AU704021B2 - Continuous process for production of functionalized olefins - Google Patents
Continuous process for production of functionalized olefins Download PDFInfo
- Publication number
- AU704021B2 AU704021B2 AU36780/97A AU3678097A AU704021B2 AU 704021 B2 AU704021 B2 AU 704021B2 AU 36780/97 A AU36780/97 A AU 36780/97A AU 3678097 A AU3678097 A AU 3678097A AU 704021 B2 AU704021 B2 AU 704021B2
- Authority
- AU
- Australia
- Prior art keywords
- polymer
- reactor
- polymers
- catalyst
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 150000001336 alkenes Chemical class 0.000 title claims description 50
- 238000010924 continuous production Methods 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title description 5
- 229920000642 polymer Polymers 0.000 claims description 203
- 238000000034 method Methods 0.000 claims description 50
- 238000006243 chemical reaction Methods 0.000 claims description 47
- 230000008569 process Effects 0.000 claims description 40
- 230000000269 nucleophilic effect Effects 0.000 claims description 33
- 150000002148 esters Chemical class 0.000 claims description 32
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 31
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 30
- 239000007788 liquid Substances 0.000 claims description 30
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 25
- 230000003068 static effect Effects 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 description 53
- -1 olefin compound Chemical class 0.000 description 47
- 239000003795 chemical substances by application Substances 0.000 description 46
- 239000000203 mixture Substances 0.000 description 40
- 239000002270 dispersing agent Substances 0.000 description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 29
- 239000002253 acid Substances 0.000 description 28
- 239000000654 additive Substances 0.000 description 28
- 150000001298 alcohols Chemical class 0.000 description 25
- 150000001875 compounds Chemical class 0.000 description 25
- 125000001183 hydrocarbyl group Chemical group 0.000 description 24
- 150000002430 hydrocarbons Chemical class 0.000 description 23
- 229930195733 hydrocarbon Natural products 0.000 description 22
- 239000004215 Carbon black (E152) Substances 0.000 description 20
- 239000003921 oil Substances 0.000 description 20
- 229920000098 polyolefin Polymers 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 19
- 239000005977 Ethylene Substances 0.000 description 19
- 235000019198 oils Nutrition 0.000 description 19
- 239000000376 reactant Substances 0.000 description 19
- 150000001412 amines Chemical class 0.000 description 18
- 125000000524 functional group Chemical group 0.000 description 17
- 229920001577 copolymer Polymers 0.000 description 16
- 239000007789 gas Substances 0.000 description 16
- 125000004432 carbon atom Chemical group C* 0.000 description 15
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 15
- 239000000178 monomer Substances 0.000 description 15
- 239000010687 lubricating oil Substances 0.000 description 14
- 239000003377 acid catalyst Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- HFZWRUODUSTPEG-UHFFFAOYSA-N 2,4-dichlorophenol Chemical compound OC1=CC=C(Cl)C=C1Cl HFZWRUODUSTPEG-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 239000002199 base oil Substances 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- 150000002989 phenols Chemical class 0.000 description 9
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 8
- 238000001212 derivatisation Methods 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 8
- 150000005846 sugar alcohols Polymers 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 7
- 239000004034 viscosity adjusting agent Substances 0.000 description 7
- 239000004711 α-olefin Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 125000002252 acyl group Chemical group 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 238000007306 functionalization reaction Methods 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 230000029936 alkylation Effects 0.000 description 5
- 238000005804 alkylation reaction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 150000001733 carboxylic acid esters Chemical class 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920000768 polyamine Polymers 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 150000007970 thio esters Chemical class 0.000 description 5
- 229910015900 BF3 Inorganic materials 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 150000004673 fluoride salts Chemical class 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 150000003573 thiols Chemical class 0.000 description 4
- 239000012808 vapor phase Substances 0.000 description 4
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical class C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 150000001491 aromatic compounds Chemical group 0.000 description 3
- 150000001639 boron compounds Chemical class 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 230000006315 carbonylation Effects 0.000 description 3
- 238000005810 carbonylation reaction Methods 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910017464 nitrogen compound Inorganic materials 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000010689 synthetic lubricating oil Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- 239000005749 Copper compound Substances 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000007824 aliphatic compounds Chemical class 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 125000006294 amino alkylene group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001880 copper compounds Chemical class 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229920006213 ethylene-alphaolefin copolymer Polymers 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000011968 lewis acid catalyst Substances 0.000 description 2
- 239000003879 lubricant additive Substances 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 239000012968 metallocene catalyst Substances 0.000 description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000004780 naphthols Chemical class 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 238000002103 osmometry Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000005702 oxyalkylene group Chemical group 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical group CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- MQWCXKGKQLNYQG-UHFFFAOYSA-N 4-methylcyclohexan-1-ol Chemical compound CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 1
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 101150034533 ATIC gene Proteins 0.000 description 1
- 101100366937 Caenorhabditis elegans sto-4 gene Proteins 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 208000007256 Nevus Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 241001237728 Precis Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 238000006136 alcoholysis reaction Methods 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000005332 alkyl sulfoxy group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 229950011260 betanaphthol Drugs 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 101150068479 chrb gene Proteins 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011365 complex material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- UPCIBFUJJLCOQG-UHFFFAOYSA-L ethyl-[2-[2-[ethyl(dimethyl)azaniumyl]ethyl-methylamino]ethyl]-dimethylazanium;dibromide Chemical compound [Br-].[Br-].CC[N+](C)(C)CCN(C)CC[N+](C)(C)CC UPCIBFUJJLCOQG-UHFFFAOYSA-L 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 150000002238 fumaric acids Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- LOTBYPQQWICYBB-UHFFFAOYSA-N methyl n-hexyl-n-[2-(hexylamino)ethyl]carbamate Chemical compound CCCCCCNCCN(C(=O)OC)CCCCCC LOTBYPQQWICYBB-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000010688 mineral lubricating oil Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 150000002927 oxygen compounds Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000011044 succinic acid Nutrition 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- MJCYPBSRKLJZTB-UHFFFAOYSA-N trifluoroborane;dihydrate Chemical compound O.O.FB(F)F MJCYPBSRKLJZTB-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M149/00—Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
- C10M149/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M149/06—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
- B01J19/0066—Stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
- B01J19/242—Tubular reactors in series
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/10—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
- C07C51/14—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on a carbon-to-carbon unsaturated bond in organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/36—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
- C07C67/38—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by addition to an unsaturated carbon-to-carbon bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/14—Esterification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
- C08F8/32—Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/42—Introducing metal atoms or metal-containing groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/1817—Compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/198—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/20—Organic compounds containing halogen
- C10L1/206—Organic compounds containing halogen macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/236—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2462—Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds
- C10L1/2475—Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon to carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2493—Organic compounds containing sulfur, selenium and/or tellurium compounds of uncertain formula; reactions of organic compounds (hydrocarbons, acids, esters) with sulfur or sulfur containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2691—Compounds of uncertain formula; reaction of organic compounds (hydrocarbons acids, esters) with Px Sy, Px Sy Halz or sulfur and phosphorus containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/28—Organic compounds containing silicon
- C10L1/285—Organic compounds containing silicon macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/301—Organic compounds compounds not mentioned before (complexes) derived from metals
- C10L1/303—Organic compounds compounds not mentioned before (complexes) derived from metals boron compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/18—Use of additives to fuels or fires for particular purposes use of detergents or dispersants for purposes not provided for in groups C10L10/02 - C10L10/16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/86—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
- C10M129/95—Esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/04—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M133/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/54—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/56—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M143/00—Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/10—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
- C10M145/12—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
- C10M159/18—Complexes with metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00094—Jackets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/20—Organic compounds containing halogen
- C10L1/206—Organic compounds containing halogen macromolecular compounds
- C10L1/208—Organic compounds containing halogen macromolecular compounds containing halogen, oxygen, with or without hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
- C10L1/2387—Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2666—Organic compounds containing phosphorus macromolecular compounds
- C10L1/2683—Organic compounds containing phosphorus macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon to carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/281—Esters of (cyclo)aliphatic monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/286—Esters of polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/082—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/221—Six-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
- C10M2215/224—Imidazoles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
- C10M2215/226—Morpholines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/30—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/02—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/024—Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/06—Organic compounds derived from inorganic acids or metal salts
- C10M2227/061—Esters derived from boron
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/09—Complexes with metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/06—Groups 3 or 13
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/08—Groups 4 or 14
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/10—Groups 5 or 15
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/044—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/046—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/251—Alcohol-fuelled engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
- C10N2040/253—Small diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/26—Two-strokes or two-cycle engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/28—Rotary engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/32—Wires, ropes or cables lubricants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/34—Lubricating-sealants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/36—Release agents or mold release agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/38—Conveyors or chain belts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/40—Generators or electric motors in oil or gas winning field
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/42—Flashing oils or marking oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/44—Super vacuum or supercritical use
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/50—Medical uses
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Emergency Medicine (AREA)
- Combustion & Propulsion (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Rogulallon 312(2) A~t-STRAL1A Patents Act 1990
ORIGINAL
COMPLETE SPECIFICATION STANDARD PATENT 0*00
S.
C S 4* S S S 5554 C C *0 S C C. CS Application Number: Lodiged: Invention Title: CONTINUOUS PROCESS FOR PRODUCTION OF FUNCTIONALIZED
OLEFINS
The following statement is a full description of this invention, including the best method of performingj it known to us (PT- 149) CONTINUOUS PROCESS FOR PRODUCTION OF FUNCTIONALIZED OLEFINS Background of the Invention The present invention is directed to continuous pioduction of functionalized olefins, more particularly by continuously reacting polymeric olefins with carbon monoxide and a functionalizing agent, in the presence of acid catalyst to produce carboxylated olefins such as polymeric esters.
A related application is WO-A-94/13,709, which discloses a process for producing functionalized polymer by reacting a hydrocarbon polymer with a number average molecular weight of at least 500 and having at least one ethylenic double bond with carbon monoxide in the presence of an acidic catalyst and a nucleophilic trapping agent. Continuous carbonylation processes are not disclosed.
The present invention is directed to an improved polymer functionalized by the Koch reaction more particularly by reacting at least one carbon-carbon double bond with carbon monoxide in the presence of an acidic catalyst and a nucleophilic trapping agent to form a carbonyl or thiocarbonyl functional group, and derivatives thereof.
The term "polymer" is used herein to refer to materials comprising large molecules built up by the repetition of small, simple chemical units. In a 25 hydrocarbon polymer those units are predominantly formed of hydrogen and carbon. Polymers are defined by average properties, and in the context of the invention polymers have a number average molecular weight (Mn) of at least 500.
The term "hydrocarbon" is used above herein to refer to non polymeric compounds comprising hydrogen and carbon having uniform properties such as 30 molecular weight. However, the term "hydrocarbon" is not intended to exclude mixtures of such compounds which individually are characterized by such uniform properties.
Both hydrocarbon compounds as well as polymeric compounds have been reacted to form carboxyl group-containing compounds and their derivatives.
35 Carboxyl groups have the general formula -CO-OR, where R can be H, a hydrocarbyl group, or a substituted hydrocarbyl group. The synthesis of carboxyl group-containing compounds from olefinic hydrocarbon compounds, carbon monoxide, and water in the presence of metal carboxyls is disclosed in references such as N. Bahrmann, Chapter 5, Koch Reactions, "New Synthesis with Carbon la- Monoxide" J. Falbe; Springer-Verlag, New York, 1980. Hydrocarbons having olefinic double bonds react in two steps to form carboxylic acid-containing compounds. In the first step an olefin compound reacts with an acid catalyst and carbon monoxide in the absence of water. This is followed by a second step in which the intermediate formed during the first step undergoes hydrolysis or alcoholysis to form a carboxylic acid or ester. An advantage of the Koch reaction *eee .oe So -2is that it can occur at moderate temperatures of-20 0 C to +80 0 C, and pressures up to 100 bar.
The Koch reaction can occur at double bonds where at least one carbon of the double bond is di-substituted to form a "neo" acid or ester
R'
-C-COOR
10
R"
(where R' and R" are not hydrogen).
The Koch reaction can also occur when both carbons are mono-substituted or one is monosubstituted and one is unsubstituted to form an "iso" acid R'HC-COOR). Bahrmann et al. discloses isobutylene converted to isobutyric acid via a Koch-type reaction. US-A-2831877 discloses a multi-phase, acid catalyzed, two-step process for the carboxylation of olefins with carbon monoxide.
Complexes of mineral acids in water with BF3 have been studied to carboxylate olefins. US-A-3349107 discloses processes which use less than a stoichiometric amount of acid as a catalyst. Examples of such complexes are H20.BF 3
.H
2 0,
H
3 P0 4
.BF
3 .H20 and HF.BF 3
.H
2 0.
EP-A-0017441 discloses preparing low molecular weight saturated carboxylic acids or esters from lower olefins, especially ethylene and propylene, by carbonylation with carbon monoxide and a catalyst complex of BF 3 and water or 25 an alcohol The reaction is disclosed to take place in the liquid catalyst solution the complex of BF3 and water or alcohol) through which gaseous carbon monoxide and olefin are passed.
EP-A-0310878 discloses a method for the continuous reaction, under pressure and with a high degree of backmixing, of approximately stoichiometric 30 amounts propylene and carbon monoxide by the Koch synthesis in hydrogen fluoride as a catalyst and in the presence of water or an alcohol to form isobutyric acid or an ester thereof EP-A-0148592 relates to the production of carboxylic acid esters and/or carboxylic acids by catalyzed reaction of a polymer having carbon-carbon double bonds, carbon monoxide and either water or an alcohol, optionally in the presence of oxygen. The catalysts are metals such as palladium, rhodium, ruthenium, iridium, and cobalt in combination with a copper compound, in the presence of a protonic acid such as hydrochloric acid. A preferred polymer is polyisobutene, which may have at least 80% of its carbon-carbon double bonds in the form of h 2a terminal double bonds. Liquid polyisobutene having a number average molecular weight in the range of from 200 to 2,500, preferably up to 1,000 are described.
US-A-3539654 discloses chemically modifying a natural or synthetic rubber by reacting a mixture of the rubber dissolved or dispersed in a carbon monoxide solvent with carbon monoxide and a co-reactant in an inert atomosphere and in the presence of a catalyst. It is disclosed, for example, that ethylene polymer rubbers are reacted with carbon monoxide under pressure in the presence of a mobile hydrogen compound water or alcohol) and in the presence of a catalyst which is an organometallic derivative to give products carboxylic polyacids or carboxylic polyesters).
US-A-4927892 relates to reacting a polymer or copolymer of a conjugated diene, at least part of which is formed by 1,2 polymerization, with carbon monoxide and water and/or alcohol. in the presence of a catalyst prepared by combining a palladium compound, certain ligands and/or acid except hydrohalogenic acids having a pKa of less than 2. Useful Lewis acids include
BF
3 US-A-5235067 discloses continuous acylation of alkenyl-substituted mono- and bis- succinimides and their Mannich coupled intermediates but functionalization of an olefin is not shown.
Although there are disclosures in the art of olefinic hydrocarbons functionalized at the carbon-carbon double bond to form a carboxylic acid or 0* *o *0 U Y derivative thereof via Koch-type chemistry, there is no disclosure that polymers containing carbon-carbon double bonds, including terminal olefinic bonds, either secondary or tertiary type olefinic bonds, could be successfully reacted via the Koch mechanism. Additionally, it has been found that the process of the present invention is particularly useful to make neo acid and neo ester functionalized polymer. Known catalysts used to carboxylate low molecular weight olefinic hydrocarL.- by the Koch mechanism were found to be unsuitable for use with polymeric material. Specific catalysts have been found which can result in the formation of a carboxylic acid or ester at a carbon-carbon double bond of a polymer. Koch chemistry affords the advantage of the use of moderate temperatures and pressures, by using highly acidic catalysts and/or careful control of concentrations.
Summary of the Invention The present invention is a process for producing a functionalized polymer comprising continuously reacting a polymeric olefin and a gaseous functionalizing agent and recovering functionalized polymer. One aspect of this process is reacting the polymeric olefin in a continuous stirred tank reactor ("CSTR").
The present invention is also a continuous functionalization process comprising reacting an olefin with carbon monoxide and a nucleophilic trapping agent in the presence of an acid catalyst. This process can be conducted in a CSTR or in a pipe reactor. One aspect of the process, when using a CSTR, is that the process is carried out in steady state mode in the substantial absence of air, wherein the liquid level is maintained constant. Another aspect of this process, 25 when using a pipe reactor, is that the pipe reactor includes static mixers to increase gas-liquid interface.
The present invention is also a continuous process for producing carboxylated polymeric olefins comprising reacting said olefin with carbon monoxide and nucleophilic trapping agent in the presence of an acid catalyst in a substantially liquid-filled pipe reactor, preferably operated in laminar flow and recovering carboxylated polymer. In one aspect of this process, the pipe reactor includes static mixers to increase gas-liquid interface.
.The present invention relates to a functionalized hydrocarbon polymer wherein the polymer backbone has Mn 500, functionalization is by groups of the formula: 3a
-CQ-Y-R
3 wherein Y is 0) or S, and either R 3 is HL hydrocarbyl and at least 50 mole% of the Ri.nctiona1 groups are attached to a tertiary carbon atom of the polymer backbone, or R7' is aryl, substituted aryl or substituted hydrocarbyl.
Thus the ifinctionalized polymer may be depicted by the formula:
POLY--(CR
1
R
2
C-Y-R
3 )n (1) wherein POLY is a hydrocarbon j olymer backbone having a number average molecular weight of at least 500, n is a number greater than 0, RI, R2 and R3 may be the same or different and are each H, hydrocarbyl with the proviso that either a. a. a. a a a -4-
R
1 and R 2 are selected such that at least 50 mole% of the -CR 1
R
2 groups wherein both R 1 and R 2 are not H, or R 3 is aryl substituted aryl or substituted hydrocarbyl.
The present invention is also a gas-liquid pipe reactor process operated in laminar flow with Reynolds number less than 10 and including passing the reaction mass through a static mixer to disperse gas into liquid for reaction.
As used herein the term "hydrocarbyl" denotes a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character within the context of this invention and includes polymeric hydrocarbyl radicals. Such radicals include the following: Hydrocarbon groups; that is, aliphatic, alkyl or alkenyl), alicyclic cycloalkyl or cycloalkenyl), aromatic, aliphatic- and alicyclic-substituted aromatic, aromatic-substituted aliphatic and alicyclic radicals, and the like, as well as cyclic radicals wherein the ring is completed through another portion of the molecule (that is, the two indicated substituents may together form a cyclic radical).
Such radicals are known to those skilled in the art; examples include methyl, ethyl, butyl, hexyl, octyl, decyl, dodecyl, tetradecyl, octadecyl, eicosyl, cyclohexyl, phenyl and naphthyl (all isomers being included).
Substituted hydrocarbon groups; that is, radicals containing nonhydrocarbon substituents which, in the context of this invention, do not alter predominantly hydrocarbon character of the radical. Those skilled in the ar will be aware of suitable substituents halo, hydroxy, alkoxy, carbalkoxy, nitro, alkylsulfoxy).
Hetero groups; that is, radicals which, while predominantly hydrocarbon in character within the context of this invention, contain atoms other than carbon present in a chain or ring otherwise composed of carbon atoms. Suitable hetero atoms will be apparent to those skilled in the art and include, for example, nitrogen particularly non-basic nitrogen which would not deactivate the Koch catalyst, oxygen and sulfur.
In general, no more than about three substituents or hetero atoms, and preferably no more than one, will be present for each 10 carbon atoms in the hydrocarbon-based radical. Polymeric hydrocarbyl radicals are those derived from hydrocarbon polymers, which may be substituted and/or contain hetero atoms provided that they remain predominantly hydrocarbon in character. The functionalized polymer may be derived from a hydrocarbon polymer comprising non-aromatic carbon-carbon double bond, also referred to as an olefinicallv unsaturated bond, or an ethylenic double bond. The polymer is functionalized at that double bond via a Koch reaction to form the carboxylic acid, carboxylic ester or thio acid or thio ester.
Koch reactions have not heretofore been applied to polymers having number average molecular weights greater than 500. The hydrocarbon polymer preferably has Mn greater than 1,000. In the Koch process a polymer having at least one ethylenic double bond is contacted with an acid catalyst and carbon monoxide in the presence of a nucleophilic trapping agent such as water or alcohol. The catalyst is preferably a classical Broensted acid or Lewis acid catalyst. These catalysts are distinguishable from the transition metal catalysts of the type described in the prior art. The Koch reaction, as applied in the process of the present invention, may result in good yields offunctionalized polymer, even mole% or greater.
POLY, in general formula I, represents a hydrocarbon polymer backbone having Mn of at least 500. Mn may be determined by available techniques such as gel permeation chromatography (GPC). POLY is derived from unsaturated polymer.
The process can be conducted in a jacketed pipe reactor with reagent supply, product recovery, and gas recycle means.
Description of the Preferred Embodiments Olefins are useful in the process of the present invention. The olefinic unsaturation may be functionalized as described below for polymers. Useful 25 olefins for oil additive applications include lower olefin materials, middle olefins Sc: ;such as C 18 olefins and polymeric olefins as described below. All olefins are susceptible to the invention so long as they operate in the improved continuous "o process of the invention to functionalize the olefinic unsaturation.
The polymers which are useful in the present invention are polymers containing at least one carbon-carbon double bond (olefinic or ethylenic) unsaturation. Thus, the maximum number of functional groups per polymer chain is limited by the number of double bonds per chain. Such polymers have been found to be receptive to Koch mechanisms to form carboxylic acids or derivatives thereof, using the catalysts and nucleophilic trapping agents of the present invention.
Useful polymers in the present invention include polyalkenes including homopolymer, copolymer (used interchangeably with interpolymer) and mixtures.
Homopolymers and interpolymers include those derived from polymerizable olefin monomers of 2 to about 16 carbon atoms; usually 2 to about 6 carbon atoms.
Particular reference is made to the alpha olefin polymers made using organo metallic coordination compounds. A particularly preferred class of polymers are ethylene alpha olefin copolymers such as those disclosed in US-A-5017299. The polymer unsaturation can be terminal, internal or both. Preferred polymers have terminal unsaturation, preferably a high degree of terminal unsaturation. Terminal unsaturation is the unsaturation provided by the last monomer unit located in the polymer. The unsaturation can be located anywhere in this terminal monomer unit.
Terminal olefinic groups include vinylidene unsaturation, RaRbC=CH 2 trisubstituted olefin unsaturation, RaRbC=CRcH; vinyl unsaturation, RaHC=CH 2 1,2-disubstituted terminal unsaturation, RaHC=CHRb; and tetra-substituted terminal unsaturation, RaRbC=CRCRd. At least one of R a and Rb is a polymeric group of the present invention, and the remaining Rb, RC and Rd are hydrocarbon groups as defined with respect to R, R 1
R
2 and R 3 above.
Low molecular weight polymers, also referred to herein as dispersant range molecular weight polymers, are polymers having Mn less than 20,000, preferably 500 to 20,000 1,000 to 20,000), more preferably 1,500 to 10,000 2,000 to 8,000) and most preferably from 1,500 to 5,000. The number average molecular weights are measured by vapor phase osmometry. Low molecular weight polymers are useful in forming dispersants for lubricant additives. Medium molecular weight polymers Mn's ranging from 20,000 to 200,000, preferably 25,000 to 100,000; and more preferably, from 25,000 to 80,000 are useful for viscosity index improvers for lubricating oil compositions, adhesive coatings, tackifiers and sealants. The medium Mn can be determined by membrane osmometry.
The higher molecular weight materials have Mn of greater than about 200,000 and can range to 15,000,000 with specific embodiments of 300,000 to 10,000,000 and more specifically 500,000 to 2,000,000. These polymers are useful in polymeric compositions and blends including elastomeric compositions. Higher molecular weight materials having Mn's of from 20,000 to 15,000,000 can be measured by gel permeation chromatography with universal calibration, or by light scattering. The values of the ratio Mw/Mn, referred to as molecular weight distribution, (MWD) are not critical. However, a typical minimum Mw/Mn value of about 1.1-2.0 is preferred with typical ranges of about 1.1 up to about 4.
I- The olefin monomers are preferably polymerizabie terminal olefins; that is, olefins characterized by the presence in their structure of the group -R-C=CH 2 where R is H or a hydrocarbon group. However, polymerizable internal olefin monomers (sometimes referred to in the patent literature as medial olefins) characterized by the presence within their structure of the group: I I
C-C=C-C
can also be used to form the polyalkenes. When internal olefin monomers are employed, they normally will be employed with terminal olefins to produce polyalkenes which are interpolymers. For this invention, a particular polymerized olefin monomer which can be classified as both a terminal olefin and an internal olefin, will be deemed a terminal olefin. Thus, pentadiene-1,3 piperylene) is deemed to be a terminal olefin.
While the polyalkenes generally are hydrocarbon polyalkenes, they can contain substituted hydrocarbon groups such as lower alkoxy, lower alkyl mercapto, hydroxy, mercapto, and carbonyl, provided the non-hydrocarbon moieties do not substantially interfere with the functionalization or derivatization reactions of this invention. When present, such substituted hydrocarbon groups normally will not contribute more than about 10% by weight of the total weight of the polyalkenes. Since the polyalkene can contain such non-hydrocarbon substituent, it is apparent that the olefin monomers from which the polyalkenes are 25 made can also contain such substituents. As used herein, the term "lower" when used with a chemical group such as in "lower alkyl" or "lower alkoxy" is intended to describe groups having up to seven carbon atoms.
The polyalkenes may include aromatic groups and cycloaliphatic groups V such as would be obtained from polymerizable cyclic olefins or cycloaliphatic substutted-polymerizable acrylic olefins. There is a general preference for polyalkenes free from aromatic and cycloaliphatic groups (other than the diene styrene interpolymer exception already noted). There is a further preference for polyalkenes derived from homopolymers and interpolymers of terminal hydrocarbon olefins of 2 to 16 carbon atoms. This further preference is quf' fied 35 by the proviso that, while interpolymers of terminal olefins are usually preferred, interpolymers optionally containing up to about 40% of polymer units derived from internal olefins of up to about 16 carbon atoms are also within a preferred group.
A more preferred class of polyalkenes are those selected from the group consisting of homopolymers and interpolymers of terminal olefins of 2 to 6 carbon atoms, -8more preferably 2 to 4 carbon atoms. However, another preferred class of polyalkenes are the latter, more preferred polyalkenes optionally containing up to abou. 25% of polymer units derived from internal olefins of up to about 6 carbon atoms, Specific examples of terminal and internal olefin monomers which can be used in the process and to prepare the polyalkenes according to conventional, wellknown polymerization techniques include ethylene; propylene; butene-l; butene-2; isobutene; pentene-1; etc; propylene-tetramer; diisobutylene; isobutylene trimer; butadiene-1,2; butadiene-1,3; pentadiene-1,2; pentadiene-1,3; etc., C 6 to C12 olefins, C 13 to C24, and C24 to C29 middle olefins.
Useful polymers include alpha-olefin homopolyners and interpolymers, and ethylene alpha-olefin copolymers and terpolymers. Specific examples of polyalkenes include polypropylenes, polybutenes, ethylene-propylene copolymers, ethylene-butene copolymers, propylene-butene copolymers, styrene-isobutene copolymers, isobutene-butadiene-1,3 copolymers, etc., and terpolymers of isobutene, styrene and piperylene and copolymer of 80% of ethylene and 20% of propylene. A useful source of polyalkenes are the poly(isobutene)s obtained by polymerization of C 4 refinery stream having a butene content of about 35 to about 75% by wt., and an isobutene content of about 30 to about 60% by wt., in the 20 presence of a Lewis acid catalyst such as aluminum trichloride or boron trifluoride.
Also useful are the high molecular weight poly-n-butenes of US Patent 5814715 filed December 17, 1992. A preferred source of monomer for making poly-n-butenes is petroleum feedstreams such as Raffnate II. These feedstocks are disclosed in the art such as in US-A-4952739.
25 Preferred polymers are polymers of ethylene and at least one alpha-olefin having the formula H2C=CHR 4 wherein R 4 is straight chain or branched chain alky! radical comprising 1 to 18 carbon atoms and wherein the polymer contains a high degree of terminal ethenylidene unsaturation. Preferably R 4 in the above formula is alkyl of from 1 to 8 carbon atoms and more preferably is alkyl of from 1 to 2 carbon atoms. Therefore, useful comonomers with ethylene in this invention include propylene, 1-butene, hexene-1, octene-1, etc., and mixtures thereof mixtures *f of propylene and 1-butene, and the like). Preferred polymers are copolymers of o" ethylene and propylene and ethylene and butene-1.
The molar ethylene content of the polymers employed is preferably in the range of between about 20 and about 80%, and more preferably between about and about 70%. When butene-1 is; employed as comonomer with ethylene, the ethylene content of such copolymer is most preferably between about 20 and about -9although higher or lower ethylene contents may be present. The most preferred ethylene-butene-l copolymers are disclosed in US Patent 5,498,800 filed December 17, 1992. The preferred method for making low molecular weight ethylene/a-olefin copolymer is described in US Patent 5,705,577.
Preferred ranges of number average molecular weights of poymer for use as precursors for dispersants are from 500 to 10,000, preferably from 1,000 to 8,000, most preferably from 2,500 to 6,000. A convenient rte:od for such determination is by size exclusion chromatography (also known as gel permeation chromatography (GPC)) which additionally provides molecular weight distribution information. Such polymers generally possess an intrinsic viscosity (as measured in tetralin at 135°C) of between 0.025 and 0.6 dl/g, preferably between 0.05 and dl/g, most preferably between 0.075 and 0.4 d/g. These polymers preferably exhibit a degree of crystallinity such that, when grafted. they are essentially amorphous.
The preferred ethylene alpha-olefin polymers are further characterized in 9.*9 that up to about 95% and mcre of the polymer chains possess terminal vinylidene- 999 type unsaruration. Thus, one end of such polymers will be of the formula POLY-
C(R
11
CH
2 wherein RI1 is C 1 to C 18 alkyl, preferably Ci to Cg alkyl, and 20 more preferably methyl or ethyl and wherein POLY represents the polymer chain.
A minor amount of the polymer chains can contain terminal ethenyl unsaturation, i.e. POLY-CH=CH, and a portion of the polymers can contain internal monounsaturation, e.g. POLY-CH=CH(RI wherein R I is as defined above.
The preferred ethylene alpha-olefin polymer comprises polymer chains, at least about 30% of which possess terminal vinylidene unsaturation. Preferably at least about 50%, more preferably at least about 60%, and most preferably at least about.75% 75 to of such polymer chains exhibit terminal vinylidene unsaturation. The percentage of polymer chains exhibiting terminal vinylidne g unsaturation may be determined by FTIR spectroscopic analysis, titration, HNMR, or C 13
NMR.
The polymers can be prepared by polymerizing monomer mixtures comprising ethylene with other monomers such as alpha-olefins, preferably from 3 Sto 4 carbon atoms in the presence of a metallocene catalyst system comprising at least one metallocene a cyclopentadienyl-transition metal compound) and an activator, e.g. alumoxane compound. The comononer content can be controlled through selection of the metallocene catalyst component and by controlling partial pressure of the monomers.
The polymer for use in the present invention can include block and tapered copolymers derived from monomers comprising at least one conjugated diene with at least monovinyl aromatic monomer, preferably styrene. Such polymers should not be completely hydrogenated so that the polymeric composition contains olefinic double bonds, preferably at least one bond per molecule. The present invention can also include star polymers as disclosed in patents such as US-A-5070131; US-A- 4108945; US-A-3711406; and US-A-5049294.
The letter n of formula is greater than 0 and represents the functionality or average number of functional groups per polymer chain. Thus, functionality can be expressed as the average number of moles of functional groups per "mole of polymer". It is to be understood that the term "mole of polymer" includes both functionalized and unfunctionalized polymer, so that F which corresponds to n of Formula The functionalised polymer will include molecules having no functional groups. Specific preferred embodiments of n include 1 n 0; 2 n 1; and n n can be determined by C 13 NMR. The optimum number of functional groups needed for desired performance will typically increase with number average molecular weight of the polymer. The maximum value ofn will be determined by the number of double bonds per polymer chain in the unfunctionalized polymer.
In specific and preferred embodiments the "leaving group" (-YR 3 has pKa of less than or equal to 12, preferably less than 10, and more preferably less than 8. The pKa is determined from the corresponding acidic species HY-R 3 in Swater at room tnemperature. Where the leaving group is a simple acid or alkyl ester, the functionalized polymer is very stable especially as the neo substitution 25 increases. The present invention is especially useful to make "neo" functionalized polymers which are generally more stable and lkss labile than iso structures. In preferred embodiments the polymer can be at least 60, more preferably at least mole% neofunctionalized. The polymer can be greater than 90, or 99 and even about 100 mole% neo. In one preferred composition the polymer defined by 30 formula Y is O (oxygen), R 1 and R 2 can be the same or different and are selected from H, a hydrocarbyl group, and a polymeric group.
In another preferred embodiment Y is 0 or S, RI and R 2 can be the same or different and are selected from H, a hydrocarbyl group a substituted hydrocarbyl group and a polymeric group, and R 3 is selected from a substituted hydrocarbyl group, an aromatic group and a substituted aromatic group. This embodiment is generally more reactive towards derivatization with amines and alcohol compounds especially where the R 3 substituent contains electron withdrawing species. It has 1 been found that in this embodiment, a preferred leaving group, HYR, has a pKa of less than 12, preferably less than 10 and more preferably 8 cr less. pKa values can range typically from 5 to 12, preferably from 6 to 10, and most preferably from 6 to 8. The pKa of the leaving group determines how readily the system will react with derivatizing compounds to produce derivatized product.
In a particularly preferred composition, R 3 is represented by the formula: Xm Tp wherein X, which may be the same or different, is an electron withdrawing substituent, T, which may be the same or different, represents a non-electron withdrawing substituent electron donating), and m and p are from 0 to 5 with the sum of m and p being from 0 to 5. More preferably, m is from 1 to 5 and preferably 1 to 3. In a particularly preferred embodiment X is selected from a halogen, preferably F or Cl, CF 3 cyano groups and nitro groups and p 0. A preferred R 3 is derived from 2,4-dichlorophenol.
The composition of the present invention includes derivatized polymer which is the reaction product of the Koch functionalized polymer and a derivatizing compound. Preferred derivatizing compounds include nucleophilic reactant compounds including amines, alcohols, amino-alcohols, metal reactant compounds and mixtures thereof. Derivatized polymer will typically contain at least one of the following groups: amide, imide, oxazoline, and ester, and metal salt. The suitability for a particular end use may be improved by appropriate selection of the polymer Mn and :functionality used in the derivatized polymer as discussed hereinafter.
The Koch reaction permits controlled functionalization of unsaturated polymers. When a carbon of the carbon-carbon double bond is substituted with hydrogen, it will result in an "iso" functional group, i.e. one of R 1 or R 2 of Formula I is H; or when a carbon of the double bond is fully substituted with hydrocarbyl groups it will result in an "neo" functional group, i.e. both R 1 or R 2 of Formula I are non-hydrogen groups. Polymers produced by processes which result .in a terminally unsaturated polymer chain can be functionalized to a relatively high yield in accordance with the process of the present invention. It has been found that the neo acid functionalized polymer can be derivatized to a relatively high yield. The Koch process also makes use of relatively inexpensive materials i.e., 12carbon monoxide at relatively low temperatures and pressures. Also the leaving group -YR 3 can be removed and recycled upon derivatizin the Koch functionalized polymer with amines or alcohols.
The functionalized or derivatized polymers of the present invention are useful as lubricant additives such as dispersants, viscosity imorovers and multifunctional viscosity improvers.
The present invention includes oleaginous compositions comprising the above functionalized, and/or derivatized polymer. Such compositions include lubricating oil compositions and concentrates.
The invention also provides a process which comprises the step of catalytically reacting in admixture: at least one hydrocarbon (polymer) having a number average molecular weight of at least about 500, and an average of at least one ethylenic double bond per polymer chain; carbon monoxide, at least one acid catalyst, and a nucleophilic trapping agent selected from the group consisting of water, hydroxy-containing compounds and thiol-containing compounds, the reaction being conducted a) in the absence of reliance on transition metal as a catalyst; or b) with at least one acid catalyst having a Hammett acidity of less than 7; or c) wherein functional groups are formed at least 40 mole% of the ethylenic double bonds; or d) wherein the nucleophilic trapping agent has a pKa of less than 12.
The process of the present invention relates to an olefin/polym er having at least one ethylenic double bond reacted via a Koch mechanism to form carbonyl or thio carbonyl group-containing compounds, which may subsequently be derivatized. The polymers react with carbon monoxide in the presence of an acid catalyst or a catalyst preferably complexed with the nucleophilic trapping agent. A preferred catalyst is BF 3 and preferred catalyst complexes include BF 3 .H20 and
BF
3 complexed.with 2,4-dichlorophenol. The starting polymer reacts with carbon monoxide at points ofunsaturation to form either iso- or neo- acyl groups with the nucleophilic trapping agent, e.g. with water, alcohol (preferably a substituted phenol) or thiol to form respectively a carboxylic acid, carboxylic ester group, or thio ester.
In a preferred process, at least one polymer having at least one carboncarbon double bond is contacted with an acid catalyst or catalyst complex having a Hammert Scale acidity value of less than preferably from -S.O to -11.5 and most 13 preferably from -10 to -11.5. Without wishing to be bound by any particuiar theory, it is believed that a carbenium ion may form at the site of one of carboncarbon double bonds. The carbenium ion may then react with carbon monoxide to form an acylium cation. The acylium cation may react with at least one nucleophilic trapping agent as defined herein.
The continuous process of the present invention is especially advantageous with viscous polymer olefins. The tubular or pipe reactor does not rely on turbulent flow to provide mixing but operates in the laminar flow regime. In a preferred embodiment, an ethylene/butene copolymer olefin is reacted with gaseous functionalizing agent, conveniently carbon monoxide and an alcohol such as 2,4dichlorophenol or other suitable hydroxylic trapping agent in the presence of catalyst, conveniently BF 3 to produce ester product in high yield from a reduced (compared to batch operations) reactor volume. Reduced inventories of hazardous materials for equivalent throughput, automated operation with recycle of vapor phase reactant, and more tightly sealed conditions reduce the chance of accidental release. Alkylation side reactions are greatly reduced by the continuous process of the present invention; at high CO partial pressures, reaction conditions and residence times can be controlled to minimize alkylation of the phenol and other side reactions. For some embodiments of the invention, e.g. CSTR, higher portions of some components lower viscosity, which in turn promotes more rapid dissolution of CO gas in the mixture, thereby decreasing alkylation. Thus, higher nucleophilic trapping agent to polymer ratios minimize alkylation.
At least 40 mole%, preferably at least 50 mole%, more preferably at least '80 mole%, and most preferably 90 mole% of the olefin/polymer double bonds will 25 react to form acyl groups wherein the non-carboxyl portion of the acyl group is determined by the identity of the nucleophilic trapping agent, i.e. water forms acid, alcohol forms acid ester and thiol forms thio ester. The polymer functionalized by the recited process of the present invention can be isolated using fluoride salts.
The fluoride salt can be selected from the group consisting of ammonium fluoride, 30 and sodium fluoride.
Preferred nucleophilic trapping agents are selected from the group consisting of water, munohydric alcohols, polyhydric alcohols hydroxyl-containing aromatic compounds and hetero substituted phenolic compounds. The catalyst and nucleophilic trapping agent can be added separately or combined to form a catalytic complex. Following is an example of a terminally unsaturated polymer reacted via the Koch mechanism to form an acid or an ester. The polymer is contacted with carbon monoxide or a suitable carbon monoxide source such as I -I -14formic acid in the presence of an acidic catalyst. The catalyst contributes a proton to the carbon-carbon double bond to form a carbenium ion. This is followed by addition of CO to form an acylium ion which reacts with the nucleophilic trapping agent. POLY, Y, R 1
R
2 and R 3 are defined as above.
R
1 CAT. R 1 11 POLY- C POLY-C 4 (1)
R
2
R
2 (carbenium ion)
R
1
R
1 1 I POLY- C+ CO POLY-C-CO (II)
R
2
R
2 (acylium ion)
R
1
R
1 0 I I II POLY C CO R 3 YH POLY C C YR 3
V)
R
2
R
2 *The Koch reaction is particularly useful to functionalize poly(alpha olefins) and ethylene alpha olefin copolymers formed using metallocene-type catalysts.
These polymers contain terminal vinylidene groups. There is a tendency for such terminal groups to predominate and result in neo-type (tertiary) carbenium ions. In 30 order for the carbenium ion to form, the acid catalyst is preferably relatively strong.
However, the strength of the acid catalyst is preferably balanced against detrimental side reactions which can occur when the acid is too strong. The Koch catalyst can be employed by preforming a catalyst complex with the proposed nucleophilic trapping agent or by adding the catalyst and trapping agent separately to the 35 reaction mixture. This later embodiment has been found to be a particular advantage since it eliminates the step of making the catalyst complex. The following are examples of acidic catalyst and catalyst complex materials with their respective Hammett Scale Value acidity: 60% H 2 S0 4 -4.32; BF 3 .3H20,
BF
3 .2H 2 0, WO 3 /Al 2 0 3 less than SiO2/A203, less than HF, 10.2; BF 3
.H
2 0, -11.4 to -11.94; ZrO2 less than -12.7; SIO 2 /A1 2 0 3 -12.7 to -13.6; AIC13, -13.16 to -13.75; AICl3/CuSO 4 -13.75 to -14.52.
1 15 It has been found that BF 3 .2H-,O is ineffective at functionalizing polymer through a Koch mechanism ion with polymers. In contrast, BF 3
.H
2 0 resulted in high yields of carboxylic acid for the same reaction. The use of H 2
SO
4 as a catalyst involves control of the acid concentration to achieve the desired Hammett Scale Value range. Preferred catalysts are H2S0 4 and BF 3 catalyst systems.
Suitable BF 3 catalyst complexes for use in the present invention can be represented by the formula:
BF
3 xHOR wherein R can represent hydrogen, hydrocarbyl (as defined below in connection with -SO2 -PO-(OH)2, and mixtures thereof wherein R' is hydrocarbyl, typically alkyl, C 1 to C 20 alkyl, and, C 6 to C 1 4 aryl, aralkyl, and alkaryl, and x is less than 2.
Following reaction with CO, the reaction mixture is further reacted with water or another nucleophilic trapping agent such as an alcohol or phenolic, or thiol compound. The use of water releases the catalyst to form an acid. The use of hydroxy trapping agents releases the catalyst to form an ester, the use of a thiol releases the catalyst to form a thio ester.
Koch product, also referred to herein as functionalized polymer, typically will be derivatized as described hereinafter. Derivatization reactions involving ester functionalized polymer will typically have to displace the alcohol derived moiety thertfrom. Consequently, the alcohol derived portion of the Koch functionalized polymer is sometimes referred to herein as a leaving group. The ease with which a leaving group is displaced during derivatization will depend on its acidity, i.e. the higher the acidity the more easily it will be displaced. The 25 acidity in turn of the alcohol is expressed in terms ofits pKa.
Preferred nucleophilic trapping agents include water and hydroxy group containing compounds. Useful hydroxy trapping agents include aliphatic compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols. The aromatic hydroxy compounds from which the esters of this invention may be derived are illustrated by the following specific example: phenol, -naphthol, cresol, resorcinol, catechol, 2-chlorophenol.
Particularly preferred is 2,4-dichlorophenol.
The alcohols preferably can contain up to about 40 aliphatic carbon atoms.
They may be monohydric alcohols such as methanols, ethanol, benzyl alcohol, 2- 35 methylcyclohexanol, beta-chloroethanol, monomethyl ether of ethylene glycol, etc.
The polyhydric alcohols preferably contain from 2 to about 5 hydroxy radicals; ethylene glycol, diethylene glycol. Other useful polyhydric alcohols include 16glycerol, monomethyl ether of glycerol, and pentaerythritol. Useful unsaturated alcohols include allyl alcohol, and propargyl alcohol.
Particularly prefe-red alcohols include those having the formula R*2CHOH where an R* is independently hydrogen, an alkyl, aryl, hydroxyalkyl, or cycloalkyl.
Specific alcohols include alkanols such as methanol, ethanol, etc. Also preferred useful alcohols include aromatic alcohols, phenolic compounds and polyhydric alcohols as well as monohydric alcohols such as 1,4-butanediol. It has been found that neo-acid ester functionalized polymer is extremely stable due, it is believed, to steric hindrance. Consequently, the yield of derivatized polymer obtainable therefrom will vary depending on the ease with which a derivatizing compound can displace the leaving group of the functionalized polymer.
The most preferred alcohol trapping agents may be obtained by substituting a phenol with at least one electron withdrawing substituent such that the substituted phenol possesses a pKa within the above described preferred pKa ranges. In addition, phenol may also be substituted with at least one non-electron withdrawing substituent electron donating), preferably at positions meta to the electron withdrawing substituent to block undesired alkylation of the phenol by the polymer during the Koch reaction. This further improves yield to desired ester functionalized polymer. Accordingly, and in view of the above, the most preferred 20 trapping agents are phenolic and substituted phenolic compounds represented by the formula:
OH
.'Xm Tp T (V) wherein X, which may be the same or different, is an electron withdrawing substituent, and T which may be the same or different is a non-electron withdrawing group; m and p are from 0 to 5 with the sum ofm and p being from 0 to 5, and m is preferably from 1 to 5, and more preferably, m is 1 or 2. X is preferably a group 9 selected from halogen, cyano, and nitro, preferably located at the 2- and/or 4position, and T is a group selected from hydrocarbyl, and hydroxy groups and p is 1 or 2 with T preferably being located at the 4 and/or 6 position. More preferably X is selected from Cl, F, Br, cyano or nitro groups and m is preferably from 1 to more preferably from 1 to 3, yet more preferably 1 to 2, and most preferably 2 located at the 2 and 4 locations relative to -OH.
I 17- The relative amounts of reactants and catalvs:, and the conditions controlled in a manner sufficient to functionalize typically at least about preferably at least about 80, more preferably at least about 90 and most preferably at least about 95 mole% of the carbon-carbon double bonds initially present in the unfunctionalized polymer.
The amount of H20, alcohol, or thiol used is preferably at least the stoichiometric amount required to react with the acylium cations. It is preferred to use an excess of alcohol over the stoichiometric amount. The alcohol performs the dual role of reactant and diluent for the reaction. However, the amount of the alcohol or water used should be sufficient to provide the desired yield yet at the same time not dilute the acid catalyst so as to adversely affect the Hammett Scale Value acidity.
The polymer added to the reactant system can be in a liquid phase.
Optionally, the polymer can be dissolved in an inert solvent. The yield can be determined upon completion of the reaction by separating polymer molecules which contain acyl groups which are polar and hence can easily be separated from unreacted non-polar compounds. Separation can be performed using absorption techniques which are known in the ar. The amount of initial carbon-carbon double bonds and carbon-carbon double bonds remaining after the :eaction can be determined by C 13 NMR techmiques.
In accordance with the process, the polymer is heatbd a desired temperature range which is typically between -20°C to 200°C, preferably from 0°C to.80°C and more preferably from 40°C to 65°C. Temperature can be controlled by heating and cooling means applied to the reactor. Since the reaction is 25 exothermic usually cooling means are required. Mixing is conducted throughout the reaction to assure a uniform reaction medium. For the continuous process of the invention, a suitable temperature operating range is 0 100 0 C, conveniently 80°C, preferably 55 100°C. For more viscous reaction mixtures, temperatures of at least about 80°C are effective.
30 The catalyst (and nucleophilic trapping agent) can be prereacted to form a catalyst complex or are charged separately in one step to the reactor to form the catalyst complex in situ at a desired temperature and pressure, preferably under nitrogen. In a preferred system the nucleophilic trapping agent is a substituted phenol used in combination with BF 3 The reactor contents are continuously mixed and then rapidly brought to a desired operating pressure using a high pressure carbon monoxide source. Useful pressures can be up to 138,000 kPa (20,000 psig), and typically will be at least 2,070 kPa (300 psig), preferably at least -18- 5,520 kPa (800 psig), and most preferably at least 6,900 kPa (1,000 psig), and typically will range from 3,450 to 34,500 kPa (500 to 5,000 psig) preferably from 4,485 to 20,700 kPa (650 to 3,000 psig) and most preferably from 4,485 to 13,800 kPa (650 to 2000 psig). The carbon monoxide pressure may be reduced by adding a catalyst such as a copper compound. The catalyst to polymer volume ratio can range from 0.25 to 4, preferably 0.5 to 2 and most preferably .75 to 1.3. For the continuous process of the invention, this ratio may be 0.05 to 4.0, conveniently 0.10 to 2, especially 0.20 to Preferably, the polymer, catalyst, nucleophilic trapping agent and CO are fed to the reactor in a single step. The reactor contents are then held for a desired amount of time under the pressure of the carbon monoxide. The reaction time can range up to 5 hrs. and typically 0.5 to 4 and more typically from 1 to 2 hrs. The reactor contents can then be discharged and the product which is a Koch functionalized polymer comprising either a carboxylic acid or carboxylic ester or thiol ester functional groups separated. Upon discharge, any unreacted CO can be vented off. Nitrogen can be used to flush the reactor and the vessel to receive the polymer.
In the preferred continuous process of the present invention, reactants are fed to the process by pumps or compressors and mixed together just before t just 20 after entering the reactor, CSTR or tubular (pipe). Vapor phase reagents such as
BF
3 and carbon monoxide dissolve into the liquids as the reaction proceeds. A flash is performed at the reactor exit to allow most the BF catiyst and unconsumed CO to be released from the liquid phase an recycled. Second stage separations may be used to remove and recycle excess nucleophilic trapping agent/hydroxylic trapping agent such as alcohols, e.g. 2,4-dichlorophenol.
In the CSTR type reactor configuration, liquid and vapor phase reactants are fed to the single stage reactor equipped with mechanical agitator to promote liquid/gas contact and provide uniform concentrations throughout the reactor. The CSTR configuration of the invention may use more than one reactor vessel/stage in 30 series although a single stage is simpler and less expensive. Multiple stages may be used to reduce total volume and residence time. In the tubular reactor, in-line mixers are spaced at intervals to promote liquid/vapor contact in a minimal total volume configuration with no mechanical seals. The in-line mixers may be either static or mechanical (including those with external driven impellers). The mixers are effectively positioned at residence time intervals ranging from 0.25 to 5 min., conveniently 0.25 to 3 min., especially 0.5 to 1.5 min. between mixers. The interval between mixers increases from the inlet to the exit of the reactor.
-19- Each mixer provides homogeneous blending of the liquid and disperses gas bubbles ranging in size from 0.01 to 3 mm, conveniently 0.1 to 2 mm, especially 0.1 to 1 mm. Mixer intensity may be relaxed toward the reactor exit as high gas/liquid contacting is primarily required in the front part of the reactor (although homogeneous blending is needed at the exit). Therefore, gas dispersing mixers are preferred in the front of the tubular reactor and blending mixers are preferred in the back end of the reactor. The Sulzer SMV static mixer is a suitable mixer for gas/liquid contact. Mixers can be designed to optimize bubble size and distribution in a reactor. Larger equipment requires larger mixers. Each mixer has a series of elements as splitting/remixing devices, typically four, which split and remix the flow several times. The preferred continuous process of the invention includes a laminar flow process where the Reynolds Number i; very low, preferably less than 10, and uses static mixers to disperse ga into liquid !nd promote reaction. The mixers are followed by open pipe to provide residence time for reaction.
The tubular reactor process is also advantageous because it eliminates the need for liquid level control, has simple controls and operation, has a short reaction time, provides high yields, maximizes inherent safety; and permits use of a wide range of polymer viscosity. The continuous process of the invention also provides a very clean, white product compared to batch preparations, especially where 20 exposure to air and oxygen are avoided.
Depending on the particular reactants employed, the functionalized polymer containing reaction mixture may be a single phase, a combination of a partitionable polymer and acid phase or an emulsion with either the polymer phase or acid phase being the continuous phase. Upon completion of the reaction, the polymer is recovered by suitable means. In some cases it may be necessary to quickly separate or neutralize catalyst components upon recovery of product to avoid reversion of desired ester product to starting material or other by-product rapidly lower pressure and increase temperature to promote BF 3 release; or quench with excess leaving group or neutralizing agent). When the mixture is an emulsion, a suitable means can be used to separate the polymer. A preferred means is the use of fluoride salts, such as sodium or ammonium fluoride in combination with an alcohol such as butanol or methanol to neutralize the catalyst and phase separate the reaction complex. The fluoride ion helps trap the BF 3 complexed -to the functionalized polymer and helps break emulsions generated when the crude product is washed with water. Alcohols such as methano! and butanol and commercial demulsifiers also help to break emulsions especially in combination with fluoride ions. Preferably, nucleophilic trapping agent is combined with the I fluoride salt and alcohols when used to separate polymers. The presence of the nucleophil:: trapping agent as a solvent minimizes trar:jesterification of the functionalh. polymer.
Where the nucleophilic trapping agent has a pKa of less than 12 the functionalized polymer can be separated from the nucleophilic trapping agent and catalyst by depressurization and distillation. It has been found that where the nucleophilic trapping agent has lower pKa's, the catalyst, i.e. BF 3 releases more easily from the reaction mixture.
As indicated above, polymer which has undergone the Koch reaction is also referred to herein as functionalized polymer. Thus, a functionalized polymer comprises molecules which have been chemically modified by at least one functional group so that the functionalised polymer is capable of undergoing further chemical reaction derivatization) or has desirable properties, not otherwise possessed by the polymer alone, absent such chemical modification.
It will be observed from the discussion of formula I that the functional group is characterized as being represented by the parenthetical expression
R
1 0 I I1 C- YR 3 0
I
II
25 which expression contains the acyl group -C-YR 3 It will be understood that while
RI
-C-
30 the R 2 moiety is not added to the polymer in the sense of being derived from a separate reactant it is still referred to as being part of the functional group for ease of discussion and description. Strictly speaking, it is the acyl group which constitutes the functional group, since it is this group which is added during chemical modification. Moreover, R 1 and R 2 represent groups originally present on, or constituting part of, the 2 carbons bridging the double bond before functionalization. However, RI and R 2 were included within the parenthetical so that neo acyl groups could be differentiated from iso acyl groups in the formula depending on the identity ofR 1 and R 2 Typically, where the end use of the polymer is for making dispersant, e.g. as derivatized polymer, the polymer will possess dispersant range molecular -21 weights (Mn) as defined hereinafter and the functionality will typically be significantly lower than for polymer intended for making derivatized multifunctional V.I. improvers, where the polymer will possess viscosity modifier range molecular weights (Mn) as defined hereinafter.
Accordingly, while any effective functionality can be imparted to functionalized polymer intended for subsequent derivatization, it is contemplated that such functionalities, expressed as F, for dispersant end uses, are typically not greater than about 3, preferably not greater than about 2, and typically can range from about 0.5 to about 3, preferably from 0.8 to about 2.0 0.8 to 1).
Similarly, effective functionalities F for viscosity modifier end uses of derivatized polymer are contemplated to be typically greater than about 3, preferably greater than about 5, and typically will range from 5 to about 10. End uses involving very high molecular weight polymers contemplate functionalities which can range typically greater than about 20, preferably greater than about 30, and most preferably greater than about 40, and typically can range from 20 to 60, preferably from 25 to 55 and most preferably from 30 to A jacketed pipe reactor and associated equipment, suitable for demonstration, are described as follows: Polymer and nucleophilic trapping agent such as 2,4-dichlorophenol are mixed in feed tank 2 and fed continuously by pump 20 4 to reactor 6. CO and catalyst, conveniently BF 3 gas, are provided as make-up through mass flow controllers 8 and 10 to recycle gas line 12, compressor 14, and mass flow controller 16 to main feed line 18. The reactor 6 has a series of tubes having insulating jackets 22. The first eight tubes have two static mixers 24 positioned as shown and the second eight tubes have only one static mixer 24 per tube as shown. The reactor 6 may be reversed from the position shown to provide a different mixing profile but still operating in laminar flow with entrained gas.
The reaction mass flows through flash drums 26 and 28 to provide recycle gases to line 12 and the nucleophilic trapping agent, conveniently 2,4dichlorophenol, is collected at 30 by use of vacuum and heat. The product is 30 moved by pump 32, preferably through a wiped film evaporator 34 to separate light ends at 36 and collect product, preferably ester, in drum 38. This description may not be suitable for all operations. Nucleophilic trapping agent, such as 2,4dichlorophenol, and polymer/olefin may be fed separately and could be blended after gas introduction. Jackets may be varied to maintain a desired temperature profile. Temperature may also be controlled by: precooling feeds and allowing the heat of reaction to bring temperature up; preheating feed, e.g. 100 0 C, and using 22 cooling jackets. Preferably, the temperature is maintained in the preferred range throughout the reactor and the desired temperature is achieved within the first half.
preferably the first quarter of the reactor length. Enhanced heat t-ransfer devices may be used, such as jacketed tubes containing static mixer elements to increase heat transfer coefficient (with reaction mass mixing) or tubes with internal cooling veils to provide more surface area and heat transfer coefficient Sulzer SMR mixer/exchangers).
US Patent 5,627,259 Attorney Docket Number PT-1143, Amidation of Ester Functionalized Polymers; US Patent 5,804,667 Attorney Docket Number PT-1144, Prestripped Polymer Used to Improve Koch Reaction Dispersant Additives; US 5,646,332, Attorney Docket Number PT-1145, Batch Koch Carbonylation Process; US Patent 5,643,859, Attorney Docket Number PT-1146, Derivatives of Polyamines With One Primary Amine and Secondary or Tertiary Amines, US Patent 5,783,735, Attorney Docket Number PT-1150, Lubricating Oil Dispersants Derived from Heavy Polyamines; and US Patent 5,767,046, Attorney Docket Number PT-1151, Functionalized Additives Useful In Two-Cycles Engines, all filed June 17, 1994, all contain related subject matter as indicated by their titles and are hereby incorporated by reference in their entirety for all 6 -70. purposes.
20 Derivatized Polymers The functionalizer, polymer can be used as a dispersant/multifunctional viscosity modifier if the functional group contains the requisite polar group. The functional group can also enable the polymer to participate in a variety of chemical reactions. Derivatives of functionalized polymers can be formed through reaction of the functional group. These derivatized polymers may have the requisite properties for a variety of uses including use as dispersants and viscosity modifiers.
•e A derivatized polymer is one which has been chemically modified to perform one or more functions in a significantly improved way relative to the unfunctionalized polymer and/or the functionalized polymer. Representative of such functions, are dispersancy and/or viscosity modification in lubricating oil compositions.
The derivatiding compound typically contains at least one reactive derivatizing group selected to react with the functional groups of the functionalized polymers by various reactions. Representative of such reactions are nucleophilic substitution, transesterification, salt formation, and the like. The derivatizing compound preferably also contains at least one additional group suitable for imparting the desired properties to the derivatized polymer, polar groups.
Thus, such derivatizing compounds typically will contain one or more groups i including amine, hydroxy, ester, amide, imide, thio, thioamido, oxazoline, or 23 carboxvlatC groups or form such groups at the cormpletion of tht d,!z-vaization reac2 on.
The cenivatized polymers include the reaction product of the above recited fuinctionalized polymer with a nucleophilic reactant which include earaines, aicconols, antino-alcohols and mixtures thereof to form oil soluble salts, ain-1-es, oxazoline, and esters. Alternatively, the flinctionalized polymer can be reacted w'ith basic metal salts to form metal salts of the polymer. Preferred mietals a;'e Ca, Mg, Cu, Zn, Mo, and -'he like. Suitable properties sought to be imparted the derivatized polymer inciude one or more of dispersancy, multiflincrional viscosity modification, antioxidancy, friction modification, antiwear, aritirust, seal swell, and the like. The preferred properties sought to be imparted to the derivatized polymer include dispersancy (both mono- and multifunctional) and visr--sitv modiiztion primarily with attendant secondary dispersant properties. A multifunctional dispersant typically will function primarily as a dispersant with attendant secondar-y viscosity modification, While the Koch flinctionalization and derivatization techniques fc;% preparing rnultifunctiona.1 viscosity modifiers (also referred to herein as multifunctionaJ viscosity index improvers or NEVI) are the same as for ashless dispersants, the functionality of a flinctionalized polymer intended fo: derivatization and eventual use as an MSVI will be controlled to be higher thant *flinctionalized polymner int anded for eventual use as a dispersant. This stems fromr *the diffevenz in Mn of the MFNI polymer backbone vs. the Mn of ibe kdi'vprvsant 25 polymer bacl:bbonz, Accordingly, it iS COnzemnpiatd tl-at an N v'1 ill be detived from fiinc:,ionai, d polyn'r having typically ap to about one~ s.'d at least abo-,it "'actional goups, of ft.orrula for each 20,000, preferably for each 10,00, most preferably -for eacti 5,000 Mn molecular vie4ght segrrent in the V....backbone polymer.
Dispersants maintain oil insolubles, resulting fromn oil use, in suspension in the fluid ihus preventing sludge flocculation and preci'pitation. Suitable dispersants 230 inchlnde, for example, dispersants of the ash-producing (also known as detergents) *lband ashless type, the latter type being preferred. The deiivatized polymer compositions of the present invention, cani be used as ashless dispersants and 4 tn-ultifu~nctional viscosity index improvers in lubricant and 6261e compositions.
Akt least one flinctionalized polymer is mixed with at least one of amnine, alcohol, including pol'ol, arioaicohol, etc., to frm'the riznersznt additives. One ciass of Particularly preferred dispersants are those dlerived from the functionalized polymcr of the present invention reacted with hydrox-)? compound, a 24 polyhydric alcohol or polyhydroxy-substituted .atic primarv amine such as pentaerythritol or trismethylolaminomethane (ii) polyoxyalkilene polyamine, e.g.
polyoxypropylene dianmine, and/or (iii) polyalkvlene polamine, polyethvylene polyamine such as rtetraethylene pentamine referred to herein as TEPA.
Useful amine compounds for derivatizing ifunctionalized polkmers comprise at least one amine and can comprise one or more additional amine or other reactive or polar groups. Where the functional group is a carboxylic acid, carboxylic ester or thiol ester, it reacts with the amine to form an amide. Preferred amines are aliphatic saturated amines. Non-limiting examples of suitable amine compounds include: 1,2-diamninoethane; 1,3-diaminopropane; 1,4-diarninobutane; 1,6diaminohexane; polyethylene amines such as diethylene triamine; triethylene tetramine; tetraethylene pentamine; etc.
Other useful amrnine compounds include: alicyclic diamines such as 1,4di(aminomethyl) cyclohexane, and heterocyclic nitrogen compounds such as imidazolines. Mixtures of amine compounds may advantageously be used. Useful amines also include polyoxyalkylene polyamines. A particularly useful class of amines are the polvamido and related amines.
The functionalized polymers of the present invention can be reacted with alcohols, e.g. to form esters. The alcohols may be aliphatic compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and 0.00 naphthols, The aromatic hydroxy compounds from which the esters may be derived are illustrated by the following specific examples: phenol, beta-naphthol, 0.0alpha-naphthol, cresol, resorcinol, catechol, etc. Phenol and alkvlated phenols 2 having up to three alkyl substituents are prferred. The alcohols friom which the esters may be derived preferably contain up to about 49 aliphatic carbon atoms.
They may be monohydric alcohols such as methanols, ethanol, isooctanol, etc. A useful class of polyhydric alcohols are those having at least three hydroxy radicals, some of which have been esterified with a monocarboxylic acid having from about 8 to about 30 carbon atoms, such as octanoic acid, oleic acid, stearic acid, linoleic acid, dodecanoic acid, or tall oil acid.
The esters may also be derived from unsaturated alcohols such as allyl alcohol, cinnamnyl alcohol, propargyl alcohol. Still another class of the alcohols capable of yielding the esters of this invention comprise the ether-alcohols and amino-alcohols including, for example, the oxyalkylene-, oxyarylene-, aminoalkylene-, and amino-arylene-substituted alcohols having one or more oxyalkylene, amino-alkylene or amino-arylene oxyarylene radicals. They are exemplified by Cellosolve, carbitol, phenoxyethanol, etc.
The functionalized polymer of this invention is reacted with the alcohols according to conventional esterification, or transesterification techniques. This normally involves heating the functionalized polymer with the alcohol, optionally in the presence of a normally liquid, substantially inert, organic liquid solvent/diluent and/or in the presence of esterification catalyst.
Useful reactive metals or reactive metal compounds are those which will form metal salts of the functionalized polymer or metal-containing complexes with the functionalized polymer. Metal complexes are typically achieved by reacting the functionalized polymers with amines and/or alcohols as discussed above and also with complex forming reactants either during or subsequent to amination.
Complex-forming metal reactants include the nitrates, nitrites, halides, carboxylates, etc.
The appropriate functionalized polymer of this invention can be reacted with any individual derivatizing compound such as amine, alcohol, reactive metal, reactive metal compound or any combination of two or more of any of these; that is, for example, one or more amines, one or more alcohols, one or more reactive metals or reactive metal compounds, or a mixture of any of these. Substantially inert organic liquid diluents may be used to facilitate mixing, temperature control, and handling of the reaction mixture.
The reaction products produced by reacting functionalized polymer of this invention with derivatizing compounds such as alcohols, nitrogen-containing reactants, metal reactants, and the like will, in fact, be mixtures of various reaction products. The functionalized polymers themselves can be mixtures of naterials.
While the functionalized polymers themselves possess some dispersant 25 characteristics and can be used as dispersant additives in lubricants and fuels, best results are achieved when at least about 30, preferably, at least about 50, most preferably 100% of the functional groups are derivatized.
Functionalized and/or derivatized polymers may be post-treated. The processes for post-treating derivatized polymer are analogous to the post-treating 30 processes used with respect to conventional dispersants and MFVTs of the prior art. Accordingly, the same reaction conditions, ratio of reactants and the like can be used. Accordingly, derivatized polymer can be post-treated with such reagents as urea, thiourea, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds, phosphorus compounds or the like.
The amine derivatized polymers of the present invention as described above can be post-treated, particularly for use as dispersants and viscosity index 26improvers by contacting said polymers with one or more post-traing reagents such as boron compounds, nitrogen compounds, phosphorus compounds, oxygen compounds, succinic acids and anhydrides succinic anhydride, dodecvl succinic anhydride, and C 1 to C 3 0 hydrocarbyl substituted succi:ic anhydride), other acids and anhydrides such as maleic and fumaric acids and a-hydrides, and esters of the foregoing methyl maleate. The amine derivatized polymers are preferably treated with boron oxide, boron halides, boron acid esters or boron ester in an amount to provide from 0.1 20.0 atomic proportions of boron per mole of nitrogen composition. Borated derivatized polymer useful as dispersants can contain from 0.05 to 2.0 e.g. 0.05 to 0.7 wt.% boron based on the total weight of said borated nitrogen-containing dispersant compound. Treating is readily carried out by adding said boron compound, preferably boric acid usually as a slurry, to said nitrogen compound and heating with stirring at from about 135°C to 190 0 C, e.g. 140°C to 170 0 C, for from 1 to 5 hrs. The derivatized polymers of the present invention can also be treated with polymerizable lac;ones (such as epsilon-caprolactone) to form dispersant adducts.
The Koch functionalized polymer, in addition to acting as in:ermediates for dispersant and MFVI manufacture, can be used as molding release agents, molding agents, metal working lubricants, point thickeners and the like. The primary utility for the products of the invention, from functionalized polymer all the way through post-treated derivatized polymer, is as additives for oleaginous compositions.
The additives of the invention may be used by incorporation into an oleaginous material such as fuels and lubricating oils. Fuels include normally liquid petroleum fuels such as middle distillates boiling from 65*C to 430 0 C, including 25 kerosene, diesel fuels, home heating fuel oil, jet fuels, etc. A concentration of the additives in the fuel is in the range of typically from 0.001 to 0.5, and preferably 0.005 to 0.15 based oii the total weight of the composition, will usually be employed.
The additives of the present invention may be used in lubricating oil 30 compositions which employ a base oil in which the additives are dissolved or dispersed therein. Such base oils may be natural or synthetic. Base oils suitable for use in preparing the lubricating oil compositions of the present invention include those conventionally employed as crankcase lubricating oils for spark-ignited and compression-ignited internal combustion engines, such as automobile and truck engines, marine and railroad diesel engines, and the like. Advantageous results are also achieved by employing the additive mixtures of the present invention in base oils conventionally employed in and/or adapted for use as power transmitting 27 fluids, universal tractor fluids and hydraulic fluids, heavy duty hydraulic fl'ids, power steering fluids and the like. Gear lubricants, industrial oils, pump oils and other lubricating oil compositions can also benefit from the incorporation therein of the additives ofthe present invention.
Natural oils include animal oils and vegetable oils castor, lard oil) liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral lubricating oils of the parafinic, naphthenic and mixed paraffinic-naphthenic types.
Oils of lubricating viscosity derived from coal or shale are also useful base oils.
Synthetic lubricating oils include hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc. Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic lubricating oils.
Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids. Esters useful as synthetic oils also include those made from C to C 1 2 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, etc. Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxysiloxane oils and silicate oils comprise another useful class of synthetic lubricants. Unrefined, refined and rerefined oils can be used in the lubricants of the present invention.
The additives of the present invention, particularly those adapted for use as dispersants or viscosity modifiers, can be incorporated into a lubricating oil in any convenient way. Thus, they can be added directly to the oil by dispersing or 25 dissolving the same in the oil. Such blending into the additional lube oil can occur at room temperature or elevated temperatures. Alternatively the additives may be first formed into concentrates, which are in turn blended into the oil. Such dispersant concentrates will typically contain as active ingredient from 10 to typically 20 to 60 and preferably from 40 to 50 additive, (based on the concentrate weight) in base oil. MFVI concentrates typically will contain from 5 to 50 wt.% AI.
The additives of the invention may be mixed with other additive selected to perform at least one desired function. Typical of such additional additives are detergents, viscosity modifiers, wear inhibitors, oxidation inhibitors, corrosion inhibitors, friction modifiers, foam inhibitors, rust inhibitors, demulsifiers, antioxidants, lube oil flow improvers, and seal swell control agents.
a -2 Compo', ;ons, when containing these additives, typically are blended into the base oil in amounts which are effective to provide their normal attendant function. Representative effective amounts of such additives are illustrated as follows: (Broad) (Preferred) Comrositions Wt Wt V.I. Improver 1-12 1-4 Corrosion Inhibitor 0.01-3 0.01-1.5 Oxidation Inhibitor 0.01-5 0.01-1.5 Dispersant 0.1-10 0.1-5 Lube Oil Flow Improver 0.01-2 0.01-1.5 Detergents and Rust 0.01-6 0.01-3 Inhibitors Pour Point Depressant 0.01-1.5 0.01-1.5 Anti-Foaming Agents 0.001-0 I 0.001-0.01 Antiwear Agents 0.001-5 0.001-1.5 Seal Swellant 0.1-8 0.1-4 Friction Modifiers 0.01-3 0.01-1.5 Lubricating Base Oil Balance Balance When other additives are employed, it may be desirable, although not necessary, to prepare additive concentrates or packages comprising concentrated solutions or dispersions of the subject additives of this invention together with one or more of said other additives. Dissolution of the additive concentrate into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential. The final formulations may employ typically 2 to 30 20 e.g. about 10 of the additive package with the remainder being base oil. All of said weight percents expressed herein (unless otherwise indicated) are based on active ingredient content of the individual additives, and the total weight of the additive package or formulation, which will include the weight of total oil or diluent.
EXAMPLES
Composition parts and percents are by weight unless otherwise indicated.
.All molecular weights (Mn) are number average molecular weight.
Continuous Process Example A A CSTR process was conducted at steady state of 73 0 C and 12,420 kPa (1800 psig). Ethylene/butene (EB) copolymer having Mn of 3850 and 25 wt. ethylene content was fed to the reactor at 35 kg/hr. while 2,4-dichlorophenol was separately fed at 11.8 moles per mole EB copolymer. Mixed CO and BF 3 gases were fed through a recycle compressor and make-up supply as needed to maintain 8722 kPa (1264 psig) CO partial pressure and 3698 kPa (536 psig) BF 3 partial
I
-29pressure in the vapor space of the reactor. This process operated at 41% of full liquid level with a residence time of 16.3 minutes to provide 91% active ingredient yield as measured by infrared technique Varying pressures, reactants, temperature, and flow rates provided similar results with conversions up to 91% active ingredient.
Continuous Process Example B A continuous process was carried out in a pipe reactor having 16 4.27 meter (14 feet) long 2.032 cm (0.8 inch) inside diameter jacketed tubes connected in series. The first eight tubes have a one-half inch (1.27 cm) Sulzer SMV-DY static mixer with 1/16 inch (1.5 mm) plate spacing at the entry and halfway along the length of each tube. Each mixer has four mixing elements. The second set of eight tubes has a single static mixer at the "entry" end of each tube. The reactor may be operated in reverse direction, if desired, to pass reactants first through the eight tubes with a single mixer.
The polymer of Example A was mixed in a feed tank with 2,4dichlorophenol in a 1:6 molar ratio and fed to the pipe reactor at 37.5 kg/hr. at reactor temperature of 75 0 C. Recycle carbon monoxide and BF 3 (0.26 mole
BF
3 /mole CO) were fed to the reactor at inlet pressure of 12,420 kPa (1800 psig) total pressure to provide an initial gas/liquid volume that was 60% by volume liquid.
20 Steady state operation provided 88.8% conversion, as estimated by IR, to a very clean; white product ester.
Examples 1-13 Yield ofCarboxvlic Acid Group (Examples Example 1 (Comparative) C 25 34.5 parts of poly-n-butene polymer (PNB) (Mn=550) dissolved in 36.2 parts ofn-heptane (nC 7 were charged to an autoclave, mixed and heated to 50 0
C.
662 parts of BF 3 dihydrate (BF 3 .2H20) were then charged followed immediately by CO which brought the total autoclave pressure to 1500 psig. The mixture was s.~rred for 3 hrs. at temperature and pressure. Pressure was released, and the 30 reaction product was washed with copious amounts of water and butanol to free the polymer phase from the acid phase. The polymer was dried in an oven. The analysis of the finished polymer showed less than 5% conversion to the carboxylic acid group.
Example 2 The procedure described in Example 1 was then followed except, 37.1 parts of PNB (Mn=550) was dissolved in 40.2 parts of nC 7 and 690 parts ofBF3 1.2H20 was substituted for the BF3-2H 2 0 and prepared by bubbling BF3 gas into
Claims (5)
1. A continuous process including the step of reacting a liquid with a gas in a gas-liquid pipe reactor, wherein the reactor is operated in laminar flow with a Reynolds number less than 10 and contains a static mixer to disperse the gas into the liquid for reaction.
2. The process according to claim 1, wherein the static mixer disperses the gas into bubbles ranging in size from 0.01 to 3mm.
3. The process according to claim 1or 2, wherein the gas-liquid pipe reactor contains a plurality of additional static mixers. *«e
4. The process according to claim 3, wherein each static mixer is positioned at residence time intervals ranging from 0.25 to 5 minutes in the reactor. S
5. The process according to claim 2 or 3, wherein each mixer has a series of elements which split and remix the flow. DATEDthis 8th day of February, 1S99 EXXON CHEMICAL PATENTS INC. S WATERMARK PATENT TRADEMARK ATTORNEYS 4TH FLOOR, "DURACK CENTRE" 263 ADELAIDE TERRACE *0 PERTH W.A. 6000 AUSTRALIA c~ ABSTRACT A continuous process for functionalizing olefins, especially polymer olefins in a CSTR or pipe reactor. Esters are preferably produced by continuous reaction of the olefin with carbon monoxide and a nucleophilic trapping agent. The liquid-filled pipe reactor operates in plug flow with static mixers and the CSTR is operated in the substantial absence of air at constant liquid level. 0*0
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU36780/97A AU704021B2 (en) | 1994-06-17 | 1997-09-03 | Continuous process for production of functionalized olefins |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US261560 | 1994-06-17 | ||
US08/261,560 US5650536A (en) | 1992-12-17 | 1994-06-17 | Continuous process for production of functionalized olefins |
AU29443/95A AU684206B2 (en) | 1994-06-17 | 1995-06-14 | Continuous process for production of functionalized olefins |
AU36780/97A AU704021B2 (en) | 1994-06-17 | 1997-09-03 | Continuous process for production of functionalized olefins |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU29443/95A Division AU684206B2 (en) | 1994-06-17 | 1995-06-14 | Continuous process for production of functionalized olefins |
Publications (2)
Publication Number | Publication Date |
---|---|
AU3678097A AU3678097A (en) | 1997-11-20 |
AU704021B2 true AU704021B2 (en) | 1999-04-15 |
Family
ID=25621058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU36780/97A Ceased AU704021B2 (en) | 1994-06-17 | 1997-09-03 | Continuous process for production of functionalized olefins |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU704021B2 (en) |
-
1997
- 1997-09-03 AU AU36780/97A patent/AU704021B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
AU3678097A (en) | 1997-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0765348B1 (en) | Continuous process for production of functionalized olefins | |
EP0674666B1 (en) | Polymers functionalised by koch reaction and derivatives thereof | |
US5643859A (en) | Derivatives of polyamines with one primary amine and secondary of tertiary amines | |
US5804667A (en) | Dispersant additives and process | |
AU675491B2 (en) | Amorphous olefin polymers, copolymers, methods of preparation and derivatives thereof | |
US5854186A (en) | Lubricating oil dispersants derived from heavy polyamine | |
CA1338288C (en) | Method for the production of long chain hydrocarbyl substituted mono- or dicarboxylic acid materials | |
CA1335895C (en) | Low temperature method for the production of long chain hydrocarbyl substituted mono- or dicarboxylic acid materials employing plural zone mixing | |
EP0765347B1 (en) | Batch koch carbonylation process | |
AU704021B2 (en) | Continuous process for production of functionalized olefins | |
US5767046A (en) | Functionalized additives useful in two-cycle engines | |
JPH10511705A (en) | Adducts of quinone compounds and amine-containing polymers used in lubricating oils and fuels | |
US5773567A (en) | Carboxylic amide-containing polymers for use as fuel or lubricating oil additives and processes for their preparation | |
MXPA96006543A (en) | Continuous process for the production of olefins functionalizes | |
EP0765346A1 (en) | Prestripped polymer used to improve koch reaction dispersant additives | |
MXPA96006542A (en) | Dispersants for pes polyamine derived lubricating oils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |