AU6743200A - Compositions isolated from bovine mammary gland and methods for their use - Google Patents

Compositions isolated from bovine mammary gland and methods for their use Download PDF

Info

Publication number
AU6743200A
AU6743200A AU67432/00A AU6743200A AU6743200A AU 6743200 A AU6743200 A AU 6743200A AU 67432/00 A AU67432/00 A AU 67432/00A AU 6743200 A AU6743200 A AU 6743200A AU 6743200 A AU6743200 A AU 6743200A
Authority
AU
Australia
Prior art keywords
sequences
sequence
seq
polynucleotide
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU67432/00A
Inventor
Matthew Glenn
Murray Robert Grigor
Ilkka Jaakko Havukkala
Adrian John Molenaar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AgResearch Ltd
Genesis Research and Development Corp Ltd
Original Assignee
AgResearch Ltd
Genesis Research and Development Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AgResearch Ltd, Genesis Research and Development Corp Ltd filed Critical AgResearch Ltd
Publication of AU6743200A publication Critical patent/AU6743200A/en
Assigned to GENESIS RESEARCH AND DEVELOPMENT CORPORATION LIMITED, AGRESEARCH LIMITED reassignment GENESIS RESEARCH AND DEVELOPMENT CORPORATION LIMITED Amend patent request/document other than specification (104) Assignors: GENESIS RESEARCH AND DEVELOPMENT CORPORATION LIMITED, NEW ZEALAND PASTORAL AGRICULTURE RESEARCH INSTITUTE LIMITED
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Description

WO 01/14553 PCT/NZOO/00166 COMPOSITIONS ISOLATED FROM BOVINE MAMMARY GLAND AND METHODS FOR THEIR USE 5 Technical Field of the Invention This invention relates to polypeptides expressed in bovine mammary gland cells, polynucleotides encoding such polypeptides and methods for treating a mammal involving administration of a polypeptide or polynucleotide of the present invention. 10 Background of the Invention The bovine mammary gland is a milk-producing organ of great economic importance. Knowledge of the genes expressed in this tissue is valuable in understanding the physiology and function of the mammary gland, not only in the cow, but also in other 15 mammals, including humans. The polynucleotide sequences themselves are useful in detecting the presence of mammary gland tissue in a biological sample, and in the development of transgenic animals with transgene expression targeted to the mammary gland, e.g., by using mammary gland-specific promoters isolated from mammary-specific polynucleotides. 20 Summary of the Invention The present invention provides isolated polypeptides expressed in bovine mammary gland cells and isolated polynucleotides encoding such polypeptides, together with expression vectors and host cells comprising such polynucleotides. Methods for 25 using such polypeptides, polynucleotides and expression vectors are also provided. According to one aspect of the present invention there is provided an isolated polynucleotide comprising a sequence selected from the group consisting of: (a) sequences recited in SEQ ID NOS: 1-68; (b) complements of the sequences recited in SEQ ID NOS: 1-68; (c) reverse complements of the sequences recited in SEQ ID NOS: 30 1-68; (d) reverse sequences of the sequences recited in SEQ ID NOS: 1-68. 1 WO 01/14553 PCT/NZOO/00166 According to a further aspect of the present invention there are provided sequences having a 99% probability of being the same as a sequence of (a)-(d) above, and sequences having at least 50%, 75%, 90% or 95% identity to a sequence of (a)-(d) above, the percentage identity being determined using computer algorithm BLASTN. 5 An isolated polynucleotide comprising a sequence selected from the group consisting of: (i) sequences that hybridize to a sequence of (a) - (d) above under stringent hybridization conditions; (ii) sequences that are 200-mers of a sequence of (a) - (d) above; 10 (iii) sequences that are 100-mers of a sequence of (a) - (d) above; (iv) sequences that are 40-mers of a sequence of (a) - (d) above; (v) sequences that are 20-mers of a sequence of (a) - (d) above; and (vi) sequences that are degeneratively equivalent to a sequence of (a) - (d) above. 15 Wherein the term ("x-mers") refers to polynucleotides comprising at least a specified number of contiguous residues (i.e. "x-mers") of any of the sequences identified as SEQ ID NOS: 1-68. The present invention also provides for extended sequences, and oligonucleotide probes and primers corresponding to the sequences set out in SEQ ID NOS: 1-68. All of these polynucleotides and oligonucleotide probes and primers are 20 collectively referred to herein as "polynucleotides of the present invention". According to another aspect, the present invention provides isolated polypeptides comprising an amino acid sequence encoded by a polynucleotide selected from sequences (a) - (d) above; or sequences having at least 50%, 75%, 90%, 95% and 99% identity using computer algorithm BLASTN, to sequences (a) - (d) above. 25 According to another aspect, the present invention includes isolated polypeptides comprising at least a functional portion of a polypeptide comprising an amino acid sequence encoded by a polynucleotide selected from the group consisting of: (i) a sequence of (a) - (d) above; or 2 WO 01/14553 PCT/NZOO/00166 (ii) sequences having 50%, 75%, 90%, 95% and 99% identity to a sequence of (a) - (d) above, are also provided. According to a further aspect, the present invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting 5 of sequences provided in SEQ ID NOS: 69-136. According to a further aspect, the present invention includes an isolated polypeptide comprising an amino acid sequence having at least a 99% probability of being the same as a sequence of SEQ ID NOS: 69-136, or having at least 50%, 75%, or 90% identity to a sequence of SEQ ID NOS: 69-136, according to computer algorithm 10 BLASTP. According to another aspect of the present invention there is provided an isolated polypeptide comprising at least a functional portion of a polypeptide comprising an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NOS: 69-136. 15 In related embodiments, the present invention provides gene constructs, expression vectors including gene constructs comprising the above polynucleotides, together with host cells transformed with such vectors, and organisms comprising such host cells. In a further aspect, the present invention provides methods for stimulating bovine 20 mammary gland cell growth and function, inhibiting the growth of various mammary gland cancer cells, inhibiting angiogenesis and vascularization of tumors, or modulating the growth of blood vessels in a mammal, such methods comprising administering to the subject a composition comprising an isolated polypeptide of the present invention. Methods for modulating mammary gland function in a mammal are also provided, the 25 methods comprising administering to the subject a composition comprising an inventive polypeptide. As detailed below, the isolated polynucleotides and polypeptides of the present invention may be usefully employed in the preparation of therapeutic agents for the treatment of mammary gland disorders. In addition, polynucleotides that are specifically 30 expressed at a higher or lower level in diseased mammary gland than in a normal mammary gland may be used as an indicator of the disease condition. Similarly, 3 WO 01/14553 PCT/NZOO/00166 disposition to a disease related to a specific level of expression of a polynucleotide would indicate use of that polynucleotide as a marker for diagnosis of susceptible individuals. In yet another aspect, the mapping of a specific polynucleotide of this invention close to the chromosomal location of any beneficial or detrimental genes would make the 5 polynucleotide a valuable tool for breeding of livestock, disease diagnostics, or identification of the beneficial or detrimental gene. The isolated polynucleotides of the present invention have further utility in genome mapping, in physical mapping, and in positional cloning of genes. Additionally, the polynucleotide sequences identified as SEQ ID NOS: 1-68, and their variants, may be 10 used to design oligonucleotide probes and primers (referred to collectively as "oligonucleotides"). As detailed below, oligonucleotide probes and primers have sequences that are substantially complementary to the polynucleotide of interest over a certain portion of the polynucleotide. The inventive oligonucleotide probes may be used to detect the presence, and examine the expression patterns, of genes in any organism 15 having sufficiently similar DNA and RNA sequences in their cells using techniques that are well known in the art, such as slot blot DNA hybridization techniques. The inventive oligonucleotide primers may be used for PCR amplifications. Oligonucleotide probes and primers of the present invention may also be used in connection with various microarray technologies, including the microarray technology of Affymetrix, Inc. (Santa Clara, CA). 20 The above-mentioned and additional features of the present invention, together with the manner of obtaining them, will be best understood by reference to the following more detailed description. All references disclosed herein are incorporated herein by reference in their entirety as if each was incorporated individually. 25 Detailed Description of the Invention In certain aspects, the present invention provides polynucleotides that were isolated by sequencing of cDNA libraries from bovine mammary gland cells, together with polypeptides encoded by such polynucleotides. The polynucleotides of the present invention encode polypeptides that have 30 important roles in growth, development and function of mammary gland cells, and in responses of mammary gland cells to tissue injury and inflammation, as well as disease 4 WO 01/14553 PCT/NZOO/00166 states. The polypeptides and/or polynucleotides of the present invention may thus be employed in the modification of mammary function, as potential markers for selection of livestock having enhanced mammary performance, and as diagnostics for abnormal cellular growth in mammary cancer. Oligonucleotide probes and primers corresponding 5 to the inventive polynucleotides may be employed to detect the presence of mammary gland tissue in a specific tissue sample using techniques well known in the art, such as DNA hybridization and polymerase chain reaction (PCR) amplification. The inventive polypeptides have important roles in processes such as induction of mammary growth, differentiation of milk producing cells, cell migration, cell 10 proliferation, and cell-cell interaction. The polypeptides are important in the maintenance of tissue integrity, and thus are important in processes such as wound healing. Some of the disclosed polypeptides can act as modulators of immune responses, especially since milk is known to contain immunologically active polypeptides for the benefit of mammal offspring. In addition, many polypeptides are immunologically active also within the 15 mammary gland, making them important therapeutic targets in a whole range of disease states not only within the mammary gland, but also in other tissues of a mammal. Antibodies to the polypeptides of the present invention and small molecule inhibitors related to the polypeptides of the present invention may also be used for modulating immune responses and for treatment of diseases according to the present invention. 20 The isolated polynucleotides and polypeptides of the present invention have demonstrated similarity to polynucleotides and/or polypeptides of known function. The identity and putative functions of the inventive polynucleotides based on such similarities are shown in Table 1. 25 Table 1 SEQ ID NO: SEQ ID Category Related gene function or protein class Polynucleotide NO: Polypeptide 1 69 Cell signaling/ Hepatocellular carcinoma and breast cancer associated Differentiation protein. 2 70 Cell signaling/Cell Platelet glycoprotein IV, CD36 antigen or PAS-4 protein, surface antigen has numerous potential physiological functions. It binds to collagen, thrombospondin, anionic phospholipids and oxidized LDL, and functions as a cell adhesion molecule. 5 WO 01/14553 PCT/NZOO/00166 SEQ ID NO: SEQ ID Category Related gene function or protein class Polynucleotide NO: Polypeptide Directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes, binds long chain fatty acids and functions in the transport and/or as a regulator of fatty acid transport. 3 71 Cell signaling/Cell T-cell receptor T3 delta chain is part of the CD3 complex surface antigen that mediates signal transduction. 4 72 Cell signaling/ Entactin-2 or nidogen-2, is a cell adhesion glycoprotein Differentiation that is involved in osteoblast differentiation. It has a role in cell- extracellular matrix interactions. 5 73 Cell signaling/ Myotrophin, granule cell differentiation protein or v-I Differentiation protein has a role in cerebellar morphogenesis and functions in differentiation of cerebellar neurons, particularly of granule cells. It is normally expressed at the completion of differentiation and migration of granular cells and at the initiation of the formation of synapses in cerebellar neurons. 6. 74 Cell signaling/ Novel abundant testis protein TEGT Differentiation 7 75 Cell signaling/ Connective tissue growth factor is the major connective Growth factor tissue mitoattractant secreted by human vascular endothelial cells. This immediate-early protein binds one of the PDGF cell surface receptors. It belongs to the insulin-like growth factor binding protein family. 8 76 Intracellular cell Adenomatosis polyposis coli binding protein EB I (APC signaling binding) is involved in the mechanism through which APC suppresses colonic neoplasia. 9 77 Intracellular cell Adenylyl cyclase-associated protein 1 (CAP 1), is a signaling mammalian homologue of the yeast protein that associates with adenylyl cyclase and thereby enables adenylyl cyclase to respond appropriately to upstream regulatory signals. 10 78 Intracellular cell AMSH - associated molecule with the SH3 domain of signaling STAM (signal transducing adaptor molecule), which is tyrosine-phosphorylated downstream of Jak2 and Jak3 after stimulation with various cytokines such a IL-2, IL-3, IL-4, IL-7, GM- CSF, EGF and PDGF. STAM contains an SH3 (Src-homology 3) domain and the ITAM (immunoreceptor tyrosine-based activation motif), suggesting that STAM acts as an adaptor molecule involved in signal transducing pathways from the cytokine receptors. AMSH plays a critical role in the cytokine-mediated intracellular signal transduction downstream of the Jak2/Jak3.STAM complex. 11 79 Intracellular cell Nel-like protein 2, is a homotrimer that binds to PKC signaling beta-1. It contain several protein motifs including a secretion signal peptide, an NH(2)-terminal thrombospondin-1 (TSP-1)-like module, five von Willebrand factor C domains, and six epidermal growth factor-like domains. It is strongly expressed in early embryonic neural tissues (brain, spinal cord, and dorsal root ganglia); less in other tissues such as cells around cartilage, myocardium, lung mesenchymal cells, and , 6 WO 01/14553 PCT/NZOO/00166 SEQ ID NO: SEQ ID Category Related gene function or protein class Polynucleotide NO: Polypeptide liver. 12 80 Intracellular cell Peroxisomal targeting signal 2 receptor binds to the N signaling terminal PTS2-type peroxisomal targeting signal and plays an essential role in peroxisomal protein import. Interacts with PEX5. 13 81 Intracellular cell Peroxisome proliferator-activated receptor binding signaling protein, also known as thyroid hormone receptor associated protein complex component, TRAP 220, thyroid receptor interacting protein 2, TRIP2, or p53 regulatory protein, RB 18a, interacts with thyroid hormone receptors to regulate nuclear receptor-mediated transcription. The protein has been shown to bind DNA and p53 protein. 14 82 Intracellular cell Retinoblastoma binding protein identified as a signaling differentially expressed gene in activation of the transforming growth factor-beta signal transduction pathway in mammary carcinomas treated with the anticancer monoterpenes 15 83 Intracellular cell Silencer of death domains (SODD), is a widely signaling expressed, approximately 60-kilodalton protein, that was found to be associated with the death domain of TNF-R1. TNF treatment released SODD from TNF-R 1, permitting the recruitment of proteins such as TRADD and TRAF2 to the active TNF-RI signaling complex. SODD also interacts with death receptor-3 (DR3), another member of the TNF receptor superfamily and SODD association may be representative of a general mechanism for preventing spontaneous signaling by death domain-containing receptors. 16 84 Cell signaling/ Pigment epithelium-derived factor is a neurotrophic Differentiation protein that induces extensive neuronal differentiation in retinoblastoma cells. Although it belongs to the serpin family, it does not undergo the S (stressed) to R (relaxed) conformational transition characteristic of active serpins and it exhibits no serine protease inhibitory activity. The N-terminal (aa 42-139) exhibits neurite outgrowth inducing activity. The C-terminal exposed loop (aa 380 416) is essential for serpin activity. 17 85 Intracellular cell HSP90 Molecular chaperone with ATPase activity signaling belongs to the heat shock protein 90 family. 18 86 Cell signaling/Cell Peanut-like protein 2, brain protein H5, is involved in surface antigen cytokinesis. It belongs to the CDC3/CDC10/CDC1 1/CDC12 family. 19 87 Cell structure/ Keratin, type I cytoskeletal 17, (K17) is a marker of basal Cytoskeleton cell differentiation in complex epithelia and therefore indicative of a certain type of epithelial "stem cells". There are two types of cytoskeletal and microfibrillar keratin: I (acidic; 40-55 kDa) [k9 to k20] and II (neutral to basic; 56-70 kDa) [Kl to K8]. Both a basic and an acidic keratin are required for filament assembly. Expressed in the hair follicle, nail bed, mucosal stratified I_ ,squamous epithelia and in basal cells of oral epithelium, 7 WO 01/14553 PCT/NZOO/00166 SEQ ID NO: SEQ ID Category Related gene function or protein class Polynucleotide NO: Polypeptide palmoplantar epidermis and sweat and mammary glands. K17 is induced in damaged or stressed epidermis. K16 and K17 are coexpressed only in pathological situations such as metaplasias and carcinomas of the uterine cervix and in psoriasis vulgaris. Defects in K17, have been found to be associated with type II pachyonychia congenita (PC) also known as Jackson-Lawler (J&L) syndrome. Type II PC is characterized by onchyogryposis, limited plantar hyperkeratosis, multiple epidermal cysts. 20 88 Cell structure/ Mesothelial keratin K7 (type II) is similar to all other Cytoskeleton intermediate filament proteins. 21 89 Immune Zn-alpha2-glycoprotein appears to be a truncated modulation/ MHC secretory major histocompatibility complex-related molecule, and it has a role in the expression of the immune response. 22 90 Immune Ig lambda C region encodes the light chain of the IgG modulation/ complex which is the major immunoglobulin found in Antigen receptor colostrum and milk of cows. 23 91 Immune Ig gamma-2 chain C region is the heavy chain of the IgG modulation/ complex that is the major antibody class secreted in _Antigen receptor colostrum and milk of cows. 24 92 Immune Ig gamma-2 chain C region is the heavy chain of the IgG modulation/ complex that is the major antibody class secreted in Antigen receptor colostrum and milk of cows. 25 93 Metabolic/ GTP cyclohydrolase I feedback regulatory protein Cofactor synthesis mediates tetrahydrobiopterin inhibition of GTP cyclohydrolase I which catalyses the first step in the biosynthesis of tetrahydrofolate. This inhibition is reversed by L-phenylalanine. 26 94 Metabolic/Iron Lactoferrin or lactotransferrin belongs to the transferrin binding family. Transferrins are iron binding transport proteins which can bind two atoms of ferric iron in association with the binding of an anion, usually bicarbonate. Lactoferrin and peptides derived therefrom such as lactoferricin b have antimicrobial properties. 27 95 Metabolic/Lactose N-acetyllactosamine synthase, N-acetylglucosamine (beta synthesis 1-4)galactosyltransferase or lactose synthase A protein, responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins a as well as the carbohydrate moieties of glycolipids. However in the presence of alpha-lactalbumin, it catalyses the reaction: UDP-galactose + D-glucose = UDP + lactose. 28 96 Metabolic/Lipase Lipoprotein lipase hydrolyses triglycerides of circulating chylomicrons and very low-density lipoproteins (VLDL). The enzyme functions in the presence of apolipoprotein C-2 on the luminal surface of vascular endothelium. It is attached to the membrane by a GPI-anchor. 29 97 Metabolic/ Antioxidant enzyme B 166 represents a new mammalian Oxidation subfamily of AhpC/TSA peroxiredoxin antioxidant enzymes with peroxidase activity, and an antioxidant activity comparable with that of catalase. The protein has 8 WO 01/14553 PCT/NZOO/00166 SEQ ID NO: SEQ ID Category Related gene function or protein class Polynucleotide NO: Polypeptide mitochondrial and peroxisomal targeting sequences. Acute inflammation induced in rat lung by lipopolysaccharide is associated with an increase of B166 mRNA levels in lung, and therefore a protective role for B166 in oxidative and inflammatory processes. 30 98 Metabolic/Purine Purine nucleoside phosphorylase, also known as inosine metabolism phosphorylase, removes phosphates from purine nucleosides 31 99 Metabolic/Purine Bifunctional purine biosynthesis protein, PURH, or 5 synthesis aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase catalyses steps 9 and 10 in the purine synthesis pathway. 32 100 Metabolic/ Glutathione S-transferase P catalyses the conjugation of Xenobiotics reduced glutathione to a wide number of exogenous and __________ _______ _____________endogenous hydrophobic electrophiles. 33 101 Metabolic/ Microsomal glutathione S-transferase 3 is an integral Xenobiotics microsomal membrane protein. It is predominantly expressed in heart, skeletal muscle, and adrenal cortex, but is also found in brain, placenta, liver, kidney, pancreas, thyroid, tests, and ovary, but is expressed in low levels in lung, thymus, and peripheral blood leukocytes. It is a member of a family that includes 5 Lipoxygenase activating protein (FLAP), leukotriene-C4 (LTC4) synthase, and microsomal glutathione S transferase II (microsomal GST- II) and microsomal _______ ______GST-I. 34 102 Protein synthesis Small nuclear ribonucleoprotein SM d2 (SNRNP core mRNA processing protein d2; AM-d2) is involved in mRNA processing. 35 103 Protein synthesis/ Spliceosome associated protein 145 is a subunit of the mRNA processing SF3b complex required for 'A' complex assembly formed by the stable binding of U2 SNRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of Sf3a/Sf3b complex upstream of the branch site is essential, it may anchor U2 SNRNP to the pre-mRNA 36 104 Protein synthesis/ Translocon-associated protein, delta subunit precursor Processing (TRAP-delta). TRAP proteins are part of a complex whose function is to bind Ca(2+) to the endoplasmic reticulum (ER) membrane and thereby regulate the retention of ER resident proteins. 37 105 Protein synthesis/ Translocon-associated protein, delta subunit precursor Processing (TRAP-delta). TRAP proteins are part of a complex whose function is to bind Ca(2+) to the endoplasmic reticulum (ER) membrane and thereby regulate the retention of ER resident proteins. 38 106 Protein synthesis/ Phospholipase associates with proteins of the secretory Secretion pathway, and has a role in the early secretary pathway. Central and C-terminal regions exhibit significant homology to phospholipid-modifying proteins, especially phosphatidic acid preferring-phospholipase Al. 39 107 Protein synthesis/ Pancreatic zymogen granule membrane protein GP-2 is Secretion attached to the membrane by a GPI-anchor, then cleaved to produce a soluble form which is secreted in pancreatic 9 WO 01/14553 PCT/NZOO/00166 SEQ ID NO: SEQ ID Category Related gene function or protein class Polynucleotide NO: Polypeptide juice. 40 108 Protein synthesis/ E74-like factor 5, ELF5, is a novel transcription factor Transcription that belongs to the ELF subfamily of ETS genes and maps to human chromosome I1p 13-15, a region subject to LOH and rearrangement in human carcinoma cell lines. 41 109 Protein synthesis/ ERGB is a member of the family of human ETS Transcription transcription factors and shows extensive amino acid identity to the human ERG and the mouse Fli-i genes. The ERGB gene is found to be transcriptionally active in a variety of human cell lines and tissues, in contrast to the more restrictive expression pattern of the ERG gene. 42 110 Protein synthesis/ ESE-2 is a novel ESE-1-related Ets transcription factor Transcription that is restricted to glandular epithelium and differentiated keratinocytes. 43 111 Protein synthesis/ Identified as a liver- specific human protein that is 62% Transcription identical to IQGAPI and proposed to play role in the CDC42 and Rac1 controlled generation of specific actin structures. 44 112 Protein synthesis/ Nuclear factor erythroid 2 related factor 2 may be Transcription involved in the transcriptional activation of genes of the beta-globin cluster by mediating enhancer activity of hypersensitive site 2 of the beta-globin locus control region. 45 113 Protein synthesis/ Transcription initiation factor TFIld 31 kDa subunit is a Transcription component of the transcription factor Ild (TFIId) complex that is essential for mediating regulation of RNA polymerase transcription. TAFII31 is a coactivator for the p53 protein. Also interacts with the acidic transactivator viral protein 16 (vpl6) as well as with the general transcription factor TFIIb. 46 114 Protein synthesis/ Eukaryotic translation initiation factor 4b (eIF4-b) is Translation required for the binding of mRNA to ribosomes and functions in close association with eIF4-f and eIF4-a. Binds near the 5'-terminal cap of mRNA in presence of eIF4-f and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both eIF4-a and eIF4-f. 47 115 Protein synthesis/ FK506-binding protein, peptidyl-prolyl cis-trans Translation isomerase, belongs to the FKBP-type PPIase family. PPlases accelerate the folding of proteins through the cis trans isomerization of proline imidic peptide bonds in oligopeptides. 48 116 Protein synthesis/ Human protein, PINI, is an essential peptidyl-prolyl Translation cis/trans isomerase (PPIase) that interacts with NIMA and attenuates its mitosis-promoting activity. PPIases are important in protein folding, assembly and/or transport. 49 117 Protein Glycyl-tRNA synthetase (ec 6.1.1.14) (glycine-tRNA synthesis/tRNA ligase) (GLYS) catalyses the synthesis of glycyl-tRNA. synthesis 50 118 Protein turnover/ Proteasome subunit C7-I is part of the 20S proteasome Proteasome involved in the intracellular turnover of proteins tagged as 10 WO 01/14553 PCT/NZOO/00166 SEQ ID NO: SEQ ID Category Related gene function or protein class Polynucleotide NO: Polypeptide part of the ubiquitin pathway. 51 119 Protein synthesis/ Chromosome associated polypeptide-3 , homologous to Transcription Xenopus laevis XCAP-C. 52 120 Protein turnover/ Ubiquitin binds to protein to tag them for intracellular Proteasome degradation by the proteasome system and for other metabolic processes. 53 121 Cell signaling/ Cell cycle protein is a potential cell division regulator. Differentiation 54 122 Immune Cathepsin F is a cysteine protease and a member of the modulation/ papain family that has a role in the processing of the Antigen processing invariant chain processing and MHC class II peptide loading by macrophages. 55 123 Immune High affinity immunoglobulin gamma Fc receptor I binds modulation/ to the Fc region of immunoglobulin gamma and is Antibody uptake responsible for the uptake of IgG molecules and important in the transfer of IgG molecules across mammary epithelia. 56 124 Metabolic/Oxidati Fumarate hydratase, mitochondrial precursor (ec 4.2.1.2) on (fumarase) catalyses a step in the citric acid cycle. 57 125 Cell signaling/ Lipophilin B is a secreted protein of the uteroglobin Differentiation family that binds androgens and other steroids, as well as estramustine, a chemotherapeutic agent used for prostate cancer. Lipophilin B is under transcriptional regulation of steroid hormones and highest expression is found in skeletal muscle, but it is also expressed in thymus, trachea, kidney, steroid responsive tissues (prostate, testis, uterus, breast and ovary), and salivary gland. 58 126 Immune High affinity immunoglobulin gamma Fc receptor I binds modulation/ to the Fc region of immunoglobulin gamma and is Antibody uptake responsible for the uptake of IgG molecules and important in the transfer of IgG molecules across mammary epithelia. 59 127 Cell signaling/ B Cell translocation gene I (BTG1) is a member of a Differentiation family of putative antiproliferative factors. They are characterized by their rapid, but transient, expression in response to factors that induce growth arrest and subsequent differentiation. 60 128 Protein synthesis/ LSM3 protein is involved in mRNA processing. Translation 61 129 Protein synthesis/ CTCF is a highly evolutionarily conserved 11-zinc finger Transcription transcriptional factor possessing multiple DNA sequence specificity. CTCF binds to a number of important regulatory within the 5 non-coding sequence of the human MYC oncogene, and it can regulate its transcription in several experimental systems. CTCF mRNA is expressed in cells of multiple different lineages. Enforced ectopic expression of CTCF inhibits cell growth in culture. 62 130 Cell signaling/ Intestinal trefoil factor is a secreted protein that has a Differentiation potential role in promoting cell migration. It is expressed by goblet cells of small and large epithelia and also by the uterus. 11 WO 01/14553 PCT/NZOO/00166 SEQ ID NO: SEQ ID Category Related gene function or protein class Polynucleotide NO: Polypeptide 63 131 Metabolic/Lipid Choline and ethanolamine kinase catalyses the synthesis phosphorylation of choline and ethanolamine, a step required for phospholipid synthesis. 64 132 Metabolic/ ATP-binding cassette protein M-ABCI is a member of Xenobiotics the ATP-binding cassette (ABC) superfamily that is involved in the transport of diverse substrates across organellar and plasma membranes of the mammalian cell. 65 133 Cell signaling/ Negative growth-regulatory protein myd 118, also known Differentiation as growth arrest and DNA-damage- inducible protein GADD45 beta, is involved in the regulation of growth and apoptosis. Mediates activation of stress-responsive MTKI/MEKK4 MAPKKK. 66 134 Protein synthesis/ The human BTF2 (TFIIH) transcription factor is a Transcription multisubunit protein involved in transcription initiation by RNA polymerase II (B) as well as in DNA repair. 67 135 Immune Ig light chain is a component of the IgG complex, the modulation/ major immunoglobulin secreted in colostrum and milk Antigen receptor 68 136 Transcription Retinoic acid receptor responder protein 2, tazarotene factor induced gene 2 protein or RAR-responsive protein tig2 is highly expressed in skin (basal and suprabasal layers of the epidermis, hair follicles and endothelial cells), and is also found in pancreas, liver, spleen, prostate, ovary, small intestine and colon. This protein is inhibited in psoriatic lesions and activated by tazarotene in skin grafts and in the epidermis of psoriatic lesions. The polynucleotides of SEQ ID NO: 1-7, 16, 18, 53, 57, 59, 62 and 65 encode polypeptides involved in cell signalling at the extracellular level including both secreted 5 polypeptides and cell surface receptors for secreted polypeptides. These function in regulating cell metabolism and cell growth. The polynucleotides of SEQ ID NO: 1, 4-6, 16, 53, 57, 59, 62 and 65 encode polypeptides that are involved in cellular differentiation. The polynucleotides of SEQ ID NO: 8-15 and 17 encode polypeptides that are intracellular mediators of external cell signalling events. The polynucleotides of SEQ ID 10 NO: 19 and 20 encode polypeptides that are part of the cellular cytoskeleton and that have utility in the manipulation of mammary epithelial cell structure and function. The polynucleotides of SEQ ID NO: 21-24, 54, 55, 58 and 67 encode components of the immune system and have utility in enhancing the concentration of immune proteins in mammary secretions. The polynucleotides of SEQ ID NO: 25-33, 56, 63 and 64 encode 15 polypeptides involved in intracellular metabolic pathways relating to the synthesis and 12 WO 01/14553 PCT/NZOO/00166 degradation of lipids, carbohydrates and purines, and the oxidation of xenobiotics. The polynucleotides of SEQ ID NO: 34-52, 60, 61 and 66 encode polypeptides that are involved in protein synthesis and degradation. They include transcription factors that regulate mRNA synthesis, and polypeptides involved in the transcription process, the 5 processing of mRNA, the translation of mRNA to produce polypeptides and processing and turnover of specific proteins. These polynucleotides have utility in the manipulation of the synthesis of mammary secretions to modify the yields of milk and specific milk proteins. Isolated polynucleotides of the present invention include the polynucleotides 10 identified herein as SEQ ID NOS: 1-68; isolated polynucleotides comprising a polynucleotide sequence selected from the group consisting of SEQ ID NOS: 1-68; isolated polynucleotides comprising at least a specified number of contiguous residues (x mers) of any of the polynucleotides identified as SEQ ID NOS: 1-68; isolated polynucleotides comprising a polynucleotide sequence that is complementary to any of 15 the above polynucleotides; isolated polynucleotides comprising a polynucleotide sequence that is a reverse sequence or a reverse complement of any of the above polynucleotides; antisense sequences corresponding to any of the above polynucleotides; and variants of any of the above polynucleotides, as that term is described in this specification. 20 The definition of the terms "complement," "reverse complement," and "reverse sequence," as used herein, is best illustrated by the following example. For the sequence 5' AGGACC 3', the complement, reverse complement, and reverse sequence are as follows: complement 3' TCCTGG 5' 25 reverse complement 3' GGTCCT 5' reverse sequence 5' CCAGGA 3'. As used herein, the term "oligonucleotide" refers to a relatively short segment of a polynucleotide sequence, generally comprising between 6 and 60 nucleotides, and comprehends both probes for use in hybridization assays and primers for use in the 30 amplification of DNA by polymerase chain reaction. 13 WO 01/14553 PCT/NZOO/00166 As used herein, the term "polynucleotide" means a single- or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and RNA molecules, both sense and anti-sense strands. The term comprehends cDNA, genomic DNA, recombinant DNA, and wholly or partially synthesized nucleic acid molecules. A 5 polynucleotide may consist of an entire gene, or a portion thereof. A gene is a DNA sequence that codes for a functional protein or RNA molecule. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all operable anti-sense fragments. Anti sense polynucleotides and techniques involving anti-sense polynucleotides are well 10 known in the art and are described, for example, in Robinson-Benion et al., "Anti-sense techniques," Methods in Enzymol. 254(23):363-375, 1995; and Kawasaki et al., Artific. Organs 20(8):836-848, 1996. Identification of genomic DNA and heterologous species DNA can be accomplished by standard DNA/DNA hybridization techniques, under appropriately 15 stringent conditions, using all or part of a polynucleotide sequence as a probe to screen an appropriate library. Alternatively, PCR techniques using oligonucleotide primers that are designed based on known genomic DNA, cDNA and protein sequences can be used to amplify and identify genomic and/or cDNA sequences. Synthetic polynucleotides corresponding to the identified sequences, and variants thereof, may be produced by 20 conventional synthesis methods. All the polynucleotides provided by the present invention are isolated and purified, as those terms are commonly used in the art. The polynucleotide sequences identified as SEQ ID NOS: 1-68 were derived from bovine mammary gland cells. Certain of the polynucleotides of the present invention may be "partial" sequences, in that they do not represent a full-length gene encoding a 25 full-length polypeptide. Such partial sequences may be extended by analyzing and sequencing various DNA libraries using primers and/or probes and well known hybridization and/or PCR techniques. The sequences identified as SEQ ID NOS: 1-68 may thus be extended until an open reading frame encoding a polypeptide, a full-length polynucleotide and/or gene capable of expressing a polypeptide, or another useful portion 30 of the genome is identified. Such extended sequences, including full-length polynucleotides and genes, are described as "corresponding to" a sequence identified as 14 WO 01/14553 PCT/NZOO/00166 one of the sequences of SEQ ID NOS: 1-68, or a variant thereof, or a portion of one of the sequences of SEQ ID NOS: 1-68, or a variant thereof, when the extended polynucleotide comprises an identified sequence or its variant, or an identified contiguous portion (x-mer) of one of the sequences of SEQ ID NOS: 1-68 or a variant thereof. 5 The polynucleotides identified as SEQ ID NOS: 1-68 were isolated from bovine mammary gland cDNA libraries and represent sequences that are expressed in the tissue from which the cDNA was prepared. The sequence information may be used to isolate or synthesize expressible DNA molecules such as open reading frames or full-length genes, that then can be used as expressible or otherwise functional DNA in cows and other 10 organisms. Similarly, RNA sequences, reverse sequences, complementary sequences, antisense sequences, and the like, corresponding to the polynucleotides of the present invention, may be routinely ascertained and obtained using the cDNA sequences identified as SEQ ID NOS: 1-68. The polynucleotides identified as SEQ ID NOS: 1-68 contain open reading frames 15 ("ORFs") or partial open reading frames encoding polypeptides. Additionally, open reading frames encoding polypeptides may be identified in extended or full-length sequences corresponding to the sequences set out as SEQ ID NOS: 1-68. Open reading frames may be identified using techniques that are well known in the art. These techniques include, for example, analysis for the location of known start and stop codons, 20 most likely reading frame identification based on codon frequencies, etc. Suitable tools and software for ORF analysis are available, for example, on the Internet at http://www.ncbi.nlm.nih.gov/gorf/gorf.html. Additional tools and software for ORF analysis are available, for example, including GeneWise, available from The Sanger Center, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 lSA, United 25 Kingdom; Diogenes, available from Computational Biology Centers, University of Minnesota, Academic Health Center, UMHG Box 43 Minneapolis MN 55455; and GRAIL, available from the Informatics Group, Oak Ridge National Laboratories, Oak Ridge, Tennessee TN. Open reading frames and portions of open reading frames may be identified in the polynucleotides of the present invention. Once a partial open reading 30 frame is identified, the polynucleotide may be extended in the area of the partial open reading frame using techniques that are well known in the art until the polynucleotide for 15 WO 01/14553 PCT/NZOO/00166 the full open reading frame is identified. Thus, polynucleotides and open reading frames encoding polypeptides may be identified using the polynucleotides of the present invention. Once open reading frames are identified in the polynucleotides of the present 5 invention, the open reading frames may be isolated and/or synthesized. Expressible genetic constructs comprising the open reading frames and suitable promoters, initiators, terminators, etc., which are well known in the art, may then be constructed. Such genetic constructs may be introduced into a host cell to express the polypeptide encoded by the open reading frame. Suitable host cells may include various prokaryotic and eukaryotic 10 cells, including mammalian cells. In vitro expression of polypeptides is also possible, as well known in the art. Polypeptides encoded by the polynucleotides of the present invention may be expressed and used in various assays to determine their biological activity. Such polypeptides may be used to raise antibodies, to isolate corresponding interacting proteins 15 or other compounds, and to quantitatively determine levels of interacting proteins or other compounds. In another aspect, the present invention provides isolated polypeptides encoded, or partially encoded, by the above polynucleotides. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full-length 20 proteins, wherein the amino acid residues are linked by covalent peptide bonds. The term "polypeptide encoded by a polynucleotide" as used herein, includes polypeptides encoded by a polynucleotide that comprises an isolated polynucleotide sequence or variant provided herein. Polypeptides of the present invention may be naturally purified products, or may be produced partially or wholly using recombinant techniques. Such 25 polypeptides may be glycosylated with bacterial, fungal, mammalian or other eukaryotic carbohydrates or may be non-glycosylated. In specific embodiments, the inventive polypeptides comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 69-136. Polypeptides of the present invention may be produced recombinantly by 30 inserting a polynucleotide sequence that encodes the polypeptide into a genetic construct and expressing the polypeptide in an appropriate host. Any of a variety of genetic 16 WO 01/14553 PCT/NZOO/00166 constructs known to those of ordinary skill in the art may be employed. Expression may be achieved in any appropriate host cell that has been transformed or transfected with a genetic construct containing a polynucleotide that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast, and higher eukaryotic cells. Preferably, the 5 host cells employed are Escherichia coli, insect, yeast, or a mammalian cell line such as COS or CHO. The polynucleotide sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof. In a related aspect, polypeptides are provided that comprise at least a functional 10 portion of a polypeptide having an amino acid sequence encoded by a polynucleotide of the present invention. As used herein, the "functional portion" of a polypeptide is that portion which contains the active site essential for effecting the function of the polypeptide, for example, the portion of the molecule that is capable of binding one or more reactants. The active site may be made up of separate portions present on one or 15 more polypeptide chains and will generally exhibit high binding affinity. Functional portions of a polypeptide may be identified by first preparing fragments of the polypeptide by either chemical or enzymatic digestion of the polypeptide, or by mutation analysis of the polynucleotide that encodes the polypeptide and subsequent expression of the resulting mutant polypeptides. The polypeptide 20 fragments or mutant polypeptides are then tested to determine which portions retain biological activity, using, for example, the representative assays provided below. Portions and other variants of the inventive polypeptides may also be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using 25 techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2154, 1963. Equipment for automated synthesis of polypeptides is 30 commercially available from suppliers such as Perkin Elmer/Applied BioSystems, Inc. (Foster City, California), and may be operated according to the manufacturer's 17 WO 01/14553 PCT/NZOO/00166 instructions. Variants of a native polypeptide may be prepared using standard mutagenesis techniques, such as oligonucleotide-directed, site-specific mutagenesis (Kunkel, Proc. Nati. Acad. Sci. USA 82:488-492, 1985). Sections of polynucleotide sequence may also be removed using standard techniques to permit preparation of 5 truncated polypeptides. In general, the polypeptides disclosed herein are prepared in an isolated, substantially pure, form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure, and most preferably at least about 99% pure. In certain embodiments, described in detail below, the isolated polypeptides are 10 incorporated into pharmaceutical compositions or vaccines. As used herein, the term "variant" comprehends nucleotide or amino acid sequences different from the specifically identified sequences, wherein one or more nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant 15 sequences (polynucleotide or polypeptide) preferably exhibit at least 50%, more preferably at least 75%, more preferably yet at least 90%, and most preferably, at least 98% identity to a sequence of the present invention. The percentage identity is determined by aligning the two sequences to be compared as described below, determining the number of identical residues in the aligned portion, dividing that number 20 by the total number of residues in the inventive (queried) sequence, and multiplying the result by 100. By way of example only, assume a queried polynucleotide having 220 nucleic acids has a hit to a polynucleotide sequence in the EMBL database having 520 nucleic acids over a stretch of 23 nucleotides in the alignment produced by the BLASTN algorithm using the default parameters as described below. The 23 nucleotide hit 25 includes 21 identical nucleotides, one gap and one different nucleotide. The percentage identity of the queried polynucleotide to the hit in the EMBL database is thus 21/220 times 100, or 9.5%. The percentage identity of polypeptide sequences may be determined in a similar fashion. Polynucleotide and polypeptide sequences may be aligned, and percentages of 30 identical residues in a specified region may be determined against another polynucleotide or polypeptide, using computer algorithms that are publicly available. Two exemplary 18 WO 01/14553 PCT/NZOO/00166 algorithms for aligning and identifying the similarity of polynucleotide sequences are the BLASTN and FASTA algorithms. Polynucleotides may also be analyzed using the BLASTX algorithm, which compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database. The 5 percentage identity of polypeptide sequences may be examined using the BLASTP algorithm. The BLASTN, BLASTP and BLASTX algorithms are available on the NCBI anonymous FTP server (ftp://ncbi.nlm.nih.gov) under /blast/executables/ and are available from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, MD 20894, USA. The 10 BLASTN algorithm Version 2.0.4 [Feb-24-1998], Version 2.0.6 [Sept-16-1998] and Version 2.0.11 [Jan-20-2000], set to the parameters described below, is preferred for use in the determination of polynucleotide variants according to the present invention. The BLASTP algorithm, set to the parameters described below, is preferred for use in the determination of polypeptide variants according to the present invention. The use of the 15 BLAST family of algorithms, including BLASTN, BLASTP and BLASTX, is described at NCBI's website at URL http://www.ncbi.nlm.nih.gov/BLAST/newblast.html and in the publication of Altschul, et al., Nucleic Acids Res. 25: 3389-3402, 1997. The FASTA and FASTX algorithms are available on the Internet at the ftp site ftp://ftp.virginia.edu/pub/, and from the University of Virginia by contacting David 20 Hudson, Vice Provost for Research, University of Virginia, P.O. Box 9025, Charlottesville, VA 22906-9025, USA. The FASTA algorithm, set to the default parameters described in the documentation and distributed with the algorithm, may be used in the determination of polynucleotide variants. The readme files for FASTA and FASTX Version 1.Ox that are distributed with the algorithms describe the use of the 25 algorithms and describe the default parameters. The use of the FASTA and FASTX algorithms is described in Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444 2448, 1988; and Pearson, Methods in Enzymol. 183:63-98, 1990. The following running parameters are preferred for determination of alignments and similarities using BLASTN that contribute to the E values and percentage identity for 30 polynucleotides: Unix running command with the following default parameters: blastall p blastn -d embldb -e 10 -G 0 -E 0 -r 1 -v 30 -b 30 -i queryseq -o results; and 19 WO 01/14553 PCT/NZOO/00166 parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -r Reward for a nucleotide match (blastn only) [Integer]; -v Number of one-line descriptions (V) [Integer]; -b Number of 5 alignments to show (B) [Integer]; -i Query File [File In]; -o BLAST report Output File [File Out] Optional. The following running parameters are preferred for determination of alignments and similarities using BLASTP that contribute to the E values and percentage identity of polypeptide sequences: blastall -p blastp -d swissprotdb -e 10 -G 0 -E 0 -v 30 -b 30 -i 10 queryseq -o results; the parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -v Number of one-line descriptions (v) [Integer]; -b Number of alignments to show (b) [Integer]; -I Query File [File In]; -o BLAST report Output File [File Out] Optional. 15 The "hits" to one or more database sequences by a queried sequence produced by BLASTN, BLASTP, FASTA, or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence. 20 The BLASTN, FASTA and BLASTP algorithms also produce "Expect" values for polynucleotide and polypeptide alignments. The Expect value (E) indicates the number of hits one can "expect" to see over a certain number of contiguous sequences by chance when searching a database of a certain size. The Expect value is used as a 25 significance threshold for determining whether the hit to a database indicates true similarity. For example, an E value of 0.1 assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the EMBL database, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. By this criterion, the aligned and matched portions of the sequences then have a 30 probability of 90% of being related. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in the EMBL 20 WO 01/14553 PCT/NZOO/00166 database is 1% or less using the BLASTN algorithm. E values for polypeptide sequences may be determined in a similar fashion using various polypeptide databases, such as the SwissProt database. According to one embodiment, "variant" polynucleotides and polypeptides, with 5 reference to each of the polynucleotides and polypeptides of the present invention, preferably comprise sequences having the same number or fewer nucleic or amino acids than each of the polynucleotides or polypeptides of the present invention and producing an E value of 0.01 or less when compared to the polynucleotide or polypeptide of the present invention. That is, a variant polynucleotide or polypeptide is any sequence that 10 has at least a 99% probability of being the same as the polynucleotide or polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTN, FASTA or BLASTP algorithms set at the default parameters. According to a preferred embodiment, a variant polynucleotide is a sequence having the same number or fewer nucleic acids than a polynucleotide of the present invention that has at least a 99% 15 probability of being the same as the polynucleotide of the present invention, measured as having an E value of 0.01 or less using the BLASTN algorithm set at the default parameters. Similarly, according to a preferred embodiment, a variant polypeptide is a sequence having the same number or fewer amino acids than a polypeptide of the present invention that has at least a 99% probability of being the same as the polypeptide of the 20 present invention, measured as having an E value of 0.01 or less using the BLASTP algorithm set at the default parameters. In addition to having a specified percentage identity to an inventive polynucleotide or polypeptide sequence, variant polynucleotides and polypeptides preferably have additional structure and/or functional features in common with the 25 inventive polynucleotide or polypeptide. Polypeptides having a specified degree of identity to a polypeptide of the present invention share a high degree of similarity in their primary structure and have substantially similar functional properties. In addition to sharing a high degree of similarity in their primary structure to polynucleotides of the present invention, polynucleotides having a specified degree of identity to, or capable of 30 hybridizing to an inventive polynucleotide preferably have at least one of the following features: (i) they contain an open reading frame or partial open reading frame encoding a 21 WO 01/14553 PCT/NZOO/00166 polypeptide having substantially the same functional properties as the polypeptide encoded by the inventive polynucleotide; or (ii) they contain identifiable domains in common. Alternatively, variant polynucleotides hybridize to a polynucleotide of the present 5 invention under stringent conditions. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65'C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65 0 C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65 0 C. The present invention also encompasses polynucleotides that differ from the 10 disclosed sequences but that, as a consequence of the discrepancy of the genetic code, encode a polypeptide having similar enzymatic activity as a polypeptide encoded by a polynucleotide of the present invention. Thus, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NOS: 1-68 (or complements, reverse sequences, or reverse complements of those sequences) as a result 15 of conservative substitutions are encompassed within the present invention. Additionally, polynucleotides comprising sequences that differ from the inventive polynucleotide sequences or complements, reverse complements, or reverse sequences as a result of deletions and/or insertions totaling less than 10% of the total sequence length are also contemplated by and encompassed within the present invention. Similarly, polypeptides 20 comprising sequences that differ from the inventive polypeptide sequences as a result of amino acid substitutions, insertions, and/or deletions totaling less than 10% of the total sequence length are contemplated by and encompassed within the present invention, provided the variant polypeptide has similar activity to the inventive polypeptide. The polynucleotides of the present invention may be isolated from various 25 libraries, or may be synthesized using techniques that are well known in the art. The polynucleotides may be synthesized, for example, using automated oligonucleotide synthesizers (e.g., Beckman Oligo 1000M DNA Synthesizer) to obtain polynucleotide segments of up to 50 or more nucleic acids. A plurality of such polynucleotide segments may then be ligated using standard DNA manipulation techniques that are well known in 30 the art of molecular biology. One conventional and exemplary polynucleotide synthesis technique involves synthesis of a single stranded polynucleotide segment having, for 22 WO 01/14553 PCT/NZOO/00166 example, 80 nucleic acids, and hybridizing that segment to a synthesized complementary 85 nucleic acid segment to produce a 5 nucleotide overhang. The next segment may then be synthesized in a similar fashion, with a 5 nucleotide overhang on the opposite strand. The "sticky" ends ensure proper ligation when the two portions are hybridized. In this 5 way, a complete polynucleotide of the present invention may be synthesized entirely in vitro. As noted above, certain of the polynucleotides identified as SEQ ID NOS: 1-68 may be referred to as "partial" sequences, in that they may not represent the full coding portion of a gene encoding a naturally occurring polypeptide. Partial polynucleotide 10 sequences disclosed herein may be employed to obtain the corresponding full-length genes for various species and organisms by, for example, screening DNA expression libraries using hybridization probes based on the polynucleotides of the present invention, or using PCR amplification with primers based upon the polynucleotides of the present invention. In this way one can, using methods well known in the art, extend a 15 polynucleotide of the present invention upstream and downstream of the corresponding mRNA, as well as identify the corresponding genomic DNA, including the promoter and enhancer regions, of the complete gene. The present invention thus comprehends isolated polynucleotides comprising a sequence identified in SEQ ID NOS: 1-68, or a variant of one of the specified sequences, that encode a functional polypeptide, including full-length 20 genes. Such extended polynucleotides may have a length of from about 50 to about 4,000 nucleic acids or base pairs, and preferably have a length of less than about 4,000 nucleic acids or base pairs, more preferably yet a length of less than about 3,000 nucleic acids or base pairs, more preferably yet a length of less than about 2,000 nucleic acids or base pairs. Under some circumstances, extended polynucleotides of the present invention 25 may have a length of less than about 1,800 nucleic acids or base pairs, preferably less than about 1,600 nucleic acids or base pairs, more preferably less than about 1,400 nucleic acids or base pairs, more preferably yet less than about 1,200 nucleic acids or base pairs, and most preferably less than about 1,000 nucleic acids or base pairs. As used herein, the term "x-mer," with reference to a specific value of "x," refers 30 to a polynucleotide or polypeptide, respectively, comprising at least a specified number ("x") of contiguous residues of: any of the polynucleotides provided in SEQ ID NOS: 1 23 WO 01/14553 PCT/NZOO/00166 68. The value of x may be from about 20 to about 600, depending upon the specific sequence. Polynucleotides of the present invention comprehend polynucleotides comprising at least a specified number of contiguous residues (x-mers) of any of the polynucleotides 5 identified as SEQ ID NOS: 1-68, or their variants. Polypeptides of the present invention comprehend polypeptides comprising at least a specified number of contiguous residues (x-mers) of any of the polypeptides corresponding to the polynucleotides of SEQ ID NOS: 1-68. According to preferred embodiments, the value of x is at least 20, more preferably at least 40, more preferably yet at least 60, and most preferably at least 80. 10 Thus, polynucleotides of the present invention include polynucleotides comprising a 20 mer, a 40-mer, a 60-mer, an 80-mer, a 1 00-mer, a 120-mer, a 150-mer, a 1 80-mer, a 220 mer, a 250-mer, a 300-mer, 400-mer, 500-mer or 600-mer of a polynucleotide provided in SEQ ID NOS: 1-68, or a variant of one of the polynucleotides provided in SEQ ID NOS: 1-68. Similarly, polypeptides of the present invention include polypeptides 15 comprising a 20-mer, a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer, a 250-mer, a 300-mer, 400-mer, 500-mer or 600-mer of an amino acid sequence provided in SEQ ID NO: 69-136 or a variant thereof. The inventive polynucleotides may be isolated by high throughput sequencing of cDNA libraries prepared from bovine mammary gland tissue as described below in 20 Example 1. Alternatively, oligonucleotide probes and/or primers based on the sequences provided in SEQ ID NOS: 1-68, can be synthesized and used to identify positive clones in either cDNA or genomic DNA libraries from bovine mammary gland cells by means of hybridization or polymerase chain reaction (PCR) techniques. Probes can be shorter than the sequences provided herein but should be at least about 10, preferably at least 25 about 15 and most preferably at least about 20 nucleotides in length. Hybridization and PCR techniques suitable for use with such oligonucleotide probes are well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich, ed., PCR technology, Stockton Press: NY, 1989; and Sambrook et al., in Molecular cloning: a laboratory manual, 2nd ed., CSHL Press: Cold Spring Harbor, NY, 30 1989). Positive clones may be analyzed by restriction enzyme digestion, DNA sequencing or the like. 24 WO 01/14553 PCT/NZOO/00166 In addition, polynucleotide sequences of the present invention may be generated by synthetic means using techniques well known in the art. Equipment for automated synthesis of oligonucleotides is commercially available from suppliers such as Perkin Elmer/Applied Biosystems Division (Foster City, CA) and may be operated according to 5 the manufacturer's instructions. Oligonucleotide probes and primers complementary to and/or corresponding to SEQ ID NOS: 1-68, and variants of those sequences, are also comprehended by the present invention. Such oligonucleotide probes and primers are substantially complementary to the polynucleotide of interest. An oligonucleotide probe or primer is 10 described as "corresponding to" a polynucleotide of the present invention, including one of the sequences set out as SEQ ID NOS: 1-68 or a variant thereof, if the oligonucleotide probe or primer, or its complement, is contained within one of the sequences set out as SEQ ID NOS: 1-68 or a variant of one of the specified sequences. Two single stranded sequences are said to be substantially complementary when 15 the nucleotides of one strand, optimally aligned and compared, with the appropriate nucleotide insertions and/or deletions, pair with at least 80%, preferably at least 90% to 95%, and more preferably at least 98% to 100%, of the nucleotides of the other strand. Alternatively, substantial complementarity exists when a first DNA strand will selectively hybridize to a second DNA strand under stringent hybridization conditions. 20 Stringent hybridization conditions for determining complementarity include salt conditions of less than about 1 M, more usually less than about 500 mM, and preferably less than about 200 mM. Hybridization temperatures can be as low as 5*C, but are generally greater than about 22"C, more preferably greater than about 30'C, and most preferably greater than about 37"C. Longer DNA fragments may require higher 25 hybridization temperatures for specific hybridization. Since the stringency of hybridization may be affected by other factors such as probe composition, presence of organic solvents, and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone. DNA-DNA hybridization studies may be performed using either genomic DNA or DNA derived by preparing cDNA from 30 the RNA present in the sample. 25 WO 01/14553 PCT/NZOO/00166 In addition to DNA-DNA hybridization, DNA-RNA or RNA-RNA hybridization assays are also possible. In the first case, the mRNA from expressed genes would then be detected instead of genomic DNA or cDNA derived from mRNA of the sample. In the second case, RNA probes could be used. In addition, artificial analogs of DNA 5 hybridizing specifically to target sequences could also be used. In specific embodiments, the inventive oligonucleotide probes and/or primers comprise at least about 6 contiguous residues, more preferably at least about 10 contiguous residues, and most preferably at least about 20 contiguous residues complementary to a polynucleotide sequence of the present invention. Probes and 10 primers of the present invention may be from about 8 to 100 base pairs in length, or preferably from about 10 to 50 base pairs in length, or more preferably from about 15 to 40 base pairs in length. The probes can be easily selected using procedures well known in the art, taking into account DNA-DNA hybridization stringencies, annealing and melting temperatures, potential for formation of loops, and other factors which are well 15 known in the art. Tools and software suitable for designing probes, and especially suitable for designing PCR primers, are available on the Internet, for example, at URL http://www.horizonpress.com/pcr/. In addition, a software program suitable for designing probes, and especially for designing PCR primers, is available from Premier Biosoft International, 3786 Corina Way, Palo Alto, CA 94303-4504. Preferred 20 techniques for designing PCR primers are also disclosed in Dieffenbach and Dyksler, PCR Primer: a laboratory manual, CSHL Press: Cold Spring Harbor, NY, 1995. A plurality of oligonucleotide probes or primers corresponding to a polynucleotide of the present invention may be provided in a kit form. Such kits generally comprise multiple DNA or oligonucleotide probes, each probe being specific 25 for a polynucleotide sequence. Kits of the present invention may comprise one or more probes or primers corresponding to a polynucleotide of the present invention, including a polynucleotide sequence identified in SEQ ID NOS: 1-68. In one embodiment useful for high-throughput assays, the oligonucleotide probe kits of the present invention comprise multiple probes in an array format, wherein each 30 probe is immobilized in a predefined, spatially addressable location on the surface of a solid substrate. Array formats which may be usefully employed in the present invention 26 WO 01/14553 PCT/NZOO/00166 are disclosed, for example, in U.S. Patents No. 5,412,087, 5,545,531, and PCT Publication No. WO 95/00530, the disclosures of which are hereby incorporated by reference. Oligonucleotide probes for use in the present invention may be constructed 5 synthetically prior to immobilization on an array, using techniques well known in the art (See, for example, Gait, ed., Oligonucleotide synthesis a practical approach, IRL Press: Oxford, England, 1984). Automated equipment for the synthesis of oligonucleotides is available commercially from such companies as Perkin Elmer/Applied Biosystems Division (Foster City, CA) and may be operated according to the manufacturer's 10 instructions. Alternatively, the probes may be constructed directly on the surface of the array using techniques taught, for example, in PCT Publication No. WO 95/00530. The solid substrate and the surface thereof preferably form a rigid support and are generally formed from the same material. Examples of materials from which the solid substrate may be constructed include polymers, plastics, resins, membranes, 15 polysaccharides, silica or silica-based materials, carbon, metals and inorganic glasses. Synthetically prepared probes may be immobilized on the surface of the solid substrate using techniques well known in the art, such as those disclosed in U.S. Patent No. 5,412,087. In one such technique, compounds having protected functional groups, such as 20 thiols protected with photochemically removable protecting groups, are attached to the surface of the substrate. Selected regions of the surface are then irradiated with a light source, preferably a laser, to provide reactive thiol groups. This irradiation step is generally performed using a mask having apertures at predefined locations using photolithographic techniques well known in the art of semiconductors. The reactive thiol 25 groups are then incubated with the oligonucleotide probe to be immobilized. The precise conditions for incubation, such as temperature, time and pH, depend on the specific probe and can be easily determined by one of skill in the art. The surface of the substrate is washed free of unbound probe and the irradiation step is repeated using a second mask having a different pattern of apertures. The surface is subsequently incubated with a 30 second, different, probe. Each oligonucleotide probe is typically immobilized in a 2 discrete area of less than about 1 mm . Preferably each discrete area is less than about 27 WO 01/14553 PCT/NZOO/00166 10,000 mm2, more preferably less than about 100 mm2. In this manner, a multitude of oligonucleotide probes may be immobilized at predefined locations on the array. The resulting array may be employed to screen for differences in organisms or samples or products containing. genetic material as follows. Genomic or cDNA libraries 5 are prepared using techniques well known in the art. The resulting target DNA is then labeled with a suitable marker, such as a radiolabel, chromophore, fluorophore or chemiluminescent agent, using protocols well known for those skilled in the art. A solution of the labeled target DNA is contacted with the surface of the array and incubated for a suitable period of time. 10 The surface of the array is then washed free of unbound target DNA and the probes to which the target DNA hybridized are determined by identifying those regions of the array to which the markers are attached. When the marker is a radiolabel, such as 32 P, autoradiography is employed as the detection method. In one embodiment, the marker is a fluorophore, such as fluorescein, and the location of bound target DNA is 15 determined by means of fluorescence spectroscopy. Automated equipment for use in fluorescence scanning of oligonucleotide probe arrays is available from Affymetrix, Inc. (Santa Clara, CA) and may be operated according to the manufacturer's instructions. Such equipment may be employed to determine the intensity of fluorescence at each predefined location on the array, thereby providing a measure of the amount of target 20 DNA bound at each location. Such an assay would be able to indicate not only the absence and presence of the marker probe in the target, but also the quantitative amount as well. In this manner, oligonucleotide probe kits of the present invention may be employed to examine the presence/absence (or relative amounts in case of mixtures) of 25 polynucleotides in different samples or products containing different materials rapidly and in a cost-effective manner. Another aspect of the present invention involves collections of a plurality of polynucleotides of the present invention. A collection of a plurality of the polynucleotides of the present invention, particularly the polynucleotides identified as 30 SEQ ID NOS: 1-68, may be recorded and/or stored on a storage medium and subsequently accessed for purposes of analysis, comparison, etc. Suitable storage media 28 WO 01/14553 PCT/NZOO/00166 include magnetic media such as magnetic diskettes, magnetic tapes, CD-ROM storage media, optical storage media, and the like. Suitable storage media and methods for recording and storing information, as well as accessing information such as polynucleotide sequences recorded on such media, are well known in the art. The 5 polynucleotide information stored on the storage medium is preferably computer readable and may be used for analysis and comparison of the polynucleotide information. Another aspect of the present invention thus involves storage medium on which are recorded a collection of the polynucleotide sequences of the present invention, particularly a collection of the polynucleotide sequences identified as SEQ ID NOS: 1 10 68. According to one embodiment, the storage medium includes a collection of at least 20, preferably at least 50, more preferably at least 100, and most preferably at least 200 of the polynucleotides of the present invention, preferably the polynucleotides identified as SEQ ID NOS: 1-68, including variants of those polynucleotides. In another aspect, the present invention provides genetic constructs comprising, in 15 the 5'-3' direction, a gene promoter sequence; and an open reading frame coding for at least a functional portion of a polypeptide encoded by a polynucleotide of the present invention. In certain embodiments, the genetic constructs of the present invention also comprise a gene termination sequence. The open reading frame may be oriented in either a sense or antisense direction. Genetic constructs comprising a non-coding region of a 20 gene coding for a polypeptide encoded by the above polynucleotides or a nucleotide sequence complementary to a non-coding region, together with a gene promoter sequence, are also provided. A terminator sequence may form part of this construct. Preferably, the gene promoter and termination sequences are functional in a host organism. More preferably, the gene promoter and termination sequences are common to 25 those of the polynucleotide being introduced. The genetic construct may further include a marker for the identification of transformed cells. Techniques for operatively linking the components of the genetic constructs are well known in the art and include the use of synthetic linkers containing one or more restriction endonuclease sites as described, for example, by Sambrook et al., in Molecular 30 cloning: a laboratory manual, Cold Spring Harbor Laboratories Press: Cold Spring Harbor, NY, 1989. The genetic constructs of the present invention may be linked to a 29 WO 01/14553 PCT/NZOO/00166 vector having at least one replication system, for example, E. coli, whereby after each manipulation, the resulting construct can be cloned and sequenced and the correctness of the manipulation determined. Transgenic cells comprising the genetic constructs of the present invention are 5 also provided by the present invention, together with organisms comprising such transgenic cells, products and progeny of such organisms. Techniques for stably incorporating genetic constructs into the genome of target organisms are well known in the art. In one aspect, the present invention provides methods for using one or more of the inventive polypeptides 10 or polynucleotides to treat disorders in a mammal, including a human. In this aspect, the polypeptide or polynucleotide is generally present within a pharmaceutical composition or immunogenic composition. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Immunogenic compositions may 15 comprise one or more of the above polypeptides and an immunostimulant, such as an adjuvant, into which the polypeptide is incorporated. Alternatively, a pharmaceutical or immunogenic composition of the present invention may contain a polynucleotide encoding one or more polypeptides as described above, such that the polypeptide is generated in situ. In such compositions, the 20 polynucleotide may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, and bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary polynucleotide sequences for expression in a mammal (such as a suitable promoter and terminator signal). Bacterial delivery systems involve the administration of 25 a bacterium (such as Bacillus Calmette-Guerin) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other poxvirus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic, or defective, replication competent virus. Techniques for incorporating polynucleotides into such expression 30 systems are well known in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., Science 259:1745-1749, 1993; and reviewed by Cohen, Science 30 WO 01/14553 PCT/NZOO/00166 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells. Routes and frequency of administration, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may 5 be administered by injection (e.g., intradermal, intramuscular, intravenous, or subcutaneous); intranasally (e.g., by aspiration); or orally. In general, the amount of polypeptide present in a dose (or produced in situ by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg per kg of host, and preferably from about 100 pg to about 1 pg per kg of host. Suitable dose 10 sizes will vary with the size of the mammal, but will typically range from about 0.1 ml to about 5 ml. While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as 15 subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a lipid, a wax, or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the 20 pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109. Any of a variety of immunostimulants may be employed in the immunogenic compositions of this invention to non-specifically enhance the immune response. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such 25 as aluminum hydroxide or mineral oil, and a non-specific stimulator of immune responses, such as lipid A, Bordetella pertussis, or Mycobacterium tuberculosis. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Freund's Complete Adjuvant (Difco Laboratories, Detroit, MI), and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ). Other suitable adjuvants include alum, 30 biodegradable microspheres, monophosphoryl lipid A, and Quil A. 31 WO 01/14553 PCT/NZOO/00166 The polypeptides of the present invention may additionally be used in assays to determine biological activity, to raise antibodies, to isolate corresponding ligands or receptors, in assays to quantitatively determine levels of protein or cognate corresponding ligand or receptor, as anti-inflammatory agents, and in compositions for mammary 5 glands, connective tissue and/or nerve tissue growth or regeneration. The polynucleotides of the present invention may be used for expression in a transgenic animal, as disclosed in US Patent 5,714,345, which teaches the use of transgenic animals capable of expressing a desired protein prepared by introducing into an egg or embryo cell of an animal, an expression construct containing the sequence 10 corresponding at least in part to a specific polynucleotide, which encodes the desired protein. In the same manner, the desired protein corresponding to a selected polynucleotide sequence of the present invention, could be employed in transgenic animals for the production of milk containing the desired protein, as disclosed in US Patent 5,849,992. 15 In addition, the regulatory sequences contained in the present cDNA sequences, or regulatory sequences isolated by using the present sequences for genome screening and sequencing, as well known in the art, could be used in transgenic animals to direct the expression of a desired gene product according to the nature of the regulatory polynucleotide sequence, in a way similar to that taught in US Patent No. 5,850,000. 20 Example 1 ISOLATION OF cDNA SEQUENCES FROM BOVINE MAMMARY GLAND cDNA LIBRARIES Bovine mammary gland cDNA expression libraries were constructed and 25 screened as follows. mRNA was extracted from lactating bovine mammary tissue (late lactating, non-pregnant Jersey breed, 2 hours post-milking) using standard protocols. mRNA was precipitated with ethanol and the total RNA preparate was purified using a Poly(A) Quik mRNA Isolation Kit (Stratagene, La Jolla, CA). A cDNA expression library was constructed from the purified mRNA by reverse transcriptase synthesis 30 followed by insertion of the resulting cDNA clones in Lambda ZAP using a ZAP Express cDNA Synthesis Kit (Stratagene), according to the manufacturer's protocol. The 32 WO 01/14553 PCT/NZOO/00166 resulting cDNAs were packaged using a Gigapack II Packaging Extract (Stratagene) employing 1 p1 of sample DNA from the 5 l ligation mix. Mass excision of the library was done using XL1-Blue MRF' cells and XLOLR cells (Stratagene) with ExAssist helper phage (Stratagene). The excised phagemids were diluted with NZY broth (Gibco 5 BRL, Gaithersburg, MD) and plated out onto LB-kanamycin agar plates containing 5 bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal) and isopropylthio-beta-galactoside (IPTG). Of the colonies plated and picked for DNA preparations, the large majority contained an insert suitable for sequencing. Positive colonies were cultured in NZY 10 broth with kanamycin and cDNA was purified by means of REAL DNA minipreps (Qiagen, Venlo, The Netherlands). Agarose gel at 1% was used to screen sequencing templates for chromosomal contamination. Dye terminator sequences were prepared using a Biomek 2000 robot (Beckman Coulter Inc., Fullerton, CA) for liquid handling and DNA amplification using a 9700 PCR machine (Perkin Elmer/Applied Biosystems, 15 Foster City, CA) according to the manufacturer's protocol. The DNA sequences for positive clones were obtained using a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer. cDNA clones were sequenced from the 5' end. The sequences of the isolated polynucleotides are identified as SEQ ID NOS: 1-68, with the corresponding amino acid sequences being provided in SEQ ID NO: 20 69-136. BLASTN Polynucleotide Analysis The isolated cDNA sequences were compared to sequences in the EMBL DNA database using the computer algorithm BLASTN. Comparisons of DNA sequences 25 provided in SEQ ID NOS: 1-68, to sequences in the EMBL DNA database (using BLASTN) were made as of August, 2000, using Version 2.0.11 [Jan-20-2000], and the following Unix runing command: blastall -p blastn -d embldb -e 10 -GO -EO -r 1 -v 30 -b 30 -i queryseq -o. The sequences of SEQ ID NOS: 13, 21, 31, 37, 40, 57, 62-65, and 67 were 30 determined to have less than 50% identity, determined as described above, to sequences in the EMBL database using the computer algorithm BLASTN, as described above. The 33 WO 01/14553 PCT/NZOO/00166 sequences of SEQ ID NOS: 10, 15, 22, 25, 30, 48, 51 and 54 were determined to have less than 75% identity, determined as described above, to sequences in the EMBL database using the computer algorithm BLASTN, as described above. The sequences of SEQ ID NOS: 4-6, 8, 9, 12, 20, 29, 33, 35, 38, 39, 41-43, 47, 53, 60, 66 and 68 were 5 determined to have less than 90% identity, determined as described above, to sequences in the EMBL database using the computer algorithm BLASTN, as described above. Finally, the sequences of SEQ ID NOS: 1, 7, 11, 14, 16, 18, 19, 23, 45, 46,49, 50, 55, 56 and 61 were determined to have less than 98% identity, determined as described above, to sequences in the EMBL database using the computer algorithm BLASTN, as described 10 above. The sequences of SEQ ID NOS: 114, 125, 126, 132 and 135 were determined to have less than 50% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. The sequences of SEQ ID NOS: 69, 72, 74, 89-92, 103, 116, 120, 122, 123, 127, 130 and 136 15 were determined to have less than 75% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. The sequences of SEQ ID NOS: 71, 76, 78, 81, 83, 84, 86, 88, 94, 97, 101, 102, 104, 106, 107, 109, 110-112, 115, 118, 119, 131, 133 and 134 were determined to have less than 90% identity, determined as described above, to sequences in the SwissProt 20 database using the computer algorithm BLASTP, as described above. Finally, the sequences of SEQ ID NOS: 70, 75, 77, 80, 85, 87, 93, 95, 98, 99, 105, 108 and 124 were determined to have less than 98% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. 25 Example 2 EXPRESSION OF MRNA IN BOVINE MAMMARY TIssuE RNA was extracted from mammary gland tissue obtained from a non-pregnant heifer (Friesian Hereford cross, 2.5 years of age), a pregnant cow (Angus, 85 days pre 30 partum) and a lactating cow (Jersey, late lactating, non-pregnant and 2 hours post miling), as well as from bovine liver, forebrain and kidney from an Angus Friesian cross 34 WO 01/14553 PCT/NZOO/00166 heifer, using TRIzol (Gibco BRL, Gaithersburg, MD) following the manufacturer's protocol. Sets of the various total RNA samples were run on 1.2% agarose/formaldehyde gels, 5 pg/lane. Following transfer to nitrocellulose membranes, RNA was cross-linked with ultraviolet light. 5 DNA probes were prepared from bacterial clones transformed with cDNA corresponding to SEQ ID NOS: 6 and 40 by excision of the insert of the cDNA clone using EcoRI and XhoI restriction endonucleases, or by PCR amplification of the insert of the cDNA clone using T7 and T3 primers (Gibco BRL), or by using the entire cDNA clone. Probes were radiolabeled with aC-P 32 -dATP using Rediprime DNA labeling kits 10 (Amersham Pharmacia Biotech, Uppsala, Sweden). Blots were hybridized overnight with rotation at 65"C in a buffer containing 10 20 ml of 500 mM NaH 2
PO
4 , 1 mM EDTA and 7% SDS and then washed for 15 minutes at 65"C, first in 2X SSC/0.1% SDS and then in IX SSC/0.1% SDS. The blots were exposed to Kodak XAR X-ray film for appropriate times. 15 The insert of the cDNA clone corresponding to SEQ ID NO: 6 hybridized to two transcripts of approximately 3 kb and 1.1 kb. Transcripts were detected in all samples examined with the shorter transcript predominating. The insert of the cDNA clone corresponding to SEQ ID NO: 40 hybridized strongly with a transcript of approximately 1.0 kb and less strongly with a transcript of 20 approximately 2.0 kb in the lactating mammary gland sample. Lower levels of transcripts were detected in the mammary samples from a non-pregnant heifer and a pregnant non-lactating cow. No transcripts could be detected in the other tissue samples. SEQ ID NOS: 1-136 are set out in the attached Sequence Listing. The codes for 25 nucleotide sequences used in the attached Sequence Listing, including the symbol "n," conform to WIPO Standard ST.25 (1998), Appendix 2, Table 1. All references cited herein, including patent references and non-patent publications, are hereby incorporated by reference in their entireties. While in the foregoing specification this invention has been described in relation 30 to certain preferred embodiments, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible 35 WO 01/14553 PCT/NZOO/00166 to additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention. 36

Claims (30)

1. An isolated polynucleotide comprising a sequence selected from the group consisting of: (a) sequences recited in SEQ ID NOS: 1-68; (b) complements of the sequences recited in SEQ ID NOS: 1-68; (c) reverse 5 complements of the sequences recited in SEQ ID NOS: 1-68; (d) reverse sequences of the sequences recited in SEQ ID NOS: 1-68:
2. An isolated polynucleotide comprising a sequence having at least a 99% probability of being the same as one of the sequences recited in claim 1 as determined using computer algorithm BLASTN. 10
3. An isolated polynucleotide comprising a sequence having at least 50% identity to the nucleotide sequences recited in claim 1 determined using computer algorithm BLASTN.
4. An isolated polynucleotide comprising a sequence having at least 75% identity to the nucleotide sequences recited in claim 1 determined using 15 computer algorithm BLASTN.
5. An isolated polynucleotide comprising a sequence having at least 90% identity to the nucleotide sequences recited in claim 1 determined using computer algorithm BLASTN.
6. An isolated polynucleotide comprising a sequence selected from the group 20 consisting of: (g) sequences that hybridize to a sequence recited in claim 1 under stringent hybridization conditions; (h) sequences that are 200-mers of a sequence recited in claim 1; (i) sequences that are 100-mers of a sequence recited in claims; 25 (j) sequences that are 40-mers of a sequence recited in claim 1; 37 WO 01/14553 PCT/NZOO/00166 (k) sequences that are 20-mers of a sequence recited in claim 1; and (1) sequences that are degeneratively equivalent to a sequence recited in claim 1. 5
7. An oligonucleotide comprising at least 10 contiguous residues complementary to 10 contiguous residues of a nucleotide sequence recited in any on of claims 1 - 6.
8. A genetic construct comprising an isolated polynucleotide of any one of 10 claims 1 - 6.
9. A host cell transformed with a genetic construct of claim 8.
10. An isolated polypeptide encoded by a polynucleotide of any one of claims 15 1-5.
11. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NOS: 69-136. 20
12. An isolated polypeptide comprising an amino acid sequence selected from sequences having at least a 99% probability of being the same as a sequence of SEQ ID NOS: 69-136, as determined using the computer algorithm BLASTP. 25
13. An isolated polypeptide comprising an amino acid sequence selected from sequences having at least 50% identity to a sequence provided in SEQ ID NOS: 69-136, as determined using the computer algorithm BLASTP.
14. An isolated polypeptide comprising an amino acid sequence selected from 30 sequences having at least 75% identity to a sequence provided in SEQ ID NOS: 69-136, as determined using the computer algorithm BLASTP. 38 WO 01/14553 PCT/NZOO/00166
15. An isolated polypeptide comprising an amino acid sequence selected from sequences having at least 90% identity to a sequence provided in SEQ ID NOS: 69-136, as determined using the computer algorithm BLASTP. 5
16. An isolated polynucleotide encoding a polypeptide of any one of claims 11- 15.
17. An isolated polypeptide comprising at least a functional portion of a 10 polypeptide comprising an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NOS: 69-136.
18. A composition including at least one polypeptide according to any one of claims 11-15 or claim 17 and at least one component selected from the 15 group comprising: physiologically acceptable carriers and immunostimulants.
19. A composition including at least one polynucleotide according to any one of claims 1-6 and at least one component selected from the group 20 comprising: pharmaceutically acceptable carriers and immunostimulants.
20. A method for treating a disorder in a mammal comprising administering a composition according to claim 18. 25
21. A method for treating a disorder in a mammal comprising administering a composition according to claim 19.
22. A method for modifying mammary gland function, structure or composition in an organism, comprising transforming the organism with a 30 genetic construct according to claim 8. 39 WO 01/14553 PCT/NZOO/00166
23. A method for modifying mammary gland function and milk composition in an organism, comprising administering a composition according to claim 18. 5
24. A method for detecting the presence of mammary gland tissue in a biological sample, comprising: (a) contacting the biological sample with an oligonucleotide according to claim 7; (b) detecting in the sample the presence of a polynucleotide that hybridizes to 10 the oligonucleotide.
25. A diagnostic kit comprising at least one oligonucleotide according to claim 7. 15
26. An organism comprising a host cell according to claim 9.
27. A non-human transgenic organism transformed with the genetic construct of claim 8. 20
28. A non-human transgenic mammal transformed with the genetic construct of claim 8.
29. An antibody which recognizes and reacts with a polypeptide encoded by a polynucleotide of any one of claims 1-5. 25
30. An antibody which recognises and reacts with a polypeptide having an amino acid sequence of any one of claims 11-15 or claim 17. 40
AU67432/00A 1999-08-23 2000-08-23 Compositions isolated from bovine mammary gland and methods for their use Abandoned AU6743200A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15033099P 1999-08-23 1999-08-23
US60/150330 1999-08-23
PCT/NZ2000/000166 WO2001014553A1 (en) 1999-08-23 2000-08-23 Compositions isolated from bovine mammary gland and methods for their use

Publications (1)

Publication Number Publication Date
AU6743200A true AU6743200A (en) 2001-03-19

Family

ID=22534066

Family Applications (1)

Application Number Title Priority Date Filing Date
AU67432/00A Abandoned AU6743200A (en) 1999-08-23 2000-08-23 Compositions isolated from bovine mammary gland and methods for their use

Country Status (2)

Country Link
AU (1) AU6743200A (en)
WO (1) WO2001014553A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0219720D0 (en) * 2002-08-23 2002-10-02 Univ Aberdeen Polypeptide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741883B1 (en) * 1995-12-05 1998-02-20 Ass Pour Le Dev De La Biothera COMPOUNDS WITH LECTIN PROPERTIES, AND BIOLOGICAL APPLICATIONS THEREOF
BE1011331A6 (en) * 1997-08-20 1999-07-06 Univ Catholique De Louvain Hal Associated polypeptide peroxisome, nucleotide sequence encoding said polypeptide and their use in diagnosis and / or treatment of lung disease or injury.

Also Published As

Publication number Publication date
WO2001014553A1 (en) 2001-03-01

Similar Documents

Publication Publication Date Title
JP3294575B2 (en) Proteins that interact with the IGF-1 receptor, genes encoding them and uses thereof
JP2002538218A (en) New usage
JPH09512424A (en) Cell cycle regulatory proteins and uses relating thereto
KR100414615B1 (en) New proliferation factors and gene sequences coding for them
ES2389445T3 (en) Novel compounds
JP2002281985A (en) Mbgp1 polypeptide and polynucleotide
US6242419B1 (en) Compositions isolated from stromal cells and methods for their use
JPH1175873A (en) New compound
Bassi et al. SLC7A8, a gene mapping within the lysinuric protein intolerance critical region, encodes a new member of the glycoprotein-associated amino acid transporter family
US6576441B1 (en) Semaphorin Z and gene encoding the same
EP1881004B1 (en) Novel collectin
AU6743200A (en) Compositions isolated from bovine mammary gland and methods for their use
JPH11253183A (en) Frizzled-3 polypeptide and polynucleotide
US20030138905A1 (en) Compositions isolated from bovine mammary gland and methods for their use
US6753411B2 (en) Protection-of-telomere-1 (POT-1) proteins
JP2002538787A (en) New compound
JP2002507425A (en) Human CASB12 polypeptide which is a serine protease
US6833435B2 (en) Compositions isolated from bovine tissues and methods for their use
US20020169302A1 (en) Compositions isolated from bovine mammary gland and methods for their use
JP2003500011A (en) Syndesmos and its use
US20050130263A1 (en) Compositions isolated from bovine mammary gland and methods for their use
US20030017545A1 (en) Isolated human transporter proteins, nucleic acid molecules encoding human transporter proteins, and uses thereof
US7183397B2 (en) NK-2 homeobox transcription factor
US20050164248A1 (en) Compositions isolated from bovine tissues and methods for their use
JP2002507417A (en) PAP-1 related compounds

Legal Events

Date Code Title Description
MK6 Application lapsed section 142(2)(f)/reg. 8.3(3) - pct applic. not entering national phase
TH Corrigenda

Free format text: IN VOL 15, NO 24, PAGE(S) 5039-5042 UNDER THE HEADING APPLICATIONS LAPSED, REFUSED OR WITHDRAWN PLEASE DELETE ALL REFERENCE TO APPLICATION NO. 67432/00

DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS: AMEND THE INVENTORS NAME TO READ MATTHEW GLENN

TC Change of applicant's name (sec. 104)

Owner name: GENESIS RESEARCH AND DEVELOPMENT CORPORATION LIMIT

Free format text: FORMER NAME: GENESIS RESEARCH AND DEVELOPMENT CORPORATION LIMITED, NEW ZEALAND PASTORAL AGRICULTURAL RESEARCH INSTITUTE LIMITED