AU649193B2 - Single mode optical fiber device including a short lens optical fiber - Google Patents

Single mode optical fiber device including a short lens optical fiber Download PDF

Info

Publication number
AU649193B2
AU649193B2 AU10428/92A AU1042892A AU649193B2 AU 649193 B2 AU649193 B2 AU 649193B2 AU 10428/92 A AU10428/92 A AU 10428/92A AU 1042892 A AU1042892 A AU 1042892A AU 649193 B2 AU649193 B2 AU 649193B2
Authority
AU
Australia
Prior art keywords
optical fiber
single mode
mode optical
cylindrical member
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU10428/92A
Other versions
AU1042892A (en
Inventor
Koya Komatsu
Kazuhiko Kurata
Koji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of AU1042892A publication Critical patent/AU1042892A/en
Application granted granted Critical
Publication of AU649193B2 publication Critical patent/AU649193B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

S F Ref: 202203
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION 4y FOR A STANDARD PATENT
ORIGINAL
S
S. S
S
S
Name and Address of Applicant: NEC Corporation 7-1, Shiba Minato-ku Tokyo 3APAN Actual Inventor(s): Kazuhiko Kurata, Koya Komatsu and Koji Yamamoto Address for Service: Spruson Ferguson, Patent Attorneys Level 33 St Martins Tower, 31 Market Street Sydney, New South Wales. 2000. Australia "SINGLE MODE OPTICAL FIBER Invention Title DEVICE INCLUDING A SHORT LENS OPTICAL FIBER" The following statement is a full description of this invention, includiny the best method of performing it known to me/us:- 85 rN <i 5/6
S
'i3l i "SINGLE MODE OPTICAL FIBER DEVICE INCLUDING A SHORT LENS OPTICAL FIBER" FIELD OF THE INVENTION This invention relates to a terminal structure for an optical device, and more particularly to, a terminal structure for an optical device including a short-len.gth opt i cal fiber of single mode for connecting optical fibers optically.
BACKGROUND OF THE INVENTION A conventional terminal structure for an optical device includes a short-length optical fiber of up to several tens mm fixed in a ferrule having an inside diameter slightly larger than a diameter of optical fibers to be connected through the terminal structure. The short-length optical fiber has a normalized frequency V in opera tion sta te of approximately 2.7 at a wavelength of 1.3 g m which is equivalent to a single mode fiber with no bending loss used as a long-length optical transmission path.
The normalized frequency V is defined by the following formula: V 2 na /A (ni 2 n2 2 1/2 or the approximate formula thereof: V 2 a A (2A) (2) where a is a core radius of an optical fiber, A is a wavelength of a core light used as a signal carrier, ni and n 2 are refractive indexes of a core and a clad of the optical fiber respectively, and A is defined as (n I nz /n As understood by the formulas, the normalized frequency V is inversely proportional to the wavelength A directly proportional to the radius a, and approximately proportional to square root of the relative difference between the two refractive indexes, that is A The transmission light has a single mode when the normalized frequency V in operation state is under 2. 405, and has LP o, and LP i modes (linearly polarized modes 01 and 11) when o the normalized frequency V is equal to or over 2.405 and under 3.83.
According to the conventional termi nal structure for an optical device, however, there is a disadvantage in that there is a pe r iod ical characteristic of wavelength dependency in the transmission loss. The short-length optical fiber of the terminal structure has two misaligned joints with the connected optical fibers, LP o mode which is a transmission mode already existing in the optical fiber divices into LP ii mode and LP o mode at the first misaligned joint. The two modes are propagated in the short-length optical fiber, and are divided LP o mode and LP ii mode again at the second miseligned joint LP o 1 mode which is divided from LP 1, mode and the LP o mode which is propergated through the short length fiber interferes each other.
Thereiore, the connection efficiency at the second misaligned joint has the periodical characteristic of wavelength depende;ncy in the transmission loss. Such a wavelength periodical dependency in the transmission loss may cause chalges of the transmission loss by a slight change of a wavelength in use. Further, the change of the transmission loss is affected by a misaligned degree of the joints or direction change thereof. Consequently, a slight change of the wavelength or phase of the light source is converted to a change of a light intensity by the terminal structure, so that noises are generated in the light signal.
SUMMARY OF THE INVENTION Accordingly, it is an object of the invention 0: to provide a terminal structure for an optical device having no wavelength dependency in characteristics, It is another object of tYl invention to provide a terminal structure for an optical device in which there is little change of the transmitting loss even if there is a misaligned joint or direction change in the connections between the short-length optical fiber and the optical fiber for transmission.
It is a further object of the invention to provide a terminal structure for an optical device in which there is no noise.
According to a feature of the invention, a terminal structure for an optical device comprises: a single mode optical fiber having a short length; and a cylindrical member in which the single mode optical fiber is fixed, the cylindrical member having the co-axis as that of a core of the single mode optical fiber, and each of bo th facets of the cylindrical member being polished to have a mirror surface; wherein the core and a clad of the single mode S optical fiber have refractive indexes so that a normalized frequency in operation state of the single mode optical fiber becomes at most 2.405 as a value converted at a wavelength in use of 1.28 m.
d 0 BRIEF DESCRIPTION OF THE DRAWINGS The invention will be explained in more detail in conjunction with appended drawings wherein: Figs. 1A and 1B are explanatory v i ews illustrating a connection of optical fibers and mode changes in the conventional terminal structure; Fig. 2 is a graph showing a transmission loss of the optical fiber correlating to wavelengths; Figs. 3A and 3B are explanatory views illustrating a connection of optical fibers and modes changes according to the invention; and Fig. 4 is a cross-sectional view illustrating an optical fixed attenuator as an optical terminal structure in a first preferred embodiment according to the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing a terminal structure for an optical device in a preferred embodiment according to the invention, the conventional optical terminal structure described will be explained.
First, the basic structure of the connection of optical fibers in the conventional optical e: terminal structure will be explained in conjunction with Figs. 1A and lB. A short-length single mode optical fiber \1 having input and output facets 23 and 24 is connected with optical fibers 21 and 22 to inevitably provide misaligned joints 3. The cutoff frequency of the normalized frequency V in operation i state of the short-length single mode optical fiber 11 is approximately 2.7 at a wavelength of 1. 3u m, so that LP it mode is generated at the input facet 23 in addition to LPoi mode which is a transmission mode already existing in the optical fiber 21. The divided mode LP i is divided inevitably provide at 6 the output facet 24 because of the misaligned joint.
Precisely, a part of the light which is transmitted through the short-length optical fiber 11 by LP mode is re-converted to the LP o mode. The reconverted light of LP o and the transmission light of LP o interferes each other at the output facet 24, Therefore, the connection efficiency from the short-length optical fiber 11 to the optical fiber 22 has the periodical characteristic of wavelength 1dependency shown in Fig. 2. This is described on pages 499 and 50 of Electronics Letters, 8th July 1981, Vol. 17, No. 14.
Next, the basic principle of the invention will be explained in conjunction with Figs. 3A and S" 3B. A short-length single mode optical fiber 1 is S 15 connected with optical fibers 21 and 22 with misaligned joints 3. The cutoff frequency of the normalized frequency V in operation state of the short-length single mode optical fiber 1 is under ,0 2.405 at a wavelength of 1.28# m, so that only LPoi 110 mode exists at a wavelength in the range of 1.28 g m to 1.33 g m which is in practical use geterally (1.31 m in practice). Therefore, the optical loss generated at the misaligned joints 3 become radiation mode, so that the light may not reach the output facet 24. Consequently, there is no interference by occurence of LP it mode, so that there is no wavelength periodical dependency in the transmission loss.
Next, an optical fixed attenuator as an optical terminal structure in a first preferred embodiment will be explained. As shown in Fig. 4, the optical fixed attenuator includes a short-length single mode optical fiber 1 having a characteristic explained above, and a capillary tube 4 in which the short-length single mode optical fiber 1 is fixed.
The capillary tube 4 is fixed in a cylinder 5. The outer surface of the capillary tube 4 is processed so that the capillary tube 4 has the co-axis with a core center of the short-length single mode optical fiber 1. An external facet 6 of the optical terminal 646 structure is optically polished so as to connect with an optical fiber for transmission, while an internal facet 7 has a predetermined angle to the right angle.
A pair of cylinder units each including the shortlength single mode optical fiber 1, the capillary tube 20 4 and the cylinder 5 are fixed to face each other 6 20 with the internal facets 7 by a sleeve 9. An attenuation membrane 10 is sandwiched between the internal facets 7 of the two cylinder units. The optical fixed attenuator is connected with optical connectors at the external facets 6.
In the optical terminal structure explained above, there occurs no interference between two lights having the same mode, so that there is no wavelength dependency in the transmission loss characteristic.
Therefore, the transmission loss may not change by the wavelength change or phase change of the light source caused by temperature changes. in addition, the transmission loss corresponds to the sum of the losses of the two misaligned joints, so that the change of the transmission loss due to the connection and disconnection process is as little as that in a conventional optical connector.
In these explanations, the center wavelength in use is set to be 1.31 u m however, the center wavelength in use may be changed by determining the refractive index n, or the radium a in accordance with the formula However, it is not preferable to change the refractive index n because a reflecting light is generated at the joint by the index difference when the optical terminal structure is connected with a conventional single mode optical fiber. If the refractive index of the core of the short-length optical fiber is 1.46 and non-refractive "n index difference is 0.003 which is equal to a conventional one, the core radius can be determined to be approximately 4. 4 t m in case of the center wavelength in use of 1.31 m A single mode optical fiber to be connected with the optical terminal structure generally has a core radius of approximately 5 a m, so that the difference of the radius of the two optical fibers is not so small to be negligible. However, the optical density in the outer area in the cross-section of the optical fibers is relatively small, so that the optical loss by the radium difference at the joint can be ignored practically.
Although the invention has been described with respect to specific embodiment for complete and clear disclosure, the appended claims are not to thus limited and alternative constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth.
a. 4 a

Claims (4)

1. A terminal structure for an optical device, comprising: a single mode optical fiber having a short length which is connected to another single mode optical fiber; and a cylindrical member in which said single mode optical fiber Is fixed, said cylindrical member being co-axial with a core of said single mode optical fiber, and each of both facets of said cylindrical member being polished to have a mirror surface; wherein said core and a clad of said single mode optical fiber have 10 refractive indexes so that a normalized frequency in an operation state of said single mode optical fiber becomes at most 2.405 as a value converted at a wavelength in use of 1,28p~m.
2. A terminal structure for an optical device, according to claim 1, wherein: a wavelength of a light transmitted through said single mode optical fiber is in the range of 1.29 to 1.33im.
3. A terminal structure for an optical device, according to claim 1, wherein: said cylindrical member has an internal diameter slightly larger than a diameter of an optical fiber to be connected with said terminal structure, and said core of said single mode optical fiber has a diameter practically equal to that of said optical fiber to be cornected with said terminal structure. 25 4. An optical attenuator, comprising: two optical terminal structures each comprising a single mode optical fiber having a short length, and a cylindrical member in which said single mode optical fiber is fixed, said cylindrical member having the co-axis as that of a core of said single mode optical fiber, each of both facets of said cylindrical member being polished to have a mirror surface, and said core and a clad of said single mode optical fiber having refractive indexes so that the normalized frequency in operation state of said single mode optical fiber becomes at most 2.405 as a value converted at a wavelength in use of 1.28[m; and an attenuating membrane sandwiched between said two optical terminal structures; 9012U:JES 11 wherein each of said two optical terminal structures has a facet having a predetermined angle to the right angle, and said attenuating membrane is sandwiched on both sides between said facets of said two optical terminal structures. DATED this TWENTY-FIRST day of DECEMBER 1993 NEC Corporation .O 00 0 *o *0S S S..oo. o o Patent Attorneys for the Applicant SPRUSON FERGUSON 9 S* 0 5 S S S S5 0S S.u 0S S SOS.,. S 9012U:JES "SINGLE MODE OPTICAL FIBER DEVICE INCLUDING A SHORT LENS OPTICAL FIBER" Abstract of the Disclosure An optical terminal structure includes a single mode optical fiber having a short length, and a cylindrical member in which the single mode optical fiber is fixed. The cylindrical member is co-axial with a core of the single mode optical fiber Each of both facets of the cylindrical member is polished to have a mirror surface. The core and a cladding of the single mode optical fiber (1) 10 have refractive indexes so that the normalized frequency in operation state of the single mode optical fiber becomes at most 2.405 as a value converted at a wavelength in use of 1.28 m. The wavelength in use is preferably in the range of 1.29 to 1.33 p m. Figure 4 a Se *c 4 4, OS S 4 49 4 .4 4 S .4r S. *r 4*
4. I S 4* L. MOC/9296D tu q
AU10428/92A 1991-01-23 1992-01-23 Single mode optical fiber device including a short lens optical fiber Ceased AU649193B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3021354A JPH04238307A (en) 1991-01-23 1991-01-23 Optical device terminal
JP3-21354 1991-01-23

Publications (2)

Publication Number Publication Date
AU1042892A AU1042892A (en) 1992-07-30
AU649193B2 true AU649193B2 (en) 1994-05-12

Family

ID=12052766

Family Applications (1)

Application Number Title Priority Date Filing Date
AU10428/92A Ceased AU649193B2 (en) 1991-01-23 1992-01-23 Single mode optical fiber device including a short lens optical fiber

Country Status (5)

Country Link
US (1) US5257335A (en)
EP (1) EP0496593A3 (en)
JP (1) JPH04238307A (en)
AU (1) AU649193B2 (en)
CA (1) CA2059861C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370649A (en) * 1991-08-16 1994-12-06 Myriadlase, Inc. Laterally reflecting tip for laser transmitting fiber
JP3119751B2 (en) * 1992-12-02 2000-12-25 住友電気工業株式会社 Optical filter
WO1996004580A1 (en) * 1994-07-29 1996-02-15 The Whitaker Corporation Optical attenuator having a partially reflective surface
JP2921462B2 (en) * 1996-01-11 1999-07-19 日本電気株式会社 Optical connector
JP3825930B2 (en) * 1999-01-28 2006-09-27 ヒロセ電機株式会社 Optical connector
US6253017B1 (en) * 1999-08-04 2001-06-26 Delphi Technologies, Inc. Fiber optic connector with optical attenuator
CA2324193C (en) 2000-10-25 2008-05-06 Itf Optical Technologies Inc.-Technologies Optiques Itf Inc. Internal termination for optical fibers
JP2010078704A (en) * 2008-09-24 2010-04-08 Mitsubishi Cable Ind Ltd Splicing structure of optical fibers
JP6151131B2 (en) * 2013-08-22 2017-06-21 株式会社フジクラ Optical fiber connection method and optical fiber connection device used therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893889A (en) * 1987-09-04 1990-01-16 Seiko Instruments Inc. Optical attenuator
US5066094A (en) * 1990-09-07 1991-11-19 Seikoh Giken Co., Ltd. Variable optical fiber light attenuator
US5082345A (en) * 1990-08-13 1992-01-21 At&T Bell Laboratories Optical fiber connecting device including attenuator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205901A (en) * 1975-07-17 1980-06-03 International Standard Electric Corporation Limited mode optical fiber
DE3380453D1 (en) * 1982-06-05 1989-09-28 Amp Inc Optical fibre termination method, terminal, splice, and connector therefor
JPS60176003A (en) * 1984-02-22 1985-09-10 Nippon Telegr & Teleph Corp <Ntt> Fixed optical attenuator
JPS62121405A (en) * 1985-11-22 1987-06-02 Nec Corp Optical attenuator
JPS63229409A (en) * 1987-03-18 1988-09-26 Matsushita Electric Ind Co Ltd Light emission and light reception module
GB2229829B (en) * 1989-03-31 1993-03-17 Philips Nv A connector for a fibre optic cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893889A (en) * 1987-09-04 1990-01-16 Seiko Instruments Inc. Optical attenuator
US5082345A (en) * 1990-08-13 1992-01-21 At&T Bell Laboratories Optical fiber connecting device including attenuator
US5066094A (en) * 1990-09-07 1991-11-19 Seikoh Giken Co., Ltd. Variable optical fiber light attenuator

Also Published As

Publication number Publication date
US5257335A (en) 1993-10-26
CA2059861A1 (en) 1992-07-24
AU1042892A (en) 1992-07-30
JPH04238307A (en) 1992-08-26
CA2059861C (en) 1998-05-05
EP0496593A3 (en) 1993-07-28
EP0496593A2 (en) 1992-07-29

Similar Documents

Publication Publication Date Title
JP2572402B2 (en) Access method for optical fiber line and connector plug thereof
US3995935A (en) Optical coupler
US5177803A (en) Coaxial optical fiber coupler transmitter-receiver apparatus and method of making same
US5146516A (en) Optoelectrical sending and receiving apparatus
US6424765B1 (en) Optical device and method of making the same
KR20040015329A (en) Hybrid fiber expanded beam connector and methods for using and making the hybrid fiber expanded beam connector
JPH1048459A (en) Optical device and two-way communications system
JPH04333808A (en) Photosemiconductor module
US4955014A (en) Broadband optical communication system, particularly in the subscriber area
AU649193B2 (en) Single mode optical fiber device including a short lens optical fiber
US9897770B2 (en) Fibre stub device and method using butt coupling for receptacled photonic devices
US6934443B2 (en) Optical fiber coupling system
JP3888942B2 (en) Optical fiber parts
JPS63249118A (en) Method and connector plug for accessing optical fiber line
AU638991B2 (en) Optical coupler
KR20050092126A (en) Lensed fiber having small form factor and method of making same
Nagase et al. Hollow-core fiber connector
KR100361441B1 (en) tap coupler
US6882774B2 (en) Wavelength division multiplexing coupler
US20050220410A1 (en) Low reflectance optical coupling
US6161965A (en) Optical coupling circuit
JP3271886B2 (en) Optical attenuating optical fiber
JPH1123912A (en) Ld module
JPH0498206A (en) Optical fiber terminal optical connector
JPS63304209A (en) Method for branching and joining optical fiber circuit and branching and joining connector