of 8 1/4 inches as measured from the edge of the i.
folded portion to the very edge of the index tab. The main body sheet may have a slightly reduced thickness at tab 118 to help compensate for the added thickness of the tab reinforcement film, and the thickness reduction may be accomplished using a standard calendering process.
Fig. 15 is an enlarged sectional view of the binding edge region taken on line 9-9 of Fig. 13. It shows that the debossing has reduced the thickness of the binding edge region such that when folding portion 120 is folded over, the total thickness of the folded-over portion is approximately the same as the thickness of the main body of the sheet. (For Laser dividers when folded over the total thickness of the folded portion is not the same thickness as the body. It is approximately 12.5 mil versus 7.5 mil for the body portion. If the binding edge is not calendered, the thickness would be 17.5 mil.) Various embodiments of the present invention may have a greater or lesser degree of debossing. The general idea is to prevent the folded-over binding edge region from bulging upward to any substantial extent, thereby causing jamming in the printer (72).
However, the thickness of the folded-over portion may be slightly greater than the thickness of the main body.
The following materials and dimensions are provided for purposes of illustration but not of limitation. The assembly 110 may be made from a single sheet of paper stock which is approximately 6.5 to 8.0 mil thick and nine inches wide. One suitable type of paper stock is available from the Champion Paper Company in a basis weight of 57 pounds per 1,800 square feet. Various laser printable cardstocks and papers of various thickness are also acceptable.
-26- A suitable adhesive (132) for tacking down the folding portion 120 to the non-folding portion 124 is the 48341 (formerly 45858) or 45992 Aqueous Fugitive Adhesive available from Swift Adhesives Division of Reichhold Chemicals, Inc. of Research Triangle Park, North Carolina. When wet, this adhesive creates a good paper-to-paper bond. However, when it dries, the bond will still hold until it is physically broken. Once the adhesive bond is broken, as for instance after a user has unfolded the folding portion 120 from the non-folding portion 124 and broken the adhesive seal, the dry adhesive is no longer tacky and will not stick to anything. When dry and tackless, the adhesive is virtually unnoticeable.
The edge reinforcing film, which serves to reinforce the hole punches 122, may be a 0.5 to 1.0 or 2.0 mil thick strip of clear polyester film, coated on one side with a thermally-activated adhesive which remains stable at temperatures of between 375 to 450 degrees Fahrenheit that may be generated within a laser printer. Such a film and suitable adhesive are available from Protect-All, Inc. of Darien, Wisconsin. The tab reinforcing film, based on 0.5 to 1.0 or 2.0 mil polyester film, is coated on one side with a stable heat-activated adhesive for attachment to the tab portion of the divider sheet and on the other side with a coating that enhances laser, ink jet or copier printability. One such coating is available from Precision Coatings, Inc. of Walled Lake, Michigan.
A nuinber of companies have performed the process of bonding these reinforcing
S
films to index dividers, and the process is well known. One such company is Avery Dennison Specialty Products Division of Rolling Meadows, Illinois. In the embodiment illustrated in the drawings, the edge reinforcing adhesive coating is approximately -27mil thick and the tab adhesive coating is approximately one mil thick, although thicker or thinner coats may be used as desired.
It is noted that both the edge and tab reinforcing films should also be stable in the high temperature environment of today's laser printers. Consequently, the reinforcement films, coatings and adhesives should be temperature stable up to temperatures of approximately 450 degrees Fahrenheit. However, if printers are developed that do not generate such temperatures, this requirement may be relaxed.
With respect to dimensions, in its unfolded position, the assembly 110 may be 11 inches long by nine inches wide as measured from the binding edge 112 to the outermost edge of the tab 118. Tab 118 may extend one-half inch outwardly of the main body 116 and may have various lengths for various purposes, with common lengths being 3 1/4 inches for a three-tab set, 1 7/8 inches for a five-tab set and 1 1/4 inches for an eight-tab set.
eeeee Folding portion 120 may be 3/4 inch wide so that, in the folded configuration, the assembly is 11 inches long by 8 1/4 inches wide as measured from the folded edge to the outermost edge of the tab 118. An advantage of having a folded divider width of 8 1/4 inches relates to a limitation of some printers which are unable to print within 1/2 inch of the edges of an 8 1/2 inch wide sheet. This would prevent printing on a tab that extends only 1/2 inchf. A 1/4 inch offset, possible with the narrower sheet, effectively reduces this unprintable zone by 1/4 inch, allowing printing on half of the tab. By increasing the width of the folded portion to one inch, the folded divider width decreases to eight inches, allowing printing over the full extent of the tab 118. Thus, increasing the width of the folded portion 120 increases the printable area on the tab 118.
I.
-28- Another consideration in choosing the width of the folding portion 120 is the need to avoid intersecting the holes 122, which extend to a distance of about 1/4 inch from the binding edge. That is, the folding line 126 should be inset toward the main body from the inner edge of the holes 122. With all of the aforementioned considerations in mind, a practical range for the inset of the score line 126 is between about 5/8 inch and one inch from the binding edge 112.
The hole-reinforcing film 128 (Fig. 12) may cover an area which includes the score line 126 and which strengthens the assembly 110 against tearing along the score line and also enhances the appearance of the product following unfolding.
The binding edge 114 can be reduced in thickness compared to the main body of the divider sheet. This may be achieved by compression of the sheet, referred to as debossing or calendering. Processes for debossing papers and cardstocks, which typically utilise calendering devices having a calendering cylinder and an anvil roll between which the sheet is fed, are well known in the art. Ideally, the thickness reduction would be more than 50% of the original sheet thickness so that the reinforced and folded-over thickness would equal that of the original sheet.
*o The difficulty of increasing the density of paper beyond the density of the constituent fibres, however, limits the thickness reduction for a 6.5 8.0 mil sheet to less than about 1.5 2.5 mils. This yields, after reinforcing and folding, a thickness on the folded edge in the neighbourhood of 10 to -13 mils. While not perfectly coplanar, such sheets will reliably run through common laser and ink jet printers. If a higher degree of coplanarity is desired, an alternative method of creating a thickness step at the binding edge may be employed in which the body of the divider sheet is constructed as a rt -29laminate totalling less than 10 mils in thickness over the main body of the sheet, and a partial laminate totalling less than about five mils in the binding edge region.
In the embodiments shown, both the edge reinforcing film and the calendering or debossing are done on the top side of the divider. However, the debossing can be done on the back side of the divider, and the edge reinforcing film can be provided on the back side as well. By putting the reinforcing film on the backside of the assembly, there is film-to-film lamination when flap or folding portion 120 is folded over onto non-folding portion 124. This may be desirable in some embodiments.
A further example of this invention (which is not illustrated in the drawings) is an alternative, laminated two-ply embodiment having a lower sheet and an upper sheet that is permanently adhered to the lower sheet. As with the previous embodiments, this embodiment includes a binding edge region, which, however, is an extension of the °lower sheet and is not normally debossed. The upper sheet is somewhat narrower than the lower sheet, so that the upper sheet does not cover binding edge region. The tab extends outwardly from the main body of the divider, and is reinforced with polyester tab reinforcement film.
The upper and lower sheets are typically bonded together with an adhesive that is stable against flow and degradation at the high temperatures encountered in laser printers and copiers.' One suitable adhesive for laminating the two sheets together is Nicomelt L-2274, manufactured by Malcom Nicol. Co. Other hot melt adhesives may also be used, such as that sold by Bostik under the trade identification Bostik 4101.
Binding edge region (114) includes a folding portion (120), a scored folding line (126) and a non-folding portion (124). Like the embodiment of Figs. 11 to 15, the manufacturer provides the embodiment to the end user with the folding portion folded over and adhered with a single-use adhesive to the non-folding portion.
The upper and lower sheets are typically each approximately three to four mils thick and are made of sheet paper. Alternatively, the upper sheet and/or lower sheet may be made of polyester or other plastic. With at least one of the sheets being a strong plastic sheet, there is less of a need to provide the binding edge reinforcement film that is required for all-paper embodiments. Preferably, the sheets are both made of the same material so that the divider will not be prone to curling when subjected to changing humidity conditions.
With the lower and upper sheets having approximately the same thickness, the divider has a substantially uniform thickness across the folded-over binding edge region and the main body of the divider. That is, there is no sudden increase in thickness at the juncture of the folded-over portion and the main body, as there typically is in the !:one-sheet embodiment shown in Fig. 14. Thus, by way of example and not of limitation, any of a variety of materials may be used. For example, thinner or thicker paper material may be used for the main sheet portion of the laser printable index divider. Tab 118 is generally integral to the main sheet 116. However, index tab 118 may be a separate component that is simply adhered to an edge of the assembly. Index tab 1 18 is shown in o*• the drawingg as being on the right hand side of the a assembly. However, the tab 118 may be on other sides of the assembly, such as on the top or bottom thereof The binding edge reinforcement 128 may extend the entire width and length of the assembly. Alternatively, a second binding edge reinforcement layer may be provided on the back side of the sheet.
-31- Tab sheet assemblies of various dimensions may also be provided. For example, some binders are only five inches wide by 10 inches long. Dividers may be sized appropriately for use in such binders, or may be sized to meet the size requirements of any of a variety of other binders. Additionally, the base sheet may be made of temperature stable plastic sheet or polymer material.
A further alternative (a less preferred embodiment though) is to delete the adhesive between the folding layers, such as shown by the embodiment of Fig. 16. The binding edge region would then be preferably constructed with materials that allow for a secure flat folding using a folding machine, not tending to pop up and be caught in the r printer.
A further example is to not make the binding region thinner than the adjacent sheet, such as by not calendering. However, then when it is in a folded position, as shown in Fig. 16, it will be thicker, perhaps twice the thickness of the adjacent sheet.
:This may not be a problem when a lighter weight paper such as 28 or 32 pound ledger is used. The maximum recommended paper thickness for passing through printers can be eight, 12 or 15 mils, for example, using a printer's multipurpose tray or by manual feeding.
The assembly 110 of Fig. 13, for example, can then be fed into a printer 180 with 1•the sheet in a portrait feed direction, as shown in Fig. 17. (More appropriately, the tab 20 should be illustrated on the left in Fig. 17 since the divider's binding edge is shown .eeo therein.) The folded over portion 120 by decreasing the width of the overall assembly allows for feeding into a 8 1/2 inch feed printer 180 where the overall (unfolded) width as shown in Fig. 11 would be nine inches, for example.
-32- The strip 64 attached to the tabbed edge of the sheet then provides an even guiding surface for contact with the feed tray guides 184, to prevent skewing of the divider sheet assembly 110 (or 50) relative to the printer 180. This divider sheet assembly 110 (without the peel off strip) can also be used with an insert feed tray as described in the previously mentioned '879 patent application.
After the tabbed divider sheet assembly 110 has passed through the printer 180 of Fig. 17 and the printing 186, 188 on the body and the tabbed portion has been made, the strip 64 is pulled or peeled away from the divider sheet itself as shown in Fig. 18, similar to that of Fig. 9, and the folding portion 120 is folded out as shown in Fig. 18 (and depicted in Fig. 11). The unitary sheet with its pre-punched binding edge and the body and tab with the desired indicia printed thereon is then ready for use. For example, it can be fitted into a three ring binder. As would be appreciated by those skilled in the art, different numbers of pre-punched holes and/or different placements thereof can be provided as needed by the ultimate user. For example, it is within the scope of the invention to have the holes at the top of the sheet and the tabbed portions either on the side or at the end to fit different sizes and types of binders.
The divider assemblies described above show the releasable attachment of the strip 64 to the divider sheet as being by adhesive 66. However, it is also within the scope 0*0 6 i of the invenfion to have a microperforation attachment, instead of that adhesive attachment. This is shown by the embodiments 200 and 202 of Figs. 19 and respectively. The microperforated line 206 is formed in a die procedure with the shape shown in Figs. 19 and 20. Namely, the line 206 is straight with the exception of the outwardly bulging area defining the shape and size of the tab 208.
-33- An embodiment for a full page laser, ink-jet printable or photocopiable divider comprises paper having a thickness of approximately 6.0 mil for the divider sheet 210.
The sheets would usually be formed of fairly heavy paper or light cardboard stock. The microperforations consist of cuts which vary in size from 0.0125 to 0.0135 inch and which are separated by ties that vary in size from 0.0045 to 0.0050 inch. Thus, there are between 53 and 59 perforations per inch, with about 56 perforations being an average therebetween. For convenience the perforations can be referred to as in excess of about perforations per inch or at least about 50 perforations per inch. It is also within the scope of the invention for the perforations to be only 35 perforations per inch, or in the range of from 35 to 59 perforations per inch.
Fig. 19 shows an embodiment 200 of the present invention similar to that of Fig. 7 wherein no pre-punched holes or folded-over binding edge is provided. On the other hand, Fig. 20 shows generally at 202 a microperforated embodiment employing the binding edge technology shown generally at 220 and as illustrated in Figs. 11 to 18, for 15 example. Fig. 20 also illustrates the strip or strip portion 224 as being separated from the divider sheet assembly by simply tearing along the microperforated line 206.
The line of microperforations 206 does not affect the sheet's flatness or suitability of processing by a standard printer. The line is not straight as one zone protrudes away from the opposite side, the protrusion being shaped to outline the shape of a 20 conventional index tab, as mentioned above. The excess strip portion 224 is to be discarded after the sheet has been processed by the printer and the strip removed (tom away) from the sheet.
-34- A further embodiment of the present invention is illustrated generally at 230 in Fig. 21. It is similar to the embodiment of Fig. 11, for example, except in the construction of the paper strip The paper strip in embodiment 230 is formed of two pieces, namely, paper strip portions 234 and 236. The paper strip portions 234 and 236 are releasably adhered to the body portion 16 with glue (66) or the like as previously described. They are dimensioned and positioned on the body portion 116 along the tab edge thereof so that their adjacent ends.240, 242 are spaced apart with the tab 118 in between. That is, no part of the strip (234, 23 6) covers or extends across the tab 118.
Thus, both sides of the tab 118 are uncovered (not covered) by the strip and the printer advantageously can print on either or both sides of the tab as it passes therethrough. This is similar to the microperforated attachment embodiments 200 and 202. Of course, the two piece (paper strip portions 234 and 236) construction can be used without a debossed binding edge region 114 (such as in Figs. 7, 9 and :The present invention thus includes, generally speaking, one or more strips *.15 releasably attached to a flat object (such as a paper sheet). The strip is attached so as to extend out from an uneven or non-linear or non-perpendicular edge or side of the object *so that the assembly formed by that object and strip(s) has a straight linear perpendicular edge corresponding to and in place of the object's uneven edge. The assembly can then be passed thiough a printer or copier with reduced likelihood of skewing or janing 20 Aft er the printing on the flat object, the strip is cleanly removed therefrom.
One preferred embodiment of this invention as discussed in detail above includes the flat object being an index divider sheet with the uneven edge being the outwardly protruding tab thereof. However, the present invention can be used with generally any flat object having one or more uneven, non-linear or non-perpendicular edges. Further examples thereof are shown in Figs. 22 to 29 and discussed in detail below.
Fig. 22 shows generally at 300 an embodiment including an odd shaped or odd sized sheet 304, having a wavy or non-linear side (die cut) edge 306. The paper strip 308 having, for example, a width of one inch and a length of 11 inches, is releasably adhered to the sheet 304 on the back side thereof with an adhesive 310, such as the previously mentioned adhesive(s). The adhesive 310 can be applied to the paper strip 308 in a pattern conforming to the uneven edge of the sheet 304 using a gravure-type application process. The sheet 304 can have a thickness of two to 15 mil and can be a 100 pound weight vellum such as that available from Simpson Paper Company. The paper strip 308 can be 24 pound bond paper or equivalent film, having a thickness of approximately 3 1/2 to four mil. It is preferably thin, thinner than the sheet 304, so that the strip plus the sheet are together not too thick to pass through the printer.
The assembly 300 is passed through the printer or copier (72) and the desired
V.
indicia 316 printed on the sheet 304. The strip 308 is then peeled off the sheet 304 as is shown in the lower right of Fig. 22. Because a small/fine detailed edge, preferably die cut, is likely needed for the uneven (wavy) edge, the microperforated strip alternative attachment is less desirable for this embodiment.
o Figs.' 23 to 29 show embodiments of this invention wherein each sheet to be individually passed through the printer or copier has microperforated or other weakened or tear lines dividing the sheet in separate individual units. Printing by the printer or copier would likely be, but need not be, on each of the units. It may also be on the front and/or back sides of the sheet. The sheets can also be provided with scored fold lines, -36along which the units can be folded into the desired shapes. For example, the folded units can be holiday or greeting cards and the non-folded units can be tabbed flip file cards, as discussed below.
Fig. 23 shows generally at 400 a sheet assembly including a sheet 404, having an uneven (wavy, similar to edge 306 of Fig. 22) edge 408 and an adhesive strip 412, along the edge, and extending out therefrom to define a linear edge 416 for the sheet assembly.
Again, the linear edge 416 helps feed the sheet 404 through the printer or copier.
After being fed through the printer or copier and the desired indicia 420, 424), printed thereon, the strip 412 is peeled off, the sheet 404 is torn along the existing microperforation lines 430, 434, into the (three) individual units, and each of the units is folded in half along its score line 438. Three holiday or greeting cards are thereby formed. An example of one of them is shown generally at 440 in Fig. 24.
The sheet 404, for example, can have the following size and specifications: 3 1/2 0' 0 by four inches, 12 mil thick, made from heavy card stock such as 100 pound Tiara Starwhite Vicksburg Text Vellum Finish paper. The microperforation lines 430, 434 can consist of cuts which vary in length from 0.0125 to 0.0135 inch and which are separated
S
by ties that vary in length from 0.0045 to 0.0050 inch. Thus, there are between 53 and 59 perforations per inch, with an average being 56, or alternatively between 35 and 59 *as perforations per inch.
A variation of the assembly and card is shown in Figs. 25 and 26 at 450 and 454, respectively. The main difference is that the uneven edge 460, instead of having a wavy configuration, has jagged configuration.
-37- A further card embodiment of this invention is shown generally at 500 in Fig. 27.
As can be understood from the drawings, it differs from cards 440 and 454 in that instead of a jagged (or wavy) configuration it has a series of very fine and detailed shapes 504 cut in at spaced locations along the (bottom) edge 510. In Fig. 27 these shapes 504 are shown as being trees such as pine or Christmas trees. Of course, other shapes as would be apparent to those skilled in the art are within the scope of the invention. An adhesive peel off strip (4.12) is used to make the edge continuous and straight. A microperforated strip embodiment would likely not work well for the card 500 of Fig. 27 because it would not provide the needed fine detail for the shapes 504.
Rather, the shapes 504 would be die cut and an adhesive peel off strip (412) would be used.
If more than one side is "uneven," then separate peel off or tear off strips can be S provided for each side. The strips need not be separate, but rather can be connected or continuous in an or or even a picture frame shape. An example of using more than one strip for a single sheet is shown in Fig. 28.
Assembly 550 in Fig. 28 has strips 554, 558 adhered to both side edges 560, 564, respectively. As can be understood from Figs. 28 and 29, sheet 570 of assembly 550 has central horizontal and vertical microperforation lines 574, 578, dividing the sheet into four quadrarts or units. Each unit has its own outwardly extending tab 580, 582, 584, 586. By having the tabs extending outwardly, relative to the sheet, clean die-cut defining edge lines are possible. The strips 554, 558 on the tabbed edges make those edges 590, 592 straight for passing through a printer or copier. The paper sheet 570 can be heavy card stock, such as 100 pound Tiara Starwhite Vicksburg Vellum Finish paper. The -38microperforation lines 574, 578 can have specifications similar to the previously-described microperforation lines 430, 434. The strips 554, 558 can be eight inches long by one inch wide and have specifications the same as the previously-described strips 64 and 308.
After passing through the printer or copier and the desired indicia printed on each of the units, the further forming steps are illustrated in Fig. 29. The strips are peeled off and the units are separated from one another along the microperforation lines. Four units are thereby formed, each one configured and dimensioned as a tabbed, flip file card.
In summary, laser and ink jet printers, standard and wide tray, use mechanical, optical or a combination of two systems to sense paper or other materials feeding into and through the printers. The sensors are located in different positions across the "pathway in the printer as determined by the make and model thereof. When the printer is integrated with a personal computer, the software used determines the area/location of printing. When a specific paper size is selected from the software such as tabloid, 11 •15 inch by 17 inch, the printer sensor confirms the presence of the sheet for printing. If the printer "senses" the material, the software instructions to print in an area will be carried out. On the other hand, if the printer "senses" the non-presence of the material, printing in the area will not occur. The Hewlett Packard 4V paper sensor is in the center of the paper pathway. The third tab position is always "sensored" and the tab area is printed.
Positions one, two, four and five will not print according to the prior art since the sensor signals that a divider is not present even though the software has printing instructions for the tab position as a tabloid area. When the divider is fixed to a tabloid sheet, printing occurs at positions one, two, four and five, since position three sensor contact signals
F
-39that a sheet of paper is present. Instead of using a full size tabloid, a strip of paper fixed to one side of the divider running the length of the tab edge at the tab height will perform the same function. The paper strip signals paper presence to the sensor and effects printing in positions one, two, four and five. The strip is cleanly removable after printing of the tab side of the divider and discarded. Alternatively, the strip can be formed as two strip portions, one on either side of the tab.
From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention which come within the province of those skilled in the art. However, it is intended that all such variations not departing from the spirit of the invention be considered as within the scope thereof as !•limited solely by claims appended hereto.
*00.
*o *o 0

Claims (14)

1. A tab divider sheet assembly, comprising: a divider sheet including a main body having first and second edges, an outwardly-extending tab along said first edge, and a flap at said second edge; said flap being positionable in a folded position folded onto and lying substantially flat on said main body for feeding said divider sheet into a printer or copier whereby a printing operation can be performed on said divider sheet, and in an unfolded position after the printing operation has been performed thereon.
2. The assembly of claim 1 wherein said flap is thinner than said divider sheet.
3. The assembly of claim 1 wherein said flap is releasably held in the folded position. S4. The assembly of claim 3 wherein said flap is releasably held with single use adhesive. 0 The assembly of claim 1 wherein said flap defines a binding edge flap. o15 6. The assembly of claim 1 wherein said flap has spaced ring apertures.
7. The assembly of claim 6 wherein with said flap in the unfolded position, said divider sheet can be inserted into a ringed binder or notebook using said spaced ring apertures.
8. The assembly of claim 1 wherein said flap, when in the unfolded position, lies flat in substantially the same plane as that of said main body.
9. The assembly of claim 1 wherein said first and second edges are on opposite sides of said main body. -41- A method of making a printed tab divider sheet, comprising the steps of: providing a tab divider sheet assembly including a tab divider sheet having first and sheet edges, and an outwardly-extending tab at said first sheet edge and a flap attached to the divider sheet along the second edge, the flap being positionable in a folded position folded onto and lying substantially flat on the divider sheet and an unfolded position; with the flap in the folded position, feeding the tab divider sheet assembly into a printer or copier and thereby performing a printing operation on the divider sheet; and after the printing operation, unfolding the flap to the unfolded position.
11. The method of claim 10 wherein the flap includes spaced ring apertures, and further comprising with the flap in the unfolded position, inserting the divider sheet into a ringed binder or notebook using the spaced ring aperture.
12. The method of claim 10 wherein the flap is thinner than the divider sheet.
13. The method of claim 10 wherein said unfolding includes breaking an adhesive S -15 attachment of the flap to the divider sheet.
14. The method of claim 10 wherein said providing step includes the tab divider sheet assembly includes a strip releasably attached to the divider sheet along the first o•i sheet edge and extending out therefrom, and further comprising after the printing operation, removing the strip from the divider sheet.
15. The method of claim 10 wherein said providing step includes the tab divider sheet assembly including holding means for holding the flap to the tab divider sheet, and said unfolding includes releasing the holding means. -42-
16. The method of claim 15 wherein the holding means includes single use adhesive, and said releasing step includes breaking the adhesive.
17. A tab divider sheet assembly substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.
18. A method of making a printed tab divider sheet substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples. DATED this 7th Day of October, 1999 AVERY DENNISON CORPORATION o:o**o Attorney: RUSSELL J. DAVIES Fellow Institute of Patent Attorneys of Australia of BALDWIN SHELSTON WATERS oo*
AU53514/99A 1994-12-01 1999-10-07 Printable tab divider sheet assembly with foldable flap and method of making same Expired AU731259C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU53514/99A AU731259C (en) 1994-12-01 1999-10-07 Printable tab divider sheet assembly with foldable flap and method of making same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US348370 1994-12-01
AU77467/98A AU712290B2 (en) 1994-12-01 1998-07-23 Tab divider sheet assembly and method of making a printed tab divider sheet
AU53514/99A AU731259C (en) 1994-12-01 1999-10-07 Printable tab divider sheet assembly with foldable flap and method of making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU77467/98A Division AU712290B2 (en) 1994-12-01 1998-07-23 Tab divider sheet assembly and method of making a printed tab divider sheet

Publications (3)

Publication Number Publication Date
AU5351499A AU5351499A (en) 1999-12-16
AU731259B2 true AU731259B2 (en) 2001-03-29
AU731259C AU731259C (en) 2002-06-13

Family

ID=3757960

Family Applications (1)

Application Number Title Priority Date Filing Date
AU53514/99A Expired AU731259C (en) 1994-12-01 1999-10-07 Printable tab divider sheet assembly with foldable flap and method of making same

Country Status (1)

Country Link
AU (1) AU731259C (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1769395A (en) * 1928-04-03 1930-07-01 Herman Zotti Loose-leaf sheet
US4662770A (en) * 1984-11-30 1987-05-05 Carstens Health Industries, Inc. Pressure sensitive reinforcement tape for loose leaf sheet
US4910066A (en) * 1988-10-26 1990-03-20 Mri Management Resoures, Inc. Reinforced paper and method for making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1769395A (en) * 1928-04-03 1930-07-01 Herman Zotti Loose-leaf sheet
US4662770A (en) * 1984-11-30 1987-05-05 Carstens Health Industries, Inc. Pressure sensitive reinforcement tape for loose leaf sheet
US4910066A (en) * 1988-10-26 1990-03-20 Mri Management Resoures, Inc. Reinforced paper and method for making the same

Also Published As

Publication number Publication date
AU5351499A (en) 1999-12-16
AU731259C (en) 2002-06-13

Similar Documents

Publication Publication Date Title
AU712290B2 (en) Tab divider sheet assembly and method of making a printed tab divider sheet
US6071030A (en) Method for printing on index divider sheet assemblies and the like
US5743566A (en) Index divider sheet assembly and the like
MXPA97004025A (en) One piece separator printed by laser ray / it injection
US6099189A (en) Index divider sheet assembly
AU9789298A (en) User printable tab sheet or card construction and method of forming same
US6004062A (en) Index divider sheet assembly and the like
US6361639B1 (en) Method of manufacturing an index divider sheet assembly
US6039354A (en) Index sheet having a dual-side directly machine printable index tab portion and method of making the same
US6974158B1 (en) Cover and insert assembly for a periodical or other multi-page printed material
AU765267B2 (en) Printing non uniform flat objects
AU731259B2 (en) Printable tab divider sheet assembly with foldable flap and method of making same
US6129387A (en) Pressure sensitive library card holder
EP1216149B1 (en) Index divider sheet assembly and method of manufacturing same
EP1015256A1 (en) Printable index sheet with bindable member
EP1614542B1 (en) A document or paper label holder
MXPA99001680A (en) Printable index sheet with bindable member
AU2005201262A1 (en) Index divider sheet assembly and methods of manufacturing and printing on same

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
DA2 Applications for amendment section 104

Free format text: THE NATURE OF THE PROPOSED AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 20011015

DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS AS WAS NOTIFIED IN THE OFFICIAL JOURNAL DATED 20011213