AU667274B2 - Medical pumping apparatus - Google Patents
Medical pumping apparatus Download PDFInfo
- Publication number
- AU667274B2 AU667274B2 AU66137/94A AU6613794A AU667274B2 AU 667274 B2 AU667274 B2 AU 667274B2 AU 66137/94 A AU66137/94 A AU 66137/94A AU 6613794 A AU6613794 A AU 6613794A AU 667274 B2 AU667274 B2 AU 667274B2
- Authority
- AU
- Australia
- Prior art keywords
- fluid
- foot
- medical device
- set forth
- bladder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H9/00—Pneumatic or hydraulic massage
- A61H9/005—Pneumatic massage
- A61H9/0078—Pneumatic massage with intermittent or alternately inflated bladders or cuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/165—Wearable interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2205/00—Devices for specific parts of the body
- A61H2205/12—Feet
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Massaging Devices (AREA)
Description
~~iC~2=Tii=l(iP-; P- iri ~m~ 7 7
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT a.
o a o oo 00 0 0 a 0 I
I
11l I I 1 i I Applicant: NDM ACQUISITION CORP.
Invention Title: MEDICAL PUMPING APPARATUS The following statement is a full description of this invention, including the best method of performing it known to me/us: ii i I NDM 196 PA IA- MEDICAL PUMPING APPARATUS Background of the Invention The present invention relates generally to medical pumping apparatus and, more particularly, to such an apparatus having an inflatable bag with first and second separate fluid bladders which apply distinct compressive pressures to separate portions of a patient's foot.
Medical pumping apparatus have been employed i. the prior art to increase or stimulate blood flow in a limb extremity, such as a hand or a foot. For example, in U.S. Patent No. 4,614,179, a pumping device is disclosed having an inflatable bag provided with a single bladder adapted to engage between plantar limits of the ball and heel of a foot to flatten the plantar arch and stimulate venous blood flow. Various embodiments of the inflatable bag are disclosed. Each embodiment, however, is provided with only a single bladder which engages only a limited portion of the foot.
It is believed that optimum venous blood flow in a foot is achieved when an inflatable bag is used that engages and applies pressure to a substantial portion of the foot.
Oftentimes, however, an inflatable bag that encases a substantial portion of the foot and is inflated to a pressure level required to effect venous blood flow is found by the patient co be too uncomfortable.
4 The noted patent discloses a pump which commuricates with the bag for cyclically inflating and deflating the bag. The pump, however, is not capable Df recording patient compliance data time, date and duration of each use by the patient) for subsequent downloading to a computer in a physician's office.
Nor is it capable of having operating parameters input either manually or via a physician's computer.
The pumping device in the referenced patent also fails to include means for allowing a physician to run a prescreening test prior to prescribing use of the device to a patient to ensure that the patient does not have a venous blood flow L 1 I II NDM 196 PA 2 problem, such as deep vein thrombosis (DVT). The pumping device further lacks means for predicting for each individual patient an appropriate time period for deflation or vent cycles.
Accordingly, there is a need for an improved medical pumping apparatus having an inflatable bag which engages a substantial portion of a patient's foot and achieves optimum blood flow at an acceptable patient comfort level. It is desirable that the apparatus include a fluid generatcr having a controller which is capable of creating and storing patient compliance data for subsequent transmission to a physician's computer. It is also desirable that the generator include a controller that is capable of storing operating parameters set manually via a manual selector or generated via a physician's computer. It would further be desirable to have a medical pumping apparatus which includes means for allowing a physician to run a prescreening test prior to prescribing use of the device to a patient to ensure that the patient does not have a venous blood flow problem. It would additionally be desirable to have a S medical pumping apparatus provided with means for predicting for ro each individual patient an appropriate time period for deflation cycl s.
Summary of the Invention ~These needs are met by the present invention, wherein *'1.25 an improved medical pumping apparatus is provided which includes an inflatable bag having first and second bladders for applying distinct compressive pressures to separate portions of a foot.
The second bladder, which engages the heel, a forward portion of the sole and the dorsal aspect of the foot and is filled with fluid at a lower rate than that of the first bladder, compensates for reduced swelling which occurs during use. Further provided is a fluid generator for cyclically inflating and deflating the bag. The fluid generator is provided with a controller that is capable of storing operating parameters set manually via a manual selector or generated by way of a physician's computer. In the I I m m. l
_I
NDM 196 PA 3 latter instance, the manual selector may be partially or completely disabled to prevent subsequent manual input of one or more different operating parameters by the patient. The fluid generator controller is also capable of producing and saving patient compliance data for subsequent transmission to a physician's computer. The apparatus further includes means for allowing a physician to run a prescreening test prior to prescribing use of the device to a patient to ensure that the patient does not have a venous blood flow problem, such as dee-* vein thrombosis. It also includes means for predicting for each individual patient an appropriate time period for deflation cycles.
In accordance with a first aspect of the present invention, a medical device is provided for applying compressive pressures against a patient's foot. The device comprises first and second panels of flexible material secured to one another to form an inflatable bag to be fitted upon the foot. The bag has first and second separate fluid bladders. The first fluid bladder is adapted to engage a first portion of the foot and the second fluid bladder is adapted to engage a second portion of the foot. Securing means is provided for holding the inflatable bag to the foot. Fluid supply means is provided for applying pressurized fluid to the first and second fluid bladders such that the first fluid bladder applies a first compressive pressure upon the first portion of the foot and the second fluid bladder applies a second compressive pressure upon the second portion of Sthe foot. -e e- T fluid supply means comprises generator means for o 0 Scyclically generating fluid pulses during periodic inflacion cycles. It also serves to vent fluid from the first and second bladders to atmosphere during periodic vent cycles between the inflavion cycles. The fluid supply means further includes fluid conducting means connected to the first and second bladders and the generator means for communicating the fluid pulses generated by the generator means to the first and second bladders.
T 01 NDM 196 PA 4 The generator means comprises controller means for storing an operating pressure value for the fluid pulses and an operating time period for the periodic vent cycles. It also compriE nanual selector means for setting a preferred pressure value to be stored by the controller means as the operating pressure value and a preferred time period to be stored by the controller means as the operating time value.
The supply means may also include processor means j associated with the generator means for generating a preferred pressure value for the fluid pulses and a preferred time period for the vent cycles. The processor means is coupled to the generator means for transmitting the preferred pressure value and the preferred time period to the controller means of the generator means to be stored by the controller means as the operating pressure value and the operating time period and disabling partially or completely the manual selector means whenever a preferred pressure val-e and a preferred time pericd I are stored by the controller means in response to receiving same S.from the processor means. It is further contemplated by the present invention that processor means may be provided alone without manual selector means, or manual selector means may be Sprovided alone without processor means.
The controller of the generator means further provides ':25 transmitting the patient compliance data to the processor means.
The operating pressure value for the fluid pulses is selected from a range of 3 to 7 psi. The operating pressure value is set at the maximum value whirh a patient finds to be acceptable from a comfort standpoint. The duration of each of S130 the inflation cycles is approximately 3 seconds.
The fluid conducting means comprises a first tubular line connected at its distal end to the first bladder, a second tubular line connected at its distal end to the second bladder, a third tubular line connected at its distal end to a proximal end of the first tubular line, a fourth tubular line connected at its i NDM 196 PA 5 distal end to a proximal end of the second tubular line, and a fifth tubular line connected at its distal end to proximal ends of the third and fourth tubular lines. The fourth tubular line is provided with a restrictive orifice for preventing delivery of fluid into the second bladder at the same rate at which fluid is delivered into the first bladder.
The first portion of the foot comprises the plantar arch and the second portion of the foot includes the heel, a forward portion of the sole and the dorsal aspect of the foot.
The first and second panels of flexible material may be formed from polyurethane or polyvinyl chloride.
The securing means may comprise a boot which receives the bag and includes first and second tabs adapted to connect with one another after the boot and the bag are fitted upon a foot to hold the boot and the bag to the foot.
The medical davice may further include means for allowing a physician to run a prescreening test prior to prescribing use of the device to a patient to ensure that the patient does not have a venous blood flow problem, such as deep '20 vein thrombosis. It may also include means for predicting for S each individual patient an appropriate time period for vent cycles.
In accordance with a second aspect of the present invention, an inflatable bag adapted to be secured to a patient's Ouee foot is provided for applying compressive pressures against the patient's foot upon receiving pressurized fluid from a fluid source via one or more fluid lines. The inflatable bag comprises
S
first and second panels of flexible material secured to one another to form first and second separate fluid bladders. The first fluid bladder is adapted to engage a first portion of the foot for applying a first compressive pressure thereto and the second fluid bladder is adapted to engage a second portion of the foot for applying a second compressive pressure thereto. Tubular means extending from the first and second bladders is provided for connecting with the one or more fluid lines to permit the i- 6 fluid source to supply pressurized fluid to the first and second bladders.
The preferred embodiment of the present invention will be described with reference to the accompanying drawings.
Brief Description of the Drawings Fig. 1 is a perspective view of medical pumping apparatus constructed and operable in accordance with the present invention; Fig. 2 is a perspective view of the boot and inf,latable bag of the present invention; t 6 I t staffaallkeeplspocV6e137,94 9,1 NDM 196 PA 7 Fig. 3 is a cross-sectional view of the inflatable bag and'the lower portion of the boot with the upper portion of the boot and a patient's foot shown in phantom; Fig. 4 is a plan view of the inflatable bag shown in Fig. 2 and illustrating in phantom a patient's foot positioned over the inflatable bag; Fig. 5 is a cross-sectional view taken along section line 5-5 in Fig. 4; Fig. 6 is a schematic illustration of the controller of the fluid generator illustrated in Fig. 1; Fig. 7 is a graphical representation of an inflation cycle and vent cycle for an inflatable bag; Fig. 8 is a block diagram of the compressor, air reservoir, manifold and pressure sensor of the fluid generator illustrated in Fig. 1; Fig. 9 is a circuit diagram for the infrared sensor illustrated in Fig. 1; Fig. 10 is an example LRR curve for a normal patient; Fig. 11 is a flow chart depicting steps performed to determine stabilization of the infrared sensor signal; and, Fig. 12 is a flow chart depicting steps performed to determine the endpoint on the LRR curve and the LRR refill time.
Detailed Description of the Invention A medical pumping apparatus 10 constructed and operable in accordance with the present invention is shown in Fig. 1. The apparatus includes a boot 20 adapted to be fitted upon and secured to a patient's foot. The boot 20 is provided with an inflatable bag 30 (see Figs. 2 and 4) which, when inflated, serves to apply compressive pressures upon the patient's foot to stimulate venous blood flow. The apparatus 10 further includes a fluid generator 40 which cyclically generates fluid pulses, air pulses in the illustrated embodiment, during periodic inflation cycles. The fluid pulses are communicated to the bag 30 via a first conducting line 50. The generator 40 also serves to vent 1 I CC NDM 196 PA 8 fluid from the bag 30 to atmosphere during periodic vent or deflation cycles between the periodic inflation cycles.
Referring to Figs. 2-5, the inflatable bag 30 is constructed from first and second panels 32 and 34 of flexible material such as polyurethane, polyvinyl 'hloride or the like.
The panels 32 and 34 are heat sealed or otherwise secured to one another to form first and second fluid bladders 36 and 38, respectively. As best shown in Fig. 3, the first fluid bladder 36 engages a patient's foot 60 approximately at the plantar arch 62, which extends between the metatarsal heads and the heel 64.
The second fluid bladder engages the foot approximately at the dorsal aspect 66, the heel 64 and a forward portion 67 of the sole 68 of the foot 60 beneath toe phalanges. As should be apparent, the exact foot portions engaged by the two bladders will vary somewhat from patient to patient.
As best shown in Figs. 2 and 3, the boot 20 comprises a flexible outer shell 22 made from a flexible material, such as vinyl coated nylon. The inflatable bag is placed within the shell 22 and is adhesively bonded, heat sealed or otherwise secured thereto. Interposed between the outer shell 22 and the inflatable bag 30 is a stiff sole member 24oformed, for example, from acrylonitrile butadiene styrene. The outer shell 22 is provided with first and second flaps 22a and 22b which, when oio fastened together, secure the boot 20 in a fitted position upon a patient's foot. Each of the flaps 22a and 22b is provided with *I patches 24 of loop-pile fastening material, such as that commonly sold under the trademark Velcro. The patches 24 of loop-pile material permit the flaps 22a and 22b to be fastened to one 11 0 another. A porous sheet of lining material (not shown) 0 comprising, for example, a sheet of polyester nonwoven fabric, may be placed over the upper surface 30a of the inflatable bag such that it is interposed between the bag 30 and the sole 68 of the foot when the boot 20 is secured upon the foot The fluid generator 40 includes an outer case 42 having ,1 a front panel 42a. Housed within the outer case 42 is a NDM 196 PA 9 controller 44 which is schematically illustrated in Fig. 6. The controller 44 stores an operating pressure value for the fluid pulses, an operating time period for the periodic inflation cycles and a operating time period for the periodic vent cycles.
In the illustrated embodiment, the operating time period for the periodic inflation cycles is fixed at 3 seconds. The other two parameters may be varied.
The front panel 42a of the outer case 42 is provided with a keypad 42b for setting a preferred pressure value to be stored by the controller 44 as the operating pressure value. By way of example, the preferred pressure value may be selected from a range varying from 3 to 7 psi. The keypad 42b is also capable of setting a preferred time period to be stored by the controller 44 as the operating time period for the periodic vent cycles.
For example, the preferred vent cycle time period may be selected from a range varying from 4 to 32 seconds. As an alternative to setting a time period for just the vent cycles, a combined time period, determined by adding the time period for the inflation o cycles with the time period for the vent cycles, may be set via the keypad 42b for storage by the controller 44. A graphical a representation of an inflation cycle followed by a vent cycle for the inflatable bag 30 is shown in Fig. 7.
In the illustrated embodiment, a processor 70 is provided at a physician's office) for generating a preferred pressure value for the fluid pulses and a preferred time period for the vent cycles. The processor 70 is coupled to the fluid generator 40 via an interface cable 72 and transmits a the preferred pressure value and the preferred time period to the S° controller 44 for storage by the controller 44 as the operating 30 pressure value and the operating time period. The processor also transmits a disabling signal to the controller 44 to effect either partial or complete disablement of the keypad 42b. As a result, the patient is precluded from adjusting the operating pressure value or the operating time period or both via the keypad 42b, or is permitted to adjust one or both values, but
L
NDM 196 PA 10 only within predefined limits. An operator may reactivate the keypad 42b for setting new operating parameters to switch from the processor input mode to the keypad input mode) by actuating specific keypad buttons in a predefined manner.
The controller 44 further provides for producing and saving patient compliance data time, date and duration of each use by the patient), which data can be transmitted by the controller 44 to the processor 70 for storage by same.
Further housed within the outer case 42 is an air compressor 44, an air reservoir 46, a pressure sensor 47 anrid a manifold 48, as shown schematically in Fig. 8. Extending from the manifold 48 are left and right fluid lines 48a and 48b which terminate at left and right fluid outlet sockets 49a and 49b.
The left fluid socket 49a extends through the front panel 42a of the outer case 42 for engagement with a mating connector 51 located at the proximal end of the conducting line 50, see Fig.
1. The conducting line 50 is secured at its distal end to the inflatable bag 30. The right socket 49b likewise extends through the front panel 42a for engagement with a mating connector 20 located at the proximal end of a second conducting line (not 48 *oi shown) which is adapted to be connected at its distal end to a Ssecond inflatable bag (not shown) Compressed air generated by the compressor 44 is supplied to the reservoir 46 for storage via fluid line 44a. The reservoir 46 communicates with the manifold 48 via a fluid line 46a.
An inflate solenoid, a vent solenoid, a channel o hm oo. solenoid and associated valves are provided within the manifold S 48. The inflate solenoid effects the opening and closing of its 0o4444 associated valve to control the flow of fluid into the manifold 48 from the air reservoir 46 via fluid line 46a. The vent solenoid effects the opening and closing of its associated valve to control the flow of fluid from the manifold 48 to atmosphere via a vent line 48c. The channel solenoid effects he opening t -i 1 L I Ist
I
r* NDM 196 PA 11 and closing of its associated valve to control the flow of fluid from the manifold 48 to fluid line 48a or fluid line 48b.
Actuation of the solenoids is controlled by the controller 44, which is coupled to the solenoids via conductors 44a. During inflation cycles, the controller 44 actuates thE: vent solenoid to prevent the venting of fluid in the manifold 48 to atm.shere via vent line 48c. The controller 44 further actuates the inflate solenoid to allow pressurized air to pass from the air reservoir 46, through the manifold 48 to either the fluid line 48a or the fluid line 48b.
During vent cycles, the controller 44 initially causes the inflate solenoid to stop pressurized fluid from passing into the manifold 48 from the reservoir 46. It then causes the vent solenoid to open for at least an initial portion of the vent cycle and vent the fluid in the manifold 48 to atmosphere.
Depending upon instructions input via the keypad 42b or the processor 70, the controller 44 also serves to control, via .0 the channel solenoid, the flow of fluid to either line 48a or line 48b. If only a single boot 20 is being employed, the :o oo line 48b.Ifolasigebo20ibenemoydth °20 processor 70 does not activate the channel solenoid and line 48a, 0 which is normally in communication with the manifold 48, communicates with the manifold 48 while line 48b is prevented o from communicating with the manifold 48 by the valve associated with the channel solenoid. If two boots 20 are being employed, ."0025 the controller 44 activates and deactivates the channel solenoid to alternately communicate the lines 48a and 48b with the Vo. manifold 48, thereby simulating walking. As should be apparent, *o0 when two boots 20 are used in an alternating manner, each boot r will have its own separate inflation and vent cycles. Thus, .30 during the vent cycle for the bag 30, an inflation cycle takes place for the other bag (not shown). The inflate solenoid allows pressurized fluid to pass from he air reservoir 46, through the manifold 48 and into the fluid line 48b associated with the other bag, while the channel solenoid has been activated to prevent /2 NDM 196 PA -12 communication of the fluid line 48a associated with the bag with the manifold 48.
The air pressure sensor 47 communicates with the manifold 48 via an air line 47a and senses the pressure level within the manifold 48, which corresponds' to the pressure level which is applied to either the fluid line 48a or the fluid line 48b. The essure sensor 47 transmits pressure signals to the controller 44 via conductors 47b. Based upon those pressulre signals, the controller 44 controls the operation of the inflate solenoid, such as by pulse width modulation or otherwise. Pulse width modulation for this application comprises activating the inflate solenoid for one pulse per cycle, with the pulse lasting until the desired pressure is achieved. The length of the pulse is based upon an average of the fluid pressure level during previous inflation cycles as measured by the pressure sensor 47.
Pulse length and hence pressure level is iteratively adjusted in small steps based on each immediately preceding pulse. In this I way, the fluid pressure within the manifold 48, and thereby the pressure which is applied to either fluid line 48a or fluid line 20 48b, is maintained substantially at the stored operating pressure value with no sudden changes in pressure level.
In an alternative embodiment, the pressure sensor 47 is replaced by a force sensor (not shown) secured to the bag 30 s0 as to be interposed between the first bladder 36 and the sole 68 of the foot 60. The force sensor senses the force applied by the bladder 36 to the foot 60 and transmits force signals to the controller 44 which, in response, controls the operation of the inflate solenoid to maintain the fluid pressure within the manifold 48, and thereby the pressure which is applied to either fluid line 48a or fluid line: 48b, at Lhe stored operating pressure level.
The conducting line 50, as best shown in Figs. 1, 2 and 4, comprises a first tubular line 50a connected at its distal end 3 itdiledto the second bladder 38, a third tubular line onctda 3itdiledto the firstd bladder 3, a second tubular line NIDM 196 PA -13connected at its distal end to a proximal end of the first tubular line 50a, a fourth tubular line 50d connected at its distal end to a proximal end of the second tubular line 50b, and a fifth tubular line 50e integrally formed at its distal end with proximal ends of the third and fourth tubular lines 50c and The fourth tubular line 50d is provided with a restrictive orifice 53 for preventing delivery of fluid into the second bladder 38 at the same rate at which fluid is delivered into the first bladder 36. More specifically, the restrictive orifice 53 is dimensioned such that the fluid pressure in the first bladder 36 is greater than the fluid pressure level in the second bladder 38 during substantially the entirety of the inflation cycle.
The front panel 42a is further provided with a liquid crystal display (LCD) 42c for displaying the stored operating pressure value and the stored operating time period. The LCD 42c also serves to indicate via a visual warning if either or both of the first or second conducting lines are open or obstructed.
Light-emitting diodes 42d are also provided for indicating whether the generator 40 is operating in the keypad input mode or 20 the processor input mode. Light-emitting diodes 42f indicate which fluid outlets are active.
When a fluid pulse is generated by the generator pressurized fluid is transmitted to the bag 30 via the conducting line 50. This results in the first fluid bladder 36 applying a first compressive pressure generally at the plantar arch 62 and the second bladder 36 applying a second, distinct compressive pressure generally at the dorsal aspect 66, the heel 64 and the forward portion 67 of the sole 68 of the foot 60. Application of compressive pressures upon these regions of the foot 60 effects 30 venous blood flow in the deep plantar veins. When a second boot (not shown) is employed, pressurized fluid pulses are transmitted by the generator 40 to its associated inflatable bag so as to effect venous blood flow in the patient's other foot.
The apparatus 10 further includes an infrared sensor 75, see Figs. 1 and 9. The sensor 75 can be used in combination NDM 196 PA -14 with the fluid generator 40 and the processor 70 to allow a physician to prescreen patients before prescribing use of one or two of the boots 20 and the fluid generator 40. The prescreening test ensures that the patient does not have a venous blood flow problem, such as deep vein thrombosis. The prescreening test also allows the physician to predict for each individual patient a preferred time period for vent cycles.
In the illustrated embodiment, the sensor 75 is operatively connected through the generat- 40 via cable 77 to the processor 70, see Figs. 1, 6 and 9. The sensor 75 comprises -hree infrared-emitting diodes 75a which are spaced about a centrally located phototransistor 75b. The sensor 75 further includes a filtering capacitor 75c and three resistors The sensor 75 is adapted to be secured to the skin tissue of a patient's leg approximately 10 cm above the ankle via a double-sided adhesive collar (not shown) or otherwise. The diodes 75a emit infrared radiation or light which passes into the skin tissue. A portion of the light is absorbed by the blood in the microvascular bed of the skin tissue. A remaining portion of 20 the light is reflected towards the phototransistor 75b. An analog signal generated by the phototransistor 75b varies in dependence upon the amount of light reflected towards it.
Because the amount of light reflected varies with the blood volume in the skin tissue, the analog signal can be evaluated to determine the refill time for the microvascular bed in the skin tissue (also referred to herein as the LRR refill time).
Determining the microvascular bed refill time by evaluating a signal generated by a phototransistor in response to light reflected from the skin tissue is generally referred to as light reflection rheography (LRR).
To run the prescreening test, the sensor 75 is first secured to the patient in the manner described above. The patient is then instructed to perform a predefined exercise program, 10 dorsiflexions of the ankle 'ithin a predefined time period, 10 seconds. In a normal patient, the venous i Ii i test prior to prescribing use of the device to a patient to ensure that the patient does not have a venous blood flow NDM 196 PA blood pressure falls due to the dorsiflexions causing the skin vessels to empty and the amount of light reflected towards the phototransistor 75b to increase. The patient continues to be monitored until the skin vessels are refilled by the patient's normal blood flow.
The signals generated by the phototransistor 75b during the prescreening test are buffered by the controller 44 and passed to the processor 70 via the interface cable 72. A digitizing board (not shown) is provided within the processor to convert the analog signals into digital signals.
In order to minimize the effects of noise, the processor 70 filters the digital signals. The processor filters the digital signals by taking 7 samples of sensor data and arranging those samples in sequential order from the lowest value to the highest value. It then selects the middle or "median" value and discards the remaining values. Based upon the median values, the processor 70 then plots a light reflection S rheography (LRR) curve. As is known in the art, a physician can liagnose whether the patient has a venous blood flow problem from the skin tissue refill time taken from the LRR curve. An example LRR curve for a normal patient is shown in Fig. When the sensor 75 is initially secured to the patient's leg, its temperature increases until it stabilizes at approximately skin temperature. Until temperature stabilization 25 has occurred, the signal generated by the sensor 75 varies, I resulting in inaccuracies in the LRR curve generated by the S' processor 70. To prevent this from occurring, the processor monitors the signal generated by the sensor 75 and produces the LRR curve only after the sensor 75 has stabilized. Sensor .4 jj30 stabilization is particularly important because, during the stabilization period, the signals generated by the sensor decline at a rate close to the rate at which the skin vessels refill.
Fig. 11 shows in flow chart form the steps which are used by the processor 70 to determine if the signal generated by
L
capable of storing operating parameters set manually via a manual selector or generated by way of a physician's computer. In the NDM 196 PA 16 the sensor 75 has stabilized. The first step 80 is to take 100 consecutive samples of filtered sensor data and obtain an average of those samples. After delaying approximately 0.5 second, the processor 70 takes another 100 consecutive samples of sensor data and obtains an average of those samples, see steps 81 and 82. In step 83, the processor 70 determines the slope of a line extending between the averages of the two groups sampled. In step 84, the processor 70 determines if the magnitude of the slope is less than a predefined threshold value TS, T s 0.72. If it is, stabilization has occurred. If the magnitude of the slope is equal to or exceeds the threshold value TS, the processor 70 determines whether 3 minutes have passed since the sensor 75 was initially secured to the patient's skin, see step Experience has shown that stabilization will occur in any event within 3 minutes. If 3 minutes have passed, the processor concludes that stabilization has occurred. If not, it repeats steps 80-85.
After generating the LRR curve, the processor further creates an optimum refill line Lr and plots the line Lr for comparison by the physician with the actual LRR curve, see Fig. 10. The optimum refill line Lr extends from the maximum point on the plotted LRR curve to a point on the baseline, which point is spaced along the X-axis by a selected number of seconds.
It is currently believed that this time along the X-axis should i'"25 be 30 seconds from the X-component of the maximum point; however other times close to 30 seconds may ultimately prove superior.
The processor 70 generates the endpoint of the LRR curve and the LRR refill time. Fig. 12 shows in flow chart form 'o the steps which are used by the processor 70 to determine the endpoint on the LRR curve and the refill time.
In step 90, all filtered samples for a single prescreening test are loaded into the processor 70. In step 91, two window averages are determined. In a working embodiment of the invention, each window average is determined from 30 filtered data points, and the two window averages are separated by L the generator means for communicating the fluid pulses generated by the generator means to the first and second bladders.
7 ;9 ,r oi-4' NDM 196 PA 17 filtered data points. Of course, other sample sizes for the windows can be used in accordance with the present invention.
Further, the number of data points separating the windows can be varied. In step 92, the slope of a line extending between the two window averages is found. In step 93, if the slope is less than 0, the processor 70 moves the windows one data point to the right and returns to step 91. If the slope is greater than or equal to zero, the processor 70 determines the endpoint, see step 94. The endpoint is determined by identifying the lowest and highest data points from among all data points used in calculating the two window averages and taking the centerpoint between those identified data points. The processor then determines if the magnitude of the endpoint is less than a threshold value TP Tp [peak value (peak value baseline value)]), see step 95. If the endpoint is greater than or equal to the threshold value Tp, the processor 70 moves the windows one data point to the right and returns to step 91. If the endpoint is less than the threshold value Tp, the processor identifies the endpoint and calculates the LRR refill time, see step 96. The LRR refill time is equal to the time between the maximum point on the LRR curve and the endpoint.
Further in accordance with the present invention, the processor 70 determines a preferred time period for the periodic vent cycles by estimating the refill time period for the patient's deep plantar veins based upon the determined LRR refill time. In order to determine the refill time period for the deep ~plantar veins, an equation is generated in the following manner.
LRR plots for a group of patients are generated in the o manner described above using the boot 20, the inflatable bag ,0 the fluid generator 40, the processor 70 and the sensor 75. The group must include patients ranging, preferably continuously ranging, from normal to seriously abnormal. The LRR refill time is also generated for each of these patients.
Refill times for the deep plantar veins are additionally determined for the patients in the group. The third tubular line connected at its distal end to a proximal end of the first tubular line, a fourth tubular line connected at its NDM 196 PA 18 refill time is determined for each patient while he/she is fitted with the boot 20 and the inflatable bag 30 has applied compressive pressures to his/her foot. An accepted clinical test, such as phlebography or ultrasonic doppler, is used to determine the refill time for the deep plantar veins.
Data points having an X-component equal to the LRR refill time and a Y-component equal to the refill time for the deep plantar veins are plotted for the patients in the group.
From those points a curve is generated. Linear regression or principal component analysis is employed to generate an equation for that curve. The equation is stored in the processor From the stored equation, the processor 70 estimates for each patient undergoing the prescreening test the patient's deep plantar veins refill time based upon the LRR refill time determined for that patient. The preferred time period for the periodic vent cycles is set equal to the deep plantar veins refill time and that preferred time period is transmitted by the processor 70 to the controller 44 for storage by the controller 44 as the oporating time period for the periodic vent cycles.
It is further contemplated by the present invention that a look-up table, recorded in terms of LRR refill time and deep plantar veins refill time, could be stored within the processor 70 and used in place of the noted equation to estimate the preferred time period for the periodic vent cycles.
25 A p::ogram listing (written in Basic) in accordance with the present invention including statements for determining stabilization of the sensor 75; median filtering; and (3) determining the endpoint of the LRR curve is set forth below: *oA 0
S,
qDM 196 PA
REM
rem rem rem rem rem rem rem rem dim stemp(100) ,wrd(4) ,tword(7) 19 out &hO2ffO,&h04 for dly=l to 5000:next dly out &h02fO,&hls 'reset the A/D's 'get ready for sampling )pen "I",#4,"ICVI.INI"I cls:screen 9 line (0,O)-(639,349) line (3,3)-(636,346) Lnput #4 ,cport input #4,d$:input #4,pth$ :lose #4 I CIt a 0 000* 0 0 0 C. Locate 4,5:input "Patients Name (First initial and Last):";iname$ iname$=iname$ It 'add paddiing spaces for short names iname$=left$( iname$,l0) 8 locate 5,5:input "Patients Aget";iage if iagelOO0 then 8 locate G,5:input "Which leg (right, left):";ileg$ ileg$=ileg$ "1 'add space padding ileg$=left$(ileg$, calf lag=Oo Sgosub 8000 'Wait on sensor temperature stabilization
CLS
DIM CVT(1441),overlay(l441) 16 XORG=75:YORG=278:PI=3.1415927# 17 11" rem <<Initialize the gain setting~s and D.P. variables>> G#1=25.00#1 'initial rain setting bias#=75.00# 'set this where you want the trace bottom ybase#=-1000.00# 'trigger the calibration message on 1st pass gmaxh'=25.00# 'sets the maximum allowable gain (35 orig.) maxdelta#=O.00# 'setup max and min for actual range mindelta#=210 .0011 fill c h 0 S0 gosub 1100 'display setup LOCATE 23,5 PRINT "X=RETURN TO DOS <Spc Bar>=C\'I TEST Oot-OVERLAY' S=STORE/RETRIEVE 188 GOSUB 1000 NDM 196 PA 20 190 gosub li, db 'display blanking 280 REM DATA DISPLAY ROUTINE 320 REM Get input and display point 325 erase CVT:SUM=0:yavg#=0.0#:calflag=l:maxdelta#=.O#:mindelta#=21.,# name$=iniame$:leg$=dleg$:age=iaqe patdat$=date$:pattim$=tfime$ locate 3,5tprint patdat,',;" 11";pattim$; locate 3,3l:print "Patient: ";,name$;:locate 3,53:print "Age: ";age; locate 3,64:print "Leg>", locate 24,28:print "Refill iime (SEC): ";using rem DO the Baseline Request (BRQ) for j=1 to gosub 2000 yavg#=yavg#+temp# n~ext j .0 330 FOR I=1 TO l440:skip=0 if i>480 then skip=l 331 for jx=l to skip:gosub 2000:next jx 'wait skip sample intervals 4., *4 *4.4 4 *4
S
4 4 4 rem Standard plot for reference (green line)*** if i<=504 then 332 ystep~ystep-(CVT(504 )-bias#)/72l if ystep<bias# then ystep~bias# if i=505 and CVT(5o4)<203 then circle(XORG+I/1440*490,yorg-Ystep),7,12 'ident fillrate start circleCXORG+I/1440*490,yorg-Ystep) 4 8,12 fillchk=1 end if if CVT(504)>131 then pset (XORG+I/1440*490,yorg-Ystep),l0 332 k$=inkey$:if then 333 rem Interrupt Sequence for rmdr=i to 1440:CVT(rmdr)=yval:-next rmdr ovlflg=0 'disable any overlaying on an abort sequence fillchk=0: filirate=0 gosub 7000 goto 420 'escape sequence 333 rem metronome Setup for 10 dorsiflexions rem start signal if i=48 then sound 500,10 iraw-i/39: iint=int( i/39) if i>80 and i<470 and iraw-ziint then sound 1200,1 335 gosub 0 'gosub 2000 got input s~ibroutine 336 CVT(l)-, al if i=904 then ystep-yval if ydelta#>maxdelta# then maxdelta#ssydelta# if ydelta4'<mindelta# then mindoltu#s-ydolta# 400 LINE (XORG+(1-1)/14404490,YOrG-CV'(I-1))-(XORGi-/1440490,yor-cvrc(f1'Ir 00
L
t 408 NEXT I rem Routine to find trace endpoint and calculate filitime if fillchk=l then 'find the trace endpoint for i=505 to 1410 'scan through all samples cvtsuml=0 :cvtsum2=0 for n~l to 3 0O:cvtsuml=cvtsuml+cvt( i+n-35) :cvt sum 2-cvtsum2+cvt( iqn) tnext n cvtavgl'=cvtsuml/30:cvtavg2=cvtsum2/30 diff=(cvtavg2-cvtavgl) if d~,ff 50 and cvt(i) .10 (cvt(504)-bias#) bias# then fur n=1 to if abs(cvt((i-l5)+n)-cVt(i))>9 then 409 'artifact rejection next n fulptr=i if cvt(fulptr)<7 then 410 'don't print endpoint circle (bottom) circle(XORG+fulptr/l440*490,YORG-.CVT(fulptr)),7,l2 'ident filirate sto circle( XORG+fulptr/14 40*4 90 ,YORG.-CVT( fulptr)) 12 409 next i fulptr=l 419 ifcvt(fulptr)<7 then 410- 'don't print endpoint circle (bottom) circleCX0RG+fulptr/1440*490,YORG-CVT(fulptr)),7,12 'ident filirate sto circle(XOk-G~fulptr/1440*490,YORG-CVT(fulptr)),8,12 fillrate= n(flltrat50)/ 0 fillrate~in(fultr504l)/ fillchk=0 end if locate 24,28:print "Refill. Time (SEC): ",,using "##.#";fillrate, deltamax#"'(maxdelta#-mindelta#) if deltamax#'=0 then deltamax#=l gosub 2600 'do the nominal gain adjust 420 rem <end of pass> 422 LET K$=INI EY$:IF OR THEN STOP 424 IF OR K$-11s" THEN GOSUB 5000 FILE ROUTINE 425 IF OR THEN-gosub 9000 'overlay handler 427 IF K$=11 1 THEN GOTO 190 Icheck for stable temp herellII 430 IF K$=111 THEN 422 'wait for keypress 460 GOTO 422 465 rem DIR7'OrORY I ,,,,CIS files d$+Pth$ locate 24,5:print"Press any key to continue."; 468 k$-inkey$:if kS=""1 then 468 J~ Il S gosub 11000 'display setup if Vect'-2 then goto 9000 'return to overlay routine goto 5000 'return to file routine 1000 REm introduction 1004 LOCATE 10,27:PRINTIICVI TEST AND STORE OPTION" NDM 196 PA -22- 1006 LOCATE 1.5,15:PRINT"[PRESS SPC BAR TO START TEST, ESC TO RETURN TO SYSTEM" 1010 LET K$=INKEY$:IF K$=11" THEN 1010 1020 IF ascCKS)=27 THEN SYSTEM 1024 IF K$=11S" OR THEN GOSUB 5000:goto 420 'FILE ROUTINE 1025 IF OR THEN CLS:STOP 1030 if "1 then RETURN 1040 goto 1010 1500 rem Calibrate message L520 line(130,195)-(500,255) 1530 locate l6,23:print "Attention!l! System is Calibrating 1540 locate 17,23:print "Wait until finished, then Retest.
1545 calflag=0 1560 return 2000 REM ***Get input value from A/D conlverter*** 'includes software fixes for lousy a/d converter equipment for smpl=l to 5 'take 5 samples out &hO2fO,&ho8 Istrc'Ue HOLD and take a sample out &hO2fO,&h18 're~set for next sample for dry=l to 86:next dly let msb~inp(&h02f6) let lsb='inp(&h02f6) tword(smpl)=( 256*msb+lsb) next smpl for g~l to 4 'bubble sort for median value for h=1 to 4 if tword(h)>tword(h+l) then temp~atword Ch) tword(h)=tword(h+1) tdord(h+l )=temp end if next h next g 000: 2047 csword#=tword(3) 'choose median value TEMP#=csword#/65526.0#*210,0# 'scale and convert to pixel space o 'a ydelta#=(temp#-ybase#) yva>=G#*ydelta#+bias# if yval>210 then yval=210 if yval>207 and calflagml then gosub 1500 if yval<0 then yval=0 2050 RETURN 2600 rem Nominal Gain Adjust maxpixel#=195.0O#'sthenwgi o0G#=(maxpixel#-bias#)/deltamax# 'sthenwgi 260if G#>gmaX# then G#=gmax# 260return 4005 gosub 11100 'redraw cvi display 4060 FOR I=1 TO 1440 4070 LINE(XORG+(I-l)/1440*490,YORG-CVT(I-1))-(XORGa-/1440A490,YORG-CVT(I)),45 4080 NEXT I 4085 LOCATE 23,5:PRINT11X=RETURN TO DOS <Spc Bar>=CVI TEST VERLAY S=STORE/R locate 3,5:color 15:print patdatS:" 11 ":pattim$; locate 3,31:print "Patient: ":,name$8i.,ocatc 3,53:print "Age: ";age: locate 3,64:print locate 24,28:print "RefillI Time (SEC): ":UeSq 0 k#:fCl'ae 4090 K$n11"" RETIURN pressure value or the operating time period or both via the keypad 42b, or is permitted to adjust one or both values, but lr IC--1I--_IY.ILtlLI -I NOM 196 PA 23 5000 5001 5005 5010 5170 5175 5177 5190 5210 5230 5340 5400 5410 5420 5430 5440 5450 5460 5465 5470 5474 5475 5476 5477 5478 5479 5490 5500 5510 5520 5530 b540 5550 5560 5570 5580 5590 5595 5591 REM FILE HANDLER c=0 LINE(75,68)-(565,278),12,bf LOCATE 23,5:PRINT" LOCATE 8,14:PRINT"<S>AVE FILE" LOCATE 10,15:PRINT "FILE NAME" LOCATE 12,13:PRINT .DAT" LOCATE l5,12:PRINT"<R>ETRIEVE FILE" LOCATE 17,15:PRINT"FILE NAME" LOCATE 19,13:PRINT .DAT" LOCATE 6,14:PRINT1"1<1!,,AIN MENU1":1ocate 6,50:print"<D>irectory" REM Input handler LET K$=INKEY$:IF THEN 5410 IF OR K$=lmll THEN colr-ll:GOTO 7000 IF KSW"R" OR THEN GOTO 5510 IF OR THEN GOTO 5460 if or then veot=l:goto 465 GOTO 5410 LOCATE 12,15,1 'SAVE PRINT I$=IHKEY$:IF THEN 5470 IF ASC(I$)=13 THEN c=0:goto 5600 IF ASC(I$)=8 THEN GOSUB 6750:goto 5470 IF ASC(I$)=27 THEN 5000 IF ASC(I$)<48 OR ASC(I$)>122 THEN 5470 IF ASC(I$)>57 A-ND ASC(I$)<64 THEN 5470 IF ASC(I$)>90 AND ASC(I$)<97 THEN 5470 IF C<8 THEN sd$=sd$I$:PRINT IS;:C=Cl1 GOTO 5470 LOCATE RETRIEVE ROUTINE PRINT I$=INKEY$tIF THEN 5530 IF ASC(I$)=13 THEN c=0:goto 6600 IF ASC(I$)=8 THEN GOSUB 6750:goto 5530 IF ASC(I$)=27 T1HEN 5000 IF ASC(I$)<48 OR ASC(I$)>122 THEN 5530 IF ASC(I$)>57 AND ASC(IS)<64 THEN 5530 IF ASC(I$)>90 AND ASC(I$)<97 THEN 5530 IF C<8 THEN rt$=rt$+I$:PRINT IS;:C=C+1 GOTO 5530 REDRAW DISPLAY
U.
0 0 0I 0 D I 5600 REM Output file to Disk 5605 ON ERROR GOTO 6710 5610 FILES=d$+pth$+SD$+" .DAT":SD$oo"" 5620 OPEN "O",#1,FILE$ 5630 FOR SAMPLE=1 TO 1440 5640 WRITE #1,CVT(SAMPLE) 5650 NEXT SAMPLE write #1,nameS,age,leg$,patdat$,pattim$,filirate 5660 CLOSE #1 colr 5670 ovlflq=O:COTO 7000 REDRAW DISPLAY 6600 6605 6610 6620 6630 REM INPUT FILE PROM DISK ON ERROR COTO 6700 FILE$=d$+pth$+RT$+1" DAT" t R'P$=.Ii 1 OPEN "I",#1,FILE$ FOR SAMPLE =1 TO 1440
L
via a vent line 48C. The channrel solenoid effects the opening NDN 196 PA -24 6640 INPUT #1"CVT (SAMPLE) 5650 NEXT SAMPLE input #1,name$,age,leg$,patdat$,pattirn$,fillrate 6660 CLOSE 1 coir 11 5670 ovlflgj=0:GOTO 7000 1 DISPLAY NEW DATA 5700 REM Error Handling 6705 LOCATE 23,5:PPINT "FILE NOT FOUND!":COTO 6720 6710 LOCATE 23,5:PRINT "DISK DRIVE NOT READY!" 6720 FOR DLYl1 TO 55000:NEXT DLY close 1 6730 RESUME 5000 6740 END 67350 REM ***CORRECTION ALGORITHM*** 67(00 IF POS(X)<=16 THEN RETURN 6770 C=C-l 6780 SD$=~LEFTS(SD$,C) 6785 RT$=LEFT$(RT$,C) 6790 BKS=POS(X) 6795 BKY=CSRLIN 6800 LOCATE BKY,(BKS-l) 6805 PRINT"-"; 6810 LOCATE BKY,(BKS-l) 6820 RETURN 7000 REM reconstruct display and data routines 7001 CVT(0)=0 gosub 11100 'redraw cvi display 7060 FOR 1 1 TO 1440 if ovlflg~l then LINE(XORG+ (1-1)/1440*490,YoR G-overlay(I-l))-(XORG+1/1440*490,YORO-overlay(I end if 7080 NEXT I 7085 LOCATE 23,5:PRINT"IX=RETURN TO DOS <Spc Bar>=CVI TEST O=OVERLAY S=STORE/R locate 3,5;color colr:print patdat$;" 11 ";pattim$; locate 3,31:print "Patient: "1;name$;:.locate 3,53:print "Age: ";age; locate 3,64:print Leg>"; locate 24,28:print "Refill Time (SEC). ";using "##.#";fillrate; color 7090 K$="":1RETURN 8000 rem Wait on sensor temperature stabilization cls:screen 9 line (0,0)-(639,349)l15,b line (3,3)-(636,346) G#=10.00# 'set gain value biasll=75.00# 'sets bias to active range i oae25print CVI Test locate print "Attach the optical sensor to the patient's leg using thle adhesive locate print "collar. Locate the sensor four inches above the ankle on the locate print "interior side of tile leg." locate print "Plug the sensor into thle connector on thle Powerpoint Hemopulse un bag, while the channel solenoid has been activated to prevent NOM 196 PA locat'e 10,5 print "<Press any key when finished, to Bypass warmup>"1 3010 k$=inkey$:if k$="11 then 8010 i~f or then return locate 15,5 print "Please remain stationary while the sensor temperature stabilizes.
3020 locate 18,25 print "Calibrating Please wait." let stime!=timer 3025 k$=inkey$:if or then return if (timer-stime!) <15 then 8025 'start 15 second minimum wait I8027 rem stabilization routines locate 18,25 print "Temperature now stabilizing" for i=1 to 100 'get 100 conseq. samples gosub 2000 'get input let'stemp(i)=temp#*g#dy locate 18,25 print ""'toggle the prompt k$=inkey$:if or then return 8030 rem Average Filter for j=l to 100 let savg=savg+stemp(j) next j savg=savg/100 if abs(savg-lastavg) .720 then return lastavg=savg:savg=0 if (timer-stime) >180 then return for dly=l to 35000:next dly yavg#=0 'reset for next try goto 8027 9000 rem Handle overlay routine 9001 c0O 9005 LINE(75,68)-(565,278),12,bf 9010 LOCATE 23,5:PRINT" 9190 LOCATE l5,15:PRINT"I<O>VERLA/ FILE"1 9210 LOCATE 17,15:PRINT"IFILE MANME" 9230 LOCATE 19,13:PRINT 9340 LOCATE 6,14:PRINTI<M>AIN MENU"I:locate 6,50:print"I<D>irectory"I J9400 REM Input handler 9410 LET K$=INKEY$:IF THEN 9410 9420 IF OR THEN colr=ll:GOTO 7000 REDRAW DISPLAY 9430 IF K$=1101 OR THEN GOTO 9510 if or kS-"d" then vect=2:goto 465 9440 goto 9410 7 to the first bladder 36, a second tubular line 50b connected at its distal end to the second bladder 38, a third tubular line :~3 1 .4 NUM 19b 26 9510 9520 9530 9540 9550 9560 9570 9580 9590 9595 9597 LOCATE .19,15, overlay ROUTINE PRINT I1*11, I$=INKEY$:IF THEN 9530 IF ASc(I$)=13 THEN c=0:goto 9600 IF ASc(I$)=8 THEN GOSUB 6750:goto 9530 IF ASc(I$)=27 THEN 9000 IF ASc(I$)<48 OR ASC(I$)>122 THEN 9530 IF ASC(I$)>57 AND ASC(I$)<64 THEN 9530 IF ASC(I$)>90 AND ASC(I$)<97 THEN 9530 IF C<8 THEN rt$=rt$+I$:PRINT I$;:CCC+1 GOTO 9530 9600 REM INPUT FILE FROM DISK 9605 ON ERROR GOTO 10700 9610 FILE$=d$+pth$+RT$+".DAT":RT$="" 9620 OPEN "I",#lFILE$ 9620 FOR SAMPLE =1 TO 1440 9640 INPUT #l,overlay(SAMPLE) 9650 NEXT SAMPLE 'input.#1,nothingS,nothingS 9660 CLOSE 1 colr 11 9670 ovlflg=1:GOTO 7000 DISPLAY NEW DATA 10700 rem Error Handler for overlay 10705 LOCATE 23,5:PRINT "FILE NOT-FOUND!" 10720 FOR DLY=1 TO 55000:NEXT DLY close 1 10730 RESUME 9000 10740 END I 1 *i 44 44I I 4 544444 11000 REM DISPLAY SETUP LOCATE l,33:PRINT CH1R$(3) CHP$(3) CVI DISPLAY CHR$(3) CHR$(3) LINE (28,48)-(590,298),15,B 'white border LINE (74,67)-(566,279),15,B LOCATE 21,8:PRINT USING LOCATE 21,29:PRINT USING locate 21,18:print using LOCATE 21,50:PRINT USING GS;30 LOCATE 21,69:PRINT USING locate 21,39:print using g$;20 locate 21,59:print using LOCATE 5,5:PRINT"l.00 LOCATE 8,5:PRIN1"0.80" LOCATE 11,5:PRINT"0.60": LOCATE 14,5:PRINT"0.40" LOCATE 17,5:PRINT"0.20": LOCATE 20,5:PRIMT "0.00" LOCATE 2,28:PRIMT" <LR Rheography vs Seconds> return 11100 REM display area blanking LINE (75,68)-(565,278),0,BF FOR I=O TO 8:LINE(*490/12+238.334,68)-(I*490/12+238.334,278),11:NEXT I for i=0 to 10:line(i*163/0+75,68)-(i*163/10+75,278) next i FOR 1=0 TO 10:LINE(75,I*2l0/10+68)-(565,I*210/10+68),1:NEXT I 'grid LIME (75,173)-(565,'73),12 'center black line LOCATE l,33:PRINT CR$(3) CHRS(3) LOCATE 1,48:PRINT CHR$(2) CHRS(3) return 1 i
Claims (22)
1. A medical device for applying compressive pressures against a patient's foot comprising: first and second panels of flexible material secured to one another to form an inflatable bag to be fitted upon said foot, said bag having first and second separate fluid bladders, said first fluid bladder being adapted lo engage a first portion of said foot and said second fluid bladde. being adapted to engage a second portion of said foot; securing means for holding said inflatable bag to said foot; and fluid supply means for applying pressurized fluid to said first and second fluid bladders such that said first fluid bladder applies a first compressive pressure upon said first portion of said foot and said second fluid bladder applies a second compressive pressure upon said second portion of said foot.
2. A medical device as set forth in claim 1, wherein said fluid supply means applies fluid to said first bladder at a greater rate than to said second bladder.
3. A medical device as set forth in claim 1, wherein said supply means comprises generator means for cyclically generating fluid pulses during periodic inflation cycles; and fluid conducting means connected to said first and second bladders and said generator means for communicating said fluid pulses generated by said generator means to said first and lltl S second bladders.
4. A medical device as set forth in claim 3, wherein said generator means further provides for venting fluid from said first and second bladders to atmosphere during periodic vent cycles between said inflation cycles. program, 10 dorsiflexions of the ankle within a predefined time period, 10 seconds.
In a normal patient, the venous L NDM 196 PA 28 A medical device as set forth in claim 4, wherein said generator means comprises controller means for storing an operating pressure value for said fluid pulses and an operating time period for said periodic vent cycles.
6. A medical device as set forth in claim 5, wherein said generator means comprises manual selector means for setting a preferred pressure value to be stored by said controller means as said operating pressure value and a preferred time period to be stored by said controller means as said operating time value.
7. A medical device as set forth in claim 6, wherein said supply means further comprises processor means associated with said generator means for generating a preferred pressure value for said fluid pulses and a preferred time period for said vent cycles, said processor means being coupled to said generator means for transmitting said preferred pressure value and said preferred time period to said controller i:eans of said generator means to be stored by said controller means as said operating pressure value and said operating time period and disabling said manual selector means whenever a preferred pressure value and a preferred time period are stored by said controller means as said operating pressure value and said operating time period in S preferred time period from said processor means.
8. A medical device as set forth in claim 5, wherein said S controller of said generator means further provides for producing and saving patient compliance data and for transmitting said patient compliance data to said processor means. Fig. 11 shows in flow chart form the steps which are used by the processor 70 to determine if the signal generated by r NDM 196 PA 29
9. A medical device as set forth in claim 5, wherein said supply means further comprises processor means associated with said generator means for generating a preferred pressure value for said fluid pulses and a preferred time period for said vent cycles, said processor means being coupled to said generator means for transmitting said preferred pressure value and said preferred time period to said controller means of said generator means to be stored by said controller means as said operating pressure value and said operating time period.
A medical device as set forth in claim 5, wherein said operating pressure value of said fluid pulses is in the range of 3 to 7 psi.
11. A medical device as set forth in claim 3, wherein the duration of each of said inflation cycles is approximately 3 seconds.
12. A medical device as set forth in claim 3, wherein said fluid conducting means comprises a first tubular line connected at its distal end to said first bladder, a second tubular line connected at its distal end to said second bladder, a third tubular line connected at its distal end to a proximal end of said first tubular line, a fourth tubular line connected at its ~distal end to a proximal end of said second tubular line, and a 4 4 4 fifth tubular line connected at its distal end to proximal ends of said third and fourth tubular lines, said fourth tubular line being provided with a restrictive orifice for preventing delivery of fluid into said second bladder at the same rate at which fluid is delivered into said first bladder. i" the invention, each window average is determined from 30 filtered data points, and the two window averages are separated by NDM 196 PA
13. A medical device as set forth in claim 1, wherein said first portion of said foot comprises the plantar arch and said first and second panels are shaped and dimensioned so that said first fluid bladder substantially engages the plantar arch of said foot.
14. A medical device as set forth in claim 1, wherein said second portion of the foot comprises the heel and the dorsal aspect of the foot.
A medical device as set forth in claim 1, wherein the fluid supplied by said supply means is air.
16. A medical device as set forth in claim 1, wherein said first and second panels of flexible material are formed from polyurethane.
17. A medical device as set forth in claim 1, wherein said first and second panels of flexible material are formed from polyvinyl chloride.
18. A medical device as set forth in claim 7, further comprising sensor means adapted to be secured to skin tissue of a leg of the patient for generating signals indicative of blood flow in the skin tissue of the leg; and said processor means further generating from said signals a skin tissue blood volume curve. L NDM 196 PA -31-
19. An inflatable bag adapted to be secured to a patient's foot for applying compressive pressures against the patient's foot upon receiving pressurized fluid from a fluid source via one or more fluid lines, said bag comprising: first and second panels of flexible material secured to one another to form first and second separate fluid bladders, said first fluid bladder being adapted to engage a first portion of said foot for applying a first compressive pressure thereto and said second fluid bladder being adapted to engage a second portion of said foot for applying a second compressive pressure thereto; and tubular means extending from said first and second bladders for connecting with said one or more fluid lines to permit said fluid source to supply pressurized fluid to said first and second bladders.
An inflatable bag as set forth in claim 19, wherein said first portion of said foot comprises the plantar arch and said second portion of the foot comprises the heel and the dorsal aspect of the foot.
21. A medical device substantially as hereinbefore described with reference to figures 1 to 12.
22. An inflatable bag substantially as hereinbefore described with reference to figures 1 to 12. DATED THIS 9th DAY OF JANUARY 1996 NDM ACQUISITION CORP By Its Patent Attorneys: GRIFFITH HACK CO., 30 Fellows Institute of Patent Attorneys of Australia staff/llkeep/specl66137.94 9.1 l i Abstract of the Invention A medical device is provided for applying compressive pressures against a patient's foot. The device comprises first and second panels of flexible material secured to one another to form an inflatable bag to be fitted upon the foot. The bag has first and second separate fluid bladders. The first fluid bladder is adapted to engage a first portion of the foot and the second fluid bladder is adapted to engage a second portion of the foot. A boot is provided for holding the inflatable bag to the S"ib foot. A fluid supply is provided for applying pressurized fluid to the first and second fluid bladders such that the first fluid bladder applies a first compressive pressure upon the first portion of the foot and the second fluid bladder applies a second compressive pressure upon the second portion of the foot. t t f I
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU66137/94A AU667274B2 (en) | 1994-07-04 | 1994-07-04 | Medical pumping apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU66137/94A AU667274B2 (en) | 1994-07-04 | 1994-07-04 | Medical pumping apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
AU6613794A AU6613794A (en) | 1996-01-18 |
AU667274B2 true AU667274B2 (en) | 1996-03-14 |
Family
ID=3750755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU66137/94A Expired - Fee Related AU667274B2 (en) | 1994-07-04 | 1994-07-04 | Medical pumping apparatus |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU667274B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITBO20130053A1 (en) * | 2013-02-07 | 2014-08-08 | Francesco Alocchi | EQUIPMENT FOR THE TREATMENT OF THE LOWER LIMBS OF A USER |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102579238B (en) * | 2012-03-08 | 2014-06-18 | 北京龙马负图科技有限公司 | Limb vein pump system synchronous to pulses of limbs |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4270527A (en) * | 1979-08-09 | 1981-06-02 | Armstrong Industries, Inc. | Inflatable trouser for medical use |
US4945905A (en) * | 1988-02-08 | 1990-08-07 | The Kendall Company | Compressible boot |
AU1600092A (en) * | 1991-05-15 | 1992-11-19 | Lrc Holding Company, Inc. | Medical pumping apparatus |
-
1994
- 1994-07-04 AU AU66137/94A patent/AU667274B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4270527A (en) * | 1979-08-09 | 1981-06-02 | Armstrong Industries, Inc. | Inflatable trouser for medical use |
US4945905A (en) * | 1988-02-08 | 1990-08-07 | The Kendall Company | Compressible boot |
AU1600092A (en) * | 1991-05-15 | 1992-11-19 | Lrc Holding Company, Inc. | Medical pumping apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITBO20130053A1 (en) * | 2013-02-07 | 2014-08-08 | Francesco Alocchi | EQUIPMENT FOR THE TREATMENT OF THE LOWER LIMBS OF A USER |
Also Published As
Publication number | Publication date |
---|---|
AU6613794A (en) | 1996-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5931797A (en) | Medical pumping apparatus | |
CA2127329A1 (en) | Medical pumping apparatus | |
US5840049A (en) | Medical pumping apparatus | |
US9782323B2 (en) | Garment detection method and system for delivering compression treatment | |
EP0680310B1 (en) | Pneumatic compression device for use in the medical field | |
US5891065A (en) | Mobile extremity pumping apparatus | |
AU2006252009B2 (en) | Compression apparatus | |
US20180333326A1 (en) | Portable Intermittent Pneumatic Compression System | |
JP4603026B2 (en) | Compression device, system, and method of use | |
EP2314268B1 (en) | Compression treatment system | |
AU757270B2 (en) | Method to augment blood circulation in a limb | |
US6468237B1 (en) | Pneumatic pump, housing and methods for medical purposes | |
AU2009200834B2 (en) | Compression device with sole | |
US20080097263A1 (en) | Device for mechanical stimulation of the foot support areas | |
AU2005324299A1 (en) | An automated massage therapy device for biomechanical rehabilitation massage and method for use | |
AU667274B2 (en) | Medical pumping apparatus | |
JPH049111A (en) | Air mat system | |
CN117653444A (en) | Control method and control system for guiding stretching and relaxing and mattress | |
AU2011250852A1 (en) | Compression device with sole |