AU670854B2 - Polyol ester lubricants for refrigerating compressors operating at high temperatures - Google Patents
Polyol ester lubricants for refrigerating compressors operating at high temperatures Download PDFInfo
- Publication number
- AU670854B2 AU670854B2 AU57646/94A AU5764694A AU670854B2 AU 670854 B2 AU670854 B2 AU 670854B2 AU 57646/94 A AU57646/94 A AU 57646/94A AU 5764694 A AU5764694 A AU 5764694A AU 670854 B2 AU670854 B2 AU 670854B2
- Authority
- AU
- Australia
- Prior art keywords
- acyl groups
- mixture
- carbon atoms
- contain
- alcohol moieties
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Lubricants (AREA)
Description
/UUMU11 20191gi Rogulnlon 3,2(2)
AUSTRALIA
Patents Act 1990
ORIGINAL
COMPLETE SPECIFICATION STANDARD PATENT Application Number: Lodged: Invention Title: o POLYOL ESTER LUBRICANTS FOR REFRIGERATING COMPRESSORS OPERATING AT HIGH TEMPERATURES The following statement is a full description of this invention, including the best method of performing it known to us
PATENT
Docket M 5305 EM POLYOL ESTER LUBRICANTS FOR REFRIGERATING COMPRESSORS OPERATING AT HIGH TEMPERATURES BACKGROUND OF THE INVENTION Field of the Invention This invention relates to lubricant base stocks, which can also serve as complete lubricants in some cases; compounded lubricants, which include at least one additive for such purposes as improving high pressure and/or wear resistance, corrosion inhibition, and the like along with the lubricant base stocks which contribute the primary lubricity to the compounded lubricants; refrigerant working fluids including lubricants according to the invention along with primary heat transfer fluids, and methods for using these materials. The lubricants and lubricant base 20 stocks are generally suitable for use with most or all halocarbon refrigerants and are particularly suitable for use with substantially chlorine-free, fluoro-group-con- :i taining organic refrigerating heat transfer fluids such as pentafluoroethane, 1,1-difluoroethane, 1,1,1-trifluroethane, and tetrafluoroethanes, most particularly 1,1,1,2tetrafluoroethane. The lubricants and base stocks, in combination with these heat transfer fluids, are particularly suitable for lubricating compressors that operate at least part of the time at temperatures substantially higher than those at which humans can be comfortable; such compressors are generally used, for example, in vehicle air conditioning.
S~itaement of Related Art Chlorine-free heat transfer fluids are desirable for use in refrigerant systems, because their escape into the atmosphere causes less damage to the environment than the 3 currently most commonly used chlorofluorocarbon heat transfer fluids such as trichlorofluoromethane and dichlorodifluoromethane. The widespread commercial use of chlorinefree refrigerant heat transfer fluids has been hindered, however, by the lack of commercially adequate lubricants.
This is particularly true for one of the most desirable working fluids, 1,1,1,2-tetrafluoroethane, commonly known in the art as "Refrigerant 134a" or simply "R134a". Other fluoro-substituted ethanes are also desirable working fluids.
Fsters of hindered polyols, which are defined for this purpose as organic molecules containing at least five carbon atoms, at least 2 -OH groups, anc no hydrogen atoms on any carbon atom directly attached to a carbon atom bearing an -OH group, have already been recognized in the art as high quality lubricant basestocks for almost any type of refrigeration machinery employing a fluorocarbon refrigerant, particularly one free from chlorine. The fol- .*lowing patents and published patent applications also teach many general classes and specific examples of polyol e 25 esters useful as refrigerant lubricants with chlorine-free fluoro group containing heat transfer fluids: US 4,851, 144; UK 2 216 541; US 5,021,179; US 5,096,606; WO 90/12849 (Lubrizol) EP 0 406 479 (Kyodo Oil); EP 0 430 657 (Asahi Denka KK); EP 0 435 253 (Nippon Oil); EP 0 445 610 and 0 445 611 (Hoechst AG); EP 0449 406; EP 0 458 584 (Unichema Chemie BV); and EP 0 485 979 (Hitachi).
.DESCRIPTION OF THE INVENTION Except in the claims and the operating examples, or where otherwise expressly indicated, all numerical quant- 35 ities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the term "about" in defining the broadest scope of the invention. Practice of the invention within the boundaries corresponding to the exact quantities stated is usually preferable, however.
More specifically, esters according to this invention pre-gLro.\s should have a viscosity of not more than 157, or with increasing preference in the order given, not more than 145, 131, 123, 115, or 110, centistokes at 400 C. Independently, esters according to this invention should have a viscosity of at least 45, or with increasing preference in the order given, at least 51, 64, 76, 85, or 90, centistokes at 400 C.
It has now been found that selected polyol esters provide high quality lubrication for this kind of service.
Specifically effective are esters or mixtures of esters made by reacting a mixture of alcohol molecules selected from the group consisting of 2,2-dimethylol-l-butanol (also known as "trimethylolpropane" and often abbreviated hereinafter as di-trimethylolpropane (often abbreviated hereinafter as "DTMP"), a molecule with four hydroxyl groups and one ether linkage, formally derived from two molecules of TMP by removing one hydroxyl group from one of the TMP molecules and one hydrogen atom from a hydroxyl group of the other TMP molecule to form water and join the two remainders of the original TMP molecules with an ether bond; 2,2-dimethylol-l,3-propanediol (also known as "pentaerythritol" and often abbreviated hereinafter as di-pentaerythritol (often abbreviated hereinafter as a molecule with six hydroxyl groups and one ether bond, formally derived from two PE molecules by the same elimination of the elements of water as described above for DTMP; tri-pentaerythritol (often abbreviated hereinafter as a molecule with eight hydroxyl groups and two ether bonds, formally derived from three PE molecules by an analogous elimination of the elements of two molecules of water as described above (for elimination of a single water molecule) for DTMP and DPE; and tritrimethylolpropane (hereinafter often abbreviated as "TTMP"), a molecule with five hydroxyl groups and two ether bonds, formally derived from three TMP molecules by the same elimination of the elements of two molecules of water as described above for TPE, with (ii) a mixture of acid molecules selected from the group consisting of all the straight and branched chain monobasic and dibasic carboxylic acids with from four to twelve carbon atoms each wherein the polyol ester molecules have at least 60% of the alcohol moieties selected from the group consisting of the alcohol moieties derived from PE, DPE and TPE, at least 20% of the alcohol moieties are selected from the group consisting of the alcohol moieties derived from DPE and TPE and at least 92%, more preferably 95%, of the acyl groups are selected from the group consisting of the acyl groups of all the straight and branched chain monobasic and dibasic carboxylic acids with from four to twelve carbon atoms each with the alcohol moieties and acyl groups in the mixture of esters being further selected subject to the constraints that a total of at least or, with increasing preference in the order given, at least 7, 10, 14, 16, or 19%, of the acyl groups in the mixture are 2-methylbutanoyl or 3-methylbutanoyl groups, which are jointly abbreviated hereinafter as "acyl groups from [or of] i-C 5 acid"; the ratio of the e% of acyl groups in the mixture that contain 8 or more carbon atoms and are i: unbranched to the of acyl groups in the mixture that are both branched and 20 contain not more than six, preferably not more than five, carbon atoms is not greater than 1.56, more preferably not greater than 1.21, or still more preferably not greater than 1.00; the of acyl groups in the ester mixture that contain at least nine carbon atoms, whether branched or not, is not greater than 81, or increasingly more preferably, not greater than 81, or increasingly more preferably, not greater than 67 or 49; and not more than 2, more preferably not more than 1, or still more preferably not more than 0.4, of the acyl groups in the ester mixture are from acid molecules with more than two carboxyl groups each; and a total of at least 20, or, with increasing preference in the order given, at least 29, 35, or 41% of the acyl groups in the mixture are from one of the trimethylhexanoic acids, most preferably from 3,5,5-trimethylhexanoic acid; and not more than 7.5, or, with increasing preference in the order given, not more than 6.0, 4.5, 3.0, 1.7, 0.9, or 0.4% of the acyl groups in the acid mixture are dibasic. In all these percentages, acyl groups are counted as a single ,,4j RAL./\ group, irrespective of the number of valences they have. For example, each molecule of adipic acid yields a single, dibasic, acyl group when completely esterified.
(Of course, for all the types of esters described herein as part of the invention, it is possible to obtain the same esters or mixture of esters by reacting acid derivatives such as acid anhydrides, acyl chlorides, and esters of the acids with lower molecular weight alcohols than those desired in the ester products according to this invention, instead of reacting the acids themselves. The acids are generally preferred for economy and are normally specified herein, but it is to be understood that the esters defined herein by reaction with acids can be equally w(ll obtained by reaction of alcohols with the correspondinm acid derivatives, or even by other reactions. The only critical feature is the mixture of acyl groups and alcohol moieties in the final mixture of esters formed.) Preferably, with increasing preference in the order given, at least 60, 75, 85, 90, 95, or 98 of the hydroxyl groups in the mixture of alcohols reacted to make esters according to this invention are moieties of PE, DPE, and/or TPE molecules, with increasing preference in the order given, at least 60, 75, 85, 90, 95, or 98 of the :i hydroxyl groups in the mixture of alcohols reacted to make esters according to this invention are moieties of PE, 25 DPE, and/or TPE molecules; and indenpendently, with so• increasing preference in the order given, at least 20, 26, 32, or 38 of the alcohol moieties in the mixture of alcohols reacted to make esters according to this invention are moieties of DPE or TPE molecules. Also in- S 30 dependently, in the mixtures reacted to make the esters according to this invention, with increasing preference in the order given, at least 60, 75, 85, 90, 95, or 98 of the monobasic acid molecules in the acid mixture consist of molecules having no more than ten carbon atoms each and, with increasing preference in the order given, at least 60, 75, 85, 90, 95, or 98 of the dibasic acid molecules in the acid mixture consist of molecules having no more than ten carbon atoms each, or more preferably from five to seven carbon atoms each. Most preferably, with increasing preference in the order given, at least 75, 85, 90, 95, or 98 of the monobasic acid molecules in the acid mixture consist of molecules having either five or nine carbon atoms each.
These preferences for the acyl groups and alcohol moieties in esters according to this invention are based on empirically determined generalizations. In order to achieve the desired middle range of viscosity, corresponding approximately to ISO grades 22 46, it is advantageous to have a substantial fraction of alcohols with at least four hydroxyl groups. Among the commercially available hindered alcohols that satisfy this criterion, PE is less expensive than DTMP and is free from the ether linkage in DTMP, which increases the hygroscopicity of the esters formed and thereby may promote undesirable corrosion of the metal surfaces lubricated. Alcohols with more than four hydroxyl groups produce esters with still higher viscosities and some such esters are needed in the mix to achieve the desired viscosity range, especially when substantially only monobasic acids are used.
:i In order to obtain esters with adequate viscosity, a considerable fraction of the acid molecules reacted need S 25 to have eight or more carbon atoms or be dibasic. Dibasic acids are less desirable. They must be used, if at all, in rather small amounts in order to avoid excessive viscosity, because of the capability of forming very high molecular weight and very viscous oligomers or polymers by S 30 reaction between alcohol and acid molecules that both have at least two functional groups.
When substantially only monobasic acids are used to make the esters, as already noted, in order to obtain adequate viscosity in the mixture, a substantial fraction of the acid molecules must have at least eight carbon atoms.
With acids of such length, solubility in the fluorocarbon refrigerant fluids is less than for esters with shorter acids, and this reduced solubility is particularly marked for straight chain acids, so that a substantial fraction of the longer acids normally needs to be branched; alternatively, it has been found that these longer straight chain acids can be "balanced" for solubility with an equal or not too much less than equal fraction of branched acids with five or six carbon atoms. When the number of carbon atoms per molecule is nine or more, not even branching is sufficient to produce adequate solubility by itself, so that an upper limit on the fraction of such acids is independently required. In general, a minimum amount of the particularly advantageous i-C 5 acid is specified to aid in solubilizing the parts of the esters in the mixture that contain dibasic acids or those with eight or more carbon atoms.
For both performance and economic reasons, it has been found that five and nine carbon monobasic acids are the most preferred constituents, and they are very effective in balancing each other to achieve a mix of viscosity and solubility characteristics that is better suited than others to most applications. Trimethylhexanoic acids, with their three methyl branches, produce the most soluble esters among the readily available nine carbon acids. (In general, methyl branches are the most effective in promot- 25 ing solubility without increasing viscosity excessively, Cbecause of the larger number of carbon atoms in other branching groups.) Branches on the carbon alpha to the carboxyl increase the difficulty of esterification and do not appear to be any more effective in increasing solubil- S 30 ity than more remotely located branches. The most economical commercially available mixture of branched nine carbon acids, which contains from 88 95 mole of 3,5,5trimethylhexanoic acid with all but at most 1 mole of the remainder being other branched C 9 monobasic acids, appears at least as effective as any other and is therefore preferred for economic reasons as the source of C 9 monobasic acids.
It is to be understood that only the desired alcohols and acids are explicitly specified, but some amount of the sort of impurities normally present in commercial or industrial grade products can be tolerated in most cases.
For example, commercial pentaerythritol normally contains only about 85 90 mole of pure pentaerythritol, along with 10 15 mole of di-pentaerythritol, and commercial pentaerythritol is satisfactory for use in making lubricant esters according to this invention in many cases. In general, however, it is preferred, with increasing preference in the order given, that not more than 25, 21, 17, 12, 8, 5, 3, 2, 1, 0.5, or 0.2 of either the hydroxyl groups in the alcohol mixtures specified herein or of the carboxyl groups in the acid mixtures specified herein should be part of any molecules other than those explicitly specified for each type of lubricant base stock. Percentages of specific chemical molecules or moieties specified herein, such as the percentages of carboxyl and hydroxyl groups stated in the preceding sentence, are to be understood as number percentages, which will be mathematically identical to percentages by chemical equivalents, with Avogadro's number of each specified chemical moiety regarded as a single chemical equivalent.
The above descriptions for each of the acid and al- S" 25 cohol mixtures reacted to produce lubricant esters according to this invention refers only to the mixture of acids or alcohols that actually reacts to form esters and does not necessarily imply that the mixtures of acids or alcohols contacted with each other for the purpose of reaction will have the same composition as the mixture that actually reacts. In fact, it has been found that reaction between the alcohol(s) and the acid(s) used proceeds more effectively if the quantity of acid charged to the reaction mixture initially is enough to provide an excess of 10 25 of equivalents of acid over the equivalents of alcohol reacted with the acid. (An equivalent of acid is defired for the purposes of this specification as the amount containing one gram equivalent weight of carboxyl groups, while an equivalent of alcohol is the amount containing one gram equivalent weight of hydroxyl groups.) The composition of the mixture of acids that actually reacted can be determined by analysis of the product ester mixture for its acyl group content.
In making most or all of the esters and mixtures of esters preferred according to this invention, the acid(s) reacted will be lower boiling than the alcohol(s) reacted i0 and the product ester(s). When this condition obtains, it is preferred to remove the bulk of any excess acid remaining at the end of the esterification reaction by distillation, most preferably at a low pressure such as 1 torr.
After such vacuum distillation, the product is often ready for use as a lubricant or lubricant base stock according to this invention. If further refinement of the product is desired, the content of free acid in the product after the first vacuum distillation may be further reduced by treatment with epoxy esters as taught in U. S.
Patent 3,485,754 or by neutralization with any suitable .".alkaline material such as lime, alkali metal hydroxide, or alkali metal carbonates. If treatment with epoxy esters is used, excess epoxy ester may be removed by a second 25 distillation under very low pressure, while the products of reaction between the epoxy ester and residual acid may be left behind in the product without harm. If neutralization with alkali is used as the refinement method, subsequent washing with water, to remove any unreacted excess S 30o alkali and the small amount of soap formed from the excess fatty acid neutralized by the alkali, is strongly preferred before using the product as a lubricant and/or base stock according to this invention.
Under some conditions of use, the ester(s) as de- 3 scribed herein will function satisfactorily as complete lubricants. It is generally preferable, however, for a complete lubricant to contain other materials generally denoted in the art as additives, such as oxidation resistance and thermal stability improvers, corrosion inhibitors, metal deactivators, lubricity additives, viscosity index improvers, pour and/or floc point depressants, detergents, dispersants, antifoaming agents, anti-wear agents, and extreme pressure resistant additives. Many additives are multifunctional. For example, certain additives may impart both anti-wear and extreme pressure resistance properties, or function both as a metal deactivator and a corrosion inhibitor. Cumulatively, all additives preferably do not exceed 8 by weight, or more preferably do not exceed 5 by weight, of the total compounded lubricant formulation.
An effective amount of the foregoing additive types is is generally in the range from 0.01 to 5 for the antioxidant component, 0.01 to 5 for the corrosion inhibitor component, from 0.001 to 0.5 for the metal deactivator component, from 0.5 to 5 for the lubricity additives, from 0.01 to 2 for each of the viscosity index improvers and pour and/or floc point depressants, from 0.1 to 5 for each of the detergents and dispersants, from 0.001 to 0.1 for anti-foam agents, and from 0.1 2 for each of the anti-wear and extreme pressure resistance components.
All these percentages are by weight and are based on the 25 total lubricant composition. It is to be understood that more or less than the stated amounts of additives may be more suitable to particular circumstances, and that a single molecular type or a mixture of types may be used for each type of additive component. Also, the examples 30 listed below are intended to be merely illustrative and not limiting, except as described in the appended claims.
Examples of suitable oxidation resistance and thermal stability improvers are diphenyl-, dinaphthyl-, and phenylnaphthyl-amines, in which the phenyl and naphthyl groups 35 can be substituted, N,N'-diphenyl phenylenediamine, p-octyldiphenylamine, p,p-dioctyldiphenylamine, N-phenyll-naphthyl amine, N-phenyl-2-naphthyl amine, N-(p-dodecyl)phenyl-2-naphthyl amine, di-l-naphthylamine, and di-2naphthylamine; phenothazines such as N-alkylphenothiazines; imino(bisbenzyl); and hindered phenols such as 6- (t-butyl) phenol, 2,6-di-(t-butyl) phenol, 4-methyl-2,6di-(t-butyl) phenol, 4,4'-methylenebis(-2,6-di-{t-butyl} phenol), and the like.
Examples of suitable cuprous metal deactivators are imidazole, benzamidazole, 2-mercaptobenzthiazole, mercaptothiadiazole, salicylidine-propylenediamine, pyrazole, benzotriazole, tolutriazole, 2-methylbenzamidazole, pyrazole, and methylene bis-benzotriazole.
Benzotriazole derivatives are preferred. Other examples of more general metal deactivators and/or corrosion inhibitors include organic acids and their esters, metal salts, and anhydrides, N-oleyl-sarcosine, sorbitan monooleate, lead naphthenate, dodecenyl-succinic acid and its partial esters and amides, and 4-nonylphenoxy acetic acid; primary, secondary, and tertiary aliphatic and cycloaliphatic amines and amine salts of organic and inorganic acids, oil-soluble alkylammonium carboxylates; heterocyclic nitrogen containing compounds, thiadiazoles, substituted imidazolines, and oxazolines; quinolines, quinones, and anthraquinones; propyl gallate; barium dinonyl naphthalene sulfonate; ester and amide derivatives of alkenyl succinic anhydrides or acids, dithiocarbamates, dithiophosphates; amine salts of alkyl acid phosphates and their derivatives.
Examples of suitable lubricity additives ilnclude long chain derivatives of fatty acids and natural oils, such as esters, amines, amides, imidazolines, and bo-ates.
Examples of suitable viscosity index improvers in- Sclude polymethacrylates, copolymers of vinyl pyrrolidone and methacrylates, polybutenes, and styrene-acrylate copolymers.
35 Examples of suitable pcur point and/or floc point dpressants include polymethacrylates such as methacrylateethylene-vinyl acetate terpolymers; alkylated naphthalene derivatives; and products of Friedel-Crafts catalyzed condensation of urea with naphthalene or phenols.
Examples of suitable detergents and/or dispersants include polybutenylsuccinic acid amides; polybutenyl phosphonic acid derivatives; long chain alkyl substituted aromatic sulfonic acids and their salts; and metal salts of alkyl sulfides, of alkyl phenols, and of condensation products of alkyl phenols and aldehydes.
Examples of suitable anti-foam agents include silicone polymers and some acrylates.
Examples of suitable anti-wear and extreme pressure resistance agents include sulfurized fatty acids and fatty acid esters, such as sulfurized octyl tallate; sulfurized terpenes; sulfurized olefins; organopolysulfides; organo phosphorus derivatives including amine phosphates, alkyl acid phosphates, dialkyl phosphates, aminedith4.ophosphates, trialkyl and triaryl phosphorothionates, trialkyl and triaryl phosphines, and dialkylphosphites, amine salts of phosphoric acid monohexyl ester, amine salts of dinonylnaphthalene sulfonate, triphenyl phosphate, trinaphthyl phosphate, diphenyl cresyl and dicresyl phenyl phosphates, naphthyl diphenyl phosphate, triphenylphosi" phorothionate; dithiocarbamates, such as an antimony dialkyl dithiocarbamate; chlorinated and/or fluorinated hy- 25 drocarbons, and xanthates.
:."Under some conditions of operation, it is believed that the presence in lubricants of the types of polyether polyols that have been prominent constituents of most prior art lubricant base stocks taught as useful with fluoro- 30 carbon refrigerant working fluids are less than optimally stable and/or inadequately compatible with some of the most useful lubricant additives. Thus, in one embodiment of this invention, it is preferred that the lubricant base stocks and lubricants be substantially free of such poly- 3 ether polyols. By "substantially free", it is meant that the compositions contain no more than about 10 by weight, preferably no more than about 2.6 by weight, and more preferably no more than about 1.2 by weight of the materials noted.
One major embodiment of the present invention is a refrigerant working fluid comprising both a suitable heat transfer fluid such as a fluorocarbon and a lubricant according to this invention. Preferably, the refrigerant working fluid and the lubricant should have chemical characteristics and be present in such a proportion to each other that the working fluid remains homogeneous, i.e., free from visually detectable phase separations or turbidity, over the entire range of working temperatures to which the working fluid is exposed during operation of a refrigeration system in which the working fluid is used.
This working range may vary from -600 C to as much as +1750 C. It is often adequate if the working fluid remains single phase up to +300 C, although it is increasingly more preferable if the single phase behavior is maintained up to 40, 56, 71, 88, or 100 0 C. Similarly, it is often adequate if the working fluid compositions remains a single phase when chilled to 00 C, although it is increasingly more preferable if the single phase behav- .".ior persists to -10, -20, -30, -40, or -55 0 C. Single phase mixtures with chlorine free hydrofluorocarbon re- •.frigerant working fluids are usually obtained with the 25 suitable and preferred types of esters described above.
Inasmuch as it is often difficult to predict exactly how much lubricant will be mixed with the heat transfer fluid to form a working fluid, it is most preferable if the lubricant composition forms a single phase in all eooo 30 proportions with the heat transfer fluid over the temperature ranges noted above. This however, is a very stringent requirement, and it is often sufficient if there is single phase behavior over the entire temperature range for a working fluid mixture containing up to 1 by weight 35 of lubricant according to this invention. Single phase oea behavior over a temperature range for mixtures containing up to 2, 4, 10, and 15 by weight of lubricant is successively more preferable.
In some cases, single phase behavior is not required.
The term "miscible" is used in the refrigeration lubrication art and hereinafter, except when part of the phrase "miscible in all proportions", when two phases are formed but are readily capable of being mixed into a uniform dispersion that remains stable as long as it is at least moderately agitated mechanically. Some refrigeration (and other) compressors are designed to operate satisfactorily with such miscible mixtures of refrigerant working fluid and lubricant. In contrast, mixtures that lead to coagulation or significant thickening and form two or more phases are unacceptable commercially and are designated herein as "immiscible". Any such mixture described below is a comparative example and not an embodiment of the present invention.
Another major embodiment of the invention is the use of a lubricant according to the invention, either as total lubricant or lubricant base stock, in a process of operating refrigerating machinery in such a manner that the lubricant is inr contact with the refrigerant working fluid.
The practice of the invention may be further understood and appreciated by consideration of the following examples and comparative examples.
25 General Ester Synthesis Procedure The alcohol(s) and acid(s) to be reacted, together with a suitable catalyst such as dibutyltin diacetate, tin oxalate, phosphoric a.id, and/or tetrabutyl titanate, were charged into a round bottomed flask equipped aith a stir- S: 30 rer, thermometer, nitrogen sparging means, condenser, and a recycle trap. Acid(s) were charged in about a 15 mol- *ar excess over the alcohol(s). The amount of catalyst was from 0.02 to 0.1 by weight of the weight of the total acid(s) and alcohol(s) reacted.
35 The reaction mixture was heated to a temperature between about 220 and 2300 C, and water from the resulting reaction was collected in the trap while refluxing acids were returned to the reaction mixture. Partial vacuum was maintained above the reaction mixture as necessary to achieve a reflux rate of between 8 and 12 of the original reaction mixture volume per hour.
The reaction mixture was sampled occasionally for determination of hydroxyl number, and after the hydroxyl number had fallen below 5.0 mg of KOH per gram of mixture, the majority of the excess acid was removed by distillation after applying the highest vacuum obtainable with the apparatus used, corresponding to a residual pressure of about 0.05 torr. while maintaining the reaction temperature. The reaction mixture was then cooled, and any residual acidity was removed, if desired, by treatment with lime, sodium hydroxide, or epoxy esters. The resulting lubricant or lubricant base stock was dried and filtered before phase compatibility testing.
General Procedure for Phase Compatibility Testing One milliliter of the lubricant to be tested is placed into a thermal shock resistant, volumetrically graduated glass test tube 17 millimeters in diameter and 145 mm long. The test tube is then stoppered and oooo placed into a cooling bath regulated to -29 0.20 C. After the tube and contents have equilibrated in the cooling o:oo bath for 5 minutes sufficient refrigerant working fluid is added to give a total volume of 10 ml.
At least 15 min after the working fluid has been added, during which time the tube and contents have been equilibrating in the cooling bath and the contents may have been agitated if desired, the tube contents are visually examined for evidence of phase separation. If there is any such phase separation, the tube is shaken to determine whether the combination can be rated as miscible or is totally unacceptable.
If there is no evidence of phase separation at -290 S 35 C, the temperature of the cooling bath is usually lowered at a rate of 0.30 per min until phase separation is observed. The temperature of first observation of phase
I
separation, if within the range of the cooling equipment used, is then noted as the insolubility onset temperature.
Composition and Characteristics of Specific Examples The composition and some relevant characteristics for two specific examples are shown in Table 1.
TABLE 1
EXAMPLE
NUMBER:
1 2 NUMBER PERCENT OF ALCOHOL MOIETIES
FROM:
PE 67.7 10.8 DPE 29.3 81.2 TPE 2.7 7.3 tetra-pentaerythritol 0.3 1.4 NUMBER PERCENT OF ACYL GROUPS FROM:___ Pentanoic acid 46.3 47.2 2-Methylbutanoic acid 19.5 19.0 3,5,5-Trimethylhexanoic acid 32.0 32.0 Other branched C 9 acids 2.2 1.8 ACID VALUE .0014 .0006 HYDROXYL VALUE 1.0 3.8 VISCOSITY IN CENTISTOKES
AT:
1000 C £.30 13.43 400 C 58.3 116.8 VISCOSITY INDEX 114 111 FLASH POINT, o C 250 286 POUR POINT, o C -48 -39 Note for Table 1 All of the mixtures in this table had an incompatibility temperature with R134a that was below -570 C.
o oo e o Blwr~P1~S~S~B I
Claims (9)
1. A composition of matter suitable for serving as a lubricant or lubricant base stock, said composition being a liquid consisting esseotially of a mixture of polyol ester molecules in which at least 60% of the alcohol moieties are selected from the group consisting of the alcohol moieties derived from PE, DPE, and TPE, at loast 20% of the alcohol moieties are selected from the group consisting of the alcohol moieties derived from DPE and TPE, and at least 92% of the acyl groups are selected from the group consisting of the acyl groups of all the straight and branched chain monobasic and dibasic carboxylic acids with from four to twelve carbon atoms each, said alcohol moieties and acyl groups being further selected subject to the constraints that a total of at least 3% of the acyl groups in the mixture are acyl groups of i-C 5 acid; the ratio of the of acyl groups in the mixture that contain 8 or more carbon atoms and are unbranched to the of acyl groups in the mixture that are both branched and i contain not more than six carbon atoms is not greater than 1.56; the of acyl groups in the mixture that contain at least nine carbon atoms, whether branched or not, is not greater than 81; not more than 2% of the acyl groups in the ester mixture are part of acid molecules with more than two carboxyl groups each; oi.: and a total of at least 20% of the acyl groups in the mixture are one of the trimethylhexanoyl acyl groups and not more than 7.5% of the acyl groups in the .i ester mixture are dibasic.
2. A composition according to claim 1, consisting essentially of a mixture of polyol ester molecules in which at least 26% of the alcohol moieties are selected from the group consisting of the alcohol moieties derived from DPE and TPE and the alcohol moieties and acyl groups are selected subject to the constraints that a total of at least 7% of the acyl groups in the mixture are acyl groups of i-C 5 acid; the ratio of the of acyl groups in the mixture that contain 8 or more carbon atoms and are unbranched to the of acyl groups in the mixture that are both branched and contain not more than six carbon atoms is not greater than 1.56; the of acyl groups in the mixture that contain at least nine carbon atoms, whether branched or not, is not greater than 67; and a total of at least 29% of the acyl groups in the mixture are those of one of the 18 trimethylhexanoic acids and not more than 6.0% of the acyl groups in the acid mixture are dibasic.
3. A composition according to claim 2 consisting essentially of a mixture of polyol ester molecules in which at least 95% of the alcohol moieties are selected from the group consisting of the alcohol moieties derived from PE, DPE, and TPE, at least 32% of the alcohol moieties are selected from the group consisting of the alcohol moieties derived from DPE and TPE, and at least of the acyl groups are selected from the group consisting of the acyl groups of all the straight and branched chain monobasic and dibasic carboxylic acids with from four to twelve carbon atoms each, said alcohol moieties and acyl groups S.being further selected subject to the constraints that a total of at least 10% of the acyl groups in the mixture are acyl groups of i-Cs acid; the ratio of the :of acyl groups in the mixture that contain 8 or more carbon atoms and are 'inbranched to the of acyl groups in the mixture that are both branched and contain not more than six carbon atoms is not greater than 1.21; the of acyl groups in the mixture that contain at least nine carbon atoms, whether branched or not, is not greater than 67; not more than 1% of the acyl groups in the esters contain more than two carboxyl groups each; and a total of at least 35% of the acyl groups in the mixture are those of one of the trimethylhexanoic acids and not more than 3% of the acyl groups in the ester mixture are dibasic.
4. A composition according to claim 3 consisting essentially of a mixture of polyol ester molecules in which the alcohol moieties and acyl groups are selected subject to the constraints that a total of at least 14% of the acyl groups in the mixture are acyl groups of i-Cs acid; the ratio of the of acyl groups in the mixture that contain 8 or more carbon atoms and are unbranched to the of acyl groups in the mixture that are both branched and contain not more than six carbon atoms is not greater than 1.00; the of acyl groups in the mixture that contain at least nine carbon atoms, whether branched or not, is not greater than 49; not more than 0.4% of the acyl groups in the ester mixture contain more than two carboxyl groups each; and a total of at least of the acyl groups in the mixture are those of one of the trimethylhexanoic acids and at least 29% of the acyl groups in the mixture are 3,5,5- 19 trimethylhexanoyl groups ai d not more than 1.7% of the acyl groups in the ester mixture are dibasic. A composition according to claim 4 consisting essentially of a mixture of polyol ester molecules in which at least 95% of the acyl groups are selected from the group consisting of the acyl groups of all the straight and branched chain monobasic and dibasic carboxylic acids with from four to twelve carbon atoms each, at least 38% of the alcohol moieties are selected from the group consisting of the alcohol moieties derived from DPE and TPE, and the alcohol moieties and acyl groups are selected subject to the constraints that a total of at least 16% of the acyl groups in the ester mixture are acyl groups of i-C 5 acid; the ratio of the of acyl groups in the mixture that contain 8 or more carbon atoms and are unbranched to the of acyl groups in the mixture that are both branched and contain not more than five carbon atoms is not greater than 1.00; the of acyl groups in the mixture that contain at least nine carbon atoms, S: whether branched or not, is not greater than 49; and a total of at least 41% of the acyl groups in the ester mixture are acyl groups of one of the trimethylhexanoic acids and at least 29% of the acyl groups in the mixture are 3,5,5-trimethylhexanoyl groups.
6. A compounded lubricant consisting essentially of at least 95% by weight of a composition according to claim 5 and a balance of one or more additives selected from the group consisting of oxidation resistance and thermal stability improvers, corrosion inhibitors, metal deactivators, lubricity additives, viscosity index improvers, pour and floc point depressants, detergents, dispersants, antifoaming agents, anti-wear agents, and extreme pressure resistant additives.
7. A compounded lubricant consisting essentially of at least 92% by weight of a composition according to any one of claims 1 to 3 and a balance of one or more additives selected from the group consisting of oxidation resistance and thermal stability improvers, corrosion inhibitors, metal deactivators, lubricity additives, iscosity index improvers, pour and floc point depressants, detergents, dispersants, antifoaming agents, anti-wear agents, and extreme yR pressure resistant additives.
8. A refrigerant working fluid consisting essentially of a primary heat transfer fluid selected from the group consisting of pentafluoroethane, 1,1- difluoroethane, 1,1,1-trifluoroethane, tetrafluoroethanes, and mixtures thereof and a balance of a cunposition according to any one of claims 1 to 5 or 7.
9. A refrigerant working fluid consisting essentially of 1,1,1,2- tetrafluoroethane and a balance of a lubricant according to claim 6. A process for operating a refrigerator comprising cyclic compression, liquefaction, expansion, and evaporation of a heat transfer fluid, said heat transfer fluid consisting essentially of 1,1,1,2-tetrafluoroethane and a balance of S: a lubricant according to claim 6.
11. A process for operating a refrigerator comprising cyclic compression, liquefaction, expansion, and evaporation of a heat transfer fluid, said heat transfer fluid consisting essentially of a primary heat transfer fluid selected from the group consisting of pentafluoroethane, 1,1-difluoroethane, 1,1,1- trifluoroethane, tetrafluoroethanes, and mixtures thereof and a balance of a composition according to claim 1. DATED this 22nd day of May, 1996. HENKEL CORPORATION WATERMARK PATENT TRADEMARK ATTORNEYS 4TH FLOOR, "DURACK CENTRE" 263 ADELAIDE TERRACE PERTH W.A. 6000 AUSTRALIA Abstract of the Disclosure A high quality lubricant for heavy duty service air conditioner and refrigerator compressors, especially those using chlorine free hydrofluorocarbon refrigera.i working s fluids, is provided by mixed esters of hindered polyols, most desirably di-pentaerythritol, usually mixed with some pentaerythritol, with a mixture of carboxylic acids in- cluding at least some of each of iso-pentanoic acid and iso-nonanoic acid. C *CCC roas eoo o g
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU70506/96A AU695913C (en) | 1993-03-10 | 1996-10-30 | Polyol ester lubricants for refrigeration compressors operating at high temperatures |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2919493A | 1993-03-10 | 1993-03-10 | |
US029194 | 1993-03-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU70506/96A Division AU695913C (en) | 1993-03-10 | 1996-10-30 | Polyol ester lubricants for refrigeration compressors operating at high temperatures |
Publications (2)
Publication Number | Publication Date |
---|---|
AU5764694A AU5764694A (en) | 1994-09-15 |
AU670854B2 true AU670854B2 (en) | 1996-08-01 |
Family
ID=21847737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU57646/94A Expired AU670854B2 (en) | 1993-03-10 | 1994-03-09 | Polyol ester lubricants for refrigerating compressors operating at high temperatures |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU670854B2 (en) |
BR (1) | BR9401114A (en) |
HK (1) | HK1008678A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5021179A (en) * | 1990-07-12 | 1991-06-04 | Henkel Corporation | Lubrication for refrigerant heat transfer fluids |
-
1994
- 1994-03-09 AU AU57646/94A patent/AU670854B2/en not_active Expired
- 1994-03-10 BR BR9401114A patent/BR9401114A/en not_active IP Right Cessation
-
1998
- 1998-07-28 HK HK98109466A patent/HK1008678A1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5021179A (en) * | 1990-07-12 | 1991-06-04 | Henkel Corporation | Lubrication for refrigerant heat transfer fluids |
Also Published As
Publication number | Publication date |
---|---|
HK1008678A1 (en) | 1999-05-14 |
AU5764694A (en) | 1994-09-15 |
BR9401114A (en) | 1994-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5833876A (en) | Polyol ester lubricants for refrigerating compressors operating at high temperatures | |
US5906769A (en) | Polyol ester lubricants for refrigerating compressors operating at high temperatures | |
US6183662B1 (en) | Polyol ester lubricants, especially those compatible with mineral oils, for refrigerating compressors operating at high temperatures | |
US5820777A (en) | Blended polyol ester lubricants for refrigerant heat transfer fluids | |
US5853609A (en) | Polyol ester lubricants for hermetically sealed refrigerating compressors | |
EP0648252B1 (en) | Polyol ester lubricants for refrigerating compressors operating at high temperatures | |
EP0648250B1 (en) | Blended polyol ester lubricants for refrigerant heat transfer fluids | |
EP0787173B1 (en) | Process for lubricating a vehicle air-conditioner | |
EP0643762B1 (en) | Polyol ester lubricants for hermetically sealed refrigerating compressors | |
EP0643761B1 (en) | Polyol ester lubricants for refrigerator compressors operating at high temperatures | |
CA2136851A1 (en) | Polyol ester lubricants for high efficiency refrigerators | |
AU670854B2 (en) | Polyol ester lubricants for refrigerating compressors operating at high temperatures | |
EP0643753A1 (en) | Polyol ester heavy duty compressor lubricants | |
AU671892B2 (en) | Polyol ester lubricants for hermetically sealed refrigerating compressors | |
AU695913B2 (en) | Polyol ester lubricants for refrigeration compressors operating at high temperatures | |
AU670173B2 (en) | Polyol ester lubricants for refrigerator compressors operating at high temperatures | |
AU701601B2 (en) | Polyol ester lubricants for hermetically sealed refrigerating compressors | |
AU670175B2 (en) | Polyol ester heavy duty compressor lubricants |