AU725788B2 - Engine driven inverter welding power supply - Google Patents

Engine driven inverter welding power supply Download PDF

Info

Publication number
AU725788B2
AU725788B2 AU57119/99A AU5711999A AU725788B2 AU 725788 B2 AU725788 B2 AU 725788B2 AU 57119/99 A AU57119/99 A AU 57119/99A AU 5711999 A AU5711999 A AU 5711999A AU 725788 B2 AU725788 B2 AU 725788B2
Authority
AU
Australia
Prior art keywords
inverter
output
generator
input
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU57119/99A
Other versions
AU5711999A (en
Inventor
Richard Beeson
Stephen H. Li
Alan Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Priority to AU57119/99A priority Critical patent/AU725788B2/en
Publication of AU5711999A publication Critical patent/AU5711999A/en
Application granted granted Critical
Publication of AU725788B2 publication Critical patent/AU725788B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)
  • Control Of Eletrric Generators (AREA)

Description

V
AUSTRALIA
Patents Act COMPLETE SPECIFICATION
(ORIGINAL)
Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: 0* O0 Name of Applicant: Illinois Tool Works Inc.
Actual Inventor(s): Richard Beeson Stephen H. Li Alan Smith Address for Service: IP Australia 9
(D
Documents received on: 0 2 9 OCT 1999 Batch No: a. a. a a a a.
PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: ENGINE DRIVEN INVERTER WELDING POWER SUPPLY Our Ref 605789 POF Code: 1431/1431 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): ENGINE DRIVEN INVERTER WELDING POWER SUPPLY FIELD OF THE INVENTION .o The present invention relates generally to the art 5 of welding power supplies. More specifically, it relates to inverter welding power supplies driven by an engine.
BACKGROUND OF THE INVENTION There are different types of prior art welding eeo. 1 0 power supplies. Two types of welding power supplies are phase controlled and inverter-based power supplies. Both types typically receive an ac line (60Hz) input. However, inverter power supplies can be controlled to a desired frequency, but phase controlled power supplies are limited to the input frequency. Also, phase controlled power supplies cannot be used for pulse spray processes.
Inverter-based power supplies are often preferred because they are lighter, have a faster response, provide better weld characteristics, and are better suited for multiple processes (MIG, TIG, stick etc.).
An inverter power supply receives a dc input (often called the dc bus), and switches the input to provide an ac output. Prior art inverter welding power supplies -2have been designed to receive a line frequency input (60 or Hz), and to rectify that input to produce the dc bus.
The inverted ac output can be used as the welding output. However, some prior art welding power supplies include a rectifier which rectifies the ac inverter output to provide a dc welding output. The dc input to the inverter is typically obtained by rectifying an ac line input. Many inverter power supplies have controls which allow the power supply to effectively convert the ac line power into useful dc (and sometimes ac) welding power.
Engine driven generators used in welding are also common. An engine driven welding power supply is necessary for applications where the user needs to weld at multiple locations and finds it necessary to move the welding power 15 supply. An auxiliary power output (110 or 220 VAC) is usually provided for power tools, lights etc. Typically, engine driven generators are used to drive a simple tapped reactor or phase controlled power supplies. They often require an engine and generator specifically designed for 20 the welding power supply, which can be more expensive than using a standard engine/generator. Phase controlled engine drive welding power supplies necessarily include all of the disadvantages of phase controlled power supplies.
Another prior art engine driven welding power supply is a dc welding power supply, wherein the dc output of the generator is used directly for a dc welding output.
Such a welding power supply, with field control, is shown in U.S. patent 4,465,920, issued to Hoyt et al.
A few prior art inverter welding power supplies have been connected to a generator output and'used as engine driven inverter welding power supplies. The generator ac output serves as the ac inverter input (which is rectified to create the dc bus). This arrangement creates many problems. First, inverter based welding power supplies have heretofore been designed to receive the relatively stable and constant ac line voltages. A generator does not always produce such a stable and constant output. Second, there has not been an integrated control system wherein the engine and or generator is controlled in response to the welding output or inverter operating parameters. Thus, these engines usually operate at full throttle constantly, and are very inefficient.
The common practice of providing an auxiliary power output on the generator has at least one disadvantage.
The auxiliary power is single phase, 120 or 240 VAC at 50 or 60 Hz, and is used for power tools, lights etc. However, the single phase output unbalances the three phase output, and the result is harmonic distortion in all three phases.
The distortion will cause one of the phases to have much 15 higher peak voltage than the other two phases. The unusually high peak voltage may damage the inverter input capacitors, or require larger capacitors.
•The distortion is caused by a backward component of a magnetic field wave. When a three phase load is 20 present the three stator currents produce a magnetic field wave that rotates in the same direction as, and at the same speed as, the rotor. Thus, there is no relative motion between the rotor and the magnetic field wave, and the magnetic field wave does not induce any voltage in the rotor. However, when the load is unbalanced the magnetic field wave created by the stator currents does not move at the speed as and in the same direction as the rotor. The magnetic field produced by the stator currents when an unbalanced load is present may be resolved into two components: a forward component that is in the same direction and at the same speed as the rotor, and a backward component. The forward component behaves as a balanced three phase load, and does not cause a problem. The backward component is moving at the same speed as the rotor, but in the opposite direction. Thus, it has a motion relative to the rotor of twice the generator speed. This "moving" magnetic field will induce voltage in the rotor field winding, which causes the high output voltage. Damper cages have been used in generators (although not necessarily in the welding art) to counter-act or compensate for the effect of unbalanced loads.
Accordingly, it would be beneficial to have an inverter-based welding power supply that is engine driven where the control is integrated to control the engine and generator in response to either welding or inverter operating parameters. Preferably the generator will counter-act or compensate for the effect of unbalanced loads. Also, the power supply will preferably be able to be used for pulse spray and other welding processes.
e.og 0 SUMMARY OF THE PRESENT INVENTION The invention concerns a method for providing welding power including generating an electrical output with an engine and an ac or dc generator. The output is rectified if needed, and inverted to provide an ac inverter output. The engine is controlled using feedback indicative of a welding output operating **parameter.
Further, the invention concerns the control of engine speed in response to the feedback. Also, the speed may be specifically controlled to select between an idle speed and a run speed in response to the feedback. Other aspects include controlling one or more of a throttle position, a fuel pump, an injection timer, a fuel to air ratio, fuel consumption and ignition timing.
Another aspect of the invention is having the feedback be responsive to one or more of the welding current, welding voltage, welding power, or functions thereof.
Another aspect of the invention is obtaining a signal responsive to the output power and a function thereof C:XWINWORD\VIOLET\CHRIS\NODELETE\6501 1DIV.DOC by multiplying signals representative of the voltage and current to obtain a signal representative of the power, and then integrating the signal representative of the power.
Yet another aspect of the invention includes the step of storing energy after rectifying, and controlling the engine by increasing engine speed when the energy stored decreases past a threshold.
An aspect of the invention is having the feedback responsive to ripple in the output. Another alternative aspect includes the step of rectifying the inverter output to provide a dc welding output.
Another aspect of the invention is a stand alone welding power supply that includes a primary mover mechanically coupled to a rotating shaft. A generator includes a rotor mechanically coupled to the shaft and the generator also includes a stator magnetically coupled to the rotor. Thus, the generator provides an ac output. An inverter is connected to the ac output through a rectifier and the inverter inverts power from the ac input to provide an inverted output. A controller is coupled to the engine and has a feedback input connected to a feedback circuit.
The feedback circuit is also coupled to the welding output, and a signal responsive to at least one welding output operating parameter is provided to the feedback input. A dc 25 generator, without subsequent rectification, is used in another embodiment.
Yet another aspect of the invention incudes a speed control for the primary mover and the controller includes an output coupled to the speed control, wherein the speed of the primary mover is controlled in response to the feedback signal. One embodiment provides for selecting between an idle and run speed in response to the feedback signal. Alternatives include controlling one or more of a throttle position, a fuel pump, an injection timer, a fuel to air ratio, fuel consumption and ignition timing.
Other aspects of the invention include deriving the feedback from welding current, welding voltage, welding power, ripple current, ripple power, ripple voltage and/or functions thereof. The power and a function thereof may be obtained from a circuit that multiplies signals representative of voltage and current to obtain a signal representative of power, and a circuit that integrates the signal representative of power.
Yet another aspect of the invention includes one or more input energy storage device that stores energy after rectification and wherein the controller causes the engine to increase speed when the energy stored decreases past a threshold.
~Another aspect includes a rectifier coupled to the inverter output to provide a dc welding output.
S In one form of the invention, then, there is provided a stand alone welding power supply including: a primary mover mechanically coupled to a rotating shaft; a generator having a rotor mechanically coupled to the shaft, and further having a stator magnetically coupled to the rotor, whereby the generator provides a generator output; an inverter having an inverter input in electrical communication with the generator output, wherein the inverter inverts power from the inverter input to provide an inverter output; a controller coupled to the primary mover and having a feedback input; a welding output operably connectable to a weld electrode; and a feedback circuit coupled to said welding output and the feedback input wherein a feedback signal responsive to ripple in the welding output is provided to the feedback input.
In another form of the invention there is provided a stand alone welding power supply including: C:%WINWORDkVIOLET\CHRIS\NODELETE\650l 1DIV.OOC 6a a primary mover mechanically coupled to a rotating shaft; a generator having a rotor mechanically coupled to the shaft, and further having a stator magnetically coupled to the rotor, whereby the generator provides a generator output; an inverter having an inverter input in electrical communication with the generator output, wherein the inverter inverts power from the inverter input to provide an inverter output; a controller coupled to the primary mover and having a feedback input; a welding output operably connectable to a weld electrode; and a feedback circuit coupled to the inverter and the feedback input wherein a feedback signal responsive to ripple in the inverter is provided to the *i feedback input.
In yet another form of the invention, there is provided a stand alone welding power supply including: *a primary mover mechanically coupled to a rotating shaft; a generator having a rotor mechanically coupled to the shaft, and further having a stator magnetically coupled to the rotor, whereby the generator S"provides a generator output; an inverter having an inverter input in electrical communication with the generator output, wherein the inverter inverts power from the inverter input to provide an inverter output; control means, coupled to the primary mover and having a feedback input, for controlling the primary mover; a welding output operably connected to a weld electrode; and feedback means, coupled to a welding output and the feedback input, for providing a feedback signal responsive to ripple in the welding output to the feedback input.
In still a further form of the invention, there is provided a stand alone welding power supply including: a primary mover mechanically coupled to a rotating shaft; C:\WINWORD\VIOLET\CHRISNODELETE\6501 1 DIV.DOC 6b a generator having a rotor mechanically coupled to the shaft, and further having a stator magnetically coupled to the rotor, whereby the generator provides a generator output; an inverter having an inverter input in electrical communication with the generator output, wherein the inverter inverts power from the inverter input to provide an inverter output; control means, coupled to the primary mover and having a feedback input, for controlling the primary mover; a welding output operably connected to a weld electrode; and feedback means, coupled to the inverter and the feedback input, for providing a feedback signal responsive to ripple in the inverter to the feedback input.
S:iS..
°'In another form of the invention, there is provided a method of providing welding power including: S•generating an electrical output with an engine and generator; inverting an electrical input to provide an ac inverter output; providing power from said ac inventer output to a weld electrode; and controlling the engine using feedback from said ac inverter output, 20 indicative of a welding output ripple.
S..
o4* In still another form of the invention, there is provided a method of providing welding power including: generating an electrical output with an engine and generator; inverting an electrical input to provide an ac inverter output; providing power from said ac inverter output to a weld electrode; and controlling the engine using feedback from said ac inverter output indicative of an inverter ripple.
C:\WINWORD\VIOLET\CHRIS\NODELETE\6501 IDIVDOC 6c Other principal features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of the preferred embodiment of the present invention; Figures 2A and 2B are graphs showing power and integrated power; Figure 3 is a schematic of part of a controller for controlling engine speed; Figure 4 is a control diagram for a generator field current controller; SFigures 5-7 are circuit diagrams which implement the control diagram of Figure 4; Figure 8 is an end view of a damper cage; Figure 9 is a side end view of the damper cage of Figure 8; a *ee C:\WINWORDkVIOLET\CHRISVfOELETEk5O1 IDIV.DOC -7- Figure 10 is a sectional view of the damper cage of Figure 8, taken along lines 10-10; and Figure 11 is a circuit diagram of a delay circuit used in the preferred embodiment.
Before explaining at least one embodiment of the invention in detail it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or "of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting. Like reference numerals are used to indicate like components.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS While the present invention will be illustrated with reference to a particular engine, generator, converter, 20 controller and feedback system, it should be understood at ooo• the outset that the invention may include the addition of other components, removal of components, or the substitution for components. The preferred example, including component :values, is not limiting, rather it as exemplary. One skilled in the art should be able to use other components and component values to implement this invention. This invention relates to a stand-alone welding power supply. As used herein, stand alone means a welding power supply that includes a generator, rather than a welding power supply which derives power from the ac line power line. In other words, a stand alone welding power supply produces power, rather than converts ac line power Also, a stand alone welding power supply may have the niechanical and electrical portions in a single case, it may be modular, or the engine, generator and electrical power supply may each be separate.
A block diagram of an engine driven inverter based welding power supply 100 is shown in Figure 1, where the thick black lines indicate power transmission, and the thin 'ines indicate control or feedback signals. Welding power supply 100 includes an engine 102, a generator 104, an aux power output 105, a rectifier 106, a converter .108, a controller 110, and a welding output 112. Generally speaking, engine 102 is a gas or diesel powered engine (a primary mover) that drives a shaft on which a rotor of generator 104 is mounted. Any engine suitable for the desired power output may be used, and in the preferred embodiment the engine is a commercially available diesel engine, model DH905 or DH1005, made by Kubota. This model includes a lever that is used to select between idling 15 speed and a run (or higher) speed. As used herein run and running speed refer to a higher than idle speed.
Generator 104 may be a typical generator having a rotor and stator, and, in the preferred embodiment, is designed by using a single phase generator such as that used 20 in the Metro T welding power supply available from the assignee of this invention. The auxiliary and welding winding of the Metro
T
are replaced with three phase windings for this invention. The rotor is magnetically coupled with the stator, and a field current is supplied such that when the rotor is turned, an ac output current is produced.
The electrical output of generator 104 is provided to a rectifier 106, which produces rectified dc power. The rectified dc power is provided to converter 108, which includes, in the preferred embodiment, at least one energy storage device such as a capacitor 107 for smoothing the ripple in the rectified signal to provide a dc bus. An alternative embodiment uses a dc generator instead of ac generator 104 and rectifier 111, or rectifier 111 may be part of generator 104, or between generator 104 and converter 108.
Converter 108 also includes, in the preferred embodiment, an inverter 109 and rectifier 111 that convert the smoothed and rectified dc signal to a welding output (having an appropriate current and voltage). Converter 108 is in the preferred embodiment, a series resonant converter that inverts the dc bus and an output rectifier to produce a dc welding current as the welding output 112. An ac output is used in an alternative embodiment. A suitable series resonant converter is described in detail in U.S. Patent Appl. Ser. No.
08/584,412 (corresponding to granted US Patent No. 5,783,799), which is owned by the assignee of the present invention, and is hereby incorporated by reference. This converter is also available commercially from the assignee of the present invention, as the XMT304 M power supply.
*9*99 S; As described in Appl. Ser. No. 08/584,412, a power control circuit 113 is included in converter 108 such that the welding current is selected by the operator, and the converter provides the desired current. Various control functions including a hot start and a protection system are also described therein. Modifications to the XMT304 series resonant converter to adapt it to this invention includes removing the autolink feature and reducing the OCV command. Additional modifications are described below.
One advantage of using the preferred power source is that it readily adaptable to use in a wide range of welding processes. For example, by including an Optima or 60M™ controller, each available from the present assignee, a pulse spray process may be performed. Other processes include short arc, spray CV, spray CC, CC stick, CC TIG, pulse MIG, or pulse TIG (for example using a PC300 T controller). These process may be performed using the inventive engine driven inverter welding power supply.
Other converters, such as hard switched inverters, may also be used to implement the present invention. The specific converter or inverter selected is not important, so C: WORW1nOLETP PIL'OOELETEEMOI 1-g9 DOC long as it is properly controlled to provide the desired output current. Converter, as used herein, is a switched circuit that converts an ac or dc input to a different ac or dc output. Inverter, as used herein, is a switched circuit having a dc input and provides an ac output, or one that has an ac input and a rectifier to produce a dc signal that is then switched to produce an ac output that may. Also, an inverter, as used herein, may include an output rectifier to produce a dc output.
Controller 110 is provided to control the engine in response to feedback from the welding output. Feedback, as used herein, includes a signal indicative of or responsive to an output or intermediate signal, which is provided to the controller and which control decisions are made in response thereto. Feedback is not intended to encompass the user observing the process and the user making adjustments in response to the observations. The feedback signal may be any welding operating parameter, such as current, voltage, frequency, power, ripple current, ripple 20 magnitude, ripple voltage, ripple frequency, or functions o e thereof. The specific parameter fedback may be mathematically operated on as required by the control scheme.
schem One alternative embodiment includes the control of the generator by controller 110, as shown by the arrow from controller 110 to generator 104. However, this control should be considered as an alternative to, or an optional addition to, the control of engine 102 by controller 110.
Also, the control scheme of the preferred embodiment is not intended to be limiting. Rather, the invention broadly encompasses feedback in a welding power supply to control an engine/generator.
Specifically, in the preferred embodiment, controller 110 includes a feedback circuit 114 that is connected to the welding studs to obtain a welding current -11 and welding voltage feedback signal. The specific feedback circuit will be described in detail later. Feedback circuit 114 is, in an alternative embodiment, separate from controller 110. However, whether it is separate from, or part of, controller 110 is not important for the present invention. Also, controller 110 may be on the same circuit board as-control circuit 113. It may be useful to make controller 110 part of control circuit 113 since they may share feedback signals.
Controller 110 uses the feedback signal to determine the input power needed by converter 108. Then, the speed of engine 102 is adjusted to provide that needed power. Generally, an engine speed control is controlling the speed of the engine, which controls the power output of 15 the generator. Specifically, in the preferred embodiment, control circuit 113 causes engine 102 to operate at either an idle speed, or a run speed (close to or at full throttle). A solenoid may be used to move the run/idle lever to the desired position. Alternatively, more than two 20 positions (run/idle) or a continuous range of positions may be selected, based on the power needed. One alternative embodiment includes using controller 110 to control at least one of a throttle position, a fuel pump, an injection timer, fuel to air ratio, fuel consumption and ignition timing.
The decision to operate at idle or run is made based on an integrated power in the preferred embodiment.
This allows the operating speed of engine 102 to be determined from energy needed instead of instantaneous or peak power.
More specifically, as stated above, converter 108 includes a "hot start" feature wherein the power draw at the start of a weld is momentarily high to aid in striking of the arc and preventing sticking of the arc. This will cause a high peak or instantaneous power draw. However, the total energy used in such a hot start is not of a sufficient -1 2magnitude to decrease the energy stored by capacitor(s) 107 to a level at which the inverter will not operate properly.
Thus, controller 110 integrates the power at welding output 112 (which is directly related to the energy drained f--om capacitor(s) 107). When the integrated power exceeds a threshold, 'based on how much energy can be drained from capacitor(s) 107, the engine is caused to operate at high speed. The engine continues to run at high speed until power being drawn is no longer above the threshold.
The engine, in the preferred embodiment, provides ,00:0. 4Kw of inverter output power in the idle mode. Thus, so :long as the converter does not output more than 4Kw of power the engine produces as much power as needed while idling.
If more than 4Kw of power is output by converter 108 for a 15 short period of time (such as during the hot start) the engine does not need to speed up. Thus, the inverter output power is integrated, to the extent it exceeds about 4Kw.
When the integrand exceeds a threshold, the engine is caused to run at a higher,speed. The integrand is reset to zero 20 periodically.
Figure 2A illustrates this control scheme. Power (at the welding studs) is plotted on the Y axis, and the X axis indicates time. The 4Kw idle output is shown with a dashed line. The graphs shows that the welding set point is below 4Kw, thus, on a long-term basis the engine can provide sufficient power while idling. However, as may be seen, the "hot start" causes the instantaneous power to exceed 4Kw.
Controller 110 integrates the cross hatched area, which is the energy drain on the capacitors when the engine is idling. Figure 2B shows the integrand plotted over time.
If the integrand exceeds the run threshold, then controller 110 causes engine 102 to operate at a higher speed.
One alternative embodiment of controller 110 includes circuitry to decide whether to run at idle or high speed based on the machine settings. When an operator is -1 3going to weld, they set controls (typically on a power supply front panel) indicating the welding parameters, such as current, process, voltage, etc. The setting may be dialed or typed in, and controller-110 monitors one or more of these settings, and determines from a look-up table, microprocessor, or analog circuit whether or not the engine will need to operate at running speed, or if idling will suffice. The throttle lever is moved in accordance with that determination.
Figure 3 is the circuit diagram of a multiplier 301 and an integrator 302 of controller 110. A signal Vfb is responsive to the welding output voltage, and is provided through a circuit including a plurality of resistors R1 (100K ohms), R2 (2K ohms), R3 (100K ohms), R4 (45K ohms), 15 R4A (100K ohms) and R5 (3.32K ohms), a pair of op amps Al and A2, a pair of capacitors C1 (330 uF) and C2 (47 pF), a diode D1 and a pair of transistors T1 and T2. The components are arranged such that the signal provided to the base of a transistor T5 is indicative of the voltage 20 magnitude.
A signal If. is responsive to the welding output current,-and is obtained using a LEM. Ifb and is provided oOO, through an op amp A10, including a pair of resistors (100K ohms) and R11 (150 ohms), and a capacitor C10 (22 Pf), 25 a diode D10 to the collector of transistor T5. A feedback resistor R12 is also provided. Another transistor T10, a capacitor C11 (0.001 pF), a resistor R13 (10K ohms) and an op amp All are connected to the emitter of transistor such that the output of op amp All is a signal indicative of and responsive to the power at the welding studs a power feedback signal).
The power feedback signal is provided to integrator circuit 302 which includes an op amp A15 and resistors R18 (10K ohms), R16 (562K ohms), R17 (12.1K ohms) and a feedback capacitor C18 (0.1 pF). The output of op amp -14is the integrated power when the power exceeds 4 Kw, and is used by controller 110 to determine when to cause the engine to operate at run speed. Resistors R16 (562K ohms) and R17 (12.1-h ohms) set the 4KW level, and resistor R18 (10K ohms) and capacitor C18 (0.1 F) provide an RC integrating time constant. The decision can be made by controller 110 using a simple comparator having a threshold as one input and the output of op amp A15 as the other o input.
10 Figure 4 shows a voltage regulator 401 that regulates the voltage of generator 104. Voltage regulator S"401 is part of controller 110 in the preferred embodiment, although it may be separate from controller 110. Generally, voltage regulator 401 controls the generator field current 15 such that the output voltage of the generator is at a e .e desired level.
Specifically, a rectifier/scaler 402 receives the three phase generator output voltage, and rectifies and scales it. A voltage command 404 receives as an input the signal indicating whether the engine is in the run or idle mode, and provides a set point command signal to an adder 406. Thus, the set point command is one of two values, depending upon whether the engine is idling or running at high speed. Adder 406 also receives the scaled three phase voltage and its output is an error signal. The error signal is provided to a gain stage 407, and then tc an adder 408.
A frequency sensor 410 senses the frequency of the generator (which is indicative of engine speed) and provides a signal to a limiter 411 that is used by adder 408 to limit the field current. Frequency sensor 410 receives as another input the run/idle command, and different field current limits are set, depending on whether the engine is running at high speed or idling. Thus, adder 408 provides a field current command signal that is a function of the error, and r is limited by the engine/generator frequency and the run/idle selection.
The field current command signal is provided to an adder 412, which also receives a field current feedback signal. The output of adder 412 is the difference between the field current command and feedback, and is thus a field current error signal. The error signal is provided to another gain stage 414. A PWM chip 416 compares the field current error signal to a threshold, and turns on and off a 10 transistor as need. The transistor connects the 120 VAC field power to the field of generator 104.
A circuit which implements this scheme is shown in Figures 5-7. Rectifier/scaler 402 is shown schematically on Figure 5, and includes three identical circuits, each of 15 which has a unique two of the three phases as inputs.
Generally, each circuit includes nine feedback and scaling resistors (R20-50), two op amps (A20-A25), and a capacitor (C20-C22). The components have the following values: resistors R20, R24 and R28 are 332K ohms, resistors R21, and R29 are 16.2K ohms, resistors R22, R26 and R30 are 332K ohms, resistors R23, R27 and R31 are 16.2K ohms, resistors R33, R34 and R35 are 12.1K ohms, resistors R36, R37 and R38 are 12.1K ohms, resistors R41, R42 and R43 are 10K ohms, resistors R44, R45 and R46 are 10K ohms, resistors R48, R49 and R50 are. 100K ohms and capacitors C20, C21 and C22 are 0.01 pF. The output is summed and buffered by op amp A27 and resistor R47 (15K ohms) and capacitor C40 (0.01 )F) Voltage command 404 includes resistor R51 (10.8K ohms) and R52 (6.75K ohms) and a relay CR1. One of the contacts of CR1 is open, and the other closed, depending on whether idle or run is selected.
Adder 406, gain stage 407, and-adder 408 are also shown on Figure 5. They include an op amp A30, a feedback resistor R55 (3.32K ohms), a feedback capacitor C42 (1 iF), and a transistor T20. These components are configured to -16provide an output that is the error of the voltage command from the setpoint, limited by the frequency sense circuit 410.
Frequency sense circuit 410 is shown on Figure 6 and receives an input from scaler/rectifier 410. That input is provide through a resistor R61 (475K ohms) to a frequency-voltage converter chip FVC1. Frequency-voltage converter chip FVC1 is conventionally configured and includes associated components resistors R62 (10K ohms) and S 10 resistors R63, and capacitors C60 (0.1 uF) and C61 (1 pF).
The output of FVC1 is provided to an op amp A60, which S. includes associated components resistors R64 (1K ohms), o (18.2K ohms), R66 (8.25 ohms), R67 (1M ohms) and R69 (2K ohms). The idle/run select signal is provided through a 15 transistor T60 and resistors R70 (10K ohms) and R68 ohms) to one input of op amp Frequency sense circuit 410 also includes three NAND gates, NAND1, NAND2, and NAND3. The NAND gates, along with a pair of analog switches S60 and S61, and associated circuitry resistors R72 (20K ohms) and R73 (1.53K ohms), (3.92K ohms), R76 (1.74K ohms) and transistor T61, are configured top provide the limiting signal to adder 408.
One alternative embodiment includes using frequency sense circuit 410 or an alternative circuit to determine if the engine is slowing down to the point where a stall is likely. If controller 110 determines that a stall is likely, then the converter controller may be over-ridden such that the output is temporarily reduced, until the likelihood of a stall is reduced.
Figure 7 is a schematic of adder 412 and gain stage 414, along with PWM chip 416. The field current feedback signal is scaled by an op amp A80 and resistors ohms), R81 (56K ohms) and R82 (10K ohms). Capacitor is 0.01 pF. The output of op amp A80 is summed with the command signal from adder 408 by op amp A81 and a resistor -17- R84 (100K ohms) to provide the error signal. An op amp A82, and resistors R85 (10K ohms) and R86 (10K ohms) provide the gain stage. The output of gain stage 414 is provided through a resistor R87 (3.32K ohms) to a PWM chip IC1 that is configured in a conventional manner to turn on and off a transistor T80 and provide a current to a field winding FW1, a pair of brushes B1 and B2, and a pair of slip rings S1 and S2, in accordance with a desired current level.
•Many welding power supplies that operate on an ac 10 power line include an under voltage protection circuit.
thus, when the input voltage drops below a threshold a switch is turned on (or off) such that and the power supply controller shuts down the power supply. However, if the load of an engine driven welding power supply increases when 15 the engine is idling, a transient voltage dip occurs. Thus, if the converter controller includes an under voltage protection circuit, it must be removed or modified to accommodate the relatively slow response of the engine.
.One embodiment of the present invention includes the use of an RC delay circuit in the under voltage protection circuit that begins to charge when the under voltage switch is turned on. The capacitor continues to charge so long as the switch is on. After a sufficient delay, (1 sec in the preferred embodiment) the under voltage lockout mechanism is activated. The delay circuit is shown in Figure 11 and the low voltage detect signal is provided through a diode D90 and a IM ohm resistor R90 to charge a 1 4F capacitor C90. When capacitor C90 is charged the low voltage protection shut off signal is provided, but a transient lasting less than the time it takes to charge capacitor C90 (1 sec) is ignored. Capacitor C90 is discharged rapidly through a 100K ohm resistor R92 and a diode D92, by a transistor T92. Transistor T92 is turned on by a 2K ohm resistor R93 when the low voltage is not detected. The preferred embodiment uses a 24 volt control -18board power for the under voltage input, which is derived from, and directly proportional to, the ac input voltage, to check for under voltage.
The preferred embodiment includes the use of a single phase auxiliary power output, 120 VAC at 60 Hz, for power tools, lights etc. 240 VAC and/or 50 hz may also be provided. The auxiliary power may be taken directly from the generator, without pre-conditioning, or it may be preconditioned. A damper cage is provided, in the preferred 10 embodiment, to counteract the unbalanced load. Generally, a damper cage is a series of low resistance conductors close to the surface of the rotor pole bodies. The damper cage acts as a low impedance winding on the rotor. The backward magnetic field wave from the stator currents (caused by the 15 single phase load) induces large amounts of current in the damper cage bars. This current induces a magnetic field which tends to cancel the backward magnetic stator wave.
Specifically, in the preferred embodiment, the damper cage includes seven aluminum rods 0.25 inches in diameter placed in closed slots. Figures 8-10 show an end view, side view, and sectional view, respectively, of a rotor having a damper cage in accordance with the present invention. The rotor is mounted on a shaft 801 and includes winding 802. The seven aluminum bars 803 may be seen in Figures 9 and 10. The slots the bars are placed in are, in the preferred embodiment, 0.26 inches in diameter, and 0.03 below the surface. The damper cage is completed with an aluminum piece, cut to the same shape as the lamination, on each end. The rods are TIG welded to the end pieces.
Alternative methods of construction include using copper rods silver soldered to copper end pieces, copper rods brazed or welded to a copper ring end piece, or aluminum die casting through the rotor holes. The embodiment shown is a two pole generator, but a generator with four or more poles could also be used.
-19- The preferred embodiment monitors the demand of the aux load, and if necessary causes the engine to run at high speed in response to the aux load. One alternative embodiment that also reduces distortion from ti-.e auxiliary power output is to include an aux power feedback circuit in controller 110. Another is to add a large capacitor on the leg which receives the higher voltage. Also, multiple stators may also reduce distortion caused by an unbalanced 0 load.
10 One alternative embodiment is shown by the dashed control lines in Figure 1 between controller 110 and converter 108. The feedback signal is obtained from the inverter, rather than the welding output in this embodiment.
Controller 110 uses the feedback to determine the desired 5 engine speed. The selected speed may be one of at least two discreet speeds (idle/run or from a continuous spectrum of speeds. The parameters used for feedback include one or more of inverter output and/or tank current, inverter output and/or tank voltage, inverter output and/or tank power, ripple parameters and frequency. The "tank" feedback signals may be particularly appropriate when the converter is a series resonant converter. Another alternative includes using an output transformer, and deriving the feedback signals (such as those described above) from the secondary side of the transformer). The feedback signal may, as described above, be a mathematical function of the operating parameter. Another alternative includes controlling at least one of a throttle position, a fuel pump, an injection timer, a fuel to air ratio, fuel consumption and ignition timing of the engine.
Other alternatives include controlling the engine based on a generator operating parameter feedback. The generator operating parameter may be field current, generator output (or inverter input) current, voltage, power, frequency, or aux current, voltage, power or S r frequency. As described above, the fedback signal may be a mathematical function of the operating parameter. Also as described above, the engine parameter being controlled may be speed, throttle positio..' a fuel pump, an injection timer, a fuel to air ratio, fuel consumption and ignition timing.
Another alternacive is to control the generator in response to the welding and converter operating parameters described above. The field current is controlled'in one alternative embodiment.
Other alternatives include controlling the to inverter so it operates more effectively with a generator input. One such alternative is described above, wherein the inverter is controlled so that it can operate at low 15 voltages for a period of time. Another alternative is to o provide a pre-regulator between the generator and the converter so that the input mimics ac line power. The preregulator may include power factor correction, a rectifier, large capacitors or energy storage devices, and a controlled bridge. One alternative embodiment includes a soft switched converter as the pre-regulator, and another is a voltage S" converter as the pre-regulator. The pre-regulator may be particularly useful when the aux power is derived directly from the generator. Alternatively, the aux power may be pre-regulated. Another alternative is using a 60Hz inverter to produce the aux power. Either single or three phase can be used as an input to the aux inverter.
Numerous modifications may be made to the present invention which still fall within the intended scope hereof.
Thus, it should be apparent that there has been provided in accordance with the present invention a method and apparatus for welding with an engine driven inverter that fully satisfies the objectives and advantages set forth above.
Although the invention has been described in conjunction with specific embodiments therecf, it is evident that many -21alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that tall within the spirit and broad scope of the appended claims.
.9 e.9

Claims (8)

1. A stand alone welding power supply including: a primary mover mechanically coupled to a rotating shaft; a generator having a rotor mechanically coupled to the shaft, and further having a stator magnetically coupled to the rotor, whereby the generator provides a generator output; an inverter having an inverter input in electrical communication with the generator output, wherein the inverter inverts power from the inverter input to S 10 provide an inverter output; a controller coupled to the primary mover and having a feedback input; a welding output operably connectable to a weld electrode; and a feedback circuit coupled to said welding output and the feedback input wherein a feedback signal responsive to ripple in the welding output is provided to the feedback input.
2. A stand alone welding power supply including: a primary mover mechanically coupled to a rotating shaft; a generator having a rotor mechanically coupled to the shaft, and further having a stator magnetically coupled to the rotor, whereby the generator provides a generator output; an inverter having an inverter input in electrical communication with the generator output, wherein the inverter inverts power from the inverter input to provide an inverter output; a controller coupled to the primary mover and having a feedback input; a welding output operably connectable to a weld electrode; and a feedback circuit coupled to the inverter and the feedback input wherein a feedback signal responsive to ripple in the inverter is provided to the feedback input.
3. A stand alone welding power supply including: a primary mover mechanically coupled to a rotating shaft; C:\WINWORD\VIOLET\CHRIS\NODELETE\6501 1D V.DOC 'V 23 a generator having a rotor mechanically coupled to the shaft, and further having a stator magnetically coupled to the rotor, whereby the generator provides a generator output; an inverter having an inverter input in electrical communication with the generator output, wherein the inverter inverts power from the inverter input to provide an inverter output; control means, coupled to the primary mover and having a feedback ,00:4, input, for controlling the primary mover; .:etai a welding output operably connectable to a weld electrode; and 10 feedback means, coupled to a welding output and the feedback input, for providing a feedback signal responsive to ripple in the welding output to the feedback input.
4. A stand alone welding power supply including: a primary mover mechanically coupled to a rotating shaft; a generator having a rotor mechanically coupled to the shaft, and further having a stator magnetically coupled to the rotor, whereby the generator Seat provides a generator output; oo° an inverter having an inverter input in electrical communication with the generator output, wherein the inverter inverts power from the inverter input to provide an inverter output; control means, coupled to the primary mover and having a feedback input, for controlling the primary mover; a welding output operably connectable to a weld electrode; and feedback means, coupled to the inverter and the feedback input, for providing a feedback signal responsive to ripple in the inverter to the feedback input.
A method of providing welding power including: generating an electrical output with an engine and generator; inverting an electrical input to provide an ac inverter output; providing power from said ac inverter output to a weld electrode; and C:kWNWORDMV1OLET\CHRIS\NODELETEX6SO1 IDIVOOC a 24 controlling the engine using feedback from said ac inverter output, indicative of a welding output ripple.
6. A method of providing welding power including: generating an electrical output with an engine and generator; inverting an electrical input to provide an ac inverter output; providing power from said ac inverter output to a weld electrode; and controlling the engine using feedback from said ac inverter output indicative of an inverter ripple.
7. A power supply substantially as herein described with reference to the accompanying drawings.
8. A method substantially as herein described with reference to the 15 accompanying drawings. S DATED: 27 October, 1999 PHILLIPS ORMONDE FITZPATRICK Attorneys for: ILLINOIS TOOL WORKS INC. Q^A^a Q C:\WINWORD\VIOLET\CHRIS\NODELETE\65011DIV.DOC
AU57119/99A 1997-05-19 1999-10-29 Engine driven inverter welding power supply Ceased AU725788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57119/99A AU725788B2 (en) 1997-05-19 1999-10-29 Engine driven inverter welding power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/858129 1997-05-19
AU57119/99A AU725788B2 (en) 1997-05-19 1999-10-29 Engine driven inverter welding power supply

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU66011/98A Division AU714274B2 (en) 1997-05-19 1998-05-18 Engine driven inverter welding power supply

Publications (2)

Publication Number Publication Date
AU5711999A AU5711999A (en) 2000-05-04
AU725788B2 true AU725788B2 (en) 2000-10-19

Family

ID=3742587

Family Applications (1)

Application Number Title Priority Date Filing Date
AU57119/99A Ceased AU725788B2 (en) 1997-05-19 1999-10-29 Engine driven inverter welding power supply

Country Status (1)

Country Link
AU (1) AU725788B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10751827B2 (en) 2016-08-24 2020-08-25 Illinois Tool Works Inc. Variable speed engine driven generator for providing welding and auxiliary power

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2804553A (en) * 1955-10-05 1957-08-27 William E Mcfarland Idling device featuring actuatorcontrolled spring
US3597623A (en) * 1968-01-27 1971-08-03 Masa S R L Power plant and generating unit
US3889178A (en) * 1971-09-03 1975-06-10 Mcculloch Corp Welding control circuit and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2804553A (en) * 1955-10-05 1957-08-27 William E Mcfarland Idling device featuring actuatorcontrolled spring
US3597623A (en) * 1968-01-27 1971-08-03 Masa S R L Power plant and generating unit
US3889178A (en) * 1971-09-03 1975-06-10 Mcculloch Corp Welding control circuit and method

Also Published As

Publication number Publication date
AU5711999A (en) 2000-05-04

Similar Documents

Publication Publication Date Title
AU714274B2 (en) Engine driven inverter welding power supply
KR100882208B1 (en) A welding type power source
EP1815935B1 (en) Synergic Tig welding system
JP2006109698A (en) Power supply for welding, truncation, or heating, and its control method
US5991180A (en) Auxiliary open circuit voltage power supply
US20240058884A1 (en) Systems, methods, and apparatus for pre-regulator control in welding-type power supplies
EP0763397B1 (en) Welding power supply
AU725788B2 (en) Engine driven inverter welding power supply
US6479794B1 (en) Engine driven welding power supply with dig circuit
CA2828085A1 (en) Welding system with rotational speed converter for auxiliary power generator and method of operating the welding system
US20230063774A1 (en) Systems and methods to mitigate audible noise in welding-type power supplies
CN110026657B (en) Multifunctional inverter gas shielded welding machine with unified regulation
CA1125390A (en) Method and apparatus for controlling the welding capacity during electrical resistance welding
JP2023035727A (en) Power supply unit
JPH06328247A (en) Engine driven type arc welding machine for both tig and manual welding with overload limiting device
JPS6213105B2 (en)
MXPA99006381A (en) Energy converter with loss smoke switch
HU193232B (en) Electric welder

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)