AU645450B1 - The use of retention aids in the making of paper containing abrasive particles and abrasion resistant decorative laminates made therefrom - Google Patents

The use of retention aids in the making of paper containing abrasive particles and abrasion resistant decorative laminates made therefrom Download PDF

Info

Publication number
AU645450B1
AU645450B1 AU32172/93A AU3217293A AU645450B1 AU 645450 B1 AU645450 B1 AU 645450B1 AU 32172/93 A AU32172/93 A AU 32172/93A AU 3217293 A AU3217293 A AU 3217293A AU 645450 B1 AU645450 B1 AU 645450B1
Authority
AU
Australia
Prior art keywords
paper
abrasive particles
abrasion resistant
decorative laminate
resistant decorative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU32172/93A
Inventor
Nancy J. Ahner
Peter C. Gaa
Richard R. Hautala
Jerry L. Malina
Melvin Pitts
Clyde L. Witham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilsonart International Inc
Original Assignee
Ralph Wilson Plastics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ralph Wilson Plastics Co filed Critical Ralph Wilson Plastics Co
Application granted granted Critical
Publication of AU645450B1 publication Critical patent/AU645450B1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/28Colorants ; Pigments or opacifying agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/02Patterned paper

Landscapes

  • Laminated Bodies (AREA)
  • Paper (AREA)

Description

AUSTRALIA
645450 Patents Act COMPLETE SPECIFICATION
(ORIGINAL)
Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: Name of Applicant: Ralph Wilson Plastics Co.
Actual Inventor(s): S: Peter C. Gaa Richard R. Hautala Jerry L. Malina Melvin Pitts Clyde L. Witham Nancy J. Ahner Address for Service: PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: USE OF RETENTION AIDS IN THE MAKING OF PAPER CONTAINING ABRASIVE PARTICLES AND ABRASION RESISTANT DECORATIVE LAMINATES MADE THEREFROM Ref :317894 POF Code: 36782/149436 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): -1- 6006
I
DRC.ETNO. DK9209-M945
INVENTORS:
PETER C. GAA, RICHARD R. IIAU- R-Y L. MANA, p E1 I N pnzpS, CLYDE 13. 114THA AN NA€ fANE
TITLE:
THE USE OF RETENTION AIDS IN THE MAKING OF PAPER CONTAINING ABRASIVE PARTICLES AND ABRASION RESISTANT DECORATIVE LAMINATES MADE THEREFROM *SPEIIATmfN- REAfED APPLC ATONTDATA 1 T~Y A mr.T A L Tin Jy.,-I A Tf.hJ L A J.'T A s-pate-pp Heaiens-a-eontinuaden-in-partoA Appation-Serial-No. 831,557filedcebruamy -51992 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to making paper containing abrasive particles and abrasion resistant 1. laminate made therefrom. In another aspect, the present invention relates to the use of retention aids for increasing the retention of aluminum oxide particles in paper during the paper making process and abrasion resistant decorative laminates made with the resulting paper. In yet another aspect, the present invention relates to abrasion resistant decorative laminates having a high degree of abrasion resistance and a high initial wear point.
*t In still yet another aspect, the present invention relates to the use of retention aids for increasing the retention of aluminum oxide particles with a mean particle size often microns or less in paper during the paper making process and decorative laminates having a high degree of abrasion resistance and a high initial wear point made with the resulting paper as the top layer of the laminate.
2. Description of the Related Art *A decorative laminate generally comprises plural layers of synthetic resin impregnated sheets of paper consolidated or bonded together into a unitary structure under heat and pressure. In normal practice the Page ltl decorative laminate assembly, from the bottom up, consists of a core of one or more sheets of paper impregnated with phenolic resin, above which lies a decorative sheet of paper impregnated with melamiine resin. The core functions to impart rigidity to the laminate.
Prior to stacking, paper that is to be used as t core is impregnated with a water alcohol solution of phenolformaldehyde, dried and partially cured in a hot air oven, and then cut into sheets. Sheets of 150 pound ream kraft paper that have been imp-egnated with a water alcohol solution of phenolformaldehyde, dried and partially cured in a hot air oven can be used as the core.
A decorative sheet generally functions to give an attractive appearance to the laminate. The decorative sheet may be of a solid color or may comprise a decora!, e design, or a photo-gravure reproduction of natural materials, such as wood marble, leather, etc.
The top layer of the decorative laminate, which may be a decorative sheet or an overlay sheet, gives the panel its surface characteristicn resistance to chemical agents, to heat, to light, to shock and to abrasion). The top layer of the decorative laminate can be a high quality 50 to 125 ream weight paper impregnated with a water-alcohol solution of melamine-fonnaldehyde resin, dried and partially cured, and cut into sheets. The high quality paper can be paper containing a high concentration of alphacellulose.
The laminate can be obtained by placing the resin impregnated sheets between steel caul plates and subjecting the laminate stack to temperatures in the range of about 230TF to about 340OF and pressures in the range of about 800-1600 psi for a time sufficient to consolidate the laminate and cure the resins (generally about 25 minutes to an hour). This is thought to cause the resin in the paper sheets to flow, cure and consolidate the sheets into a unitary laminated mass referred in the art as a high pressure *..Decorative laminates have been widely employed in the building and funiture industry as counter and !able tops, bathroom and kitchen work surfaces, wall paneling, partitions and doors. In many of these applications, especially high exposure areas such as dinette surface tops, check-out counters, etc., it is :necessary that the decorative laminate possess a high degree of abrasion resistance.
The standard National Electrical Manufacturers Association (NEMA) test for abrasion resistance is NEMA test LI)3.1. In this test a laminate sample is clamped on a rotating disc, over which ride two weighted rubber wheels, faced with calibrated sandpaper strips. As the laminate surface is rotated under the wheels, the abrasive action of the sandpaper damages the decorative surface of the laminate. The NEMA standard for Class I laminates requires that the laminate, after 400 cycles, has no more than Page 2 of its pattern destroyed. The 50% end point is estimated by averaging the number of cycles at which the pattern shows initial wear (initial point or IP) and the number of cycles at which the pattern is completely destroyed (final point or FP).
In addition to the 40X0 cycle minimum, it is commercially desirable to have a high IP number. If a decorative laminate is prepared in a conventional maniner, with a nornal 35-40% resin content in the print or pattern sheet, but without an overlay sheet, the abrasion resistance will be only about 50-75 cycles. With specially formulated resins, and a resin content of about 50-55%, abrasion resistance can in some instwces be extended up to about 150-300 cycles, but such laminates have a tendency to develop surface craze, and fuirthermore, they are quite difficult to prepare due to the difficulty of impregnating the print sheet in a uniform manner. However, more importantly, such laminates do not meet the 400 cycle minimum required by the NEMA standard.
Prior art methods for imparting abrasion resistance include use of a tranislucent overlay sheet as the uppermost structural member in the laminate or use of abrasive resistant particles either on the overlay sheet or the decorative sheet. It has long been the practice to place resin impregnated high quality paper as an overlay over the decorative sheet to impart wear and/or abrasion resistance to decorative laminates.
Upon consolidating the laminate, the overlay sheet becomes transparent, penmitting the decorative color, pattern or design of the decorative sheet to be seen. While the use of the overlay sheet increases the abrasion resistance of the decorative laminate, it has long been desired to eliminate the overlay sheet for several reasons. An overlay sheet adds substantial raw material costs to the manufacture of laminates, both the cost of the overlay paper itself, the cost of the resin used to impregnate the overlay paper and the in-process and handling losses of these materials.
In addition to the cost of the overlay, an intermediate layer of substantial thickness between the decorative sheet and the eyes of the viewer detracts significantly from the desired visual clarity of a decorative shcet. The cellulose fibers used to make overlay paper have a refractive index close to that of cured melamine-formaldehyde resin. The fibers are therefore almost invisible in the cured laminate, and permit the printed pattern to be seen with very little attenuation. However, modem printing techniques are making available very accurate reproductions of natural materials, particularly various wood veneer species. As these printed reproductions approach in appearance the natural veneer, even small amounts of haze or blur introduced by the overlay paper are disturbing visually and destroy much of the realism desired by the user.
Furthermore, the overlay contributes to the rejection rate of the laminate products produced. The impregnated, dry overlay sheet tends to attract small dirt particles because it develops static electricity Page 3 charges during drying. This dirt is hard to detect and remove before laminating, and results in spoiled laminate sheets that cannot be reprocessed. In addition, the impregnated dried overlay is brittle and hard to handle without breakage. Such "crumbs" are accidentally trapped on the surface of the overlay and also result in visually defective sheets.
Finally, an overlay containing laminate, particularly those having a relatively high surface gloss, have a tendency to become dull very quickly when subjected even to only moderate abrasive wear. This is understandably unacceptable where glossy laminates are desired. It is well known that small, hard mineral particles dispersed in overlay paper, or in resin mixtures to coat the impregnated pattern sheet, can enhance the abrasion resistance of decorative laminates. See, for example, U. S. Patent Nos.
3,135,643 to Michl, 3,373,070 and 3,373,071, both to Fuerst.
However, it is important to note that techniques such as those disclosed by the above Michi and Fuerst patents do not eliminate the overlay, but rather enhance the abrasion resistance of the overlay or provide an alternate form of overlay and associated resin. GB 1,348,272 which discloses electrostatic spraying abrasive resistant grains onto a damp resin impregnated decorative sheet, further discloses that prior art methods for eliminating the overlay sheet have both incorporated hard abrasion resistant particles into pulp during the paper making process and adhered hard abrasion resistant particles to the surface of paper during the lamination process.
U. S. Patent No. 3,798,111, issued March 19, 1974, to Lane et al., discloses the use of abrasive particles, preferable alumina, which are incorporated in the top layer of a multiple layer decorative paper during its manufacture. Print can be applied to the top surface of the resulting paper for producing a decorative paper. This decorative paper may then be utilized in a laminate with no overlay to yield a decorative laminate meeting the 400 cycle minimum.
In the making of paper, pulp is generally formed into one or more thin layers in a forming section, passed through a press section at which point it is considered paper, and then through a dryer section. Pulp from one or more headboxes can be laid down on the forming wire of a paper making machine. As the pulp moves along the forming section, vacuum dryers reduce the liquid content from a high of about 85 to percent to a low of about 10 to about 40 percent. As the liquid i- removed from the pulp, particles small enough to pass between the pulp fibers are carried out with the liquid.
Lane et al. teach that particle size and particle size distribution are "quite important", with the useful range of average particle size in the range from 10-75 microns, preferably 40 microns. While the Page 4 laminate of Lane et al. meets the 400 cycle NEMA abrasion test minimum, it has been criticized in the prior art as having an unacceptable initial wear point, which is stated in related U. S. Patent Nos.
4,255,480, 4,305,987, 4,395,452,4,430,375 and 4,400,423, all to Scher et al., to be less than 100 cycles.
Scher et al. disclose a coating for print paper comprising particles with a 20-50 micron average size that is coated without resin over unimpregnated decorative paper. The resulting decorative laminate without overlay made from such coated decorative paper is reported to meet the 400 cycle NEMA abrasion test minimum and have an initial wear point of up to 500 cycles. Scher et al. further teaches tha with particles below 20 microns, abrasion resistance becomes poor.
U. S. Patent No. 4,971,855, issued November 20, 1990, to Lex et al., disclosesfthat the use of alumina or silica particles 9 microns or greater, such as those in the coating composition of Scher et al., causes scratches on the highly polished caul plates used to make glossy laminates. Such damage is expensive in terms of manufacturing down time, repair and replacement cost.
In an effort to prevent such damage to the caul plates, Lex et al. discloses the use of 0.5 to 9 micron sized particles for use in the coating composition of Scher et al., which is applied to urdmpregated decorative paper. While Lex et al. discloses a method for coating 0.5 to 9 micron abrasive resistant particles onto the surface of already formed uninpregnated decorative paper, Lex et al. is silent as to how to incorporate such small particles into decorative paper during the paper making process.
During paper making, small particles in the pulp being deposited during the forming stage in the paper making process are carried out with the liquid. Therefore, the need exists for a method of making a paper useful in making decorative laminates having NEMA abrasion above 400 cycles and an initial wear point above 500 cycles. The need also exists for a process to incorporate such small particles into paper during V, the paper making process, without having them carried out with the liquid.
paper making process by depositing an aqueous slurry of the abrasive particles ention aid on an upper layer of paper furnish on the forming wire of a papr machine. Paper produced with ~retention aids for retain the abrasiveprie-~ commercially desirable abrasion resistance.
Addtoalth us onif iaids permits the incorporation of abrasive particles that are sufficiently :0,.oo -M idnA----+oca---1 5- p.ac -is minimize duiir-ng-theproduction-of-decorative-aminate.
0 Page According to a first aspect of this invention there is provided an abrasion resistant decorative laminate produced by consolidating a plurality of sheets of paper impregnated with at least one synthetic resin forming composition into a unitary structure under laminating conditions of temperature and pressure, the top sheet of paper having abrasive particles incorporated therein during the process of forming the paper, the abrasion resistaic decorative laminate produced by: depositing on the forming wire in the wet section of a paper making machine, on an upper layer of paper making furnish a composition comprising abrasive particles and retention aid means for retaining within the resulting paper a substantial amount of the abrasive particles deposited on the forming wire and thereafter pressing and drying the deposited pulp for producing resulting paper; stacking a plurality of sheets of paper impregnated with synthetic resin forming compositions, the top sheet of paper being the resulting paper, for producing a resulting stack; and consolidating the resulting stack under laminating conditions of temperature and pressure into a unitary structure.
According to a second aspect of this invention there is provided an abrasion resistant decorative laminate S" produced by consolidating a plurality of sheets of paper impregnated with at least one synthetic resin forming S.composition into a unitary structure under laminating conditions of temperature and pressure, the top sheet of paper having aluminum oxide particles incorporated therein during the process of depositing pulp for forming the paper, the abrasion resistant decorative laminate produced by: depositing on the forming wire in the wet section of a paper making machine, on an upper l;'er of paper making furnish, a composition comprising aluminum oxide particles and retention aid means for retaining within the resulting paper greater than about eighty (80) weight percent of the N aluminum oxide particles deposited on the forming wire, and thereafter pressing and drying the deposited pulp for producing resulting paper, stacking a plurality of sheets of paper impregnated with synthetic resin forming compositions, the top sheet of paper being the resulting paper, for producing a resulting stack; and consolidating the resulting stack under laminating conditions of temperature and pressure into a unitary structure.
According to a third aspect of this invention there is provided a process for producing paper having abrasive particles incorporated therein during the process of depositing pulp for producing the paper, the process comprising: depositing on the forming wire in the wet section of a paper making machine, on an upper layer of paper making furnish, a composition comprising abrasive particles and retention aid means for retaining within the resulting paper greater than about fifty (50) weight percent of the abrasive particles deposited on the forming wire, and o .thereafter pressing and drying the deposited pulp for producing resulting paper.
0 3: The-aqueessly ea-aid- analso tai-paper fuish -Alu oxide is commercially available and produces a commercially desirable abrasion sistanf laminate.
Cationic, high molecular weight polyacrylamide.reteon aids have been found to retain greater than about 80 to 90 weight percent mium oxide deposited on paper furnish during the paper making process. Deco a aminates can be produced with the paper of this invention that exceeds the NEMA DETAILED DESCRIPTION OF THE INVENTION The decorative laminate of this invention has abrasion resistant characteristics that have not heretofore been achieved by incorporating abrasive particles in paper. This is achieved through the use of a retention aid means for retaining a substantial amount of the abrasive particles deposited on the pulp in the resulting paper. The retention aid means also permits the incorporation of abrasive particles having particle sizes that minimize damage to caul plates used for applying pressure during the laminating process. It is believed that retention aids have not heretofore been used for retaining abrasive particles in paper pulp during the paper making process.
The paper produced by the process of the present invention may be used as an overlay sheet or as the decorative sheet. When additional abrasion resistance is required, paper produced by the process of the present invention as the overlay and as the decorative sheet. Solid color and printed decorative sheets can be made from paper produced by the process of this invention.
.It is desirable to use abrasive particles in the present invention that are small enough to not cause significant damage to the caul plates utilized in the production of decorative laminates. Abrasive particles having a mean particle sizes of about 1 to about 10 microns have been found to produce laminate having desirable abrasion resistance while not causing significant damage to the caul plates used in producing the laminate. It is thought that particles larger than 10 microns can cause damage to caul plates used in the production of decorative laminate. It is thought that particles less than about 1 micron may not impart substantial abrasion resistance to decorative laminate.
An example of a commercially available aluminum oxide abrasive particle useful in the present invention includes Aluchem AC-99. The following Table I illustrates a particle size distribution suitable for use in the present invention. Less than about 1 volume percent of the aluminum oxide of this product has particle sizes greater than about 10 microns. It is thought that less than about 10 volume percent of the abrasive particles should have particle sizes greater than about 10 micron. Greater than about 60 volume Page 6 percent of the aluminum oxide of this product has particle sizes of about 1 to about 10 microns. The particle size distribution shown on Table I, was determined using Horiba CAPA-700 model particle size analyzer. It is noted that particle suies can vary depending on the method and equipment used for determining particle size distribution.
TABLE I: DISTRIBUTION TABLE (BY VOL.) =1) DISTRIBUTION TABLE (BY VOL.) KIIDI =1I D[Pa] F U N] 0.0 100.0 40.0 -30.0 0.0 100.0 30.0 -20.0 0.0 100.0 20.0 -10.0 1.0 100.0 10.0 -9.00 5.0 99.0 9.00 -8.00 7.0 94.0 8.00-7.00 6.0 87.0 7.00- 6.00 7.6 81.0 6.00 -5.00 7.2 73.4 5.00-4.00 8.1 66.2 4.00-3.00 8.6 58.1 3.00-2.00 13.0 49.5 2.00- 1.00 24. 36.5 1.00- 0.90 2.2 12.5 0.90 -0.80 2.1 10.3 :0.80-0.70 1.9 8.2 *0.70 -0.60 6.3 0.60-0.50 1.7 4.2 0.50-0.00 2.5 The particles utilized in the present invention must have a hardness that is sufficient for the particular application for which the decorative laminate will be used. Generally for most applications, the particles utilized in the present invention will have a hardness of at least 6 on the Moh scale. Preferably particles utilized in the present invention will have a hardness of about 7 on the Moh scale, and most preferably, the hardness will be in the range of about 7 to about 10 on the Moh scale. Materials with a hardness of at least 6 on the Moh scale that are suitable for use in the present invention include aluminum oxide and silicon dioxide. Other abrasive materials that are thought to be useful in the present invention include aluminum boride, beryllium carbide, boron carbide, silicon carbide, tantalum carbide, titanium carbide, zirconium carbide, boron nitride, titanium nitride, spinel, diamond and mixtures thereof.
The abrasive particles that should be used for accomplishing the purpose of this invention will depend on factors such as economics, particle size, availability, color and end use. For example, for very light or white background colors, it is normally desirable to use essentially mineral particles with a refractive Page 7 index similar to the refractive index of cured melamine-formaldehyde resin, such as aluminum oxide.
In the present invention, the amount of mineral particles utilized in the making of the paper of the present invention must be sufficient so that laminates formed from the produced paper will have the desired abraon resistance and initial wear properties. Generally, the mineral particles will comprise in the range of about 1 to about 25 weight percent of this paper. Preferably, the abrasive particles will comprise in the range of about 2 to about 20 weight percent of this paper, and most preferably in the range of about 3 to weight percent.
It is believed that cationic, anionic and nonionic polymers can be used as retention aid means for retaining a substantial amount of the deposited abrasive particles within the resulting paper. It has been found that commercially available anionic and cationic retention aids can be used for substantially increasing the retention of abrasive particles within paper and the abrasion resistance of laminate produced from the paper.
Examples of commercially available retention aids that have been found to produce paper having abrasive particles incorporated therein that produces decorative laminate with good abrasion resistance include Accurac 130, 171 and 181 from Americen Cyanamide Company. Accurac 130, 171 andl8i are high molecular weight about 5-10 million) polyacrylamide polymers. Accurac 130 and 171 are anionic and Accurac 181 is cationic.
Abrasion resistance was determined by conducting scuff tests as described at Table IIof this application.
Aluminum oxide was incorporated in the paper using a TAPPI standard sheet machine.The abrasion resistance of the laminate produced with Accurac 181 was superior to the laminate produced wit Accurac 130 and 171. However, the abrasion resistance of the laminate produced with Accurac 130 and 171 was very good.
The retention aid can be mixed in an aqueous slurry with the abrasive particles and deposited te forming wire in the wet section of a paper making machine on an upper layer of paper making lumish.
Alternately the retention aid can be mixed in an aqueous slurry with the abrasive particles and paper making pulp and deposited on the forming wire in the wet section of a paper making machine on an upper S layer of paper.
The amount of retention aid utilized will be that amount necessary to retain a suitable amount of abrasive particles in the furnish during the forming step, such that laminates formed from the produced decorative paper will have sufficient abrasion resistance and initial wear properties.
Page 8 Generally, the retention aid will be used in the range of about 0.01 to about 25 weight percent of the weight of the abrasive particle. Preferably, the retention aid will comprise in the range of about 0.02 to about 10 weight percent, and most preferably in the range of about 0.02 to about 5 weight percent based off the weight of the abrasive particles.
The abrasion resistant decorative laminate of the present invention is prepared in the conventional manner as is well known in the art.
The laminate is prepared by first forming a laminate stack comprising a core of one or more resin impregnated sheets and a top resin impregnated decorative sheet, wherein the decorative sheet prior to resin impregnation comprises one or more paper layers wherein at least the top layer of the one or more paper layers comprises from about 0.01 to about 25 weight percent of a particle retention aid based on the weight of the abrasive particles, and comprising from about 1 to about 75 weight percent abrasion resistant mineral particles based on the weight of the resulting paper, wherein essentially all of the particles have a particle size less than 10 microns, and the top layer is a decorative layer. Next the laminate stack is consolidated into a decorative laminate by the use of heat and pressure.
EXAMPLES
*B S The Examples 1-8 presented below utilized the following standard procedure, with results presented in Table I1. A decorative type base layer was formed on a 33" wide paper machine with a basis weight of 67 lbs/3000 sq. ft. (dry basis) for Examples 1 6 and on a 60 in. wide paper machine for Examples 7 and 8. This base sheet for Examples 1 6 consisted of standard ingredients such as bleached softwood pulp (Proctor Gamble Grand Prairie refined to a 550 ml Canadian Std. Freeness), titanium dioxide, melamine formaldehyde wet strength resin (American Cyanamid Paramel HE), aluminum sulphate, and colorant (Ciba Geigy Irgalite GL). These materials were prepared and added to the paper machine under standard paper making conditions and then held constant throughout Examples 1 6. For example, the basis weight was controlled by adjusting the flow rate of the pulp from the storage chest. A standard pulper was used to disperse and mix these ingredients.
C S The abrasion resistant layer was applied on top of the wet pulp on the forming wire with the use of a secondary headbox which was located above the forming wire and before the wet press section press.
This double layer pulp formed in this manner on the forming wire then passed into a wet press section press, a drying sectV 'n with steam heated rolls, a calendering section then rolled up on a winder. These rolls of dual-ply paper were later treated with a melamine formaldehyde resin, assembled with a phenolic resin impregnated kraft core stock then laminated in a press under standard decorative laminating Page 9 conditions. The top layer of abrasion resistant material on the decorative paper was always on the top surface of the finished laminate. Alumina having the distribution shown in Table I above was utilized as the abrasive particles.
The paper control was made on the same machine without adding any material from the secondary headbox.
EXAMPLE 1 In this example, the Proctor Gamble grade 505 cotton linter was added to a pulper with a 0.35% consistency, transferred to the secondary headbox, and applied on top of the base pulp layer on the forming wire. This level of cotton linter was adjusted to provide a basis weight of 15 lbs/3000 sq. ft. by controlling the flow rate of the pump to the secondary headbox.
EXAMPLE2 Aluminum Oxide (Aluchem AC-99, 9 micron average size) was added to the pulper with the cotton linter, then transferred and applied on top of the base pulp. The whitewater vacuumed from the forming wire was centrifuged and found to contain aluminum oxide. This indicates passage of this material through the cotton linter, base pulp and forming wire.
Aluminum oxide also collected on the metal surfaces of the secondary headbox.
EXAMPLES 3 6 In this example, cationic polyacrylamide (American Cyanamid Accurac 181) was diluted to a solution and then pumped into the transfer line between the pulper and the secondary headbox. The approximate dwell time of the polyacrylamide with the cotton linter and aluminum oxide was around to 30 seconds.
The amount of polyacrylamide is reported as a weight percentage of the cotton linter fiber. The level of Spolyacrylamide add-on 0.02%, 0.75% was accomplished by increasing the flow rate of the acrylamide aqueous solution into the transfer line. A negligible amount of the aluminum oxide was found in the centrifuged samples of whitewater from the forming wire. No aluminum oxide was found collecting on the walls of the secondary headbox indicating the binding of the aluminum to the fibers.
Page EXAMPLES 7 AND 8 In this example the retention aid and aluminum oxide were mixed and deposited through a secondary headbox, no fibers were used.
In Table HI, the scuff resistance was determined according to the following method which measures the ability of the surface of the laminate to resist scuff abrasion from 100 grit aluminum oxide sandpaper being rubbed across the surface. The test apparatus comprises the following.
1. Straightl-line washability and abrasion machine (Gardner Laboratories) 2. 100 grit aluminum oxide 3M Company Three-M-ite® Elek-Tro-Cut® Cloth roll 3" wide 1001 Double Flex Cut into 3" x 10" strips 3. A steel block 3-1/2"x 2-11/16" covered with foam weatherstrip tip x 7/16", Champ Service Item 9-1494, Div. of Standard Motor Products Inc., St. Louis, MO 63.130) on bottom and ends.
4. Sponge holder for washability machine (Gardner Laboratories) The laminate test specimen is cut into a rectangle 4" x 18" to be mounted to base of washability machine and held in place with masking tape. Next, Wrap sanding cloth around steel/padded block and attach with masking tape, insert in holder and attach holder to machine. Set stroke counter at zero and start machine. Stop machine after 50 strokes. Remove specimen and wash with clean water and a sponge soaked in soapy water. Dry and examine the surface for scratching. Thie samples were graded using a modified grading scale ranging from 1 (worst) to 10 (best). The 1 and 10 on this modified scale corresponded to 1 and 6, respectively, on the ISO scale, with a linear relationship between the scales.
0.0.0 %*698 Page I I *0*
S..
TAL 1. PAPE LIN TRIALS .b/30 sq ft.) Competitive Wilsonart D369+A1203 Abrasion Resist Laminate Decorative Paper Contlt1
EXAMPLES
3 4 5- 2k I
PRIARY]HEADBOX
Base Sheet SECONDARY EIEADBOX Cotton Linter 67 67 67 67 67 67 67 67 67 A1203 (9 Microns) Polyacrylamide 15 15 15 15 15 15 0 0 0 7 7 7 7 7 5 7 0 0 0.02% 0.2% 0.3% 0.75% 0.02% 0.05% 0 0 0 0 0 0 0 0 1 5 8 8 10 8 8 8 OVERLAY WITH A 1203 40 Mirons Scuff Test (10-best, A1203 sandpaper, cycles) NEMA TESTS Abrasion Test (NEMA) Initial Point Final Point 7 1 4424 3600 4670 1327 1100 1380 628 2715 292 694 873 4380 2949 1425 4087 3265 1910 4193 3602 2376 4357 3732 2459 4517 1995 6869 1710 6042 2019 6797 56 52 30 B all Impact (in,) Dart Impact (in.) Stain (6-best) 6 6 Page 12 EXAMPLE In this example, damage to press plates by laminates containing four types of alumina particles was determined.
PLATE PREPARATION The size of the plate to be used in the experiment is limited by the dimensions of the press platen and the maximum load of the press. The platen has 24 inches as its maximum dimension, and the press load limit is 75 tons. Since the most thermal expansion will occur with the longest possible plate (which would produce the longest possible scratch), 24 inches was chosen as one of the dimensions. The press needs to achieve a pressure of 1040 psi to cure the laminate, so due to the limit of a 75 ton load, the other dimension has a maximum of 6 inches. Thus a set of 6 plates was cut to 24" by which would produce scratches of sufficient length and a variety of shapes.
Since it is impractical to monitor the successive build-up of scratches on an entire 24" by 6" laboratory plate, three representative areas were selected in approximately the same location on each plate, one in the center and two in opposite comers. Each area is approximately 1 cm 2 and the perimeters were S" marked by etching the stainless steel with Violl's reagent (a stainless steel etch containing glycerol, hydrochloric acid, and nitric acid). Each plate was also labeled by etching to identify the type of alumina particle it was to be pressed against. Thus, three 1 cm 2 areas will be monitored on each of five 24" by 6" plate faces for ten successive press cycles.
LAMINATE PRODUCTION For each press cycle, two laminates for each of the following were pressed: control (no alumina), 1.1 micron diameter alumina, -325 mesh alumina, spherically shaped alumina, and an alumina overlay (labeled 822 with the side labeled "TOP" facing the plate). The laminates were produced by forming a single stack using both sides of 4 of the plates and one side of the 2 plates at the top and bottom of the stack. Each laminate is made from one layer of decorative b-staged paper top-coated side towards the plates, 2 layers of phenolic, and one layer of a release sheet which allows two laminates to be pressed back to back without sticking together. The completed stack is placed into the press using 4 layers of kraft paper for cushion and a foil layer between the brass platens and the outer steel plates of the stack (see figure). The same stacking configuration was repeated throughout the experiment.
For curing the laminates, the press was loading to 75 tons which results in a pressure of 1040 psi for a 24" by 6" plate. The platen heaters were then turned on for a period of one hour. The temperature was measured using a thermocouple located between the release layers at the edge of the two plates at the Page 13 center of the stack. The temperature usually reaches 280 degrees F after 45 minutes and remains at 280°F for the remainder of the heating period. At this time the heaters are turned off and cooling water is circulated through the platens. The thermocouple cools to 100-120 F in about 15 minutes, at which time the load is released and the laminates are removed from the press. Ten press cycles were performed in this experiment.
PLATE EXAMINATION After each press cycle, the plates were taken to a metallography lab for examination. For the overlay plate, a 15X magnification photo was taken in each of the three regions for each cycle. For the 1.1 micron, -325 mesh, and the spherical plate, a 40X photo was taken within the center area only for each cycle. After the first, fifth, and tenth cycles, a 12.5X photomosaic was made of the entire center area for the 1.1 micron, -325 mesh, and spherical plates. The density of the scratches varies throughout the plate.
There are regions that seem to be scratched with each press cycle, and other regions which are only scratched during one or two of the press cycles. The size and shapes of the scratches varies with the location on the plate. The scratches generally appear longer at points away from the center of the plate.
For the purpose of obtaining a permanent record of the wear damage from each press cycle in the three regions of the five plates, the method of surface replication was used. Using this process, a negative or inverse image of the plate having excellent detail can be obtained. This process also makes it possible to view the wear damage in a scanning electron microscope. A thin film of acetobutyrate is softened with a solvent and applied to the region to be replicated, where it flows into the scratches in the plate. When the solvent dries, the film retains the topography of the plate. In this experiment, 100 micron thick Triafol replicating sheet available from Ted Pella, Inc., Redding, CA (cat. no. 44848) was used with a few drops of acetone to make the replicas.
To prepare'the replicas for viewing, they were first glued flat to a glass slide since they tended to curl upon drying. A thin layer of silver was then vapor deposited on the replica using a Denton Vacuum Desk-lA Cold Sputter-Etch unit. The replicas were then viewed in a light microscope. The detail of the S* replicas is so excellent that even the slight machine marks and the etched outlines from the plates are .obvious. Photomosaics at 12.5X were made from the replicas of the circular region from the -325 mesh alumina and of the diamond region of the spherical alumina for the first, fifth and tenth cycles.
DAMAGE MEASUREMENTS Scratch Quantification: The scratches were quantified by counting the number of scratches observed on replicas of the etched regions from each plate for 1,5, and 10 press cycles. Each replica was viewed on a Page 14 metallograph at a magnification of 50, and the image was viewed on a monitor. Image Analysis software was used to count the number of scratches on the monitor screen. At 50X, the scratches were clearly evident, but the entire region to be observed had to be divided into smaller frames. The number of scratches in each frame was added to obtain the number of scratches in the region. The total number of scratches within each region was divided by the area within that region to obtain the scratch density, or the number of scratches per unit area.
TABLE III Number of Alumina -325 mesh Spherical 1.1 Micron cycles overlay alumina alumina diameter alumina 1 6.9/mm 2 4.9 1.4 0.4 10.8 7.7 3.0 0.6 14.4 9.1 5.5 1.9 Scratch Observations: The buildup of the scratches after each press cycle was observed using the photos from the center region of the 1.1 micron, -325 mesh, and spherical plates. At 40X, a 3.5 by inch photo corresponds to an actual plate observation area of 6.35 mm 2 (3.48 mm 2 was observed for the spherical plate due to misalignment of the successive photos). For each press cycle, the number and size of the scratches in the photo were noted. Thus, the number and size of the new scratches after each press 9.
cycle were determined: TABLE IV Number of -325 mesh Spherical 1.1 micron Cycles (6.35 mm 2 (3.48 mm 2 (6.35 mm 2 99 1 18 new scratches 47 6 2 8 0 0 S. 3 0 5 4 4 0 0 0 0 0 6 0 0 0 7 0 3 0 8 0 9 1 9 0 0 0 3 0 0 Total 33 (5.2/mm 2 64 (18.4/mm 2 7 (1.1/mm 2 Although the present invention has been disclosed in connection with a number of specific embodiments, it is believed that many different additional geometrical configurations may be used without departing Page from the spirit of the present invention. Additional configurations can be obtained by rearranging the shape, size, thickness, and the like of the various structural members. Furthermore, many combinations of the various features may be made without the exercise of invention in light of the present teachings.
EXAMPLE 11 Tests were conducted to determine the retention characteristics of four commercially available cationic polymers. The retention characteristics were determined by depositing paper furnish containing aluminum oxide on the screen of a TAPPI Standard Sheet Machine Model S-50-4 Handsheet machine with a 6.25 inch diameter screen. Without the use of a retention aid, about 48 weight percent of the aluminum oxide was retained within the resulting paper. With Acccurac 181 cationic (10 percent) high molecular weight (5 to 10 million) polyacrylamide retention aid available from American Cyanamid Company about 82 weight percent of the aluminum oxide was retained within the resulting paper. With DPP-1813 cationic (15 percent), high molecular weight (6 to 8 million) polyacrylamide retention aid available from Betz Paperchem, Inc. about 83 weight percent of the aluminum oxide was retained within the resulting paper. With Polyplus 695 cationic (10 percent), high molecular weight (6 to 8 million) polyacrylamide retention aid available from Betz Paperchem, Inc., about 94 weight percent of the aluminum oxide was retained within the resulting paper. With DPP-1878 cationic (40 percent), high molecular weight (6 to 8 million) polyacrylamide retention aid available from Betz Paperchem, Inc.
about 52 weight percent of the aluminum oxide was retained within the resulting paper.
These tests were conducted by depositing sufficient furnish to produce a 67 pound sheet along with sufficient water to fill the TAPPI handsheet machine to the 6800 milliliter level. When the liquid level in the handsheet machine reaches the 2200 milliliter level, an aqueous slurry of aluminum oxide particles and the retention aid is added. The resulting paper is weighed to determine the amount of aluminum oxide retained in the resulting sheet It is seen that the present invention and the embodiments disclosed herein are well adapted to carry out the objectives and obtain the ends set forth at the outset. Certain changes can be made in the method and apparatus without departing from the spirit and the scope of this invention. It is realized that changes are possible and it is further intended that each element recited in any of the following claims is understood as referring to all equivalent elements, arrangement or combination of elements for accomplishing substantially the same results in substantially the same or equivalent manner. It is intended to cover the invention broadly in whatever form its principles may be utilized. The present invention is, therefore, well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as others inherent therein.
Page 16

Claims (46)

1. An abrasion resistant decorative laminate produced by consolidating a plurality of sheets of paper impregnated with at least one synthetic resin forming composition into a unitary structure under laminating conditions of temperature and pressure, the top sheet of paper having abrasive particles incorporated therein during the process of forming the paper, the abrasion resistant decorative laminate produced by: depositing on the forming wire in the wet section of a paper making machine, on an upper layer of paper making furnish a composition comprising abrasive particles and retention aid means for retaining within the resulting paper a substantial amount of the abrasive particles deposited on the forming wire and thereafter pressing and drying the deposited pulp for producing resulting paper, stacking a plurality of sheets of paper impregnated with synthetic resin forming compositions, the top sheet of paper being the resulting paper, for producing a resulting stack; and consolidating the resulting stack under laminating conditions of o temperature and pressure into a unitary structure.
2. The abrasion resistant decorative laminate of Claim 1 wherein the resulting paper overlays a decorative sheet
3. The abrasion resistant decorative laminate of Claim 1 wherein printing is applied to the top surface of the resulting paper.
4. The abrasion resistant decorative laminate of Claim 1 wherein the paper making composition additionally comprises sufficient pigment means for producing resulting paper having a solid color. The abrasion resistant decorative laminate of Claim 1 wherein the resulting paper and paper lower in the resulting stack are impregnated with different resin forming compositions.
Page 17
6. The abrasion resistant decorative laminate of Claim 1 wherein the top sheet of paper and paper lower in the resulting stack are impregnated with the resin forming composition.
7. The abrasion resistant decorative laminate of Claim 1 wherein the abrasive particles have a hardness on the Moh scale of at least about 7.
8. The abrasion resistant decorative laminate of Claim 1 wherein the abrasive particles have a hardness on the Moh scale of about 7 to about
9. The abrasion resistant decorative laminate of Claim 1 wherein the mean particle size of the abrasive particles is about 1 to about 10 microns.
The abrasion resistant decorative laminate of Claim 1 wherein the particle size of less than about 10 volume percent of the abrasive particles is greater than about 10 microns.
11. The abrasion resistant decorative laminate of Claim 1 wherein the particle size of at least 60 volume percent of the abrasive particles is about 1 to about 10 microns. S.
12. The abrasion resistant decorative laminate of Claim 1 wherein the abrasive particles are *aluminum oxide particles.
13. The abrasion resistant decorative laminate of Claim 1 wherein the abrasive particles comprises about 1 to about 25 weight percent of the resulting paper.
14. The abrasion resistant decorative laminate of Claim 1 wherein the abrasive particles comprises about 2 to about 20 weight percent of the resulting paper.
The abrasion resistant decorative laminate of Claim 1 wherein the abrasive particles comprises about 3 to about 15 weight percent of the resulting paper.
16. The abrasion resistant decorative laminate of Claim 1 wherein the retention aid means retains within the resulting paper greater than about 50 weight percent of the abrasive particles deposited on the forming wire. Page 18
17. The abrasion resistant decorative laminate of Claim 1 wherein the retention aid means retains within the resulting paper greater than about 80 weight percent of the abrasive particles deposited on the forming wire.
18. The abrasion resistant decorative laminate of Claim 1 wherein the retention aid means retains within the resulting paper greater than about 90 weight percent of the abrasive particles deposited on the forming wire.
19. The abrasion resistant decorative laminate of Claim 1 wherein the retention aid means comprises cationic polymers.
The abrasion resistant decorative laminate of Claim 1 wherein the retention aid means comprises cationic, high molecular weight polyacrylamide polymers.
21. An abrasion resistant decorative laminate produced by consolidating a plurality of sheets of paper impregnated with at least one synthetic resin forming composition into a unitary structure under laminating conditions of temperature and pressure, the top sheet of paper having aluminum oxide particles incorporated therein during the process of depositing pulp for forming the paper; the abrasion resistant decorative laminate produced by: depositing on the forming wire in the wet section of a paper making machine, on an upper layer of paper making furnish, a composition comprising aluminum oxide particles and retention aid means for retaining within the resulting paper greater than about eighty (80) weight percent of the aluminum oxide particles deposited on the forming wire, and thereafter pressing and drying the deposited pulp for producing resulting paper, stacking a plurality of sheets of paper impregnated with synthetic resin forming compositions, the top sheet of paper being the resulting paper, Sfor producing a resulting stack; and consolidating the resulting stack under laminating conditions of temperature and pressure into a unitary structure.
22. The abrasion resistant decorative laminate of Claim 21 wherein the mean particle size of the abrasive particles is about 1 to about 10 microns. Page 19
23. The abrasion resistant decorative laminate of Claim 21 wherein the particle size of less than about 10 volume percent of the abrasive particles is greater than about 10 microns.
24. The abrasion resistant decorative laminate of Claim 21 wherein the particle size of at least 60 volume percent of the abrasive particles is about 1 to about 10 microns.
The abrasion resistant decorative laminate of Claim 21 wherein the abrasive particles comprises about 1 to about 25 weight percent of the resulting paper.
26. The abrasion resistant decorative laminate of Claim 19 wherein the abrasive particles comprises about 2 to about 20 weight percent of the resulting paper.
27. The abrasion resistant decorative laminate of Claim 21 wherein the abrasive particles comprises about 3 to about 15 weight percent of the resulting paper.
28. The abrasion resistant decorative laminate of Claim 21 wherein the retention aid means 4* retains within the resulting paper greater than about 90 weight percent of the abrasive particles deposited on the forming wire.
29. The abrasion resistant decorative laminate of Claim 21 wherein the retention aid means comprises cationic polymers.
The abrasion resistant decorative laminate of Claim 21 wherein the retention aid means comprises cationic, high molecular weight polyacrylamide polymers. i
31. A process for producing paper having abrasive particles incorporated therein during the process of depositing pulp for producing the paper, the process comprising: depositing on the forming wire in the wet section of a paper making machine, on an upper layer of paper making furnish, a composition comprising abrasive particles and retention aid means for retaining within the resulting paper greater than about fifty (50) weight percent of the abrasive particles deposited on the forming wire, and thereafter pressing and drying the deposited pulp for producing resulting paper. Page
32. The process for producing paper of Claim 31 wherein the abrasive particles have a hardness on the Moh scale of at least about 7.
33. The process for producing paper of Claim 31 wherein the abrasive particles have a hardness on the Moh scale of about 7 to about
34. The process for producing paper of Claim 31 wherein the mean particle size of the abrasive particles is about 1 to about 10 microns.
35. The process for producing paper of Claim 31 wherein the particle size of less than about 10 volume percent of the abrasive particles is greater than about microns.
36. The process for producing paper of Claim 31 wherein the particle size of at least 60 volume percent of the abrasive particles is about 1 to about 10 microns.
37. The process for producing paper of Claim 31 wherein the abrasive particles are aluminum oxide particles.
38. The process for producing paper of Claim 31 wherein the abrasive particles comprises about 1 to about 25 weight percent of the resulting paper.
39. The process for producing paper of Claim 31 wherein the abrasive particles comprises about 2 to about weight percent of the resulting paper.
The process for producing paper of Claim 31 wherein the abrasive particles comprises about 3 to about weight percent of the resulting paper. 30
41. The process for produ-ing paper of Claim 31 wherein the retention aid means retains within the resulting paper greater than about 75 weight percent of the abrasive particles deposited on the forming wire.
42. The process for producing paper of Claim 31 wherein the retention aid means retains within the resulting paper greater than about 90 weight percent of the abrasive particles deposited on the forming wire.
43. The process for producing paper of Claim 31 39 wherein the retention aid means comprises cationic 21 polymers.
44. The process for producing paper of Claim 31 wherein the retention aid means comprises cationic, high molecular weight polyacrylamide polymers.
45. An abrasion resistant decorative laminate substantially as herein described with respect to any one of the embodiments illustrated in the accompanying drawings.
46. A process for producing paper having abrasive particles incorporated therein during the process of depositing pulp for producing the paper, sustantially as herein described with respect to any one of the embodiments illustrated in the accompanying drawings. DATED: 8 November 1993 PHILLIPS ORMONDE FITZPATRICK Attorneys for: RALPH WILSON PLASTICS CO. "o ei 35 4531b t f *r7~ 51 22 2- n Abrasive par-ticles are incorporated in the top sheet of paper used for producing decorative laminate during the process of depositing paper furnish on the forming wire of a paper making machine. An aqueous slurry of the abrasive particles and a retention aid such as a cationic, high molecular weight polyacrylainide retention aid is deposited on an upper layer of paper fturnish on the forming wire. o #0 #84 5060 0 0 00
AU32172/93A 1993-01-26 1993-02-03 The use of retention aids in the making of paper containing abrasive particles and abrasion resistant decorative laminates made therefrom Ceased AU645450B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US105293A 1993-01-26 1993-01-26
US001052 1993-01-26

Publications (1)

Publication Number Publication Date
AU645450B1 true AU645450B1 (en) 1994-01-13

Family

ID=21694152

Family Applications (1)

Application Number Title Priority Date Filing Date
AU32172/93A Ceased AU645450B1 (en) 1993-01-26 1993-02-03 The use of retention aids in the making of paper containing abrasive particles and abrasion resistant decorative laminates made therefrom

Country Status (7)

Country Link
JP (1) JP2546595B2 (en)
KR (1) KR960012524B1 (en)
CN (1) CN1047641C (en)
AU (1) AU645450B1 (en)
BR (1) BR9300497A (en)
MY (1) MY130148A (en)
TW (1) TW242601B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1929991B (en) 2004-01-29 2016-02-24 纳米钢公司 High-abrasive material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798111A (en) * 1972-03-24 1974-03-19 Mead Corp Multiple layer decorated paper,laminates prepared therefrom and process
US4713138A (en) * 1984-12-26 1987-12-15 Nevamar Corporation Method of producing abrasion-resistant decorative laminate
US4971855A (en) * 1988-05-02 1990-11-20 Nevamar Corporation Wear-resistant glossy laminates

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246897A (en) * 1985-03-05 1985-12-06 イビデン株式会社 Blended paper for abrasion resistant decorative board, its production and production of abrasion resistant decorative board
JPS6462108A (en) * 1987-08-31 1989-03-08 Ibiden Co Ltd Fancy veneer sheet
JPH0661904B2 (en) * 1988-05-20 1994-08-17 株式会社河合楽器製作所 Method of manufacturing decorative plywood

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798111A (en) * 1972-03-24 1974-03-19 Mead Corp Multiple layer decorated paper,laminates prepared therefrom and process
US4713138A (en) * 1984-12-26 1987-12-15 Nevamar Corporation Method of producing abrasion-resistant decorative laminate
US4971855A (en) * 1988-05-02 1990-11-20 Nevamar Corporation Wear-resistant glossy laminates

Also Published As

Publication number Publication date
TW242601B (en) 1995-03-11
MY130148A (en) 2007-06-29
BR9300497A (en) 1993-08-03
KR960012524B1 (en) 1996-09-20
JP2546595B2 (en) 1996-10-23
KR940018214A (en) 1994-08-16
CN1047641C (en) 1999-12-22
CN1096250A (en) 1994-12-14
JPH06238854A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
US4255480A (en) Abrasion-resistant laminate
US5362557A (en) Wear resistant decorative laminates comprising mineral particles and methods for producing same
US4505974A (en) Decorative laminate having mar-resistant surface
US4430375A (en) Abrasion-resistant laminate
US7854984B2 (en) Wear-resistant decorative laminates
US5456949A (en) Method of producing damage resistant decorative laminate
US6709764B1 (en) Decorative paper sheet and decorative laminate comprising same
US4263081A (en) Abrasion-resistant laminate
USRE32152E (en) Abrasion resistant laminate
US4400423A (en) Abrasion-resistant laminate
US4076566A (en) Method of preparing decorative textured laminates
US4395452A (en) Abrasion resistant laminate
WO2001092037A2 (en) Laminate overlay with press plate protection and methods of producing the same
CA1245965B (en) Abrasion-resistant laminate
US4305987A (en) Abrasion resistant laminate
US4327141A (en) Abrasion-resistant laminate
RU2648099C2 (en) Decorative paper for layered plastics
GB2033249A (en) Abrasion-resistant Laminate
EP0555993B1 (en) The use of retention aids in the making of paper containing abrasive particles and abrasion resistant decorative laminates made therefrom
AU645450B1 (en) The use of retention aids in the making of paper containing abrasive particles and abrasion resistant decorative laminates made therefrom
US4741946A (en) Scuff and abrasion-resistant laminates
JP7383228B2 (en) Resin-impregnated decorative paper and resin-impregnated decorative board
WO2002078978A2 (en) Graphics-protection sheet and graphics-displaying sheet
CA1109380A (en) Peened embossing press plate
JPH07148828A (en) Raw paper for surface decorative material

Legal Events

Date Code Title Description
MK14 Patent ceased section 143(a) (annual fees not paid) or expired