AU659327B2 - Improvements relating to sand washing - Google Patents

Improvements relating to sand washing Download PDF

Info

Publication number
AU659327B2
AU659327B2 AU42164/93A AU4216493A AU659327B2 AU 659327 B2 AU659327 B2 AU 659327B2 AU 42164/93 A AU42164/93 A AU 42164/93A AU 4216493 A AU4216493 A AU 4216493A AU 659327 B2 AU659327 B2 AU 659327B2
Authority
AU
Australia
Prior art keywords
liquid
sand
air
vessel
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU42164/93A
Other versions
AU4216493A (en
Inventor
David H. Hume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Little River Pastoral Co Pty Ltd
Original Assignee
Little River Pastoral Co Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Little River Pastoral Co Pty Ltd filed Critical Little River Pastoral Co Pty Ltd
Priority to AU42164/93A priority Critical patent/AU659327B2/en
Publication of AU4216493A publication Critical patent/AU4216493A/en
Application granted granted Critical
Publication of AU659327B2 publication Critical patent/AU659327B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

IU0I11 MUM~ Regulation 3.2(2)
AUSTRALIA
Patents Act 1990 659327
ORIGINAL
COMPLETE SPECIFICATION STANDARD PATENT Application Number: Lodged: S .5 0 Invention Title: IMPROVEMENTS RELATING TO SAND WASHING 0 4
S.
S
The following statement is a full description of this invention, including the best method of performing it known to :-Us
U
IMPROVEMENTS RELATING TO SAND WASHING This invention relates to a plant arnd process for washing sand using low energy techniques.
Conventional sand washing techniques known to the applicant comprise relative movement of sand and liquid on a continuous basis acting to remove clay and other impurities from the sand. The sand particles are classified as to size by floating off fine particles from the washing container. Several cycles of cleaning may be required to remove all of the impurities and consequently honi;epower and water consumption is high to maintain an effective process in such conventional techniques.
Naturally occurring deposits of sands contain clay and ultra-fine silica particles and the aim in conventional plants is to remove the so called "fines" ranging in size up to 75 microns, the fines include silica and clay particles and may also include liquids if in fact the deposits relate to oil sands. The process 15 retains the coarser sand particles.
:It is normal practice to wash sand in a continuous process, and it is usual to introduce sand/gravel and a clay mixture at the top of a washing tank and allow it to descend against a rising body of liquid, which takes the clay and fine Ssilica into suspension before it is floated off over a weir at the top of the tank. If 20 the sand is not clean by the time it has reached the bottom of the tank, it is usual to repeat the performance by pumping the sand and liquid to the top of a second a tank, and so on until the desired state of cleanliness is achieved. Two, three and sometimes four such cycles may be required.
Other washing methods are used, for instance in ore classifiers as i ,25 disclosed in US Patent No. 1984362, large diameter screws are fitted to inclined troughs, where water or like liquid and sand are added. The screws are rotated thus causing the sand to travel up the incline and be washed by the liquid being stirred with it. If it is not cleaned in the first pass, the process is re-:'ated. A similar unit is disclosed in US Patent No. 3043430. Another mektod is to place high pressure water/sand nozzles opposed to each other in a tank as disclosed in Australian Patent No. 564412. The colliding liquid/sand streams cause the removal of contaminants from the silica such as clay and contaminant liquids.
If All of these methods utilise relatively high quantities of power. Another version noted is a hydro-deslimer as disclosed in US Patent No. 3070228 which provides a counterflow of water in a trough in which water is injected through small holes in the bottom of the trough.
Other methods of separation are disclosed for example in US Patent No.
3152979 relating to the separation of oil from tar sands in which water and air are introduced in a trough to assist in the separation of oil. The use of air in the assistance in separating sand particles is known and for example has been disclosed in Soviet Union specification Nos. 1445789 and 1577835.
It has been noted that there is a problem of washing of sand with a mixture of air and liquid since both the air and the liquid tend to take the line of least resistance through the matrix or pulp of sand clay thereby making tracks but leaving areas of sand virtually untouched or unwashed. Thus with existing methods of air/liquid washing of sands inefficiencies are apparent which the present invention sets out to addres,..
The present invention has as its major objective the provision of a process and plant for treatment of quarried sand/gravel material which may contair clay or sand fines and other impurities including oil contaminants to be rct rAC removed from the sand/gravel material in a simple and economical manner.
A further objective of the invention is to provide a batch sand washing o process and plant in which the process and plant can be operated with little or no supervision during the washing cycle.
It is a further objective of the invention to provide apparatus for separating a liquid/fines admixture residue produced from the process and to minimise the 25 amount of pollutants including polluted liquids as a result of the process.
There is provided according to the present invention a sand washing process comprising the steps of introducing the sand/gravel clay material to be washed into a vessel, filling the vessel with liquid, introducing at or near the bottom of the vessel liquid and air under pressure to create a flow of liquid and air towards the top of the vessel acting to agitate the material and thereby separate clay and other impurities from the material, wherein said air and liquid is substantially evenly distributed throughout the vessel so as to have a 3 fluidising effect upon the liquid and material mixture and to separate the sand and impurities.
There is also provided according to the present invention a plant for performing the process including a vessel adapted to hold a column of liquid and sand/gravel clay material to be washed, means for supplying air and liquid under pressure to the vessel at or near the bottom thereof and including distribution means mounted at or near the bottom of the vessel for supporting the column of liquid and sand material and for receiving said air/liquid mixture and acting to substantially evenly distribute said air and liquid upon entry into the vessel through said distribution means.
The present invention is based upon the surprising discovery that even distribution of the liquid/air mix will result in more effective washing of the material thereby avoiding high power consumption requirements and unwashed or dead areas in the pulp matrix.
S 15 It is desirable that close control be maintained over the liquid/air mix relative to the static head of liquid in the vessel and the specific gravity of the o. sand/clay material being treated in the vessel.
Conveniently the distribution means constitutes a permeable material forming false floor in the vessel covering substantially the entire area of the 20 bottom of the vessel, the permeability of the material being such that the diameter of the air bubbles in the air/liquid mix is kept small thereby resulting in relatively even distribution of the air/liquid mix as it enters said vessel, this even distribution of small air bubbles contributing to the desirable fluidisation of the matrix and therefore efficient cleaning of the sand.
Preferably the permeable material is a cured concrete mix with fines removed or so called "no fines concrete". Other material such as ceramics, sintered bronz7 steel mesh, permeable plastic or permeable rubber may be used to form the permeable material for the false floor. It is desirable that the structural strength of the false floor is sufficient to contain and support the head of liquid and solids mix in the vessel.
3 fluidising effect upon the liquid and material mixture and to separate the sand and impurities.
There is also provided according to the present ilvention a plant for performing the process including a vessel adaoted to hold a column of liquid and sand/gravel clay material to be washed, means for supplying air and liquid under pressure to the vessel at or near the bottom thereof and including distribution means mounted at or near the bottom of the vessel for supporting the column of liquid and sand material and for receiving said air/liquid mixture and acting to substantially evenly distribute said air and liquid upon entry into the vessel through said distribution means.
The present invention is based upon the surprising discovery that even distribution of the liquid/air mix will result in more effective washing of the material thereby avoiding high power consumption requirements and unwashed or dead areas in the pulp matrix.
15 It is desirable that close control be maintained over the liquid/air mix relative to the static head of liquid in the vessel and the specific gravity of the sand/clay material being treated in the vessel.
Conveniently the di, ibution means constitutes a permeable material S, forming a false floor in the vessel covering substantially the entire area of the bottom of the vessel, the permeabilit; of the material being such that the diameter of the air bubbles in the air/liquid mix is kept small thereby resulting in el relatively even distribution of the air/liquid mix as it enters said vessel, this even distribution of small air bubbles contributing to the desirable fluidisation of the matrix and therefore efficient cleaning of the sand.
25 Preferably the permeable material is a cured concrete mix with fines removed or so called "no fines concrete". Other material such as ceramics, sintered bronze steel mesh, permeable plastic or permeable rubber may be used to form the permeable material for the false floor. It is desirable that the structural strength of the false floor is sufficient to contain and support the head of liquid and solids mix in the vessel.
The top of the vessel is formed as an over-flow weir to allow excess liquid and clay impurities and the like to spill over quietly from the vessel as liquid/air mix is injected through the permeable false floor.
It has been found that a vessel containing liquid may be filled with unwashed clay/sand or oil sand to a level of about 60% of its volume. If air and liquid are injected into the tank below the false floor at a controlled pressure, they will mix and rise together through the permeable material and in turn mix with the pulp mix. After a period of time the air and liquid will fluidise the sand, and because of the presence of air in small bubbles the specific gravity of the matrix will reduce. The rising air and liquid lift sand with them, and a point is reached where the mixture becomes into imbalance and some of the sand then descends against the rising current. The condition causes an attritioning of the sand particles, where they rub against each other with an abrasive effect trius assisting the release of clay and fine silica from the outside of the coarser 15 particles. This rising, overbalancing and falling of sand becomes one of the features of the washing cycle, and it occurs in random fashion.
Depending upon the particle size gradient of the matrix, and the relative volumes of air and liquid being injected, a state will be reached where the clay and the smaller sized silica particles will be kept in suspension in the liquid as it rises. Eventually, the liquid and these particles reach the weir and are floated off, leaving the cleaner and coarser sand in the tank. The process is conitinued ce until the desired degree of sand cleanliness has been reached.
In the method of the invention, the sand is held in the one container until it is cleaned to the desired state, and thus there is more flexibility than a plant 25 which is laid out for a particular number of passes, also, liquid volume and therefore the horsepower demand in the inventive washing plant is considerably less than most other methods and the plant carn be left unattended for long periods of time whilst the process continues.
A further feature of the system is concerned with the ability to empty the washing vessel. Normal washing tanks are built with conical bottoms so that the sand can be moved to the pump at the bottom of the tank. Some tanks are built with flat bottoms, but this is done to allow the sand moving vertically downwards to form its own cone on the bottom of the tank and thus not rub against the side of the tank to cause wear. The dead sand on the outside of the cone remains in position in the tank whilst providing the anti-wear function for which it is intended.
In the inventive process it has been found that the air/liquid tank can be built with a flat bottom, for the reason that the fluidisation of the sand in the tank will cause the sand to maintain a level condition as the tank empties and not a cone. Therefore, an outlet may be built in the centre of the tank, or at the outside wall to allow the pulp to flow to a pump.
In the injection of liquid and air through the distribution means, it is important that the pressure of liquid and air is control!ed accurately; the pressure being sufficiently high to overcome the static head of the liquid in the vessel which is preferably formed as a tall column plus the added difference in specific gravity of the volume of sand that has been added to the vessel, whereby the degree of turbulence in the mixture is controlled in a balanced way.
The distribution means acts to ensure that the diameter of the air bubbles travelling therethrough and into the vessel are kept relatively small and of course it will be appreciated that this is controlled by the degree of permeability tl of the distribution means forming the false floor.
In a further aspect of the invention there is provided a bin for receiving clean sand pulp and liquid having a floor and/or wall formed from a permeable material such as no fines conrrete. tr act as a draining filter to separate liquid from the sand fines.
This aspect of the invention eliminates the necessity for utilising high 25 power consumption hydrocyclones and the like to separate the liquid from the sand fines. The no fines concrete floor is easily cleaned in the event of blinding by back washing with air or liquid.
It will be appreciated that the process and apparatus may be applied to other mineral washing/separation operations including flocculation type separation processes and oil sand separation processes in which air/liquid separation procedures are used and would be easily adapted to the inventive concept disclosed herein.
.U a pI -I I 6 Thus tile method and apparatus of the present invention is applicable tq the treatment of oil sands or soil contaminated with soluble and insoluble liquids in which the air/liquid mix may be varied to a liquid plus additives/air mix or solvents/air mix given that relatively small quantities of liquid are called for by the use of this invention.
The relative volumes of air/liquid injection will determine the degree of turbulence and thus the size of the particles carried to the overflow weir and through the outlet. Low rates of overflow may take little or no fine particles with particle size increasing within increased turbulence and increased flows. Thus the plant can be used as a sizing device in which particle sizes up to a particular size may be removed from the plant by suitable control of the air/liquid voluma.
The invention will be described in greater detail having reference to the accompanying schematic drawing showing a sand washing plant according to the present invention. The plant includes a tank 10 approximately 7.5 metres high and 2.8 metres in diameter adapted to be filled with a sand/gravel clay mix occupying at least 60% and up to approximately 70% of the space in the liquid filled column. The base 12 of the tank 10 is fitted with a no fines concrete block having a diameter and area matching the size of the tank 10. The base 12 S• admits an air/liquid mix which is injected through injector ports 14 and 15 at sufficient pressures to overcome the static head of liquid in the column and the weight of pulp to be cleaned.
In the example, the volume of water injected was 900 litres per minute at a pressure range of 100-200 kilo pascals and the volume of air injected was ^:r:S l 1000 litres per minute at a pressure of 100-200 kilco pascals.
I
t 25 Assuming a static load of say 100 kilo pascals the pressure of liquid/air introduced into the vessel should be sufficient to overcome the static head and to generate a sufficient level of turbulence to achieve efficient separation of material and exhaustion of unwanted clay particles and other impurities inc;uding insoluble liquids but to retain the sand granules including at least, some fines.
Yr; 7 A sampie of the feed in the plant was analysed giving the following analysis with sizes of particles given in microns with each of the columns referring to materials held at each stage:- UNWASHED WASHED EFFLUENT SIEVE RETAINED RETAINED RETAINED 1.18 'am 1 1.23 0 600 mrn 1.4 1.72 0 425 gm 2 2.45 0 300gm 19 23.32 0 212 pm 30 36.82 0 150 Alm 19 23.32 0 106 Im 4 4.91 0 um 2 2.36 0.40 15 53 jm 2.4 2.58 1.62 38 pm 2.4 1.29 7.29 PAN 16.8 0.00 90.69 i
I
100% 100% 100% 3 c It It will be noted that retention of washed sand granules in the important 150 micron to 300 micron range is excellent allowing for simple downstream separation in the system.
The analysis of the effluent indicates effective removal of clay and of some unwanted fine silica particles which can be closely controlled as S, mentioned previously 'ly fine adjustment of the air/liquid pressure during the washing process for the reason that the effluent is a function of the amount of turbulence oenerated in the process.
In a further timed example using a small volume test rig (not shown) litres of sand/gravel clay mix was added to a tank filled with water and treated with the air/water mix at a water injection rate of 120 litres per hour for one hour.
The control sample contained 28% clay at the start of the test and 12% clay at the end of the test.
2 i a c 8 A similar test with a similarly sourced control sample containing 28% clay was treated with plain water washing in the same quantities namely 120 litres per hour. In this instance the pulp still contained 24% clay after one hour. In a further test with air mixing with water above the false floor the control sample contained 19% clay after one hour.
Thus for the addition of approximately 3.4 times the liquid to soil volume in the test rig there was a marked improvement in separation of clay and other unwanted contaminants from the soil sample a, compared with the known prior art methods of plain water washing and uncontrolled air injection.
e oq me* 1-1

Claims (9)

1. A sand washing process comprising the steps of introducing sand/gravel/clay/liquid material to be washed into a vessel, filling the vessel with liquid, introducing at or near the bottom of the vessel liquid and air under pressure to create a flow of liquid and air towards the top of the vessel acting to agitate the material and thereby separate clay and other impurities from the material, wherein said air and liquid is substantially evenly distributed throughout the vessel so as to have a fluidising effect upon the liquid and material mixture and separate the sand and impurities.
2. A plant for performing the processes claimed in claim 1 including a vessel adapted to hold a column of liquid and sand/gravel and clay material to be washed, means for supplying air and liquid under pressure to the vessel at or near the bottom thereof and including distribution means mounted at or near the bottom of the vessel for receiving said air/liquid mixture and acting to I s substantially evenly distribute said air and liquid upon entry into the vessel through said distribution means.
3. A plant as claimed in claim 2 wherein the distribution means constitutes a permeable material forming a false floor in the vessel covering substantially the entire area of the bottom of the vessel, the permeability of the material being such that the diameter of the air bubbles in the air/liquid mix is kept small tihereby resulting in relatively even distribution of the air/liquid mix as it enters said vessel.
4. A plant as claimed in claim 2 or 3 wherein the distribution means comprises permeable material which is a cured concrete mix with fines removed.
A plant as claimed in claim 2 or 3 wherein the permeable material is a diffuse ceramic material allowing the ingress of air therein. 1 1 C 111 11-- -11 -i
6. A plant as claimed in claim 2 or 3 wherein the permeable material is a sintered bronze steel mesh.
7. A plant as claimed in claim 2 or 3 wherein the permeable material is a permeable plastic or permeable rubber.
8. A plant for separating liquid and sand including a ving a floor and/or walls formed of a perme nal acting as a draining filter to separate th om the sand. DATED this 20th day of July, 1993. LITTLE RIVER PASTORAL CO PTY LTD WATERMARK PATENT TRADEMARK ATTORNEYS THE ATRIUM 290 BURWOOD ROAD HAWTHORN VICTORIA 3122 AUSTRALIA 1 L C C006.P 9r
±9 ABSTRACT There is disclosed a process and plant for cleaning unwashed clay/sand or oil sands in which a vessel having a false floor of permeable material contains a column of liquid and sand to be cleaned in which an air and liquid mix is injected through the permeable material at a controlled pressure so that the air, water and sand clay mixture will mix together to fluidise the sand with the presence of small bubbles of air to create a turbulence and abrasion of the particles and to clean the sand. t* t *A I I ii C CC« CCC C *C C C I
AU42164/93A 1992-07-27 1993-07-26 Improvements relating to sand washing Ceased AU659327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU42164/93A AU659327B2 (en) 1992-07-27 1993-07-26 Improvements relating to sand washing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPL3776 1992-07-27
AUPL377692 1992-07-27
AU42164/93A AU659327B2 (en) 1992-07-27 1993-07-26 Improvements relating to sand washing

Publications (2)

Publication Number Publication Date
AU4216493A AU4216493A (en) 1994-02-03
AU659327B2 true AU659327B2 (en) 1995-05-11

Family

ID=25625882

Family Applications (1)

Application Number Title Priority Date Filing Date
AU42164/93A Ceased AU659327B2 (en) 1992-07-27 1993-07-26 Improvements relating to sand washing

Country Status (1)

Country Link
AU (1) AU659327B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157951A (en) * 1977-11-07 1979-06-12 Park Moon C Beneficiation apparatus
AU2919984A (en) * 1984-06-21 1985-12-12 C.H. Development and Sales Inc. Hydraulic separation
AU1713388A (en) * 1987-09-01 1989-03-31 Sorting Technology, Inc. Method and apparatus for separation using fluidized bed

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157951A (en) * 1977-11-07 1979-06-12 Park Moon C Beneficiation apparatus
AU2919984A (en) * 1984-06-21 1985-12-12 C.H. Development and Sales Inc. Hydraulic separation
AU1713388A (en) * 1987-09-01 1989-03-31 Sorting Technology, Inc. Method and apparatus for separation using fluidized bed

Also Published As

Publication number Publication date
AU4216493A (en) 1994-02-03

Similar Documents

Publication Publication Date Title
US5173194A (en) Filtration method and apparatus having a filtrate collection chamber within the filter bed
US9149746B2 (en) High speed filtration device using porous media, and backwash method thereof
CA2319566C (en) Jet pump treatment of heavy oil production sand
KR100232761B1 (en) Process and device for removing sand from water loaded with sand and organic substances
US5392924A (en) Sand washing
JPS6333406B2 (en)
KR102666856B1 (en) Multi-layer media bed filter with improved backwash capability
KR100404716B1 (en) Method and apparatus for separating non-soluble particles from a liquid
US5720393A (en) Method and apparatus for the separation of manure and sand
KR20130122744A (en) Method for separating liquid from suspended matter in a sludge and device for same
AU618971B2 (en) Method and apparatus for beneficiating ores
CN110104852A (en) It is a kind of can be by the car wash water water supply device of wastewater from car washer cycling and reutilization
AU659327B2 (en) Improvements relating to sand washing
JPH0810523A (en) Method for washing floating filter medium
KR100529598B1 (en) A sewage and wastewater disposal plant
GB2249975A (en) Reclaiming aggregate from waste concrete
US3405806A (en) Water filtration plant
SU1540654A3 (en) Method and apparatus for separating solid bodies from fluid
US11319247B2 (en) Fine grit classifier
CA1333262C (en) Filtering apparatus and method of cleaning such an apparatus
KR101913415B1 (en) Multiple stage purifier of water
CN205999232U (en) Mud and sewage device for effectively separating
US3305092A (en) Pressure-fluid actuated skimmer and method
CN205999233U (en) Sewage sludge separating purifying device
US3881700A (en) Water treatment plant

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired