AU704209B2 - Aligned fiber reinforcement panel for wood members - Google Patents

Aligned fiber reinforcement panel for wood members Download PDF

Info

Publication number
AU704209B2
AU704209B2 AU45239/97A AU4523997A AU704209B2 AU 704209 B2 AU704209 B2 AU 704209B2 AU 45239/97 A AU45239/97 A AU 45239/97A AU 4523997 A AU4523997 A AU 4523997A AU 704209 B2 AU704209 B2 AU 704209B2
Authority
AU
Australia
Prior art keywords
wood
fibers
panel
structural member
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU45239/97A
Other versions
AU4523997A (en
Inventor
Daniel A. Tingley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/037,580 external-priority patent/US5362545A/en
Application filed by Individual filed Critical Individual
Priority to AU45239/97A priority Critical patent/AU704209B2/en
Publication of AU4523997A publication Critical patent/AU4523997A/en
Application granted granted Critical
Publication of AU704209B2 publication Critical patent/AU704209B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/06Making particle boards or fibreboards, with preformed covering layers, the particles or fibres being compressed with the layers to a board in one single pressing operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • B29C37/0082Mechanical anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/083Combinations of continuous fibres or fibrous profiled structures oriented in one direction and reinforcements forming a two dimensional structure, e.g. mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/088Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of non-plastics material or non-specified material, e.g. supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/64Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres the filler influencing the surface characteristics of the material, e.g. by concentrating near the surface or by incorporating in the surface by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/10Next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/04Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by applying or incorporating chemical or thermo-activatable bonding agents in solid or liquid form
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/08Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of fibres or yarns
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/17Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with non-parallel upper and lower edges, e.g. roof trusses
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/18Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with metal or other reinforcements or tensioning members
    • E04C3/185Synthetic reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S52/00Static structures, e.g. buildings
    • Y10S52/07Synthetic building materials, reinforcements and equivalents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23986With coating, impregnation, or bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24132Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • Y10T428/249947Polymeric fiber

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Forests & Forestry (AREA)

Description

"ALIGNED FIBER REINFORCEMENT PANEL FOR WOOD MEMBERS" Technical Field This invention pertains to reinforcement of structural wood, such as beams, columns and trusses.
More particularly, the present invention pertains to the use of unidirectional fibers as a reinforcemant in structural wood members to improve the tensile or compressive loading of the wood member.
Backaround Art To remain competitive, wood product engineers have had to adopt innovative designs in combination with alternate materials to enhance the structural limits and cost effectiveness of engineered wood products. Examples of engineered wood products include glued laminated wood beams, laminated wood columns, wood I-beams, and wood trusses. The prior art is replete with examples of these engineered wood products.
O'Brien, U.S. Patent No. 5,026,593 discloses the use of a thin flat aluminum strip to reinforce a laminated beam. O'Brien teaches that the aluminum strip must be continuous across the width and length of the 25 beam and that the reinforcing strip may be adhesively fixed to the lowermost lamina to improve tensile strength, or to the uppermost lamina to improve strength in compression of the beam. Thus, while O'Brien teaches the engineering principal of locating a reinforcement 30 strip in a wood laminated beam to improve the tansile strength (or strength in compression) of the beam and thus to improve the overall load carrying capacity of the beam, O'Brien only teaches the use of an aluminum reinforcing strip. And although O'Brien states that the reinforcing strip may be any "high tensile strength" material, O'Brien does not teach nor suggest means for optimizing the reinforcing strip nor of solving problems 2 associated with the use of reinforcing strips other than aluminum.
At the 1988 International Conference on Timber Engineering a paper was presented entitled "Reinforced Glued-Laminated Wood Beams" by Mr. Dan A. Tingley (hereinafter "Tingley Paper") that disclosed the use of reinforced plastics (RP) in glue laminated wood beams (glulams). The Tingley paper disclosed test results of glulams having "KEVLAR" reinforced plastic panel(s) located at high stress areas. The results indicated a 19% improvement in ultimate load-to-failure of beams with "KEVLAR" reinforcement as opposed to nonreinforced beams.
Although not disclosing why longitudinal alignment was desirable or how it was achieved, the paper states that the manufacturers were able to achieve one hundred percent longitudinal alignment of fibers. The paper also disclosed that the reinforcing panel was sanded on two sides and further stated that the sanded surfaces of the "KEVLAR" reinforced panel was found to be important.
However, the paper does not disclose why the sanding was important nor a suggestion that the sanding process exposed or abraded the "KEVLAR" fibers. The Tingley paper also teaches that there are economic advantages to shortening the length of the RP relative to the length of the glulam beam without significant reduction of reinforcement benefit in beam strength. The Tingley paper does not disclose any process for fabricating RP reinforcement panels, nor benefits associated with curing the panels while the fibers are in tension to reduce initial 30 strain. Nor does the paper disclose the benefits of exposing some of the outermost fibers in order to "hair up" the RP to produce a surface that facilitates the use of commercial grade adhesives such as resorcinol. On the *contrary, the paper teaches away from resorcinol adhe- 35 sives by teaching the use of epoxies to adhere the RP to the surrounding wood laminae even though the less P:\OPERHH\4S2 997CLM 12/99 -3expensive commercial adhesive, resorcinol, was used between the other layers of wood laminae.
Another area of related art is the fabrication process of pultrusion. Pultrusion is defined as a continuous manufacturing process for producing lengths of fiber reinforced plastic parts. Pultrusion involves pulling flexible reinforcing fibers through a liquid resin bath and then through a heated die where the RP is shaped and the resin is cured. Pultrusion is known for its ability to fabricate a continuous length of RP and to accommodate custom placement and orientation of fibers, which allows for the mechanical properties of the pultruded part to be designed for a specific application. Pultruded parts have longitudinally 10 aligned fibers for axial strength and obliquely aligned fibers for transverse strength. 00o° Disclosure of the Invention •According to the present invention there is provided an elongate wood structural loadbearing member having a first longitudinal axis, comprising: 0000 plural elongate wood segments adhered together with their lengths generally aligned with the first longitudinal axis; and a first synthetic reinforcement panel having plural synthetic fiber strands held within a resin matrix, the first synthetic reinforcement panel being adhered with a nonepoxy adhesive S°0 to at least a first selected one of the wood segments, the first synthetic reinforcement panel S: 20 being formed to facilitate adhesion to the selected one of the wood segments with the nonepoxy adhesive.
Further according to the present invention there is provided an elongate wood structural load-bearing member having a first longitudinal axis, comprising: plural elongate wood segments adhered together with nonepoxy adhesive with the lengths of the wood segments generally aligned with the first longitudinal axis; and multiple synthetic reinforcement panels each having plural synthetic fiber strands held within a resin matrix and at least a selected first one of the synthetic reinforcement panels being adhered with the nonepoxy adhesive to at least a first selected one of the wood segments, at said first one of the multiple synthetic reinforcement panels being formed to facilitate adhesion to the selected one of the wood segments with the nonepoxy adhesive.
P:\OPER\PHH\45239-97.CLM -8/2/99 -4- The or each panel may have the surface to be adhered to the selected wood segment treated to "hair up" the fibers that are closest to the surface for example by abrading, so that nonepoxy commercial grade adhesives, such as resorcinol, may be used to adhere the panel to the wood segments.
The panel or panels may comprise mixed fibers wherein, for example, there is a core of continuous length aligned fibers and an outer layer (or layers) of noncontinuous fibers that may hair up to facilitate adhesion of the panel to a wood segments. Mixed fiber panels are significant where design considerations call for using a fiber which cannot hair up. For example, to fabricate a panel having a high strength in compression, carbon fibres may be 10 sandwiched between "KEVLAR" because carbon has a superior modulus of elasticity in oo 0 compression over most other commercial fibers and "KEVLAR" can hair up for a superior 0 adhesive surface, whereas a panel comprising only carbon fibers may require epoxy based 00 0. adhesives to adhere the panel to the adjacent segment of wood.
Preferably, the first synthetic reinforcement panel includes first and second opposed 000* major surfaces and the first major surface is adhered with the nonepoxy adhesive to at least the first selected one of the wood segments. Advantageously, the second major surface of the first synthetic reinforcement panel is adhered to at least a second selected one of the wood ,0006, 0 0• s segments with nonepoxy adhesive.
00:0o 00 The wood structural member may further comprise a second synthetic reinforcement 20 panel having plural synthetic fiber strands held within a resin matrix and being adhered to the so wood structural member with the nonepoxy adhesive.
Advantageously, the plural elongate wood segments are adhered together with the 0 0 same nonepoxy adhesive adhering the or each synthetic reinforcement panel to at least the first selected one of the wood segments.
Each of the plural elongate wood segments may be an elongate wood board.
The wood structural member may be configured as, for example, a glue laminated wood structural member, wood I-beam, a laminated veneer lumber, or a parallel strand lumber.
T
P:\OPER\PHH\45239-97.CLM 8/2/99 -4A- Brief Description of the Drawings Embodiments of a wood structural member in accordance with the invention will now be described by way of example only with reference to the accompanying drawings, in which: Fig 1 is a perspective view of a prior art pultrusion fabrication process.
Fig 2 is a perspective view of a pultrusion process which produces an elongate reinforcement panel having substantially all of its fibers arranged parallel to one another and aligned with a longitudinal axis.
Figs 3a-3c are perspective views of a section of a portion of a reinforcement panel wherein the cut-away views show the alignment and orientation of the fibers which comprise 10 panels.
•Fig 4 is an elevation view of a wood laminated beam having reinforcing panels located between the laminae.
Fig 5 is an elevation view of a wood laminated beam having reinforcing panels located on exterior surfaces thereof.
Fig 6 is an elevation view of a wood I-beam showing preferred locations of reinforcing panels for improving the load carrying capacity of the I-beam.
o° S 0 ••Co oe FIG 7 is an elevation view of a wood truss showing a preferred location for a reinforcing panel for improving the load-carrying capacity of the truss.
Best Modes for Carrvina Out the Invention The present invention is best understood by beginning with a description of its use. With reference to FIGS. 4 and 5 there is shown a glued laminated wood beam 10 having a plurality of laminae 12. Each lamina 12 is preferably an elongate wood board.
A primary structural use of laminated beams is to span an open area, represented as an area between blocks 14, and support a Ibad as represented by arrow 16.
When thusly configured, the lower most lamina 18 is subjected to a substantially pure tensile stress. Conversely, the uppermost lamina 20 is subjected to a 20 substantially pure compressive stress. Scientists have *found that the load-bearing capacity of laminated beams may be substantially increased by adding a reinforcing panel 22 or 23 in the areas of greatest stress; namely, closest to the lowermost lamina or uppermost lamina 18, 20, respectively. Reinforcing panel 22 is distinguished from reinforcing panel 23 because panel 22 is designed for, and located at, areas of high tensile stress, whereas panel 23 is designed for and located at areas of high compressive stress. In FIG. 4 the reinforcing panel 22 is shown between the lowermost lamina 18 and its adjacent lamina and the panel 23 is shown between the uppermost lamina 20 and its adjacent lamina.
In FIGS. 4 and 5 the length of the reinforcing panel is approximately three-fifths of the beam length.
Testing has shown, and been disclosed in the prior art, that a reinforcing panel which covers two-fifths to three-fifths of the central portion of the beam provides substantially all the benefit of a full-length reinforcing panel, but at a lower cost per beam. In FIG. 4 the reinforcing panel is mounted between lamina and extends approximately three-fifths of the length of the beam, thus requiring spacers 24 to be located adjacent the ends of the reinforcement panel 22. The spacers 24 may be of wood. When the reinforcing panel is located on the exterior of the beam, as in FIG. 5, no spacers are required.
In the preferred embodiment of the present invention, and under conditions established above, namely, a simple beam with point loading or uniform loading, the lowermost reinforcing panel 22 will be comprised of a material having high strength in tension whereas the uppermost reinforcing panel 23 will be comprised of materials having a high strength in compression. It is to be understood that the configurations shown in FIGS. 4 and 5 are suitable for the loading conditions associated with those figures only. If the laminated beams were subjected to different loading, the optimum configuration of locating the reinforcing panel would be different. For instance, if the laminated beam were cantilevered, design considerations would require that the reinforcing panel having the most strength in tension be located on the upper portion of the beam whereas the reinforcing panel having the most strength in compression would be located on the lower portion of the beam. Also, in a cantilever loading situation the reinforcing panels would not be located at a center of the beam length, but rather would be located along the beam at the areas of maximum strain.
FIGS. 6-7 show alternative configurations of wood structural members and preferred locations for mounting the reinforcing panels for maximum benefit of increasing the load bearing capacit-y of the structural ooooo* members. FIG. 6 shows a wood I-beam having reinforcing panels along the top, the bottom, and on the web portions P:\oPER\PHH\452 9-97.CLM A/2/99 -7at the distal ends. Fig 7 shows a wood trus having a reinforcing panel 22 mounted at the location of highest tensile stress. Figs 4-7 are included herein to show some different applications of the reinforcing panel and are not intended to include all applications for all types of wood structures for which the reinforcing panel is suitable. It is to be understood that the reinforcing panels are also suitable for solid wood beams and columns, and other engineered wood structures, such as parallams and laminated veneer lumber.
A preferred embodiment of the reinforcing panel is shown in Fig 3a. The panel 22 comprises a plurality of synthetic fibers 24 that are arranged parallel to one another and aligned with a longitudinal direction of the panel. The fibers 24 are maintained in their arrangement and alignment by a resin encasement 26 that surrounds the fibers and fills the interstices between the fibers. The panel 22 has been treated, as described below, so that the surface areas 30 that will be adhered to the wood structure have exposed fibers 28 to facilitate oo adhesion.
The parallel arrangement and longitudinal alignment of the fibers 24 provides a panel ,1 having maximum strength because the strength comes from the fibers (not the resin) and this configuration of fibers permits the maximum density of fibers. Commonly, reinforced plastic parts have a fiber to resin volume ratio of 40/60. However, the longitudinal parallel configuration of fibers permits fiber to resin volume ratios as high as 60/40 when fabricated by the pultrusion method. Furthermore, this configuration of fibers facilitates wetting of the 20 fibers by the resin. In fabricating reinforced plastic parts it is very important that the resin fully impregnate the reinforcing fibers--this is known as wetting. One hundred percent wetting is difficult to o•o 0.
o, achieve with fibers configured in a complicated weave. By providing a fiber configuration of parallel arrangement, we are able to achieve 100% wetting even with high fiber to resin ratios.
Prior to the present invention, reinforced plastic panels could be adhered to wood beams and structures by an epoxy adhesive only, which is more expensive than the adhesives normally used in the preparation of wood laminated products. A commercial grade adhesive that is frequently used in the preparation of laminated wood is resorcinol, which is less expensive than epoxy adhesives. By treating the surfaces of the reinforcing panels 22 to cause the surface to hair up, wherein fibers near the surface 30 are broken and the broken ends 28 are caused to protrude from the resin encasement 26, there is provided a heretofore unknown means for adhering a reinforced plastic panel to a wood structure by means of nonepoxy adhesives.
4. The preferred method for causing the surface of the reinforcing panel 22 to hair up is by sanding the surface of the panel with 60 grit abrasive in a direction transverse to the longitudinal direction of the panel.
The sanding removes a small portion of the resin encasement and exposes fibers that are closest to the surface.
Further sanding breaks individual fibers so that one end of the fiber remains in the resin encasement and one end of the fiber protrudes from the resin encasement providing the hairy surface.
Alternative methods of hairing up the surface 30 of the panel 22 will be apparent to those skilled in the art of reinforced plastic fabrication and include chemically treating the surface of the panel prior to curing the resin encasement so as to cause voids in the surface of the panel as it emerges from a curing die thereby removing portions of the resin and exposing underlying fibers. Another alternative method for causing the surface of the panel to hair up is the use of broken rovings. As will be explained below, all the fibers referred to herein are synthetic fibers and the fiber manufacturing process first produces filaments which are grouped together into strands or fibers which are further grouped together into twisted strands, known as yarn, or untwisted strands, known as rovings. Typically the rovings or yarns are woven into a fabric for use in a fabrication process. One type of roving that is available is referred to as a broken roving wherein the roving has been subjected to forces, which fray some of the individual fibers of the roving. By using the broken rovings as a source of fibers to be aligned and encased in the resin encasement, the panel which emerges has surfaces which are haired up.
The panel shown in FIG. 3a is the preferred embodiment of a panel to be used to reinforce the areas of a wood beam 10 subjected to high tension stress.
Preferably, the fibers 24 would be aramid fibers or carbon fibers. Aramid fibers are commercially available as "KEVLAR," and the preferred grade for the present invention is "KEVLAR 49." Alternatively, the fibers would be a high modulus polyethylene which is sold commercially as "SPECTRA." An alternative embodiment of the reinforcing 25 panel is shown in FIG. 3b as a panel having two types of fibers. A first fiber 30 is arranged parallel to one another and aligned with the longitudinal direction of the panel 22 as described above and a second fiber 31 is arranged between the first type of fibers and a surface 32 that will be adhered to the wood structure. This embodiment is most suitable for circumstances which S* require a first fiber that will not hair up, such as S* carbon or "SPECTRA." Carbon fibers alone are structurally suitable for a reinforcing panel for a wood beam.
35 However, experimentation has shown that it is not possible to adhere the carbon fiber panel to the wood beam with resorcinol adhesive and efforts to hair up the surface of the carbon fiber panel have proved ineffective. Thus, where it is desirable to use carbon or "SPECTRA" as the first fiber 30, it has been found advantageous to overlay the major surfaces of the panel with aramid fibers as the second fiber 31, which are also encased within the resin encasement 26. The use of aramid fibers permits the panel to be haired up as described above so that it may be adhered to wood beams with nonepoxy adhesives such as resorcinol.
Another alternative embodiment is shown in FIG. 3c as a panel having a first fiber 34 and a fiber mat 35, both of which are encased in the resin encasement 26. This embodiment is most suitable for resin encasements that are made of nonepoxy resins. Experimentation with nonepoxy resin encasements has resulted in interlaminar shear failure in the reinforcing panel 22. Thus, although the optimum configuration of fibers in the S. reinforcing panel for maximum strength is parallel and longitudinally aligned, the fiber mat 35 improves the interlaminar shear strength of the reinforcing panel 22 Sby providing fibers that are arranged oblique to the longitudinal direction of the panel and thus resist interlaminar strain.
Preferably, the resin 26 used in fabrication of the panel is an epoxy resin. However, alternative embod- .444. iments could use other resins such as polyester, vinyl ester, phenolic resins, polyimides, or polystyrylpyridine (PSP). Alternative embodiments of the present invention could use thermoplastic resins such as poly(ethylene- S 30 terephthalate) (PET) and nylon-66.
The described reinforcing panel has an extremely high modulus of elasticity in tension or in compression. However, the reinforcing panel has very little lateral strength because substantially all fibers are arranged parallel and aligned longitudinally. The reinforcing panel is so weak transversely that a person of average strength is able to bend the reinforcing panel along its longitudinal axis to the point of breaking the panel. A reinforcing panel of the present design is only useful for reinforcing structures where the loads will be unidirectional and of a direction that can be determined and controlled.
Fabrication of the Reinforcing Panel As discussed in the prior art, pul~lrusion is a fabrication process wherein synthetic fibers are wetted in resin and pulled through a heated die to cure the resin which encases the synthetic fibers. All prior art pultrusion fabrication processes use a substantial amount of fibers aligned obliquely to the longitudinal axis of the direction of the pull to provide lateral strength for the pultruded product. In addition, prior art pultrusion processes are carefully controlled to ensure sufficient resin to prevent exposing any of the structural fibers.
Also, prior art pultrus ion processes do not treat the pultruded product in a way that would expose fibers because it is well known in the reinforced plastics industry that exposed fibers weaken the product and cannot be used where it would be exposed to environmental elements or people.
With reference to FIG. 1 the prior art :25 pultrusion process will be explained. The pultrusion process shown in FIG. 1 is set up to fabricate a hollow rectangular section member thus requiring a mandrel 40 to maintain the hollow core during the pultrusion process.
To fabricate a solid member, the prior art pultrusion process would be modified by eliminating the mandrel The prior art pultrusion process comprises upper and lower mats 44, 45 respectively, that are typically woven ravings or woven fabric. There is also a plurality of rovings 46 that may be longitudinally aligned with the structural member being formed and are sandwiched between thewovn mts Puler48provides teforce thtpulls the fibers through the process. Thus, beginning with P:\OPER\PHH\453997CLM §2199 -12lower woven mat 44, the mat is pulled through a resin bath 50 and formed around mandrel by forming die 52. The rovings 46 are likewise wetted in a resin bath 54 and formed around the mandrel/mat combination by forming die 56. Thereafter, upper woven mat 45 is wetted in a resin bath 58 and formed around the combination of the mandrel 40, lower mat 44, and rovings 46 by forming die 60. Thereafter, the entire combination is pulled through heated die 42 which cures the resin so that the structural member 38 emerges from the die as a rigid member 38.
The presently described process improves upon the pultrusion process of the prior art for the purpose of fabricating the reinforcing panel 22 (or 23). Beginning with a plurality of o 10 bobbins 70 having synthetic fiber rovings 72 thereon, the rovings are pulled through a card 74 for alignment and to prevent entanglement of the rovings. The card 74 has a plurality of S, o openings 76 through which the rovings 72 pass. The openings 76 are typically gasketed with a low friction material such as a ceramic or plastic to prevent any abrasion or resistance to the rovings 72 from the edges of the openings. After the rovings 72 pass through the card 74, the rovings are gathered and arranged parallel to one another by a first comb 78. After the first comb, the rovings pass over a tensioning mandrel 80 and under a second comb 82 which further maintains the parallel arrangement of the rovings 72. Thereafter, the rovings are wetted in a resin bath 84 and gathered by a forming die 86 prior to entering a heated die 88 having an orifice 90 that shapes the panel 22 (or 23). Heat from the die 88 cures the resin S 20 so that the panel which emerges is a substantially rigid member.
The prior art pultrusion process was considered desirable for fabricating continuous lengths of reinforced plastics. However, by pultruding the improved reinforcing panels S0 described above an unexpected benefit was realized because of the ability to arrange the fibers substantially parallel to one another and aligned with the longitudinal direction of the reinforcing panel. An additional unexpected benefit of the improved pultrusion process was the tensioning of the fibers while the resin was cured which provides two benefits. First, the tension in the fibers assists in maintaining the parallel arrangement and alignment of the fibers within the panel. Second, by curing the resin while the fibers are under tension it was found that the resulting reinforcing panel was more rigid and subsequently there was less deflection upon an initial loading of a wood beam reinforced by the reinforcing panel. By curing the P:\OPER\PHH\4539-97.CLM -8/2/99 -13resin while the fibers were under tension the initial strain of the fibers was set during the fabrication process and, accordingly, when the reinforcing panel was adhered to a wood beam and the beam was loaded, there was less deflection than in beams using reinforcing panels made of fibers that were not in tension during the resin cure.
Experimentation has shown that the optimum tension in the fibers during the resin cure is approximately three to eight pounds. The fiber tension force is created by a back pressure on the rovings which may be accomplished by the tensioning mandrel 80 in combination with the combs 78, 82 or by the use of friction bobbins 70 wherein the rotational friction of the o bobbins may be adjusted to provide the desired back pressure on the rovings.
10 The terms and expressions which have been employed in the foregoing specification S .i are used therein as terms of description and not of limitation, and there is no intention, in the o• S use of such terms and expressions, of excluding equivalents of the features shown and o00 described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
Throughout this specification and the claims which follow, unless the context requires •ootherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
00 T 0- •o oo 0 0* S P:\oPER\pIIHM45239-97CLM 8/2/99 -14- THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS: 1. An elongate wood structural load-bearing member having a first longitudinal axis, comprising: plural elongate wood segments adhered together with their lengths generally aligned with the first longitudinal axis; and a first synthetic reinforcement panel having plural synthetic fiber strands held within a resin matrix, the first synthetic reinforcement panel being adhered with a nonepoxy adhesive to at least a first selected one of the wood segments, the first synthetic reinforcement panel S 10 being formed to facilitate adhesion to the selected one of the wood segments with the nonepoxy adhesive.
2. The wood structural member of claim 1 in which the first synthetic reinforcement panel includes first and second opposed major surfaces and the first major surface is adhered with the nonepoxy adhesive to at least the first selected one of the wood segments.
3. The wood structural member of claim 2 in which the second major surface of the first synthetic reinforcement panel is adhered to at least a second selected one of the wood segments with nonepoxy adhesive.
4. The wood structural member of any one of claims 1 to 3 further comprising a second synthetic reinforcement panel having plural synthetic fiber strands held within a resin matrix and being adhered to the wood structural member with the nonepoxy adhesive.
5. The wood structural member of any one of the preceding claims in which the plural elongate wood segments are adhered together with the same nonepoxy adhesive adhering the or each synthetic reinforcement panel to at least the first selected one of the wood segments.
6. The wood structural member of any one of the preceding claims in which the 3 :3 nonepoxy adhesive includes resorcinol.
I3
(V

Claims (9)

  1. 7. The wood structural member of any one of the preceding claims in which the plural synthetic fiber strands of the first synthetic reinforcement panel include aramid fiber strands.
  2. 8. The wood structural member of any one of the preceding claims in which each of the plural elongate wood segments is an elongate wood board.
  3. 9. The wood structural member of any one of the preceding claims configured as a glue laminated wood beam. 10 10. The wood structural member of any one of claims 1 to 8 configured as a glue laminated wood structural member, wood I-beam, a laminated veneer lumber, or a parallel S* strand lumber.
  4. 11. An elongate wood structural load-bearing member having a first longitudinal axis, comprising: o: plural elongate wood segments adhered together with nonepoxy adhesive with the lengths of the wood segments generally aligned with the first longitudinal axis; and multiple synthetic reinforcement panels each having plural synthetic fiber strands held within a resin matrix and at least a selected first one of the synthetic reinforcement panels being adhered with the nonepoxy adhesive to at least a first selected one of the wood segments, at said first one of the multiple synthetic reinforcement panels being formed to facilitate adhesion to the selected one of the wood segments with the nonepoxy adhesive.
  5. 12. The wood structural member of claim 11 wherein at least some of said fibers of at least the selected first one of the synthetic reinforcement panels are polymeric.
  6. 13. The wood structural member of claim 12 wherein at least some of said polymeric fibers of at least the selected first one of the synthetic reinforcement panels are aramids. i 14. The wood structural member of claim 12 or 13 wherein at least some of said fibers P:\OPER\PHH\45239-97.CLM 8/2/99
  7. 16- of at least the selected first one of the synthetic reinforcement panels are polyethylene. The wood structural member of claim 11 or 13 wherein at least some of said fibers of at least the selected first one of the synthetic reinforcement panels are carbon. 16. The wood structural member of any one of claims 11 to 15 wherein said resin matrix is a thermoset resin.
  8. 17. The wood structural member of any one of claims 11 to 15 wherein said resin matrix 10 is a thermoplastic resin.
  9. 18. An elongate wood structural load-bearing member substantially as herein described with reference to the accompanying drawings. 15 DATED this 8th FEBRUARY 1999 Daniel A. Tingley By DAVIES COLLISON CAVE Patent attorneys for the applicant S S. 9 5* S S S. S. 0 *.S S S 9 S. 'S. P:\OPER\PT\63686-94.318 -14/11/9 ABSTRACT A reinforcing panel and process for making the same for use in reinforcing wood structural members including laminated beams, wood I-beams, and trusses. The reinforcing panel is comprised of a plurality of synthetic fibres that are arranged parallel to one another and aligned with the longitudinal direction of the panel, and accordingly the wood structure. The panel has substantially no transverse fibers. The fibers are maintained in position by a resin encasement that completely encloses the fibres with the exception of some fibers that are closest to the surface. The surface of the reinforcing panel is treated so that those fibers closest to the surface of the panel are caused to "hair up" so that the reinforcing panel may be used with nonepoxy adhesives which are commonly used in the laminated beam industry, such as resorcinal. The reinforcing panel of the present invention is fabricated by an improved pultrusion process which uses no mandrels, or woven mats and which provides for a selectable back pressure so that the fibres of the reinforcement panel are maintained in a state of tension during the resin cure, thereby: maintaining the parallel arrangement of the fibres, maintaining the longitudinal alignment of the fibers, and setting the initial strain of the fibres to decrease the initial deflection of a wood structure that is reinforced with the reinforcing panel of the present invention. 5555 *o
AU45239/97A 1993-03-24 1997-11-14 Aligned fiber reinforcement panel for wood members Ceased AU704209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU45239/97A AU704209B2 (en) 1993-03-24 1997-11-14 Aligned fiber reinforcement panel for wood members

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/037,580 US5362545A (en) 1993-03-24 1993-03-24 Aligned fiber reinforcement panel for structural wood members
US037580 1993-03-24
AU63686/94A AU687798B2 (en) 1993-03-24 1994-03-17 Aligned fiber reinforcement panel for wood members
AU45239/97A AU704209B2 (en) 1993-03-24 1997-11-14 Aligned fiber reinforcement panel for wood members

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU63686/94A Division AU687798B2 (en) 1993-03-24 1994-03-17 Aligned fiber reinforcement panel for wood members

Publications (2)

Publication Number Publication Date
AU4523997A AU4523997A (en) 1998-02-12
AU704209B2 true AU704209B2 (en) 1999-04-15

Family

ID=25634082

Family Applications (1)

Application Number Title Priority Date Filing Date
AU45239/97A Ceased AU704209B2 (en) 1993-03-24 1997-11-14 Aligned fiber reinforcement panel for wood members

Country Status (1)

Country Link
AU (1) AU704209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891550A (en) * 1996-02-05 1999-04-06 Tingley; Daniel A. Structural member with increased shear resistance

Also Published As

Publication number Publication date
AU4523997A (en) 1998-02-12

Similar Documents

Publication Publication Date Title
US5362545A (en) Aligned fiber reinforcement panel for structural wood members
US5885685A (en) Wood structural member having multiple fiber reinforcements
US5498460A (en) Surface treated synthetic reinforcement for structural wood members
US6051301A (en) Reinforced wood structural member using cellulose bond line interface material
US5721036A (en) Aligned fiber reinforcement panel and method for making the same for use in structural wood members
AU692581B2 (en) Method of manufacturing glue-laminated wood structural member with synthetic fiber reinforcement
US5747151A (en) Glue-laminated wood structural member with sacrificial edges
AU704209B2 (en) Aligned fiber reinforcement panel for wood members
CA2261921A1 (en) Method of making a wood structural member with finished edges

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired